

1101A, 1105 and 1163 Kingston Road,

Pickering, Ontario

L1V1B5 Preliminary Hydrogeological Investigation

Client:

Tribute (Brookdale) Limited 1815 Ironstone Manor, Unit 1, Pickering, Ontario, L1W3W9

Type of Document: Final Report

Project Name: 1101A, 1105 and 1163 Kingston Road, Pickering, Ontario

Project Number:

GTR-22015419-B0

EXP Services Inc. 1595 Clark Boulevard Brampton, ON, L6T 4V1 t: 905.793.9800 f: 905.793.0641

Date Submitted: 2023-10-30

Table of Contents

1	Intro	duction	4
	1.1	Project Description	4
	1.2	Project Objectives	4
	1.3	Scope of Work	4
	1.4	Review of Previous Reports	5
2	Hydro	ogeological Setting	6
	2.1	Regional Setting	6
	2.1.1	Regional Physiography	6
	2.1.2	Regional Geology and Hydrogeology	6
	2.1.3	Existing Water Well Survey	7
	2.2	Site Setting	7
	2.2.1	Site Topography	7
	2.2.2	Local Surface Water Features	8
	2.2.3	Local Geology and Hydrogeology	8
3	Resul	11	
	. .		
	3.1	Monitoring Well Details	11
	3.1 3.2	Monitoring Well Details	
			11
	3.2	Water Level Monitoring	11
4	3.2 3.3 3.4	Water Level Monitoring Hydraulic Conductivity Testing	11 13 14
4	3.2 3.3 3.4	Water Level Monitoring Hydraulic Conductivity Testing Groundwater Quality	11 13 14 16
4	3.2 3.3 3.4 Dewa	Water Level Monitoring Hydraulic Conductivity Testing Groundwater Quality atering Assessment	11
4	3.2 3.3 3.4 Dewa 4.1	Water Level Monitoring Hydraulic Conductivity Testing Groundwater Quality atering Assessment Dewatering Flow Rate Estimate and Zone of Influence	11 13 14 16 17 17
4	 3.2 3.3 3.4 Dewa 4.1 4.2 	Water Level Monitoring Hydraulic Conductivity Testing Groundwater Quality atering Assessment Dewatering Flow Rate Estimate and Zone of Influence Cooper-Jacob's Radius of Influence	11 13 14 16 17 17 18
4	 3.2 3.3 3.4 Dewa 4.1 4.2 4.3 	Water Level Monitoring Hydraulic Conductivity Testing Groundwater Quality atering Assessment Dewatering Flow Rate Estimate and Zone of Influence Cooper-Jacob's Radius of Influence Stormwater	11 13 14 16 17 17 17 18 18
4	 3.2 3.3 3.4 Dewa 4.1 4.2 4.3 4.4 	Water Level Monitoring Hydraulic Conductivity Testing Groundwater Quality atering Assessment Dewatering Flow Rate Estimate and Zone of Influence Cooper-Jacob's Radius of Influence Stormwater Results of Dewatering Rate Estimates	11 13 14 16 17 17 17 18 18 18
4	 3.2 3.3 3.4 Dewa 4.1 4.2 4.3 4.4 4.4.1 	Water Level Monitoring Hydraulic Conductivity Testing Groundwater Quality atering Assessment Dewatering Flow Rate Estimate and Zone of Influence Cooper-Jacob's Radius of Influence Stormwater Results of Dewatering Rate Estimates Preliminary Construction Dewatering Rate Estimate	11 13 14 16 17 17 17 18 18 18 18

		EXP Services Inc. 1101A, 1105 and 1163 Kingston Road, Pickering, Ontario Preliminary Hydrogeological Investigation GTR-22015419-B0 October 30, 2023	2
	4.5.2	Long-Term Discharge Rate (Post Construction Phase)	21
5	Enviro	onmental Impact	
	5.1	Surface Water Features	22
	5.2	Groundwater Sources	22
	5.3	Geotechnical Considerations	22
	5.4	Groundwater Quality	22
	5.5	Well Decommissioning	23
6	Concl	usions and Recommendations24	
7	Limita	itions	
8	Refere	ences	
Fig	gures	0	
Ap	pendi	x A – MECP WWR Summary Table1	
Ap	pendi	x B – Borehole Logs2	
Ap	pendi	x C – SWRT Procedures and Results	
Ap	pendix	x D – Laboratory's Certificates of Analysis4	
Ap	pendix	x E – Construction Flow Rate Calculations5	
Ap	pendix	x F - Post-Construction Flow Rate Calculations6	
Ap	pendi	x G – Architectural Drawings7	

List of Figures

f Figures
Figure 1 – Site Location Plan
Figure 2 – Surficial Geology
Figure 3 – MECP Water Well Records Map
Figure 4 – Borehole/Monitoring Well Location Plan
Figure 5 – Cross Section A-A
Figure 6 – Groundwater Flow Map

EXP Services Inc. 1101A, 1105 and 1163 Kingston Road, Pickering, Ontario Preliminary Hydrogeological Investigation GTR-22015419-B0 October 30, 2023

List of Appendices

Appendix A – MECP WWR Summary Table

- Appendix B Borehole Logs
- Appendix C SWRT Procedures and Results
- Appendix D Laboratory's Certificates of Analysis
- Appendix E Construction Flow Rate Calculations
- Appendix F Post-Construction Flow Rate Calculations
- Appendix G Architectural Drawings

1 Introduction

1.1 Project Description

EXP Services Inc. (EXP) was retained by Tribute (Brookdale) Limited to prepare a Preliminary Hydrogeological Investigation Report associated with the proposed development located at 1101A, 1105 and 1163 Kingston Road, Pickering, Ontario (hereinafter referred to as the 'Site').

The Site is currently occupied by the Brookdale Centre (containing five commercial buildings) and portion of a Walnut Lane at northern portion of the Site. It is our understanding that the Site has an area of approximately 7.75 hectares and proposed development plan is in preliminary stage and comprises of six parcels (A1, A2, B, C1, C2 and D) having thirteen (13) to thirty-five (35) storeys towers with one (1) to three (3) levels of underground parking. The Site location plan is shown on Figure 1.

EXP conducted a Preliminary Geotechnical Investigation in conjunction with this investigation. The pertinent information gathered from the noted investigations is utilized for this report.

1.2 Project Objectives

The main objectives of the Preliminary Hydrogeological Investigation are as follows:

- Establish the local hydrogeological settings within the Site;
- Provide Preliminary recommendations on construction and long-term dewatering;
- Assess groundwater quality; and
- Prepare a Preliminary Hydrogeological Investigation Report.

1.3 Scope of Work

To achieve the investigation objectives, EXP has completed the following scope of work:

- Reviewed available geological and hydrogeological information for the Site;
- Drilled and installed ten (10) monitoring wells (BH1, BH2S, BH2D, BH3S, BH3D, BH4, BH5S, BH5D, BH6, BH7) to an approximate depth ranging from 11 meter below ground surface (mbgs) to 19 mbgs and three monitoring wells (BH2S/2D, BH3S/3D and BH5S/5D) are in nested configurations;
- Installed 50 mm diameter monitoring wells in the geotechnical boreholes;
- Developed and conducted Single Well Response Tests (SWRT) on monitoring wells to assess hydraulic conductivities of the saturated soils at the Site;
- Completed two (2) rounds of groundwater level measurements at all monitoring wells;
- Collected one (1) groundwater sample for analyses of parameters, as listed in the Durham Region Sanitary and Storm Sewer Use By-Law;
- Evaluated the information collected during the field investigation program, including borehole geological information, Water Well Records (WWR), SWRT results, groundwater level measurements and groundwater water quality;
- Prepared site plans, cross sections, geological mapping and groundwater contour mapping for the Site;
- Provided preliminary recommendations on the requirements for construction and long-term dewatering;

[%]ехµ.

- Provided recommendations on the Ministry of Environment, Conservation and Parks (MECP) Water Taking Permits and Durham Region Sewer Discharge Agreements (SDA) for the construction and post-construction phases; and
- Prepared a Preliminary Hydrogeological Investigation Report.

The Preliminary Hydrogeological Investigation was prepared in accordance with the Ontario Water Resources Act, Ontario Regulation 387/04, and Durham Region Sewer Use By-Lay No. 55-2013. The scope of work outlined above was made to assess dewatering and did not include a review of Environmental Site Assessments (ESA).

1.4 Review of Previous Reports

The following reports were reviewed as part of this Preliminary Hydrogeological Investigation:

- EXP Services Inc. (July 12, 2023), Preliminary Geotechnical Investigation, 1101A and 1105 Kingston Road, Pickering, ON, prepared for Tribute (Brookdale) Limited.
- EXP Services Inc. (Revised October 18, 2023), Phase One Environmental Site Assessment, 1101A, 1105 and 1163 Kingston Road, Pickering, ON, prepared for Tribute (Brookdale) Limited.

Any past and/or future geotechnical, hydrogeological, environmental and risk assessments, and updated development/architectural plans should be provided to update this hydrogeological report prior to submission of permits and approvals by the municipalities and agencies.

2 Hydrogeological Setting

2.1 Regional Setting

2.1.1 Regional Physiography

The Site is within a physiographic region known as the Iroquois Plain. The physiographic landform is named Sand Plains on the west side and Clay Plains on the east side of the Site. The South Slope lies to the north of the Iroquois Plain (Chapman & Putnam, 2007).

The Iroquois Plain was created along the shores of former Lake Iroquois, an ancient glacial lake. The noted Plain primarily consists of shallow water sandy deposits.

The topography of the Iroquois Plain is relatively flat with a gradual slope to the south, toward Lake Ontario.

2.1.2 Regional Geology and Hydrogeology

The surficial geology can be described as fine-textured glaciolacustrine deposits consisting of silt and clay, minor sand and gravel and Till (5b) consisting of stone-poor sandy silt to silty sand-textures till on a small portion of northwest portion of the Site (Ministry of Northern Development and Mines, 2012). The surficial geology of the Site and surrounding areas is shown on Figure 2.

Based on the available regional geology maps, the subsurface stratigraphy of the Site from top to bottom is summarized in Table 2-1 (TRCA, 2008 and Oak Ridge Moraine Groundwater Program, 2018). The overburden thickness is approximately 18.2 m. Two cross sections obtained from the ORMGP are presented in Figure 5C and 5D.

Stratigraphic Unit	General Description	Top Elevation of Stratigraphic Unit
Undifferentiated Upper Sediments	fine-textured glaciolacustrine deposits consisting of silt and clay, minor sand and gravel on the east side and Till (5b) consisting of stone-poor sandy silt to silty sand-textures till on the small portion of west side of the Site	85.1
Lower Newmarket Till (Aquitard)	This lithologic unit typically consists of sandy silt to clayey silt till interbedded with silt, clay, sand and gravel.	82.1
Thorncliffe Formation (Aquifer)	This geology formation generally consists of glaciofluvial (sand, silty sand) or glaciolacustrine deposits (silt, sand, pebbly silt and clay).	81.7
Scarborough Formation (Aquifer)	This geology unit is interpreted as deposits of a fluvial-deltaic system fed by large braided melt-water rivers draining from an ice sheet. It consists of	70.5

Table 2-1: Summary of Subsurface Stratigraphy

	peat sand overlaying silt and clay deposits.	
Georgian Bay Formation	Bedrock primarily consists of interbedded shale, limestone, dolostone and siltstone. It belongs to the Upper Ordovician, (Ministry of Northern Development and Mines, 2012).	66.9

Regional groundwater across the area flows southeast, towards Lake Ontario (Oak Ridge Moraine Groundwater Program, 2018). Local deviation from the regional groundwater flow pattern may occur in response to changes in topography and/or soils, as well as the presence of surface water features and/or existing subsurface infrastructure.

2.1.3 Existing Water Well Survey

Water Well Records (WWRs) were compiled from the database maintained by the Ministry of the Environment, Conservation and Parks (MECP) and reviewed to determine the number of water wells documented within a 500-m radius of the Site boundaries. The locations of the MECP WWRs within 500 m of the Site are shown on Figure 3. A summary of the WWR is included in Appendix A.

The MECP WWR database indicates that eighty-seven (87) records within a 500 m radius from the Site centroid where ten (10) well records are identified onsite (Figure 3 and Appendix A). Well distances are calculated relative to the Site centroid, therefore some distances in Appendix A exceed 500 m.

The database indicates that the offsite wells are at an approximate distance of one hundred twenty-four (124) m or greater from the Site centroid. All wells were reportedly identified as monitoring and test holes (33), water supply wells (5), abandoned (23) and/or listed with unknown use (26).

The Well Identification Numbers (Well ID No.) of the offsite water supply wells are 4601194, 4601195, 4601196, 4601197 4601889 where those are reportedly located ranging from 190 m to 491 m from the Site centroid.

The reported water found depths ranged from 0.9 m to 41.1 meters below ground surface (mbgs).

Based on the date of installation of the water supply wells (12/3/1959 to 12/11/1964) and since the area is municipally serviced, it is unlikely that the noted water supply wells are still active.

2.2 Site Setting

2.2.1 Site Topography

The Site is in an urban land use setting. The topography is considered relatively flat with a regional gradual southeasterly slope towards Pine Creek and Lake Ontario.

As indicated on the borehole logs included in Appendix B, the surface elevation of the Site ranges between approximately 84.89 to 86.38 meters above sea level (masl).

2.2.2 Local Surface Water Features

The Site is within the Lake Ontario Waterfront watershed. No surface water features exist onsite. The nearest surface water features are Pine Creek, approximately located 100 meters east of the Site boundary and a wetland associated with Pine Creek. Lake Ontario is approximately 2.2 kms from the Site boundary to the south.

2.2.3 Local Geology and Hydrogeology

A summary of subsurface soil stratigraphy is provided in the following paragraphs. The soil descriptions are based on the geotechnical investigation report (EXP, July 12, 2023). They are summarized for the hydrogeological interpretations. As such, the information provided in this section shall not be used for construction design purposes.

The detailed soil profiles encountered in each borehole and the results of moisture content determinations are presented on the attached borehole logs (Appendix B). The soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones for the Preliminary Hydrogeological Investigation and shall not be interpreted as exact planes of geological change.

The "Notes on Sample Description" preceding the borehole logs form an integral part of and should be read in conjunction with this report. The following is a brief description of the soil conditions encountered during the investigation.

Based on the results of the geotechnical investigation, the general subsurface soil stratigraphy consists of the following units from top to bottom:

Pavement Structure

Pavement structure, comprising 50 to 75 mm asphaltic concrete and 360 to 580 mm granular material, was encountered surficially in all of the boreholes.

Fill

Fill was encountered below the pavement structure in Boreholes 1, 4, 5D, 6 and 7. The fill varied from dark brown to brown topsoil-stained sandy silt to silty sand or silty clay with some gravel and topsoil inclusions. The compactness of the fill varied from loose to compact. Moisture contents of the moist to very moist fill ranged from 8 to 30%. The fill extended to depths of approximately 0.45 to 0.65 m below existing grade.

Silty Sand

Silty sand was encountered below the pavement structure in Borehole 2D. The silty sand deposit was brown in colour and existed in a compact state of compactness. The silty sand had a moisture content of 10%, indicating a moist condition. The silty sand deposit extended to a depth of about 1.0 m below existing grade.

Silt

Silt was encountered at depths ranging from approximately 0.65 to 1.65 m below existing grade in Boreholes 2D, 3D and 5D. The silt stratum was brown in colour and existed in a loose to compact state of compactness. Moisture contents of this material ranged from 17 to 20%, indicating a saturated condition. The silt stratum extended to a depth of about 2.5 m below existing grade.

Clayey Silt

Clayey silt was encountered at depths ranging from approximately 1.0 to 2.5 m below existing grade in Boreholes 1, 2D, 5D, 6 and 7. The clayey silt stratum was brown and grey in colour and soft to very stiff in consistency. Field shear vane tests indicated undrained shear strengths ranging from 19 to 130 kPa. Moisture contents of this material ranged from 19 to 26%, indicating a saturated condition. The clayey silt stratum extended to depths of about 2.5 to 8.75 m below existing grade.

Sandy Silt Till

Sandy silt till was encountered at depths ranging from approximately 1.75 to 10.25 m below existing grade in all of the boreholes. The sandy silt till deposit was primarily grey in colour and contained wet sand/sand and gravel seams and scattered gravel and cobbles. Cobble and boulder layers were encountered in Boreholes 4 and 7. The compactness of the sandy silt till varied from loose to very dense. The sandy silt till was loose to depths of about 4.0 to 5.5 m in Boreholes 3D, 5D and 7. Moisture contents of the sandy silt till generally ranged from 7 to 13%, indicating a moist to saturated condition. The sandy silt till deposit extended to depths of approximately 7.0 m to 17.5 m below existing grade.

Coarse Sand

Coarse sand was encountered at a depth of about 7.0 m below existing grade in Borehole 5D. The coarse sand deposit was grey in colour, contained occasional gravel and existed in a very dense state of compactness. Moisture contents of the wet coarse sand ranged from 12 to 14%. The coarse sand deposit extended to a depth of about 11.75 m below existing grade.

Sand and Gravel

Sand and gravel was encountered below the coarse sand deposit in Borehole 5D. The sand and gravel deposit was grey in colour, wet with moisture contents ranging from 8 to 10%, and existed in a very dense state of compactness. The sand and gravel deposit extended to a depth of about 14.5 m below existing grade.

Clayey Silt (lower)

A lower clayey silt stratum was encountered at a depth of approximately 11.5 m below existing grade in Borehole 1. The clayey silt stratum was grey in colour, moist with moisture contents ranging from 16 to 18%, and hard in consistency. The lower clayey silt stratum extended to a depth of about 14.75 m below existing grade.

Silty Sand Till

Silty sand till was encountered at depths ranging from approximately 8.5 to 16.0 m below existing grade in Boreholes 1, 2D, 3D and 6. The silty sand till deposit was grey in colour, contained scattered gravel and cobbles, and existed in a very dense state of compactness. Cobble and boulder layers were encountered near the bottom of the deposit in Borehole 1. Moisture contents of the very moist to wet silty sand till ranged from 8 to 11%. The silty sand till deposit extended to depths of about 10.25 to 18.5 m below existing grade.

Bedrock

Shale bedrock was encountered at depths ranging from about 14.5 to 18.5 m below existing grade in Boreholes 1, 2D, 3D, 4, 5D, 6 and 7 (approximate Elevation 66.6 to 70.4 m), indicating variable depths to bedrock. The inferred bedrock boundaries should not be interpreted as exact planes of bedrock since the auger will frequently penetrate some distance into the weathered rock before noticeable resistance is encountered.

To confirm bedrock and to determine its quality, Boreholes 1 and 4 were extended about 3 m into the bedrock by coring in HQ size using diamond drilling equipment. The rock core logs are attached to Log of Boreholes 1 and 4. Based on the rock recovery and the Rock Quality Designation (RQD), the bedrock is poor to good quality rock with horizontal fractures and some vertical

exp

joints. Generally, the upper 1 to 2 m of the shale bedrock is weathered becoming more sound with depth. However, it should be noted that weathered shale bedrock extended to a depth of 30.55 m below existing grade in Borehole 5D based on auger resistance and recovered split spoon samples.

The bedrock encountered in the boreholes is of the Blue Mountain Formation and underlies this site to a significant depth. Based on our experience, the upper zone of the shale bedrock is typically weathered with isolated weathered zones extending to greater depth. The predominate rock type is shale, but this shale is interbedded with limestone and siltstone. Typically, EXP has found the shale component in this formation is in the order of 80 percent in Greater Toronto area excavations. The limestone and siltstone components are generally 50 to 300 mm thick; however, thicker layers of up to 1,000 mm have been encountered. Stress relief features such as folds and faults are common in the Blue Mountain Formation. In these fractures, the rock is heavily fractured and sheared. It can also contain layers of shale rubble and clay. Due to the fracturing, these features may also contain groundwater conduits, which could result in excessive water flow into excavations. Weathering is much deeper than the surrounding sound unweathered bedrock. The stress relief features are usually in the order of 4 to 6 m wide, but in depth can vary from 4 to 5 m to in excess of 10 m.

The borehole and monitoring well locations are shown on Figure 4. Geological cross-sections were generated based on the available borehole logs completed as part of the previous and current investigations and shown on Figure 5A (Cross section A-A') and on Figure 5B (Cross section B-B'). The cross section shows a simplified representation of soil conditions and soil deposits may be interconnected differently than represented. Borehole logs used to generate both cross-sections are provided in Appendix B.

3 Results

3.1 Monitoring Well Details

The monitoring well network was installed as part of the Geotechnical Investigations at the Site. It consists of the following:

Installed ten (10) monitoring wells (BH1, BH2S, BH2D, BH3S, BH3D, BH4, BH5S, BH5D, BH6, BH7) to an approximate depth ranging from 11 meter below ground surface (mbgs) to 19 mbgs and three monitoring wells (BH2S/2D, BH3S/3D and BH5S/5D) are on nested configurations.

The diameter of all monitoring wells is 50 mm. All wells were installed with a flush mount protective casing. Borehole logs and monitoring well installation details are provided in Appendix B. The monitoring well locations are shown on Figure 4.

3.2 Water Level Monitoring

As part of the Preliminary Hydrogeological Investigation, static water levels in the monitoring wells were recorded in two (2) monitoring events, including May 31 and June 6 of 2023. A summary of all static water level data as it relates to the elevation survey is given in Table 3-1 below.

The groundwater elevation recorded in the intermediate monitoring wells ranged from 81.04 masl (4.04 mbgs at BH/MW 3S on June 6, 2023) to 83.47 masl (2.91 mbgs at BH/MW 2S on June 6, 2023). The groundwater elevation recorded for the deep wells ranged from 78.51 masl (6.79 mbgs at BH/MW 6 on June 6, 2023) to 82.55 masl (3.83 mbgs at BH/MW 2D on May 31, 2023).

EXP Services Inc. 12

1101A, 1105 and 1163 Kingston Road, Pickering, Ontario Preliminary Hydrogeological Investigation GTR-22015419-B0 October 30, 2023

Table 3-1: Summary of Measured Groundwater Elevations

Monitoring Well ID	Ground Surface Elevation (masl)	Approximate Full Well Depth (mbgs)	Depth	31-May-23	6-Jun-23
	05 70		mbgs	3.42	3.37
BH/MW1	85.79	16.55	masl	82.37	82.42
	96.39	10.07	mbgs	2.97	2.91
BH/MW2S	86.38	12.27	masl	83.41	83.47
BH/MW2D	86.38	18.47	mbgs	3.83	3.98
BH/IVIVVZD	80.38	18.47	masl	82.55	82.40
BH/MW3S	85.08	11.41	mbgs	2.10	4.04
BH/IVIV/35			masl	82.98	81.04
BH/MW3D	85.08	17.88	mbgs	4.04	4.04
BH/IVIVV3D			masl	81.04	81.04
BH/MW4	85.41	16.32	mbgs	3.97	4.19
DH/ IVI VV4			masl	81.44	81.22
BH/MW5S	84.89	10.78	mbgs	2.67	2.62
	04.09	10.78	masl	82.22	82.27
	84.89	12.00	mbgs	2.54	2.61
BH/MW5D	84.89	13.88	masl	82.35	82.28
	85.20	10.00	mbgs	3.11	6.79
BH/MW6	85.30	18.82	masl	82.19	78.51*l
	95.10	10.00	mbgs	3.10	3.59
BH/MW7	85.12	18.28	masl	82.02	81.53

*not static

mbgs - meters below ground surface

masl - meters above sea level

Two (2) maps were created for the Site to show groundwater contours of the intermediate and deep water-bearing zones (Figures 6 A and 6 B). Accordingly, the groundwater flow directions in the intermediate and deep zones are interpreted to be southeast of the Site, towards Pine Creek, respectively.

Groundwater levels are expected to show seasonal fluctuations and vary in response to prevailing climate conditions. This may also affect the direction and rate of flow. It is recommended to conduct seasonal groundwater level measurements to provide more information on seasonal groundwater level fluctuations.

3.3 Hydraulic Conductivity Testing

Nine (9) Single Well Response Tests (SWRT's) were completed on monitoring wells BH/MW1, BH/MW2S, BH/MW2D, BH/MW3S, BH/MW3D, BH/MW4, BH/MW5S, BH/MW5D and BH/MW7 on June 6, 2023. The tests were completed to estimate the saturated hydraulic conductivity (K) of the soils at the well screen depths utilizing data loggers, preprogramed to take measurement on time in half second intervals.

The static water level within each monitoring well was measured prior to the start of testing. In advance of performing SWRTs, each monitoring well underwent development to remove fines introduced into the screens following construction. The development process involved purging of the monitoring wells to induce the flow of fresh formation water through the screen. Each monitoring well was permitted to fully recover prior to performing SWRTs.

Hydraulic conductivity values were calculated from the SWRT and constant rate test data as per Hvorslev's solution included in the Aqtesolv Pro. V.4.5 software package. The semi-log plots for normalized drawdown versus time are included in Appendix C.

A summary of the hydraulic conductivities (K-values) estimated from the SWRTs are provided in Table 3-2.

Monitoring Well ID	Measured Well Depth (mbgs)	Screened Interval (mbgs)	Formation Screened	Estimated Hydraulic Conductivity (m/s)			
BH/MW1	16.55	13.55-16.55	Silty Sand Till/Clayey Silt	2.6E-05			
BH/MW2S	12.27	9.27-12.27	Sandy Silt Till/Silty Sand Till	8.5E-06			
BH/MW2D	18.47	15.47–18.47	Sandy Silt Till	9.1E-05			
BH/MW3S	3S 11.41 8.41-11.41 Silty Sand Till		Silty Sand Till	9.6E-05			
BH/MW3D	17.88	14.88-17.88	Silty Sand Till	1.1E-04			
BH/MW4	16.32	2 13.32-16.32 Sandy Silt Till		7.9E-07			
BH/MW5S	10.78	7.78-10.78	Coarse Sand	4.4E-05			
BH/MW5D	13.88	10.88-13.88	Coarse Sand/Sand and Gravel	2.3E-05			
BH/MW7	18.28	15.28-18.28	Sandy Silt Till	8.9E-06			
		Highest Estimated K Value	1.1E-04				
		Geo	metric Mean of Estimated K Values	3.4E-05			
Arithmetic Mean of Estimated K Values 5.1E-05							

Table 3-2: Summary of Hydraulic Conductivity Testing

SWRTs provide K-estimates of the geological formation surrounding the well screens and may not be representative of bulk formation hydraulic conductivity. As shown in Table 3-2, the highest K-value of the tested water-bearing zone is 1.1E-4 m/s, and the geometric mean and arithmetic mean of the K-values are 3.4E-5 m/s and 5.1E-5 m/s respectively.

The silty sand Till, sand and gravel, and coarse sand deposits belong to the Thorncliffe and Scarborough formations which are regional aquifers. The Till denomination is based on a geotechnical soil description and does not reflect a low permeability deposit as is commonly expected from a Till deposit.

3.4 Groundwater Quality

To assess the suitability for discharging pumped groundwater into the sewers owned by the Durham Region during dewatering activities, one (1) groundwater sample was collected from monitoring well BH1 on June 6, 2020 using a peristaltic pump. Prior to collecting the noted water sample, approximately three (3) standing well volumes of groundwater were purged from the referred well. The samples were collected unfiltered and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater samples were submitted for analysis to Bureau Veritas Laboratory, a CALA certified independent laboratory in Mississauga, Ontario. Analytical results are provided in Appendix D.

Table 3-3 summarizes exceedance(s) of the Sanitary (Table 1) and Storm (Table 2) Sewer Use By-Law parameters.

When comparing the chemistry of the collected groundwater samples to the Durham Region Sanitary Sewer Discharge Criteria (Table 1), there were no parameter exceedances to be reported.

When comparing the chemistry of the collected groundwater samples to the Durham Region Storm Sewer Discharge Criteria (Table 2) the following parameters reported an exceedance: Total Suspended Solids (TSS).

Reporting detection limits (RDLs) were below the Sewer Use By-Law parameter criteria of Tables 1 and 2.

Parameter	Units	Durham Region Sanitary and Combined Sewer Discharge Limit (Table 1)	Durham Region Storm Sewer Discharge Limit (Table 2)	Concentration BH1 6-Jun-23
Total Suspended Solids (TSS)	mg/L	350	15	59

Table 3-3: Summary of Analytical Results

Bold – Exceeds Durham Region Storm Sewer Discharge Limit (Table 2).

Bold & underlined – Exceeds Durham Region Sanitary and Combined Sewer Discharge Limit (Table 1).

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction

dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

For the short-term dewatering discharge to the sanitary sewer system and based on the water quality test results, the water is suitable to be discharged without a treatment system.

For the short-term dewatering discharge to the storm sewer system and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

For the long-term dewatering discharge to the sanitary sewer system (post-development phase) and based on the water quality test results, the water is suitable to be discharged without a treatment system.

For the long-term dewatering discharge to the storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

The water quality results presented in this report may not be representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase, as required by the City.

An agreement to discharge into the sewers owned by the Durham Region will be required prior to releasing dewatering effluent.

The Environmental Site Assessment Report(s) shall be reviewed for more information on the groundwater quality conditions at the Site.

4 Dewatering Assessment

The dimensions of the proposed structure to support the dewatering assessment are summarized in Table 4-1 below.

Input			Assum	ption		Units	Notes
Parameter	Parcel A1	Parcel A2	Parcel B	Parcel C1 and C2	Parcel D		
Number of Subgrade Levels	3	3	2	2	1	-	
Ground Elevations	85.43	85.43	85.43	85.43	85.43	masl	Average of the borehole elevations on Site
Top of Slab Elevation	75.43	75.43	78.43	78.43	81.43	masl	Based on Underground level plans prepared by Turner Fleischer (October 6, 2023) and assumed 10 mbgs for P3, 7 mbgs for P2 and 4 mbgs for P1 levels
Lowest Footing Elevation	73.93	73.93	76.93	76.93	79.93	masl	Assumed to be approximatel y 1.5 m below the top of slab elevation
Excavation Area (Length x Width)	(94 x 88)	(116 x 61)	(164 x 100)	(166 x 103)	(143 x 65)	m² (m x m)	Approximate area (length x width) based on underground plans prepared by Turner Fleischer (October 6, 2023)

Table 4-1 Building Dimensions for Dewatering Assessment

Hydraulic		Average K values for the site to be confirmed
Conductivity	5.1 x 10 ⁻⁵ m/sec	Average K values for the site to be confirmed
(permeability)		with pumping test.

4.1 Dewatering Flow Rate Estimate and Zone of Influence

The Dupuit-Forcheimer equation for radial flow to both sides of an excavation through an unconfined aquifer resting on a horizontal impervious surface was used to obtain a flow rate estimate. Dewatering flow rate is expressed as follows:

$$Q_w = \frac{\pi K (H^2 - h^2)}{Ln \left[\frac{R_o}{r_e}\right]}$$

$$r_e = \frac{a+b}{\pi} \qquad \qquad R_o = R_{cj} + r_e$$

Where:

- Qw = Rate of pumping (m³/s)
- X = Length of excavation (m)
- K = Hydraulic conductivity (m/s)
- H = Hydraulic head beyond the influence of pumping (static groundwater elevation) (m)
- h = Hydraulic head above the base of aquifer in an excavation (m)
- R₀ = Radius of influence (m)
- R_{cj} = Cooper-Jacob's radius of influence (m)
- r_e = Equivalent perimeter (m)
- a = Length of the excavation area (m)
- *b* = Width of the excavation area (m)

It is expected that the initial dewatering rate will be higher to remove groundwater from within the overburden formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed, primarily from storage, resulting in lower seepage rates into the excavation.

4.2 Cooper-Jacob's Radius of Influence

The radius of influence (Rcj) for the construction dewatering was calculated based on Cooper-Jacob's equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible.

The estimated radius of influence due to pumping is based on Cooper-Jacob's formula as follows:

$$R_{cj} = \sqrt{2.25KDt/s}$$

Where:

- Ro = Estimated radius of influence (m)
- D = Aquifer thickness (original saturated thickness) (m)
- K = Hydraulic conductivity (m/s)
- S = Storage coefficient

t = Duration of pumping (s)

4.3 Stormwater

Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Therefore, the dewatering rates at the Site should also include removing stormwater from the excavation.

A 15 mm precipitation event was utilized for estimating the stormwater volume. The calculation of the stormwater volume is included in Appendix E.

The estimate of the stormwater volume only accounts for direct precipitation into the excavation. The dimensions of the excavation are considered in the dewatering calculations. Runoff which originated outside of the excavation's footprint is excluded and it should be directed away from the excavation.

During precipitation events greater than 15 mm (ex: 100-year storm), measures should be taken by the contractor to retain stormwater onsite in a safe manner to not exceed the allowable water taking and discharge limits, as necessary. A two (2) and a one hundred (100) year storm event over a 24-hour period are 55.4 and 121.0 mm (refer to Appendix E).

4.4 Results of Dewatering Rate Estimates

4.4.1 Preliminary Construction Dewatering Rate Estimate

Short-term (construction) dewatering calculations are presented in Appendix E.

Pits (elevator, sump pits) are assumed to have the same excavation depth and dewatering target as the main excavation; deeper pits may require localized dewatering and revised dewatering estimates.

Based on the assumptions provided in this report, the results of the dewatering rate estimate can be summarized as follows:

Peak Dewatering Flow Rate Including Rain Collection Volume								
Description	Parcel A1 (3 levels UG) (m3/day)	Parcel A2 (3 levels UG) (m ³ /day)	Parcel B (2 levels UG) (m ³ /day)	Parcels C1 and C2 (2 levels UG) (m ³ /day)	Parcel D (1 level UG) (m ³ /day)			
Total Volume (m ³ /day) Short Term Discharge of Groundwater (Construction dewatering) with Safety Factor (including precipitation)	6,131	6,023	6,410	6,492	3,981			
Total Volume (m ³ /day) Short Term Discharge of Groundwater (Construction	3,128	3,064	3,328	3,374	2,060			

Table 4-2 Summary of Preliminary Construction Dewatering Rate

dewatering) without Safety Factor (including precipitation					
Total Volume (m ³ /day) Short Term Discharge of Groundwater (construction dewatering) with Safety Factor (excluding Precipitation) for EASR and PTTW	6,007	5,917	6,164	6,235	3,842

These dewatering estimates are considered preliminary and are based on an average K value. Based on the soil type and highly permeable deposit encountered on site, a pumping test(s) is recommended to provide permeability on a broader scale for the final design of the dewatering system and for permitting.

Caisson walls around the full perimeter of the buildings may be required to reduce the groundwater inflows subject to final design.

The peak dewatering flow rates does not account for flow from utility beddings and variations in hydrogeological properties beyond those encountered during this investigation.

Local dewatering may be required for pits (elevator pits, sump pits, raft) and for localized areas with permeable, soft, or wet soil conditions. Local dewatering is not considered to be part of this assessment, but contractor should be ready to install additional system to manage such conditions. Dewatering estimates should be reviewed once the pit dimensions are available.

All grading around the perimeter of the excavation should be graded away from the shoring the systems and ramp/site access to redirect runoff away from excavation.

If groundwater cutoff systems (ex: caisson walls, sheet piles) are installed, these should be designed for maximal hydrostatic pressure for shallow and deep water levels, without dewatering on the outer side of the groundwater cutoff. Soldier pile and lagging and caisson wall systems should be designed to account for shallow groundwater conditions and take into consideration that dewatering systems may not provide fully dewatered soil conditions.

If groundwater cutoff systems are used for decreasing long-term dewatering rates, these should be designed as permanent structures to cutoff groundwater inflow in the long-term. All perforations should be sealed permanently (ex: tiebacks, breaches, and cold joints) with no leakages and inspected. Fillers should extend into low permeability deposits (ex: sound bedrock or till) to cutoff groundwater from water bearing zones. Inspections should be conducted to confirm the depth of low permeability deposits along shoring system and that fillers are keyed into low permeability soil deposits.

The contractor is responsible for the design of the dewatering systems (depth of wells, screen length, number of wells, spacing sand pack around screens, prevent soil loss etc.) to ensure that dry conditions are always maintained within the excavation at all costs.

Dewatering should be monitored using dedicated monitoring wells within and around the perimeter of the excavation, and these wells should be monitored using manual measurements and with electronic data loggers; records should be maintained on site to track dewatering progress. Discharge rates should be monitored using calibrated flow meters and records of dewatering progress, and daily precipitation as per MECP requirements should be maintained.

4.4.2 Post-Construction Dewatering Rate Estimate

It is our understanding that the development plan includes a permanent foundation sub-drain system that will ultimately discharge to the municipal sewer system if conventional footings are installed.

The long-term dewatering estimates are based on the same equations as construction dewatering shown in Section 4.1.

The calculation for the estimated flow to the future sub-drain system (with no cutoff walls) is provided in Appendix F. The dewatering target for the foundation drainage system is taken at 0.5 m below the lowest slab elevation.

The foundation drain analysis provides a flow rate estimate. Once the foundation drain is built, actual flow rate measurements of the sump discharge will be required to confirm the estimated flow rate.

Based on the assumptions provided in this report, the estimated sub-drain discharge volumes are summarized in Appendix F. Seasonal and daily fluctuations are expected. These estimates may be affected by hydrogeological conditions beyond those encountered at this time, fluctuations in groundwater regimes, surrounding Site alterations, and existing and future infrastructures.

Long-Term Dewatering Flow Rate	Parcel A1 (3 levels UG) (m ³ /day)	Parcel A2 (3 levels UG) (m ³ /day)	Parcel B (2 levels UG) (m³/day)	Parcels C1 and C2 (2 levels UG) (m ³ /day)	Parcel D (1 level UG) (m ³ /day)
Total Volume (m ³ /day) Long-Term Drainage of groundwater (from foundation drainage, weeping tiles, sub slab drainage) with Safety Factor Included	2,119	2,412	1,835	1,905	1,456
Long-Term Dewatering Rate without Safety Factor	1,413	1,609	1,224	1,271	971

Table 4-3: Summary of Long-Term Dewatering Rate

Intermittent cycling of sump pumps and seasonal fluctuation in groundwater regimes should be considered for pump specifications. A safety factor was applied to the flow rate to account for water level fluctuations due to seasonal changes.

These estimates assume that pits (elevator and/or sump pits) are made as watertight structures (without drainage), if their depths extend below the dewatering target, as previously stated.

The sub-drain rate estimate is based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this investigation may significantly influence the sub-drain discharge volumes.

4.5 MECP Water Taking Permits

4.5.1 Short-Term Discharge Rate (Construction Phase)

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering is more than 50 m^3 /day but less than 400 m^3 L/day, then an online registration in the Environmental Activity and Sector Registry (EASR) with

the MECP will be required. If groundwater dewatering rates onsite exceed 400 m³/day, a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

As of July 1, 2021, an amendment of O. Reg. 63/16 has come into effect and replaced the former subsection 7 (5) such that the EASR water taking limit of 400 m³/day would apply to groundwater takings of each dewatered work area only, excluding stormwater.

The dewatering estimate including a safety factor is greater than 400 m³/day as shown in Table 4-2. The MECP construction dewatering rate excludes the precipitation amount and is the rate used for the permit application. Based on the MECP construction dewatering a PTTW will be required to facilitate the construction dewatering program of the Site.

A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from the Site. Monitoring of both water quantity and water quality must be carried out for the entire duration of the construction dewatering phase. During this phase, the Discharge Plan and the daily water taking records must be available onsite.

The PTTW, Discharge Plan, hydrogeological investigation report, and geotechnical assessment of settlements must also be available at the construction Site during the entire construction dewatering. EXP should be notified immediately about any changes to the construction dewatering schedule or design, since the dewatering rate will need to be updated to reflect these modifications. Altogether, the hydrogeological report, PTTW, Discharge Plan and geotechnical assessment constitute the Water Taking Plan which needs to be available onsite during the construction dewatering.

4.5.2 Long-Term Discharge Rate (Post Construction Phase)

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering is more than 50 m^3 /day, then an application for a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

Based on the dewatering estimate shown in Table 4-3 greater than 50 m³/day, a Category 3 Permit to Take Water (PTTW) will be required to facilitate the post-development phase.

The safety factor for construction (short-term) dewatering is selected larger than for long-term to account for anticipated greater groundwater volumes during initial dewatering. The applied analytical formula is adequate for long-term (steady state) conditions as it omits specific yield and time dependency. When the formula is used for short-term conditions a larger safety factor is recommended to cover a larger initial dewatering rate, which is required to remove stored groundwater. Moreover, a large initial construction dewatering rate is favorable, as it supports reducing the time to reach the dewatering target elevation.

5 Environmental Impact

5.1 Surface Water Features

The Site is located within the Lake Ontario Waterfront watershed. No surface water features exist onsite. The nearest surface water features are Pine Creek, approximately located 100 meters east of the Site boundary and a wetland associated with Pine Creek. Lake Ontario is approximately 2.2 kms from the Site boundary to the south.

Due to the extent of zone of influence and the distance to the nearest surface water features, potential impacts on surface water features are expected during construction activities.

5.2 Groundwater Sources

Well Records from the MECP Water Well Record (WWR) Database were reviewed to determine the presence and number of water supply wells within a 500 m radius of the Site boundaries. Given that the dewatering zone of influence is limited, no dewatering related impact is expected on the water wells in the area. Based on the date of installation of the water supply wells (12/3/1959 to 12/11/1964) and since the area is municipally serviced, it is unlikely that the noted water supply wells are still active.

5.3 Geotechnical Considerations

As per the MECP technical requirement for PTTW, the geotechnical assessment of the stability of the soils due to water taking (ex: settlement, soil loss, subsidence, etc.) is required. The water taking should not have unacceptable interference on soils and underground structures (foundations, utilities, etc.).

A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.

5.4 Groundwater Quality

It is our understanding that the potential effluent from the dewatering system during the construction will be released to the municipal sewer system. As such, the quality of groundwater discharge is required to conform the Durham Region Sewer Use By-Law.

Dewatering (short and long-term) may induce migration of contaminants within the zone of influence and beyond due to changing hydraulic gradients, hydrogeological conditions beyond Site boundaries and preferential pathways in utility beddings etc. The water quality sampling conducted as part of this assessment was performed under static conditions. As a result, monitoring may be required during dewatering activities (short and long-term) to monitor potential migration, and this should be performed more frequently during early dewatering stages.

For the short-term dewatering discharge to the sanitary sewer system and based on the water quality test results, the water is suitable to be discharged without a treatment system.

For the short-term dewatering discharge to the storm sewer system and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

For the long-term dewatering discharge to the sanitary sewer system (post-development phase) and based on the water quality test results, the water is suitable to be discharged without a treatment system.

For the long-term dewatering discharge to the storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

[%]ехр.

The water quality results presented in this report may not be representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase as required by the City.

An agreement to discharge into the sewers owned by the Durham Region will be required prior to releasing dewatering effluent.

The Environmental Site Assessment Report(s) shall be reviewed for more information on the groundwater quality conditions at the Site.

5.5 Well Decommissioning

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

6 Conclusions and Recommendations

Based on the findings of the Preliminary Hydrogeological Investigation, the following conclusions and recommendations are provided:

- When comparing the chemistry of the collected groundwater samples to the Durham Region Sanitary Sewer Discharge Criteria (Table 1), there were no parameter exceedances to be reported.
- When comparing the chemistry of the collected groundwater samples to the Durham Region Storm Sewer Discharge Criteria (Table 2) the following parameters reported an exceedance: Total Suspended Solids (TSS).
- Based on the assumptions outlined in this report, the estimated peak preliminary dewatering rates for proposed construction activities at Parcels A1, A2, B, C1&2, and D are approximately 6,131 m³/day, 6,023 m³/day, 6,410 m³/day, 6,492 m³/day and 3,981 m³/day respectively. These are the rates which will be required to be discharged to the municipal sewer system.
- As the dewatering flow rate estimate is greater than 400 m³/day, a PTTW will be required to facilitate the construction dewatering program for the Site.
- The long-term flow rate of the foundation sub-drain is estimated to be approximately 2,119 m³/day, 2,412 m³/day, 1,835 m³/day, 1,905 m³/day and 1,456 m³/day for Parcels A1, A2, B, C1&2 and D respectively. It is recommended that once the sub-drain system is in place, a flow meter be installed at the sump(s) to record daily discharge volumes during the commissioning stage of the system. Regular maintenance/cleaning of the sub-drain system is recommended to ensure its proper operation. A PTTW will be required for long-term discharge.
- These dewatering estimates are considered preliminary and are based on an average K value. Based on the soil type and highly permeable deposit encountered on site, a pumping test(s) is recommended to provide permeability on a broader scale for the final design of the dewatering system and for permitting.
- Caisson walls around the full perimeter of the buildings may be required to reduce the groundwater inflows subject to final design.
- The construction dewatering and long-term estimate of sub-drain discharge volumes is based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this preliminary investigation may significantly influence the discharge volumes.
- For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.
- For the short-term dewatering discharge to the sanitary sewer system and based on the water quality test results, the water is suitable to be discharged without a treatment system.
- For the short-term dewatering discharge to the storm sewer system and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.
- For the long-term dewatering discharge to the sanitary sewer system (post-development phase) and based on the water quality test results, the water is suitable to be discharged without a treatment system.
- For the long-term dewatering discharge to the storm sewer system (post-development phase) and based on the water quality results, it is recommended to implement a suitable pre-treatment, as required.

- As per the MECP technical requirement for PTTW, the geotechnical assessment of the stability of the soils due to water taking (ex: settlement, soil loss, subsidence etc.) is required. The water taking should not have unacceptable interference on soils and underground structures (foundations, utilities etc.). A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.
- An agreement to discharge into the sewers owned by the Durham Region will be required prior to releasing dewatering effluent.
- A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from
 the Site. The Discharge Plan and monitoring for both water quantity and water quality must be carried at the Site during
 the entire construction dewatering phase. The daily water taking records must be maintained onsite for the entire
 construction dewatering phase. The PTTW, Discharge Plan, hydrogeological investigation report, and geotechnical
 assessment of settlements must always also be available at the construction dewatering schedule or design, since EASR will
 need to be updated to reflect these modifications. The hydrogeological report, PTTW, Discharge Plan and geotechnical
 assessment constitutes the Water Taking Plan which needs to be available onsite for the duration of construction
 dewatering.
- In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

The conclusions and recommendations provided above should be reviewed in conjunction with the entirety of the report. They assume that the present design concept described throughout the report will proceed to construction. This report is solely intended for the construction and long-term dewatering assessments. Any changes to the design concept may result in a modification to the recommendations provided in this report.

7 Limitations

This report is based on a limited investigation designed to provide information to support an assessment of the current hydrogeological conditions within the study area. The conclusions and recommendations presented within this report reflect Site conditions existing at the time of the assessment. EXP must be contacted immediately, if any unforeseen Site conditions are experienced during construction activities. This will allow EXP to review the new findings and provide appropriate recommendations to allow the construction to proceed in a timely and cost-effective manner.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the geoscience/engineering profession. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of Tribute (Brookdale) Limited. This report may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact this office.

Sincerely,

EXP Services Inc.

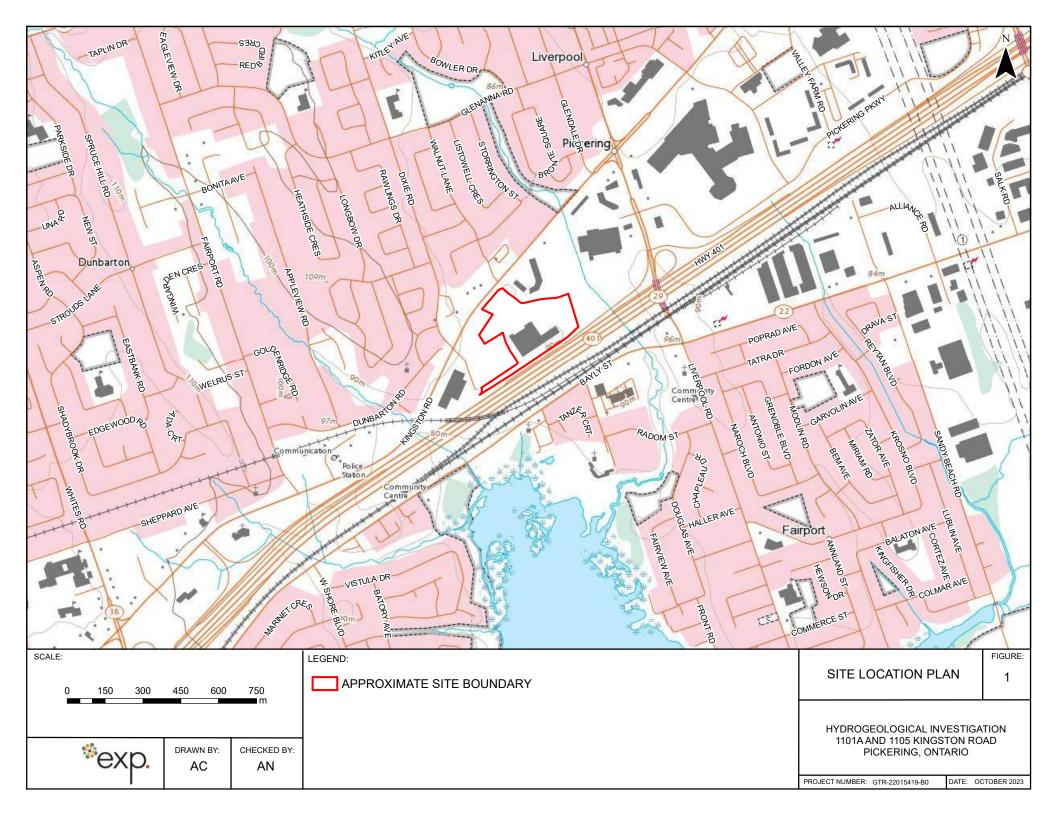
AMAR NEKU PRACTISING MEMBER ONTARIC

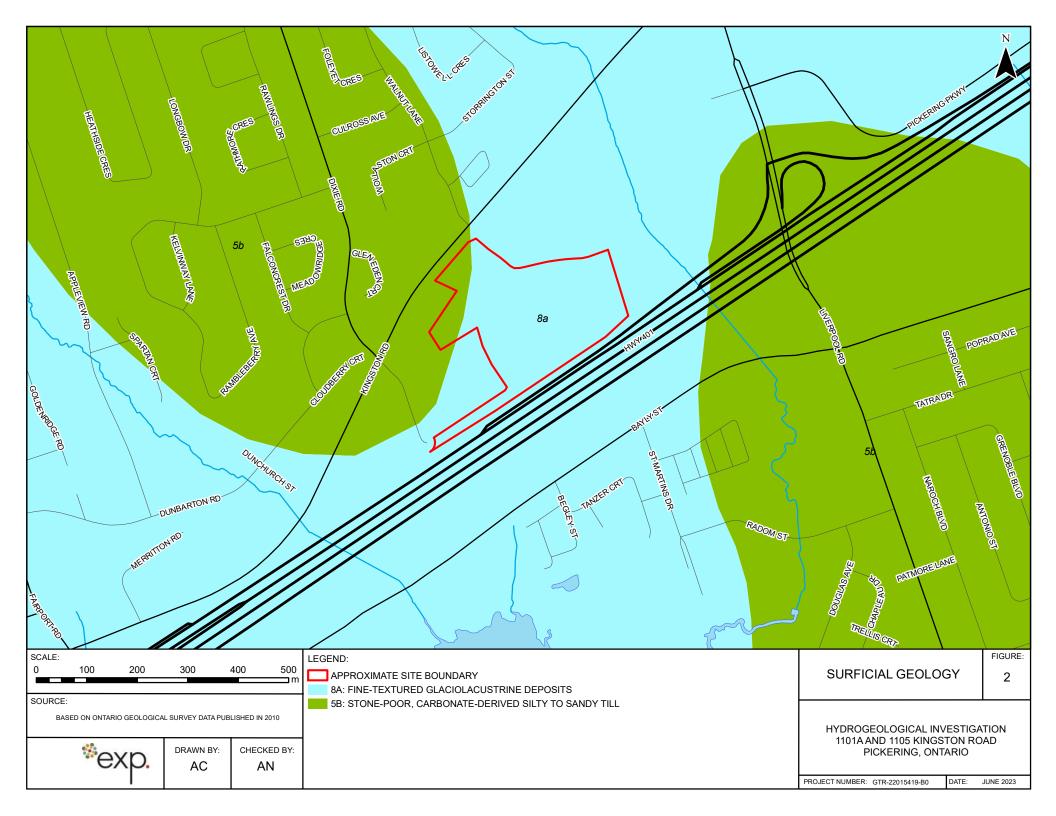
Amar Neku, Ph.D., P.Eng., P.Geo. Senior Hydrogeologist Environmental Services

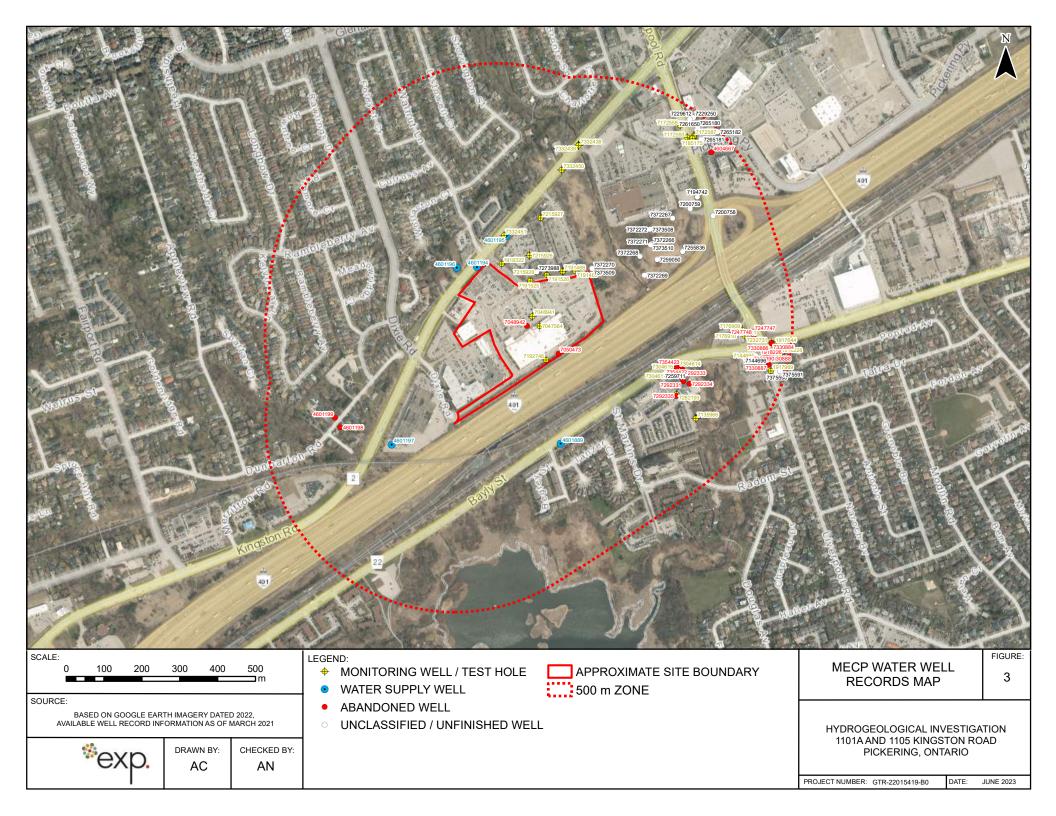
har

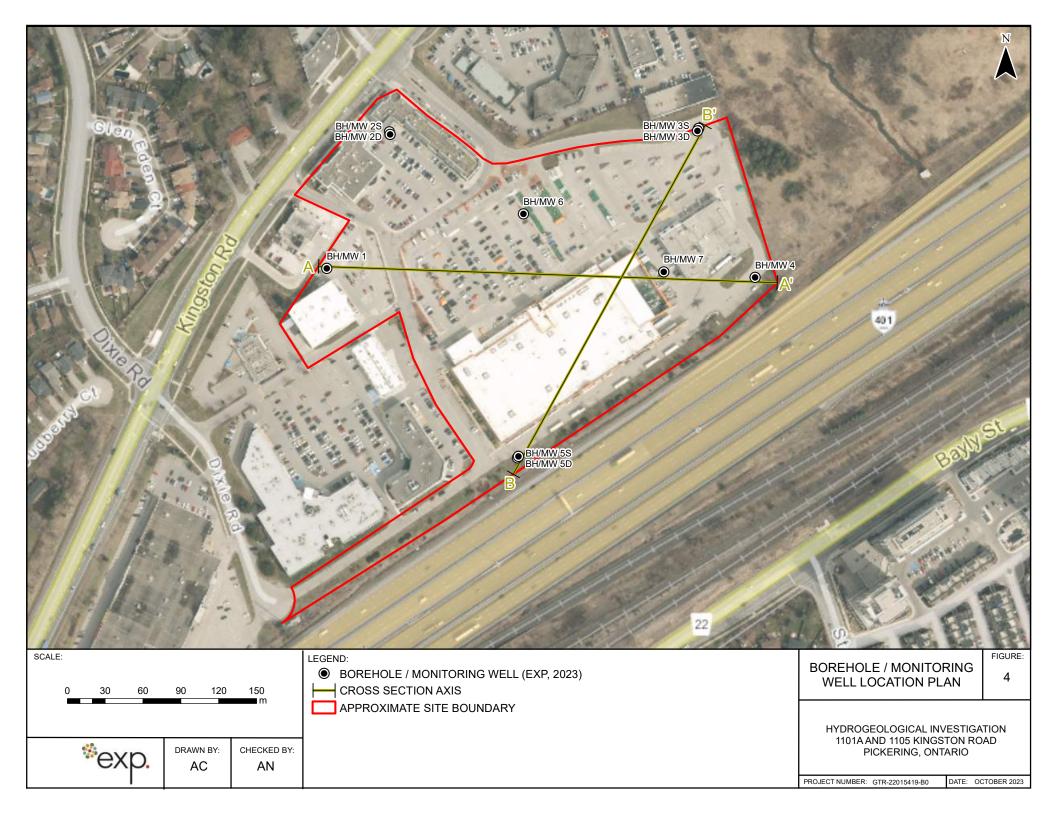
Francois Chartier, M.Sc., P.Geo. Discipline Manager, Hydrogeology Environmental Services

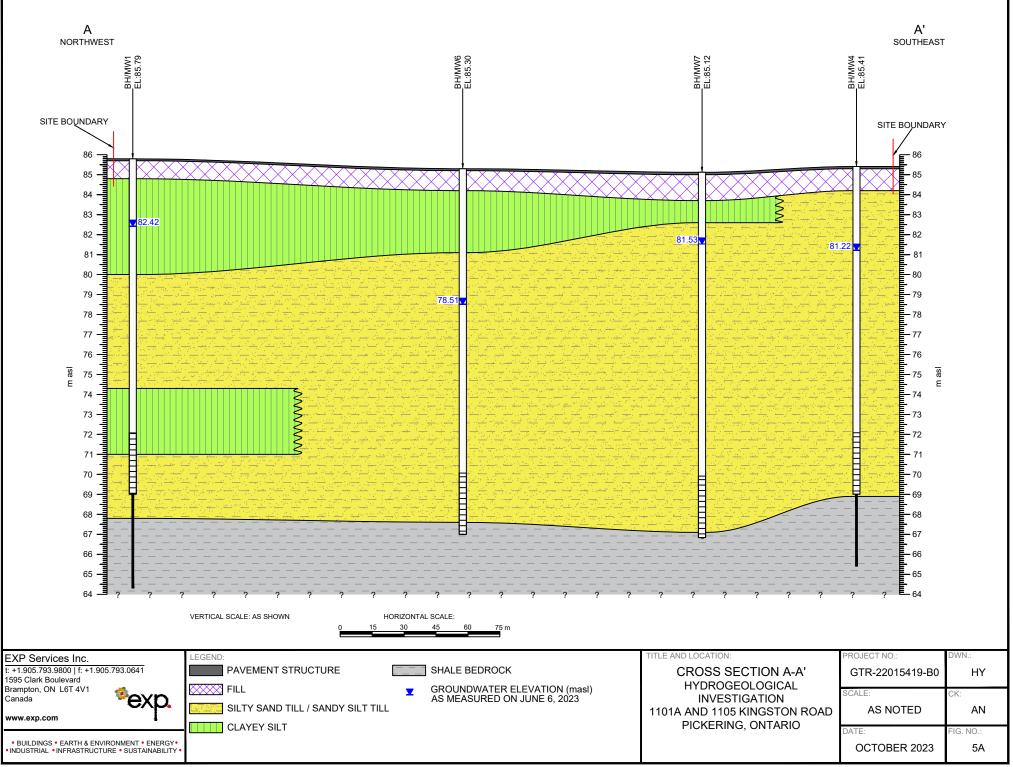
8 References

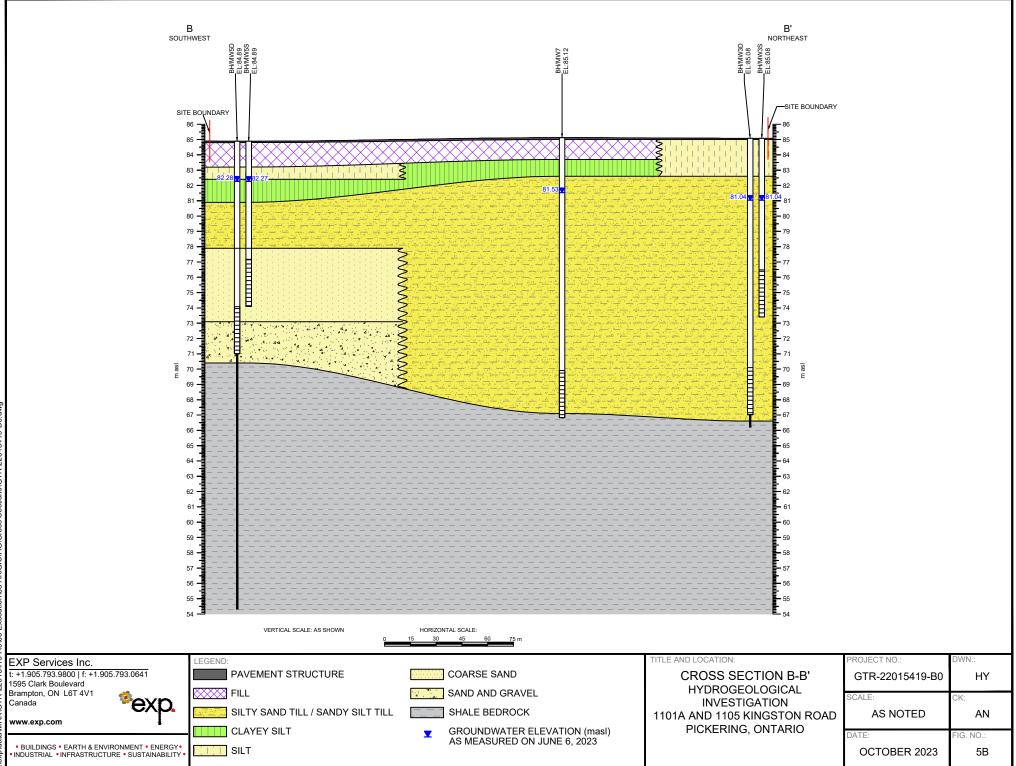

- Cashman and Preene (2013) Groundwater Lowering in Construction, 2nd Edition.
- Chapman, L.J. and Putnam, D.F. (2007). Physiography of Southern Ontario, 3rd Edition, Ontario Geological Survey.
- EXP Services Inc. (July 12, 2023), Preliminary Geotechnical Investigation, 1101A and 1105 Kingston Road, Toronto, ON, prepared for Tribute Communities.
- J.P. Powers, A.B. Corwin, P.C. Schmall and W.E. Kaeck (2007). Construction Dewatering and Groundwater Control, Third Edition.
- Ministry of Northern Development and Mines (May, 2012). OGS Earth. Retrieved from http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth.
- Oak Ridges Moraine Groundwater Program. Accessed to the website (https://oakridgeswater.ca/) dated July 2023.
- Toronto and Region Conservation, Lake Ontario Waterfront.

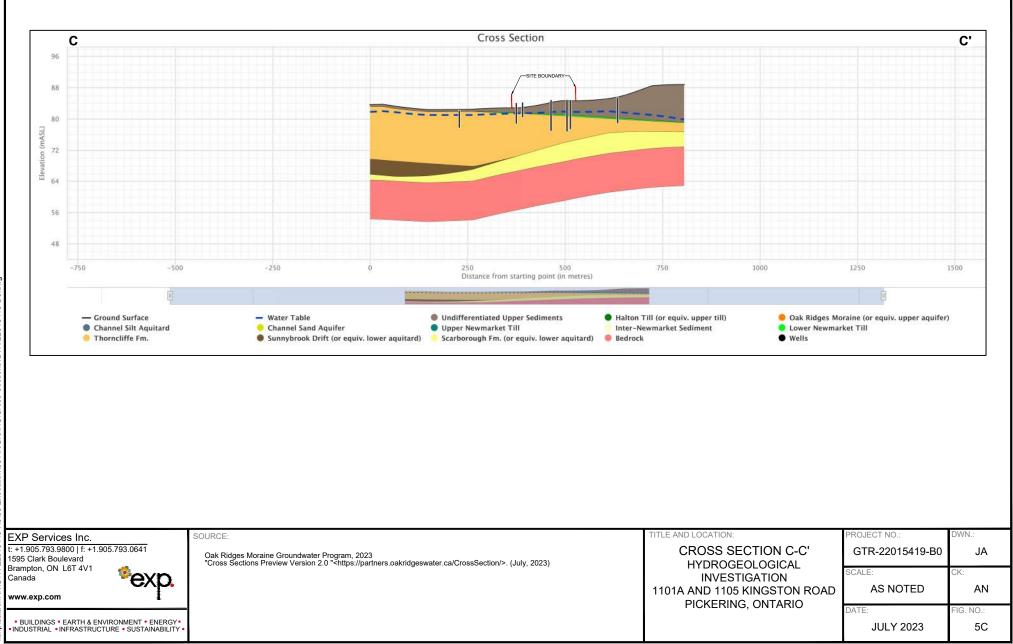


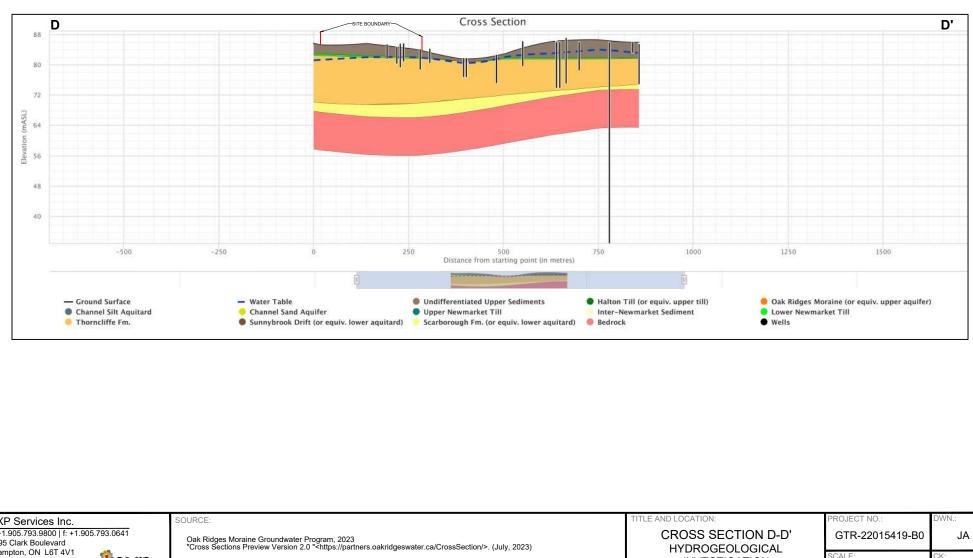

EXP Services Inc. 1101A, 1105 and 1163 Kingston Road, Pickering, Ontario Preliminary Hydrogeological Investigation GTR-22015419-B0 October 30, 2023


Figures

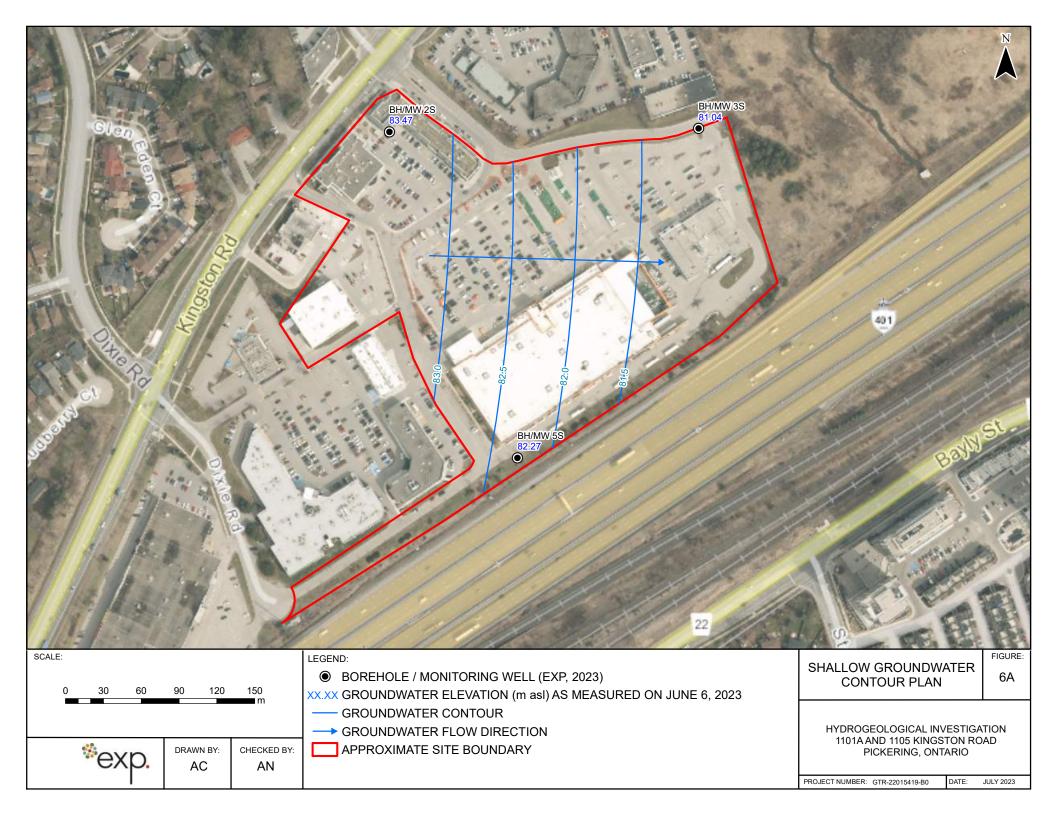


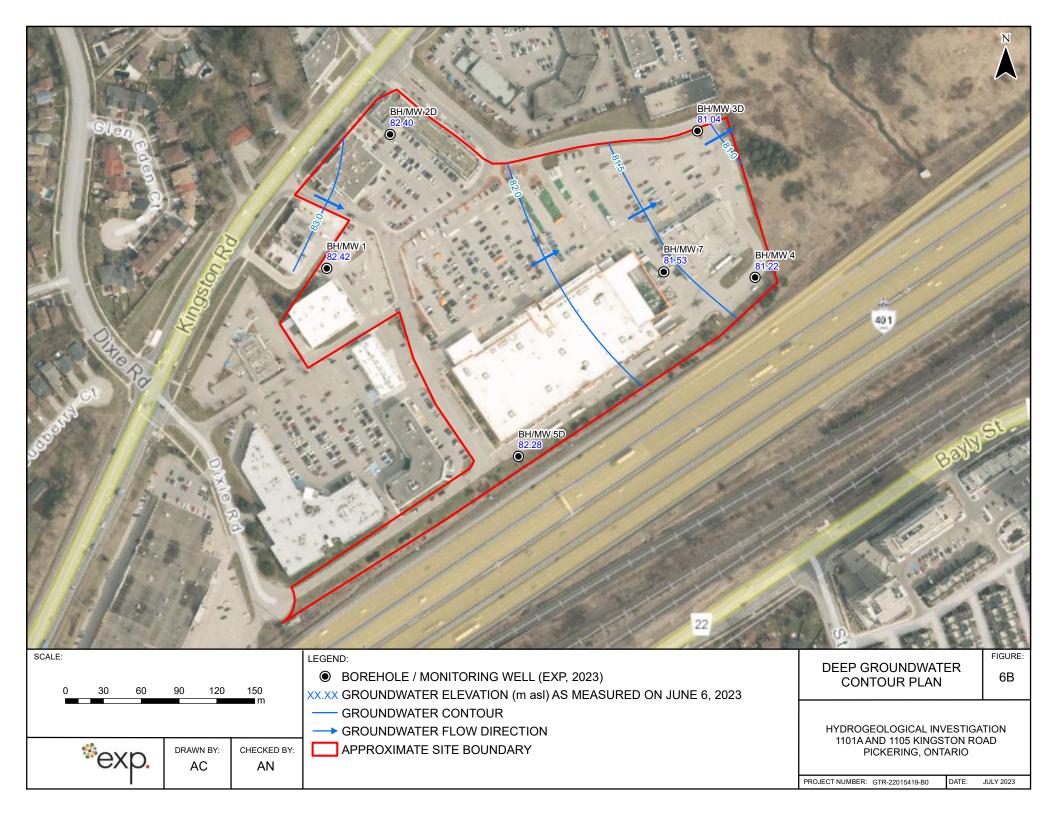






cpidatalMRK\GTR-22015419-A0\60 Execution\68 ArcGIS\HG\Cross Sections\GTR-22015419-B0.dwg


\expldata\MRK\GTR-22015419-A0\60 Execution\68 ArcGIS\HG\Cross Sections\GTR-22015419-B0.dwg



A0\60				
t 19-	EXP Services Inc.	SOURCE:	TITLE AND LOCATION:	PROJECT NO .:
	t: +1.905.793.9800 f: +1.905.793.0641 1595 Clark Boulevard	Oak Ridges Moraine Groundwater Program, 2023 "Cross Sections Preview Version 2.0 " <https: crosssection="" partners.oakridgeswater.ca=""></https:> . (July, 2023)	CROSS SECTION D-D' HYDROGEOLOGICAL	GTR-22015419-
K\GTF	Brampton, ON L6T 4V1 Canada			SCALE: AS NOTED
ta∖MR	www.exp.com		PICKERING, ONTARIO	DATE:
\\exp\da	BUILDINGS • EARTH & ENVIRONMENT • ENERGY INDUSTRIAL • INFRASTRUCTURE • SUSTAINABILITY •			JULY 2023

AN FIG. NO.: 5D

Appendix A – MECP WWR Summary Table

*ехр.

					<u>г г</u>			On-Site	DISTANCE FROM		-		CASING		1	
BORE_HOLE_ID	WELL_ID	DATE	EAST83	NORTH83	ELEVATION (m ASL)	LOCATION ACCURACY	STREET	СІТҮ	SITE CENTROID	CONSTRUCTION METHOD	WELL DEPTH (m bgs)	WATER FOUND (m bgs)	DIAMETER	1st USE	2nd USE	FINAL STATUS
11551311	1918322	6/19/2006	653100	4854848	86.3	margin of error : 10 - 30 m	1163 KINGSTON ROAD	PICKERING	(m) 159	Boring	6.0	5.0	(cm) 5.1			Observation Wells
	7048941	7/19/2007			84.7	margin of error : 10 - 30 m	1105 KINGSTON ROAD	PICKERING	14	Boring	6.0	3.0	5.1	Not Used		Observation Wells
	7050473	8/8/2007		4854610	84.6	margin of error : 10 - 30 m	1105 KINGSTON RD.	PICKERING	125	Boring		3.0	5.1			Abandoned-Other
	7191468	11/5/2012				margin of error : 30 m - 100 m	1105 KINGSTON RD	Pickering	155	Direct Push	5.5		3.8	Monitoring and Test Hole		Test Hole
	7191469	11/5/2012		4854829	83.5	margin of error : 30 m - 100 m	1105 KINGSTON RD	Pickering	177	Direct Push	4.0		3.8	Monitoring and Test Hole		Test Hole
	7191525	11/5/2012		4854802	85.1	margin of error : 30 m - 100 m	1105 KINGSTON RD	Pickering	98	Direct Push	4.0		3.8	Monitoring and Test Hole		Test Hole
		11/5/2012 11/15/2012			85.3 84.6	margin of error : 30 m - 100 m margin of error : 10 - 30 m	1105 KINGSTON RD 1105 KINGSTON RD	Pickering PICKERING	125 121	Direct Push DIRECT PUSH	4.9 4.6		3.8	Monitoring and Test Hole		Test Hole
		6/25/2012			84.b 85.2	margin of error : 10 - 30 m margin of error : 10 - 30 m	1105 KINGSTON RD 1105 KINGSTON ROAD	PICKERING	38	Boring	4.6		3.8 5.1	Monitoring and Test Hole		Monitoring and Test I Observation Wells
		7/19/2007			84.7	margin of error : 10 - 30 m	1105 KINGSTON ROAD	PICKERING	21	Boring	0.0	3.0	5.1	Not Used		Abandoned-Other
		1 11 11						Off-Site		5						
BORE_HOLE_ID	WELL_ID	DATE	EAST83	NORTH83	ELEVATION (m ASL)	LOCATION ACCURACY	STREET	СІТҮ	DISTANCE FROM SITE CENTROID (m)	CONSTRUCTION METHOD	WELL DEPTH (m bgs)	WATER FOUND (m bgs)	CASING DIAMETER (cm)	1st USE	2nd USE	FINAL STATUS
	4601194	8/7/1964		4854839	86.2	margin of error : 100 m - 300 m			190	Cable Tool	21.3	18.9	17.8	Domestic		Water Supply
		12/11/1964	653113		84.3	margin of error : 100 m - 300 m			224	Boring	7.3	7.0	86.4	Domestic		Water Supply
	4601196	7/17/1967		4854837	87.1	margin of error : 100 m - 300 m			229	Boring	4.9	2.4	76.2	Domestic		Water Supply
	4601197	10/8/1958			87.0	margin of error : 100 m - 300 m			491	Cable Tool	13.1	13.1	12.7	Domestic		Water Supply
	4601198	9/30/1958			92.5	margin of error : 100 m - 300 m			573	Cable Tool	10.7	10.7	12.7			Abandoned-Supp
	4601889	12/3/1959		4854371	82.2	margin of error : 100 m - 300 m			345	Boring	4.9	0.9	76.2	Public		Water Supply
	4604667	9/25/1970		4855143 4854636	87.0	margin of error : 30 m - 100 m		PICKERING	655	Cable Tool	76.2	8.8	15.2	Not Used		Abandoned-Supp
	1917644 1917969	5/25/2005 10/7/2005			93.1 94.3	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	935 LIVERPOOL RD. 935 LIVER POOL RD	PICKERING	654 658	Rotary (Convent.) Boring	6.0 6.8	5.2 4.5	5.4	Not Used		Observation Wel Observation Wel
	191/969	4/25/2005		4854564	94.3 91.3	margin of error : 30 m - 100 m margin of error : 10 - 30 m	1260 EGLINTON AVE W	TORONTO	685	Boring Rotary (Convent.)	6.8 7.0	4.5 5.0	5.4 4.5			Abandoned-Oth
11551215 11551217	1918226				91.3 93.9	margin of error : 10 - 30 m margin of error : 10 - 30 m	935 LIVERPOOL RD	PICKERING	674	Rotary (Convent.) Rotary (Convent.)	7.0 8.0	5.0	4.5			Abandoned-Oth Observation We
		4/21/2006 11/27/2009		4854609	88.1	margin of error : 30 m - 100 m	ST. MARTINS DRIVE	Pickering	518	Auger	3.4	5.2	4.5	Not Used	Monitoring	Observation We
	7144695	5/7/2010			93.6	margin of error : 30 m - 100 m	935 LIVERPOOL RD	Pickering	615	Rotary (Convent.)	7.6		5.1	Test Hole	monitoring	Test Hole
	7144696	4/7/2010			93.6	margin of error : 30 m - 100 m	935 LIVERPOOL RD	Pickering	612	notary (convent.)	7.0		5.1	rest noie		Other Status
	7172558	11/7/2011		4855214	87.0	margin of error : 10 - 30 m	1799 LIVERPOOL RD	Pickering	650	Boring	4.6		4.6	Monitoring		Observation We
1003614254	7172587	7/22/2011	653608	4855187	87.3	margin of error : 10 - 30 m	1799 LIVERPOOL RD	Pickering	653	Boring	4.6		4.6	Monitoring		Observation We
1003614266	7172593	9/13/2011	653590	4855182	86.8	margin of error : 10 - 30 m	1799 LIVERPOOL RD	Pickering	637	Boring	4.6		4.6	Monitoring		Observation W
1003693810	7176909	12/22/2011	653736	4854673	93.3	margin of error : 30 m - 100 m	1300 BAYLY ST.	Pickering	569	Direct Push	9.4		5.1	Monitoring and Test Hole		
1003693813	7176911	12/22/2011	653715	4854676	91.8	margin of error : 30 m - 100 m	1300 BAYLY ST.	Pickering	548	Direct Push	12.2		5.1	Monitoring and Test Hole		
1003696991	7176910	12/22/2011	653725	4854667	93.3	margin of error : 30 m - 100 m	1300 BAYLY ST.	Pickering	558	Direct Push	12.2		5.1	Monitoring and Test Hole		
1004102857	7185175	3/14/2012	653604	4855180	87.3	margin of error : 30 m - 100 m	1799 LIVERPOOL RD	PICKERING	645	Boring	3.7		5.1	Monitoring		Observation We
		11/13/2013			83.8	margin of error : 30 m - 100 m	1167 KINGSTON RD	Pickering	166	Boring	6.1		5.1	Monitoring		Observation We
1004705640		11/29/2013		4854969	83.0	margin of error : 30 m - 100 m	1167 KINGSTON RD	Pickering	267	Boring	4.6	3.0	5.1	Monitoring		Observation We
		11/29/2013			85.3	margin of error : 30 m - 100 m	1167 KINGSTON RD	Pickering	124	Boring	4.6	3.0	5.1	Monitoring		Observation We
	4601199	9/1/1958	652660	4854440	93.5	margin of error : 100 m - 300 m			573	Cable Tool	61.3		12.7			Abandoned-Sup
	7232731	7/30/2014			93.3	margin of error : 30 m - 100 m	1300 BAYLY ST	Pickering	577	Rotary (Convent.)	12.8	7.6		Monitoring and Test Hole		Monitoring and Tes
	7247747 7247748	4/25/2015 4/24/2015		4854668	94.5 94.5	margin of error : 30 m - 100 m	CORNER OF LIVERPOOL & BAYLY ST. CITY OF PICKERING/CORNER OF BAYLY & LIVERPOOL	PICKERING	597							Abandoned-Oth
	7247748	4/24/2015 9/7/2015		4854657	94.5 93.1	margin of error : 30 m - 100 m	CITY OF PICKERING/CORNER OF BAYLY & LIVERPOOL		600 648	Device	7.6			Monitoring		Abandoned-Oth
	7265180	5/19/2015			87.0	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	1799 LIVERPOOL ROAD	Pickering PICKERING	677	Boring Direct Push	6.1			wonitoring		Observation We
	7265180	5/19/2016		4855177	87.3	margin of error : 30 m - 100 m	1799 LIVERPOOL ROAD	PICKERING	659	Direct Push	6.1					
	7265181	5/19/2016			86.8	margin of error : 30 m - 100 m	1799 LIVERPOOL ROAD	PICKERING	704	Direct Push	6.1					
		11/23/2016		4854502	88.5	margin of error : 30 m - 100 m	1261 BAYLY ST	Pickering	443	Boring	2.4	1.6		Test Hole		Test Hole
	7292331	6/9/2017	653580	4854537	89.7	margin of error : 30 m - 100 m	1261 BAYLY ST	PICKERING	445	bornig	2.4	1.0		restricte		Abandoned-Ot
	7292332	6/9/2017	653563	4854571	87.6	margin of error : 30 m - 100 m	1261 BAYLY ST	PICKERING	417							Abandoned-Ot
	7292333	6/9/2017	653578	4854567	88.6	margin of error : 30 m - 100 m	1261 BAYLY ST	PICKERING	432							Abandoned-Ot
1006709798	7292334	6/9/2017	653596	4854530	89.7	margin of error : 30 m - 100 m	1261 BAYLY ST	PICKERING	462							Abandoned-Ot
1006709801	7292335	6/9/2017	653562	4854498	88.5	margin of error : 30 m - 100 m	1261 BAYLY ST	PICKERING	445							Abandoned-Ot
	7304614	12/19/2017	653566	4854573	87.6	margin of error : 30 m - 100 m	1261 BAYLY STREET	PICKERING	419	Rotary (Convent.)	4.6	1.2		Test Hole	Monitoring	Monitoring and Te
1006979562	7304615	12/19/2017	653558	4854566	88.5	margin of error : 30 m - 100 m	1261 BAYLY STREET	PICKERING	414	Rotary (Convent.)	4.6			Test Hole	Monitoring	
		12/18/2017			88.5	margin of error : 30 m - 100 m	1261 BAYLY STREET	PICKERING	398	Rotary (Convent.)	4.0			Test Hole	Monitoring	Monitoring and Te
1007429107	7332438	6/14/2018		4855163	84.0	margin of error : 30 m - 100 m	1792 LIVERPOOL RD.	PICKERING	478	Boring	10.7	9.1		Test Hole	Monitoring	Observation W
	7332439	6/13/2018			84.0	margin of error : 30 m - 100 m	1792 LIVERPOOL RD.	PICKERING	476	Boring	10.7	6.7		Test Hole	Monitoring	Observation W
		10/11/2018			82.8	margin of error : 30 m - 100 m	1105 KINGSTON RD.	PICKERING	402	Boring	9.1	5.2		Test Hole	Monitoring	Monitoring and Te
		10/11/2018		4854923	84.5	margin of error : 30 m - 100 m	1105 KINGSTON RD.	PICKERING	227	Boring	7.6	4.3		Test Hole	Monitoring	
1007414369	7330884	8/23/2018		4854638	93.1	margin of error : 30 m - 100 m	935 Liverpool Road	Pickering	648			4.1				Abandoned-Ot
	7330885	8/23/2018			93.9	margin of error : 30 m - 100 m	935 Liverpool Road	Pickering	651			4.1				Abandoned-Ot
	7330886	8/23/2018		4854614	93.9	margin of error : 30 m - 100 m	935 Liverpool Road	Pickering	648 650			4.1				Abandoned-Ot
	7330887 7330888	8/23/2018 8/23/2018		4854580 4854589	94.2 94.6	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	935 Liverpool Road 935 Liverpool Road	Pickering Pickering	650 645			4.1 41.1				Abandoned-Ot Abandoned-Ot
	7330888	8/23/2018			94.6	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	935 Liverpool Road 935 Liverpool Road	Pickering	639			41.1				Abandoned-O Abandoned-O
1007414384 1007414387	7330889	8/23/2018 8/23/2018		4854601	94.6 94.6	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	935 Liverpool Road 935 Liverpool Road	Pickering	635			4.1				Abandoned-O Abandoned-O
		10/25/2018		4854609	94.6 87.0	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	555 Everpool Koau	rickering	552			4.1				Abandoned-Ol
	7200758	2/26/2012		4855025	90.8	margin of error : 30 m - 100 m margin of error : 30 m - 100 m			561							
	7200758	2/25/2013			87.4	margin of error : 30 m - 100 m			518							
	7229250	9/11/2014			87.4	margin of error : 30 m - 100 m			689							
1005159451	7229612	6/25/2014		4855235	87.1	margin of error : 30 m - 100 m			689							
	7255836	3/7/2014		4854880	89.7	margin of error : 30 m - 100 m			446							
1005164565		9/14/2015			88.8	margin of error : 30 m - 100 m			376							
1005164565 1005864964	7259050				88.5	margin of error : 30 m - 100 m			413							
1005164565 1005864964 1005904064		10/19/2015	653556													
1005164565 1005864964 1005904064 1005911966	7259711	10/19/2015 6/24/2014		4855231		margin of error : 30 m - 100 m			679							
1005164565 1005864964 1005904064 1005911966 1005934277					86.9 85.3				679 124							
1005164565 1005864964 1005904064 1005911966 1005934277 1006278807	7259711 7261650 7273988	6/24/2014	653597 653193	4855231 4854826	86.9 85.3	margin of error : 30 m - 100 m	1261 Bayly St	Pickering	124							Abandoned-Ot
1005164565 1005864964 1005904064 1005911966 1005934277 1006278807 1008181448	7259711 7261650 7273988 7354421		653597 653193 653553	4855231 4854826 4854566	86.9	margin of error : 30 m - 100 m margin of error : 30 m - 100 m	1261 Bayly St 1261 Bayly St	Pickering Pickering								Abandoned-Oth Abandoned-Oth

BORE_HOLE_ID	WELL_ID	DATE	EAST83	NORTH83	ELEVATION (m ASL)	LOCATION ACCURACY	STREET	СІТҮ	DISTANCE FROM SITE CENTROID (m)	CONSTRUCTION METHOD	WELL DEPTH (m bgs)	WATER FOUND (m bgs)	CASING DIAMETER (cm)	1st USE	2nd USE	FINAL STATUS
1008507567	7372266	10/6/2020	653497	4854900	90.7	margin of error : 30 m - 100 m			383							
1008507570	7372267	10/5/2020	653552	4854968	87.8	margin of error : 30 m - 100 m			466							
1008507573	7372268	10/9/2020	653466	4854867	87.8	margin of error : 30 m - 100 m			339							
1008507576	7372269	10/9/2020	653477	4854817	81.8	margin of error : 30 m - 100 m			329							
1008507579	7372270		653339	4854835	82.3	margin of error : 30 m - 100 m			215							
1008507582	7372271	10/9/2020	653493	4854898	89.0	margin of error : 30 m - 100 m			378							
1008507585	7372272	10/9/2020	653492	4854939	84.8	margin of error : 30 m - 100 m			400							
1008511612	7373508		653492	4854939	84.8	margin of error : 30 m - 100 m			400							
1008511615	7373509		653339	4854835	82.3	margin of error : 30 m - 100 m			215							
1008511618	7373510		653493	4854898	89.0	margin of error : 30 m - 100 m			378							
1008561314	7375590	9/16/2020	653825	4854559	94.3	margin of error : 30 m - 100 m			673							
1008561350	7375591	9/16/2020	653836	4854563	94.3	margin of error : 30 m - 100 m			683							

	COUNT	
Monitoring Well / Test Hole	33	
Dewatering Well	0	
Water Supply Well	5	
Abandoned Well	23	
Unclassified / Unfinished Well	26	
TOTAL	87	

Appendix B – Borehole Logs

Project No.	<u>GTR-22015419-B</u> O						Drawing	No.		2
Project:	Preliminary Geotechnical	Investig	ation - F	esidential	Develop	ment	Sheet	No.	1	of
ocation:	1101A and 1105 Kingsto	n Road, I	Pickerin	g, Ontario						
			– Auger Sa	mple			stible Vapour R	Reading		_
ate Drilled:	May 16, 2023		- SPT (N)		0		Moisture and Liquid Limi	it 🛏	× —	-
Drill Type:	Mud rotary with CME 75		_ Dynamic _ Shelby T	Cone Test ube			ed Triaxial at at Failure		\oplus	
Datum:	Geodetic		_ Field Var		ŝ	Penetro	meter			
S Y M B B O	Soil Description	ELEV.	D E P 2	N Value	60 80	250		750	1) S A M P	Nat
O L	Soil Description	m 85.79	D P 2 T H Shear S		0.2	Atterbe	ral Moisture Cor erg Limits (% Dr 20	y Weight)	PLEQ	We kN
	EMENT STRUCTURE - 50mm altic concrete	05.79 85.7 ⊥/_85.2	° ¹⁵						Ī	
over	580mm granular material	84.8	1							
	- topsoil-stained sandy silt, e gravel; dark brown, moist	A	2 O				×		Z	
CLA	YEY SILT - trace of sand and		3 6							
stiff	el; brown, saturated, soft to very	_	0				×		Ľ	1
be	coming grey	_	4	2.9						
			5 9 3.0				×	•		
	DY SILT TILL - wet sand/sand		6 <u>3.0</u>				~			
and	gravel seams, scattered gravel cobbles; grey, saturated, compac	t _	7				$\widehat{}$			1
to ve	ery dense	-		50/100m	m .		< │ │			2
be	coming moist	_	8							
			9	50/50mr	n	×			-	-
		_	10	50/50mr						
		_	11	Ö		×			-	-
CLA	YEY SILT - grey, moist, hard	74.3								
		_	12		õ		×			
			13							
		_	14		õ		×			
	Y SAND TILL - scattered gravel,	71.0	15	50/125m	m					
_elshale	e fragments; grey, very moist to very dense		16	0		Ť	•			1
171 1 1	bble and boulder layers	_		50/100m	'n					
			17	Ő		X				1
SHA	LE BEDROCK - black and dark	67.8	18	50/25mr	A					
	, weathered to ~19.25m becoming ider below	9	19							
			20							
	SEE ATTACHED ROCK CORE LOG)	_	20							
	END OF BOREHOLE	64.3	21							
NOT	ES:									
21	edrock cored from 18.57 to I.45m in HQ size using									
di 2. Gi	amond drilling equipment. roundwater monitoring well									
in	stalled to 16.78m; sealed with								#	

*exp.

Time	Water Level (m)	Depth to Cave (m)
After 4 days After 15 days	3.36 3.42	Well Well
After 21 days	3.37	Well

			ROCK CORE												BI	-11			
PROJ. Prel		v Gool	echnical Investigation	ORIE	ENT rtica		ON	E	85.8	TIOI	N (m)		ATUM Geode	tic				NUM	
	TION	y 0001		DAT			TED	c	OMP	LETE	ED							01541	
		05 King	ston Road, Pickering, Ontario	05/	/16/	23			05/16	6/23			RY				2	2	
Trib		mmun	itios	DRIL		R Drillin			CME				ore B. Hq	ARREL		SHE	ET 1 c	£ 1	
	E GENERAL DESCRIPTION								ACTE			1							
Ē					Ē		N		S			Q		×	R.	(%)		(%)	
NOI	Ē				0	ΥPE	ATIC	J	NES			ERIN	H	INC.	MBI	ERΥ		ΞRΥ	
LA	Ŧ	BO			ELEVATION	L L	L L	CIN	НŨ	ING.	LL (HL	ENG	ES	N	N		E S S S S S S S S S S S S S S S S S S S	
ELEVATION	Ш	SYMBOL	GENERAL DESCRIPTION			JOINT TYPE	ORIENTATION	SPACING	ROUGHNESS	FILLING	APERTURE (mm)	WEATHERING	STRENGTH	FRACTURE	RUN NUMBER	RECOVERY	RaD	WATER RECOVERY (%)	
1	2	3	4		5	6	7	8	9	10	11	12	13	14	15	16	17	18	1
67.2	-		BLUE MOUNTAIN FORMATION		7.2														┝
	_		Dark grey to black shale with thin interbeds limestone or calcareous siltstone	of		В	F		SP	Т									
	-			1		B B	۲ F		SP SP	T									
	-		Slightly weathered (W2) to fresh (W1), weat (R3), laminated to thinly bedded, dark grey black, fissile SHALE	to		в	F		SP										
	-19		Run 1: Shale (100%)																
	19		Fracture Zone:			В	F		SP	Т									
	_		18.68 - 18.75 m (76mm) 18.91 - 19.03 m (125mm)																
	-		SOLID CORE RECOVERY: 83%												1	100	61	100	
	-															100	01	100	(
	-							-											
	_																		
ł	-																		
	-					в	F		SU	Т									
	-																		
	-																		
	-20		Run 2: Shale (100%)																_
	_		SOLID CORE RECOVERY: 100%																
	-		SOLID CORE RECOVERT. 100%													1			
	_																		
	-																		
	-																		
	-																		
	-														2	100	100	100	
	-																		
	-21																		
	-																		
	•																		
54.4	•																		
			End of Borehole at 21.4 m		4.4														
	-																		
	-																		
	-																		
	•																		
	-22																		

	Lo	og of	Bo	reho	ole 2	D								
Project No.	GTR-22015419-BO	U						Drawing No		3				
Project:	Preliminary Geotechnical	Investig	ation -	Resider	ntial Deve	elopm	ent	Sheet No	. 1	of	1			
Location:	1101A and 1105 Kingstor					•				-				
	U													
Date Drilled:	May 18, 2023		– Auger	Sample				Combustible Vapour Reading Natural Moisture X						
Drill Type:	Mud rotary with CME 75			N) Value nic Cone Test		3	Plastic and Undrained	d Liquid Limit	H	Ð				
Datum:	Geodetic		Shelby	Tube			% Strain a	t Failure	⊕					
Butum.	0000010		_ Field V	/ane Test	S		Penetrome	eter						
G M B		ELEV.	P		Value	250	e Vapour Reading 500 750			atural Jnit				
G Y W B L O	Soil Description	m	P T H Shea	20 40 Ir Strength		MPa	Natural Atterberg	Moisture Content Limits (% Dry We		L VV6	eight V/m ³			
	/EMENT STRUCTURE - 75mm	86.38 86.3		0.1 D		.2		20 30		s 7	-			
	haltic concrete	85.8 85.4	1							4				
	TY SAND - brown, moist, npact	83.9	2					×		Z				
SIL	T - brown, saturated, compact		3 3											
grav	AYEY SILT - trace of sand and vel; grey, saturated, firm to very	-	O					×	Į.	4				
stiff		_	4	2.7						7				
			5							2				
		-	6	.0				×	÷	7				
		_	7											
			a					×		Z				
		77.6		1	.8									
	TY SAND TILL - scattered gravel cobbles; grey, wet, very dense		9		Ő		ж		Į	Z				
	NDY SILT TILL - wet sand/sand	76.1	10	50/	75mm									
and	gravel seams, scattered gravel	-	11		Ö		×		P	z				
	cobbles, shale fragments; grey, st to saturated, very dense		12	50/	7 <u>5</u> mm									
		-			0		×		P	Z				
		7	13	50/	1 <u>00</u> mm		×							
			14		v									
		-	15	50/	100mm O		×							
			16											
			17		50mm O		×		╞	-				
	ATHERED SHALE BEDROCK -	68.9		50	10mm									
	ck and dark grey END OF BOREHOLE		18	50/	Ö					-				
	TES: Groundwater monitoring well													
	nstalled to 18.3m; sealed with													
	entonite from 0.3 to 14.64m.													
SPOHADYNOI SONIYGOLLOUVELOUL														
101A														
AGWGL02														
ă l														

*exp.

Time	Water	Depth to
Time	Level	Cave (m)
After 2 days	2.96	Well
After 13 days	3.83	Well
After 19 days	3.98	Well

		Lo	og of]	Boi	rel	ho	le	2	S						
F	Project No.	GTR-22015419-BO	0									Dr	awing No.		2	4
	Project:	Preliminary Geotechnical	Investia	ati	ion - l	Resi	den	tial [Deve	elopm	ent	:	Sheet No.	1	0	of 1
	_ocation:	1101A and 1105 Kingstor										-			_	
L	Location.		TRUau, I			iy, c	ла				Comb	ustible V	apour Reading			
[Date Drilled:	May 18, 2023		_	Auger S SPT (N							al Moistu			X	
[Drill Type:	Mud rotary with CME 75			Dynami	,	Test	-		•		c and Liq ained Tria	uid Limit ixial at	⊢	-O)
ſ	Datum:	Geodetic			Shelby Field Va		t				% Str	ain at Fa trometer		⊕		
_					1 1014 1 1				S		1 01101			-		
C V I	SYM BO	Soil Description	ELEV. m		Shear	20 Strengtl	40 h	/alue 60		0 MPa	Na Atter	250 atural Moi rberg Lim	pour Reading (p 500 750 sture Content % its (% Dry Weigl		M P L	Natural Unit Weight kN/m ³
3		EMENT STRUCTURE - 75mm	86.38 86.3	C	'		0.1		0.	2		10	20 30		s	
		altic concrete460mm granular material	_ 85.8 85.4	1												
		Y SAND - brown, moist,	-/H	2												
	SILT	- brown, saturated, compact	83.9 	3												
		YEY SILT - trace of sand and el; grey, saturated, firm to very	_													
	stiff		_	4												
			_	5												
			_	6												
			_	7												
			_													
			77.6	8												
: -		Y SAND TILL - scattered gravel cobbles; grey, wet, very dense		g												
			76.1	10	p											
	and of the land of	DY SILT TILL - wet sand/sand gravel seams, scattered gravel	_	1	1											
	and of mois	cobbles, shale fragments; grey, t to saturated, very dense	_	1:												
		END OF BOREHOLE	74.1												-	
	NOT 1. Bo	ES: prehole 2S drilled adjacent														
1/23	to	Borehole 2D. oundwater monitoring well														
T 7/	ins	stalled to 12.27m; sealed with entonite from 0.3 to 8.61m.														
W.GL																
NE NE																
3S.GF																
HLOO																
NRDB																
STO																
5KING																
ID110																
11AAN																
2 110																
LAGWGL02 1101AAND1105KINGSTONRDBHLOGS.GPJ NEW.GDT 7/11/23																
AGV																

Time	Water Level (m)	Depth to Cave (m)
After 2 days After 13 days	2.89 2.97	Well Well
After 19 days	2.91	Well

		L	og of	•]	30 1	rel	hole	e 31)						
Projec	ct No.	GTR-22015419-BO	U								Drawin	g No.		5	5
Projec	ct:	Preliminary Geotechnical	l Investig	ati	on -	Resi	dential	Devel	opm	ent	Shee	et No.	1	_ of	f <u>1</u>
Locatio	on:	1101A and 1105 Kingsto	n Road,	Pio	ckerir	ng, C	Ontario								
Date D	Drilled:	May 8, 2023			Auger S SPT (N	•		O ⊠ ⊠		Natural	stible Vapour Moisture and Liquid Li	•		□ ×	
Drill Ty	ype:	Mud rotary with CME 75		_	Dynami Shelby		Test			Undrair	ned Triaxial a		⊕	U	
Datum	n:	Geodetic			Field Va		t	Š		Penetro					
s							N Value			Combus	tible Vapour F	eading (pp	vm)	S .	Natural
G M W B L O L		Soil Description	ELEV. m 85.08			20 Strengt		<u> </u>	MPa	25 Nate Atterb	50 500 ural Moisture C erg Limits (% 0 20	750 Content % Dry Weight 30)		Veight kN/m ³
	asph over	altic concrete 560mm granular material - trace of sand and gravel;	85.0 84.4	1	Õ Å						×				
	brow	n, saturated, loose DY SILT TILL - wet sand/sand	82.6	2											
	and	gravel seams, some gravel; n, saturated, loose to ~4m,		3	Ô						×				
		bact to dense below		4	14										
	/ / - beo	coming grey	_	5	C						×			Z	
			-	6			*			, ,	e .				
	- beo	coming moist	_	7			×				`				
				8			ð			х					
		Y SAND TILL - scattered gravel	76.6	9			50/100mr	n							
0	very	cobbles, shale fragments; grey, moist to wet, very dense		10			0				×				
			_					75/225mr	n	,	<i>.</i>				
0			_	1'											
р (-	;			12					95 O	×					
				1:				60							
7/11/23				14				Ö		>	<				
			_	15	,			72 Ö							
D. H. C.			_	16						*					
A UR				17	,			ő		>	<				
OGS 0GS	 			18	3		50/75mm								
		THERED SHALE BEDROCK -	66.6 66.2				0		100/2	omm >	<				
TONF	\black	and dark grey END OF BOREHOLE	_/												
KINGS	NOT	ES: oundwater monitoring well													
01105	ins	stalled to 18.06m; sealed with ntonite from 0.3 to 14.4m.													
1 AAN															
2 110															
LAGWGL02 1101AAND1105KINGSTONRDBHLOGS.GPJ NEW.GDT															
LAG															

*exp.

Time	Water Level (m)	Depth to Cave (m)
After 12 days	3.97	Ŵeĺl
After 23 days	4.04	Well
After 29 days	4.04	Well

	Lo	og of]	Be	oreho	le	3S					
Project N		0							Drawing N	0.		6
Project:	Preliminary Geotechnical	Investig	ati	on	- Resident	ial D	Developm	ent	Sheet N	o	1 a	of 1
Location:												
Date Drill			_	-	ler Sample Γ (N) Value		O ⊠ ⊠	Natural	istible Vapour Read I Moisture and Liquid Limit	ding H	□ × ←	
Drill Type	• • • • • • • • • • • • • • • • • • •		_		amic Cone Test lby Tube	-			ned Triaxial at in at Failure		\oplus	
Datum:	Geodetic		_		d Vane Test		S	Penetro	ometer		A	
GWL SYMBO-	Soil Description	ELEV. m	DEPTH	SI	20 40 near Strength	alue 60	80 MPa	25 Nati	stible Vapour Readin 50 500 75 ural Moisture Conter berg Limits (% Dry W	50 nt %) SAMPLES	Natural Unit Weight kN/m ³
<i>F</i> irri	PAVEMENT STRUCTURE - 75mm asphaltic concrete over 560mm granular material	85.08 85.0 84.4	0		0.1		0.2	1	0 20 3	0	S	
	SILT - trace of sand and gravel; brown, saturated, loose SANDY SILT TILL - wet sand/sand	82.6	2									
	and gravel seams, some gravel; brown, saturated, loose to ~4m, compact to dense below		3 4									
	- becoming grey		5									
	- becoming moist	_	7									
	SILTY SAND TILL - scattered gravel and cobbles, shale fragments; grey,	76.6	8 9									
	very moist to wet, very dense		10									
			11									
	END OF BOREHOLE NOTES: 1. Borehole 3S drilled adjacent to Borehole 3D.											
7/11/2	1. Groundwater monitoring well installed to 11.68m; sealed with bentonite from 0.3 to 8.02m.											
NEW.GDT												
OGS.GPJ												
ONRDBHL												
105KINGST												
01AAND11												
LAGWGL02 1101AAND1105KINGSTONRDBHLOGS.GPJ NEW.GDT												
LAG												

Time	Water Level (m)	Depth to Cave (m)
After 12 days After 23 days After 29 days	1.38 2.10 4.04	Well Well Well

Project	No.	GTR-22015419-BO	g of								Dra	awing No.		-	7
Project	:	Preliminary Geotechnical	Investig	ation -	Res	identi	al D	eve	lopm	ent	:	Sheet No.	1	С	of '
Locatio		1101A and 1105 Kingston							•					_	
Date D	rilled:	May 11 and 12, 2023	,	_ Auger	r Sample N) Valu	e		⊠ (Combu Natural		apour Reading re		□ ×	
Drill Ty	pe:	Mud rotary with CME 75			nic Con		_			Plastic Undrair		uid Limit xial at		-0	
Datum:		Geodetic			y Tube Vane Te	est		+		% Strai Penetro		ilure	⊕		
						N1 \/-1		S		Ormhur	4:1-1- \/-	Deedier (*		6	
GWL L		Soil Description	ELEV. m 85.41	D P T H She	20 ar Streng	N Val 40 gth 0.1	ue 60	80	MPa	25 Nati	i0 Jral Mois	pour Reading (p 500 750 sture Content % ts (% Dry Weigh 20 30		M	Natu Uni Weig kN/r
	<u> </u>	EMENT STRUCTURE - 75mm altic concrete	85.3 1 85.0	0	20 0	0.1				×				$\overline{\mathbb{Z}}$	
	over	360mm granular material	84.2	1		32								~	
	∣∖inclu	- sandy silt, some gravel, topsoil sions; grey, moist, compact	H	2	1	C				×					
		DY SILT TILL - wet sand/sand gravel seams, scattered gravel	_	3		36								_	
	and	cobbles, shale fragments; grey, t to saturated, dense to very	_	4		V									
	-dens		_			38 O					×				
	F		-												
				6				88	/250mm O		×				
	_			7				70							
			7	8				Ő		×					
			_	9		50/125	mm								
				10		0					ς				
	_		_				66				v				
	_		_	11							^				
				12		^{50/75}	nm				<				
	<u> </u>		-	13											
	col	bble and boulder layers		14			RF								
				15			Ŏ	70.70		×					
	-		-					^{7/275}	um	>	<				
	<u>с</u> пv	LE BEDROCK - black and dark	68.9	16		50/25	nm								
	grey,	, weathered to ~18.25m becoming		17											
	soun	der below	_	18											
	- (SEE ATTACHED ROCK CORE	_	19											
	_	LOG)	65.4	20											
	NOT														
	20	edrock cored from 17.02 to).05m in HQ size using													
	dia 2 Gr	amond drilling equipment. roundwater monitoring well													
	ins	stalled to 16.4m; sealed with													
	be	entonite from 0.3 to 12.74m.													

[%]exp.

Time	Water Level (m)	Depth to Cave (m)
After 8 days	3.92	Well
After 19 days After 25 days	3.97 4.19	Well Well
Alter 25 days	4.15	Wei

			ROCK CORE											Br	-14	<u> </u>		
PROJ			in the task to be a start of	ORIEN		ON		LEVA	TION	N (m)		ATUM					NUM	
	iminar TION	y Geot	echnical Investigation	Vertice		TED		85.4		.n		Geode)1541 NUN	
		105 Kino	ston Road, Pickering, Ontario	05/12				05/12			1	RY			DRA	WING		٥
CLIEN		oo rong		DRILLI				RILL		E			ARREL		SHE	ET		
Trib	ute Co	mmun	ities	Pontil				CME				HQ]		1 0	f 1	
(m) NO	(m)			(m) NO		NT C			RIST		RING	E	RENCY	ABER	RY (%)		RY (%)	
ELEVATION (m)	DEPTH (r	SYMBOL	GENERAL DESCRIPTION	ELEVATION	JOINT TYPE	ORIENTATION	SPACING	ROUGHNESS	FILLING	APERTURE (mm)	WEATHERING	STRENGTH	FRACTURE	RUN NUMBER	RECOVERY (%)	RQD	WATER RECOVERY (%)	
1	2	3	4	5	6	7	8	9	10	11	> 12	13	14	15	16	17	18	
68.4			BLUE MOUNTAIN FORMATION	68.4														
	-		Dark grey to black shale with thin interbeds of limestone or calcareous siltstone	pr	в	F		SP	Т									
	-		Fresh (W1), weak (R3), laminated to thinly bedded, dark grey to black, fissile SHALE		BB	۲ ۲		SP SP	Т									
	-		Run 1: Shale (100%)		B	F		SP	τ									
	_		Fracture Zone: 17.02 - 17.15 m (130mm) 18.16 - 18.20 m (40mm)															
	-		SOLID CORE RECOVERY: 82%		В	F		SP	Т									
	_				B	F		SP	T					1	100	76	100	
					В	F		SP SP	T									
								J	'									
	-18				_													
	-				B	F F		SU SP	О Т	1								
	-				В	F		SP	т									
	-				В	F		SP	s	1								
	-																	
	_				в	F		SP	т									
	-		Run 2: Shale (100%)		C			SU	T									Γ
	-		SOLID CORE RECOVERY: 100%		B	F		SP	Т						2			
	_																	
	-																	
	-19																	
	-																	
	-																	
	-													2	100	100	100	
	-																	
	-								1									
	-																	
	_																	
65.3	20			65:3														
	-		End of Borehole at 20.1 m															1
	-																	
	-																	
• 2																		
	21	r																

		Lo	g of]	3 0	r	eh	ol	e á	5D								
	Project No		0									Drawing No.				8		
	Project:	Preliminary Geotechnical I	nvestig	ati	on -	· Re	esic	lentia	al De	velopm	nent	S	heet N	o. 1		of 2		
	, Location:	1101A and 1105 Kingston													_			
		<u></u>					, •		-									
	Date Drille	d: May 12 and 15, 2023											oustible Vapour Reading					
	Drill Type:	Mud rotary with CME 75		_	SPT (Dynai	` '		est	0	Ø	Plastic	and Liqu	id Limit	⊢	-e			
	Datum:	Geodetic		_	Shelb	y Tub	be	031			% Strai	ned Triax In at Failu		€	Э			
	Datum.	Geodelic		_	Field	Vane	Test			S	Penetro	ometer			7			
	G Y W B L O	Soil Description	ELEV. m	DUPT		20 ar Str	ength	N Valı 40	ue 60	80 MPa	25 Nati	50 50 ural Moist	our Readin 00 75 ure Conter s (% Dry W	50 nt %	SAMPLE	Natural Unit Weight		
2		AVEMENT STRUCTURE - 75mm	84.89	0		15		0.1		0.2	1	0 2	20 3	0	5	kN/m³		
		sphaltic concrete ver 380mm granular material	84.4 1 83.8	1								×			14			
	F	ILL - silty sand, some gravel; brown,	83.2	2	Ô							××			\mathbb{Z}			
	si si	ery moist, compact/ ilt, topsoil inclusions and rootlets;	82.4															
		rown, moist, loose ILT - brown, saturated, loose	80.9	3	Ô								×		Z			
	I I I I I I I I I I I I I I I I I I I	LAYEY SILT - trace of sand and	00.9	4	8													
	S	ravel; brown, saturated, firm ANDY SILT TILL - wet sand/sand	-	5	0							×			4			
	s:	nd gravel seams, some gravel; grey, aturated, loose		6				28										
		becoming moist and dense	77.9	7				,			^							
		OARSE SAND - occasional gravel; rey, wet, very dense	_						8			×						
			_	8					T									
				9					Ö Ö			x						
				10														
				11					Õ			×						
		AND AND GRAVEL - some silt;	73.1	12					71									
	jø_j−gi	rey, wet, very dense		13					C)	>	(
	0.0		_					50/150	mm		×							
7/11/23	0.0	VEATHERED SHALE BEDROCK -	70.4	14														
	in	clusions of silty sand and sandy silt;		15				50/75r	nm									
NEW.0	DI	lack and dark grey	_	16	5			50/75-										
GPJ				17				Ő										
OGS.				18				50/100	mm									
DBHL			_	10				0										
TONF				19				50/100	mm									
KINGS				20														
1101AAND1105KINGSTONRDBHLOGS.GPJ NEW.GDT				21				50/75r	nm									
AAND			-	22														
1101.			4	23				50/75r										
GL02				24				50/70										
LAGWGL02			-	25				50/75r	ua									

Continued Next Page

*ехр.

Time	Water Level (m)	Depth to Cave (m)
After 5 days	2.60	Well
After 16 days	2.54	Well
After 22 days	2.61	Well

	Lo	g of	H	B	01	rel	1	ole	5D							
Project	No. <u>GTR-22015419-B</u> O										Dra	wing I	No		8	8
Project:	Preliminary Geotechnical I	nvestiga	ati	or	ו - F	Resi			Developn	nent	_ 5	Sheet I	No	2	_ 0	of <u>2</u>
GWL SYMBOL	Soil Description	ELEV. m 59.89	DEPTH 25			20 Strength	4(80 MPa 0.2		atural Mois erberg Limit	00	750) i	M	Natural Unit Weight kN/m ³
	END OF BOREHOLE NOTES: 1. Groundwater monitoring well installed to 13.88m; sealed with bentonite from 0.3 to 10.22m.	54.3	20													

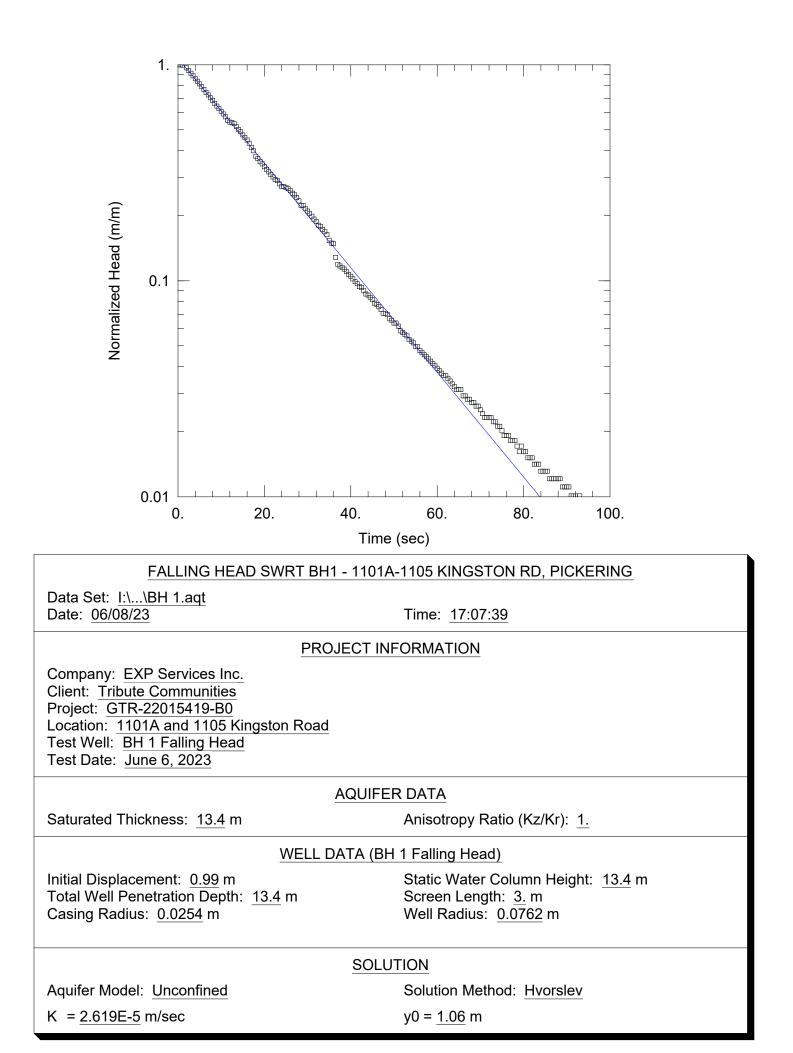
Time	Water Level (m)	Depth to Cave (m)
After 5 days	2.60	Well
After 16 days	2.54	Well
After 22 days	2.61	Well

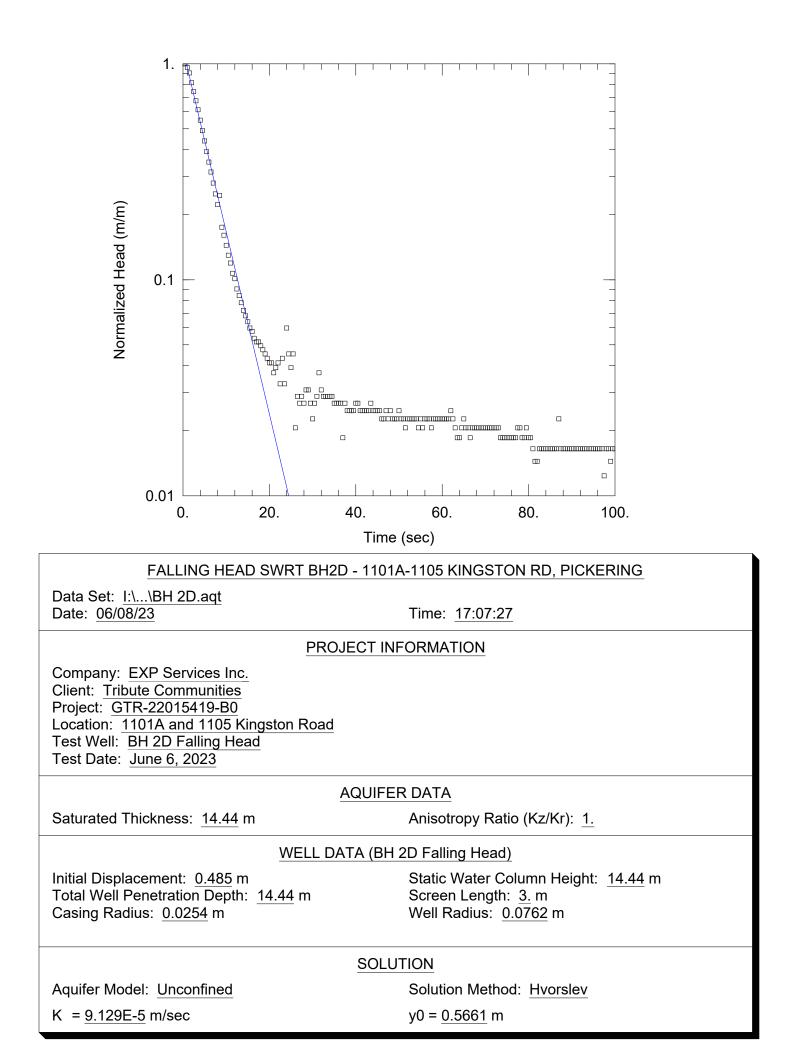
		Lo	og of	,]	Bo	oreho	le	5 S				
F	Project No.	<u>GTR-22015419-B</u> O	0							Drawing No.		9
F	Project:	Preliminary Geotechnical	Investig	ati	ion	- Resident	tial I	Developm	ent	Sheet No.	1	of 1
L	ocation:	1101A and 1105 Kingstor	n Road, I	Pic	cke	ring, Ontai	rio					
C	Date Drilled: Drill Type:	May 15, 2023 Mud rotary with CME 75		_	SPT Dyn	er Sample ⁻ (N) Value amic Cone Test lby Tube			Natural Plastic Undrain	stible Vapour Reading Moisture and Liquid Limit H ed Triaxial at n at Failure	>] < Ə
C)atum:	Geodetic		_	Field	d Vane Test		Š	Penetro	ometer		
C V L	S Y B C C	Soil Description	ELEV.	DEPTH	St	N V 20 40 near Strength	alue 60	80 MPa 0.2	25 Natu	tible Vapour Reading (pp 50 50 750 ural Moisture Content % erg Limits (% Dry Weight) 0 20 30		Natural Unit Weight kN/m ³
S		EMENT STRUCTURE - 75mm naltic concrete	84.89 <u> </u>	0	1	0.1		0.2				
	over 💥	380mm granular material	83.8	1								
	∏\very	- silty sand, some gravel; brown, moist, compact	77 ^{83.2} 182.4	2								
	silt, t	opsoil inclusions and rootlets; /n, moist, loose	ТД — · ·	3								
	SILT	- brown, saturated, loose		4								
	[grav	YEY SILT - trace of sand and el; brown, saturated, firm	А									
		DY SILT TILL - wet sand/sand gravel seams, some gravel; grey,	_	5								
	 − satu	rated, loose coming moist and dense	_	6								
		RSE SAND - occasional gravel;	77.9	7	·							
		, wet, very dense	_	8								
				9								
			_	1								
				10								
		END OF BOREHOLE	/4.1									
		prehole 5S drilled adjacent										
	2. G	Borehole 5D. roundwater monitoring well										
		stalled to 10.79m; sealed with entonite from 0.3 to 7.13m.										
7/11/23												
NEW.0												
A LAS												
OGS.0												
BHLO												
ONRC												
NGST												
105KI1												
ND11												
1101AAND1105KINGSTONRDBHLOGS.GPJ NEW.GDT												
02 11												
LAGWGL02												
LAG												

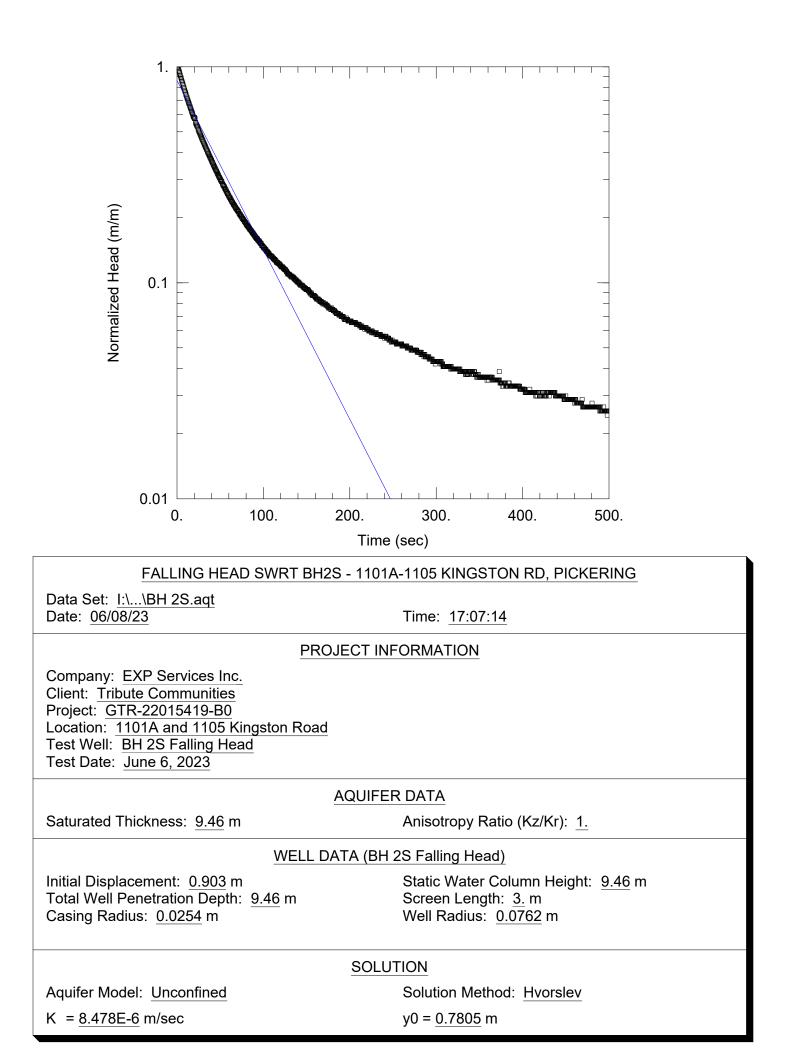
Time	Water Level (m)	Depth to Cave (m)
After 5 days	2.56	Well
After 16 days	2.67	Well
After 22 days	2.62	Well

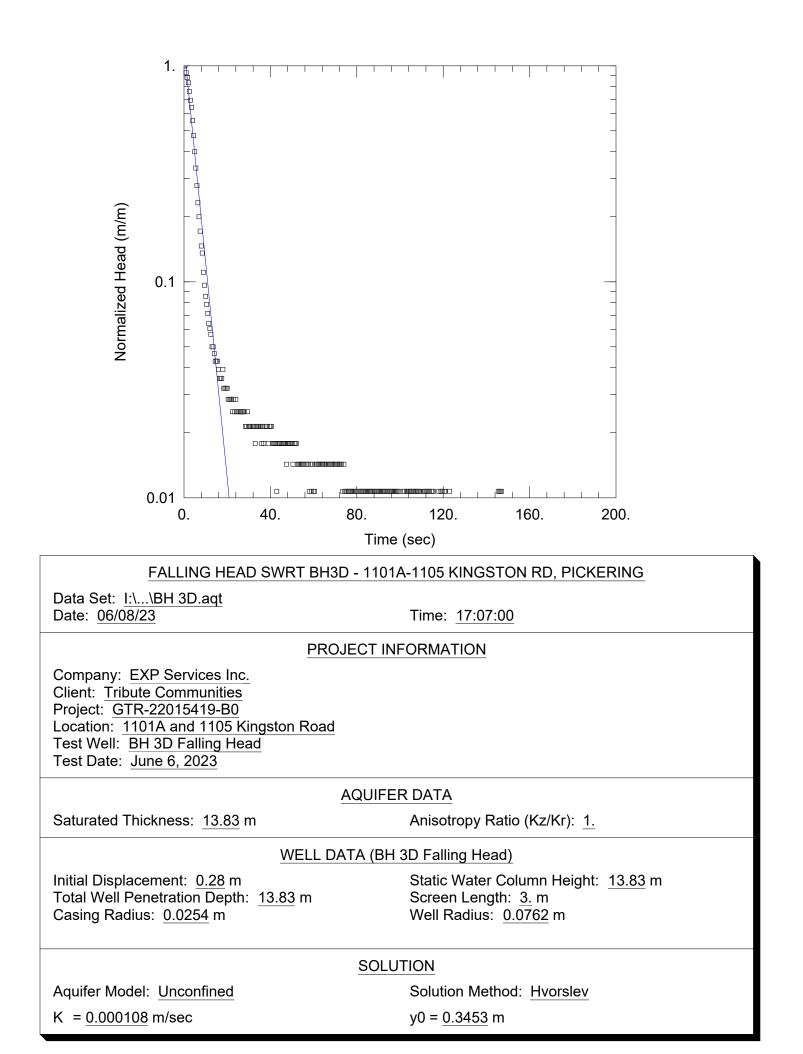
				L	Dg	of	F	30	re	h	ol	e	6									
I	Pro	oject	No.	GTR-22015419-BO	0												Drav	wing N	lo.		10	
		j oject:			l Inv	estia	ati	on -	Res	side	entia	al D)eve	elopm	nent							
		catior		Preliminary Geotechnical Investigation - Residential Development 1101A and 1105 Kingston Road, Pickering, Ontario									0			<u> </u>	<u> </u>					
	LUC	Jatio	1.			/du, 1			ng,		un	<u> </u>										
1	Dat	te Dr	illed:	May 17, 2023			_	Auger	Sampl	e			\boxtimes			bustib ral Mo		oour Rea	ading		_	
		ll Typ		Mud rotary with CME 75				SPT (N Dynam	'		st	-] -			•	d Limit	F		Ð	
		tum:		Geodetic			_	Shelby	Tube					l	% St	ained train at	Failu		(⊕		
	Dai	um.					-	Field V	ane I	est			S		Pene	etrome	ter					
;	G W L	S Y M B O		Soil Description		ELEV. m	DUPTH	Shea	20 r Stren	4 gth	N Valu 0	ie 60	8	0 MPa	N	250 latural	50 Moistu	our Readi 00 7 ure Conte (% Dry V	'50 ent %	SAMPL	Natural Unit Weight	
S		L	PAV	EMENT STRUCTURE - 75mm		5.30 5.2	0	12		0.	1		0	2		10	2	0 :	30	Š	kN/m ³	
	XX			altic concrete460mm granular material		4.8 4.2	1									×				ľ	1	
			FILL	- silty sand, some gravel; brown		T.2	2	ð										×				
		Ш		t, compact YEY SILT - some sand and																		
	ĺ	H	grave	el; brown, saturated, firm coming grey			3	Ô										×		Z		
			_	DY SILT TILL - saturated sandy	8	1.1	4	2.5	5													
			–silt la	ayers, wet sand/sand and gravel			5	Ö								×				Z		
			_shale	ns, scattered gravel and cobbles, e fragments; grey, saturated,			6		20													
			_comp	pact to very dense	_				φ							×				Z		
			_				7				5										-	
	ĺ		_				8				C)				×				Ľ		
			_		_		9					64									2	
			_				10						,				~			- 42	2	
			-		_							63				×					2	
			_		_		11														4	
			_				12							32			X					
	Ż		_		_		13															
/23	2	И	_		_		14			5	^{0/100}	nm					X			z	2	
7/11/23			- be	coming moist			15				50/75n											
/ GDT	₿∦		_		6	9.3					Ő					×				Z	2	
NEV			SILT	Y SAND TILL - scattered gravel cobbles, shale fragments; grey,			16				50/5 <u>0</u> n	h										
S.GPJ		- 		very dense			17				0					X				72		
LOG				THERED SHALE BEDROCK -		7.6 7.0	18				50/10n											
RDBH			\black	and dark grey END OF BOREHOLE	-/						Ŭ											
STON			NOT	ES: roundwater monitoring well																		
KING			ins	stalled to 18.3m; sealed with entonite from 0.3 to 14.64m.																		
11051			be																			
AAND																						
1101/																						
3L02																						
LAGWGL02 1101AAND1105KINGSTONRDBHLOGS.GPJ NEW.GDT																						
コレ							_	\square												Ξ	1	

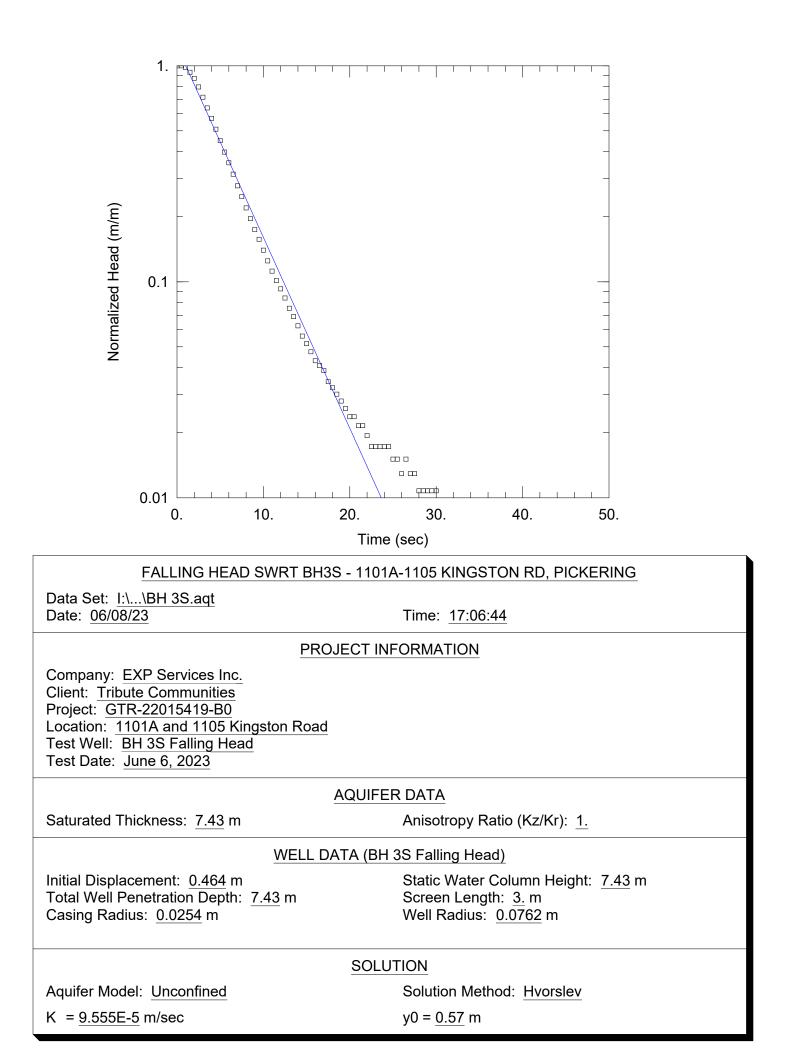
Time	Water Level (m)	Depth to Cave (m)
After 3 days	3.03	Well
After 14 days	3.11	Well
After 20 days	6.79	Well

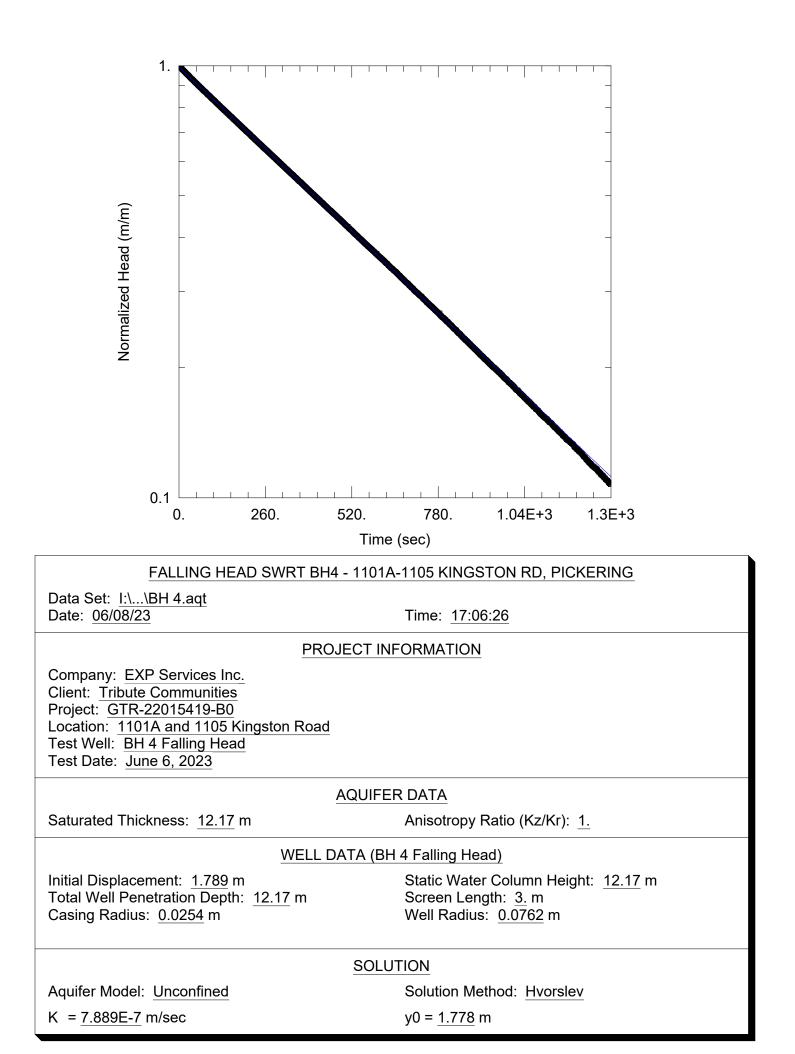

		Lo	g of]	Bo	re	eh	ole	e 7							
Р	roject No.	GTR-22015419-BO	0									Drav	wing N	o.		11
Р	roject:	Preliminary Geotechnical I	nvestig	ati	on -	Re	side	ential	Deve	lopm	ent	S	heet N	o. —	1	of 1
	ocation:	1101A and 1105 Kingston												_		
				_	Auger							stible Vap		ding		
_	ate Drilled:	May 9 and 10, 2023		_	SPT (N) Val	ue		00			Moisture and Liqui		H		× €
D	orill Type:	Mud rotary with CME 75		_	Dynar Shelb			est				ned Triaxi in at Failu			\oplus	
D	atum:	Geodetic		_	Field \	√ane 1	est		s		Penetro	ometer				
G W L	S Y B O L	Soil Description	ELEV. m	DEPTH	Shea	20 ar Strei		N Value	60 80 0.:	MPa	25 Nati	tible Vapo 50 50 ural Moistu erg Limits	00 7 ure Conte	50 nt %)	Natural Unit Weight kN/m ³
2		EMENT STRUCTURE - 75mm	85.12 85.0	0	3	²⁰				<u>-</u>						
	www.jover	altic concrete510mm granular material	84.5 84.4	1	Ŏ						^)	×		4
		- sandy silt, some gravel; brown grey, moist, compact	83.7	2	0							×	ζ.		P	9
	silty	clay, some sand and gravel; n, very moist, loose		3	Z											7
		YEY SILT - some sand and		4	0						1	×.			ľ	2
	SAN	el; brown, saturated, soft to firm	-			21						x				7
		gravel seams, scattered gravel cobbles, shale fragments; grey,		5		Υ									ľ	
	///—mois	t to saturated, loose to ~4m,	-	6			30 O					ж				
		-		7											ľ	
				8			3 C	\$				×				
			-					10/100m								
		-	-	9				Õ			×				z	z
		-		10					66							
		-	-	1'					Ö			×			2	4
		-	-	12						1/225m	n					
	/ sat	turated sandy silt layer		1.						O		×			K	2
~			-					50/50mn	n		×					_
7/11/23	- col	bble and boulder layer		14				Ť								
				15	5				87	250mm O	, s					7
IEW 0		-	-	16	\$ 							•			ľ	4
A LAS			-	17	,				87	275mm O	×					
DGS.0		-	67.1							100/1	0mm					
DBHLOO		THERED SHALE BEDROCK -	66.8	18						q))					
ONRE	NOT	END OF BOREHOLE														
NGST	1. Gr	oundwater monitoring well														
05KII		stalled to 18.28m; sealed with entonite from 0.3 to 14.62m.														
1101AAND1105KINGSTONRDBHLOGS.GPJ NEW.GDT																
101A/																
.02 1																
LAGWGL02																
LAC																

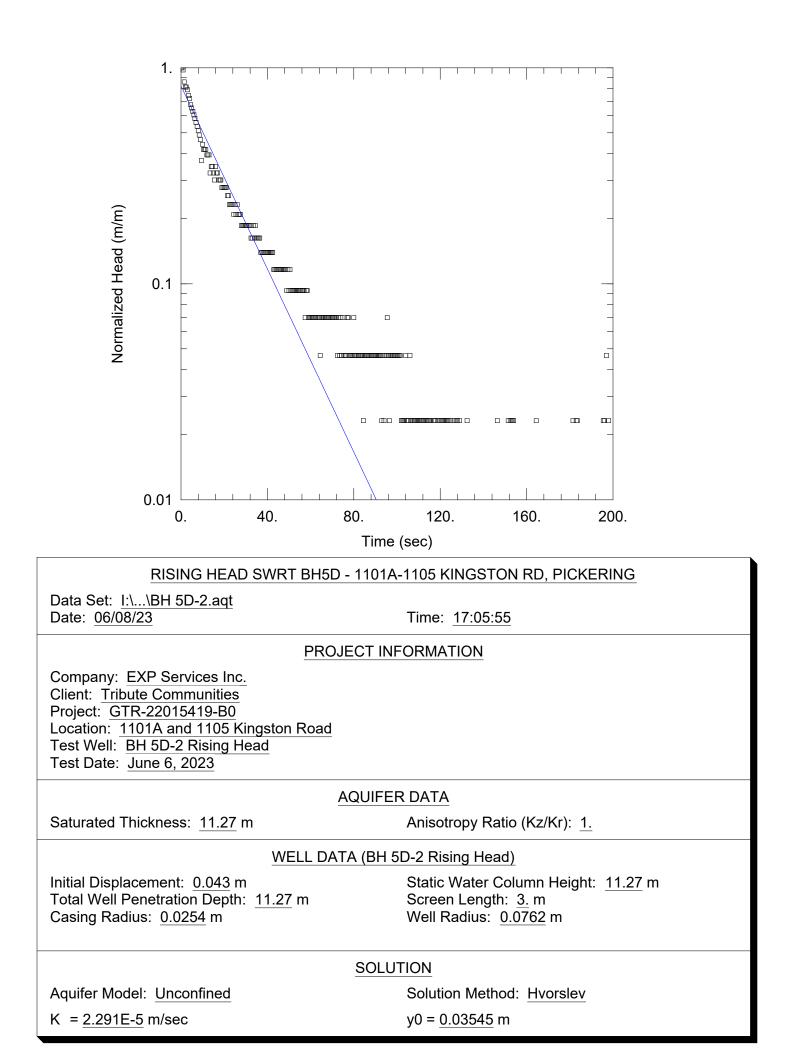

[%]exp.

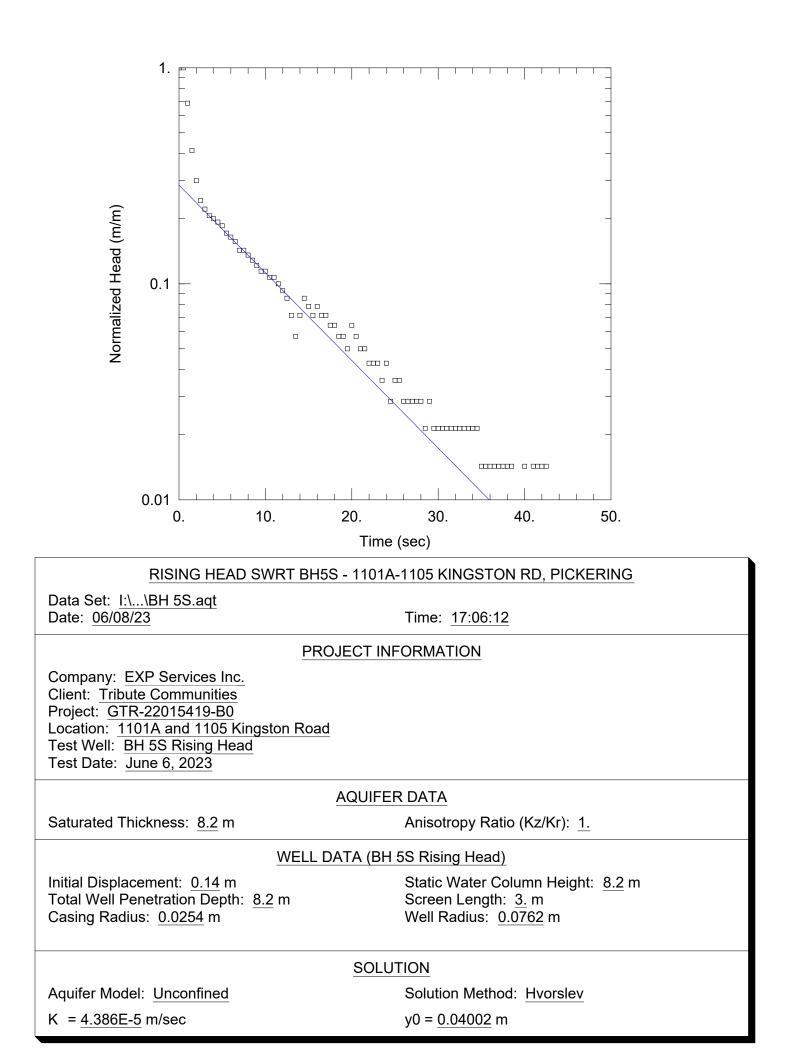

Time	Water Level (m)	Depth to Cave (m)
After 10 days	3.07	Well
After 21 days	3.10	Well
After 27 days	3.59	Well
-		

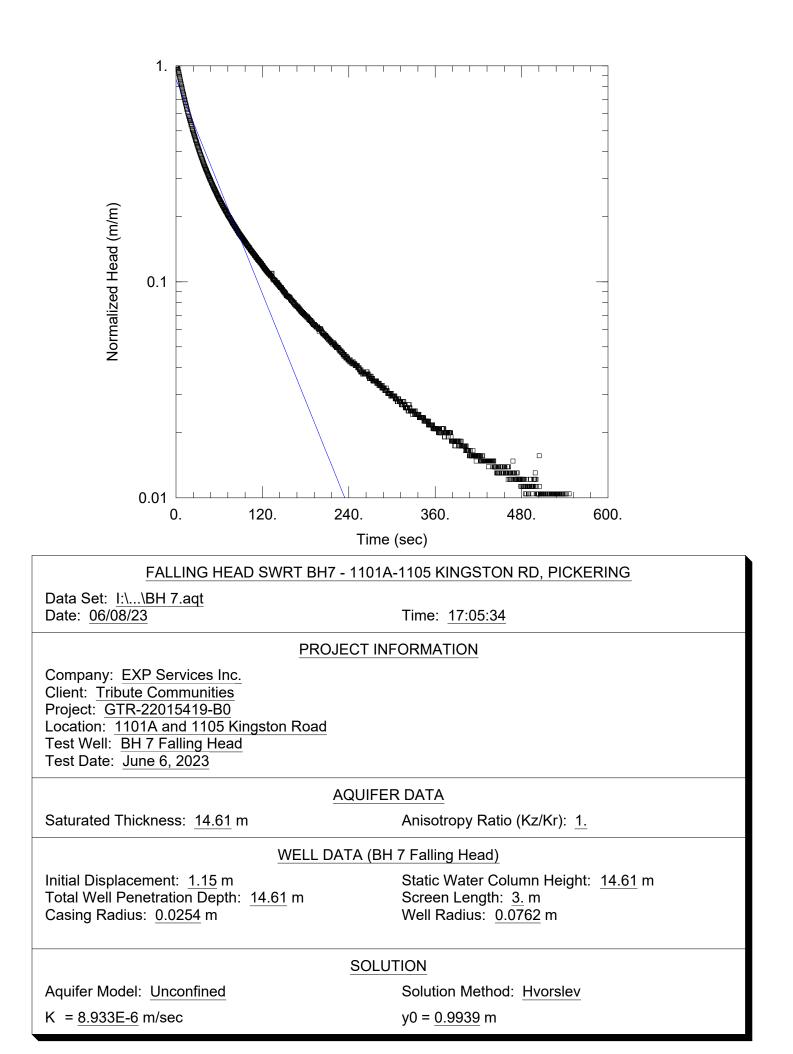

Appendix C – SWRT Procedures and Results

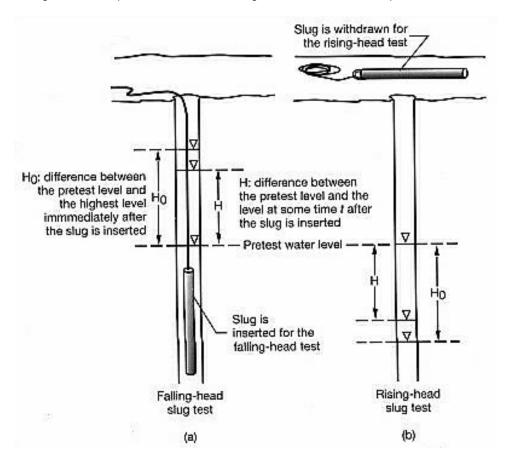












*exp. Single Well Response Test Procedure

A Single Well Response Test (SWRT), also known as a bail test or a slug test, is conducted in order to determine the saturated hydraulic conductivity (K) of an aquifer. The method of the SWRT is to characterize the change of groundwater level in a well or borehole over time.

In order to ensure consistency and repeatability, all **exp** employees are to follow the procedure outlined in this document when conducting SWRTs.

The figure below depicts a schematic of a slug and bail test and the respective water level changes.

Slug Test Procedure

Equipment Required

- Copy of a signed health and safety plan
- Copy of the work program
- PPE as required by Site-Specific HASP
- Copy of the monitoring well location plan/site plan
- Waterproof pen and bound field note book
- SWRT field data Entry form
- Disposable gloves
- Duct tape
- Deionized water
- Alconox (phosphate free detergent)
- Spray bottles
- Electronic water level meter and spare batteries
- Solid PVC or stainless steel slug of known volume or clean water
- String (nylon)
- Water pressure transducer (data logger) and baro-logger
- Watch or stop watch with second hand
- Plastic sheeting

Testing Procedure

- 1. Remove cap from well and collect static water level
- 2. Remove waterra tubing/bailer and place in garbage bag. Record static water level measurement again.
- 3. Lower the slug into the well and record the dynamic water level.
- 4. Record the drawdown (for the slug test) at set five (5) second intervals for the first five (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown until 95% recovery is reached. To calculate this value: Find the difference between the dynamic water level and the static water level, then multiply by 95% (.95). Add the resulting value to the dynamic water level.
 - (Static Water Level Dynamic Water Level).95 + Static Water Level = 95% Recovery Value
- 6. Once complete, replace the waterra tubing/bailer and re-secure the well cap.

Note: If the well is deep, more than one slug may be inserted by attaching the slugs to a series.

Slugs must be washed with methanol, then lab grade soap, and then rinsed with de-ionized water after each use.

Based on the recorded observations, the hydraulic conductivity (in m/s) of the aquifer will be determined. In order to determine the hydraulic conductivity; the well diameter, radius of the borehole and length of the screen will also be required.

Bail Test Procedure

Equipment Required

- 20 L (5 gal) Graduated pail
- Stop watch or watch with seconds
- Garbage bags
- Water level meter
- Field sheets/log book
- Latex Gloves
- Bailer and Rope

Procedure

- 1. Remove cap from well and collect static water level.
- 2. If using a **bailer**:
 - a. Affix the rope to the bailer.
 - b. Remove the waterra tubing and place in garbage bag
 - c. Record static water level measurement again.
 - d. Record how much water was removed by either counting the number of full bailers or emptying removed water into a container.
 - e. Quickly lower the bailer into the well and remove.
 - f. Continue this process until the water level will reduce no further.
 - g. Record the dynamic water level.
- 3. If using waterra to bail the water:
 - a. Pump the water into graduated bucket until the water level will reduce no further.
 - b. Record how much water has been removed.
 - c. Record the dynamic water level.
- 4. Record the recovery at set five (5) second intervals for the first (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown/recovery until 95% recovery is reached.
- 6. Once complete, replace any waterra tubing that may have been removed from the well and re-secure the well cap.

Appendix D – Laboratory's Certificates of Analysis

*exp.

Attention: Amar Neku

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1 Your P.O. #: ENV-BRM Your Project #: GTR-22015419-B0 Site#: 1101A-1105 KINGSTON RD, ON Site Location: 1101A-1105 KINGSTON RD., ON Your C.O.C. #: 938208-01-01

> Report Date: 2023/06/15 Report #: R7672954 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3G2732 Received: 2023/06/06, 18:02

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
ABN Compounds in Water by GC/MS	1	2023/06/09	2023/06/12	CAM SOP-00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2023/06/08	2023/06/13	CAM SOP-00427	SM 23 5210B m
Total Cyanide	1	2023/06/08	2023/06/08	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2023/06/08	2023/06/08	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2023/06/09	2023/06/09	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	2023/06/08	2023/06/09	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2023/06/06	CAM SOP-00552	MECP E3371
Total Nonylphenol in Liquids by HPLC	1	2023/06/09	2023/06/10	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2023/06/09	2023/06/10	CAM SOP-00313	Bureau Veritas
Animal and Vegetable Oil and Grease	1	N/A	2023/06/15	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2023/06/14	2023/06/15	CAM SOP-00326	EPA1664B m,SM5520B m
Polychlorinated Biphenyl in Water	1	2023/06/07	2023/06/08	CAM SOP-00309	EPA 8082A m
рН	1	2023/06/08	2023/06/08	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2023/06/08	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Turbidimetry	1	N/A	2023/06/08	CAM SOP-00464	SM 23 4500-SO42- E m
Total Kjeldahl Nitrogen in Water	1	2023/06/08	2023/06/08	CAM SOP-00938	OMOE E3516 m
Mineral/Synthetic O & G (TPH Heavy Oil) (1)	1	2023/06/14	2023/06/15	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2023/06/10	2023/06/12	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2023/06/08	CAM SOP-00228	EPA 8260D

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.

Page 1 of 13

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Your P.O. #: ENV-BRM Your Project #: GTR-22015419-B0 Site#: 1101A-1105 KINGSTON RD, ON Site Location: 1101A-1105 KINGSTON RD., ON Your C.O.C. #: 938208-01-01

Attention: Amar Neku

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1

> Report Date: 2023/06/15 Report #: R7672954 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C3G2732

Received: 2023/06/06, 18:02

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Please direct all questions regarding this Certificate of Analysis to: Patricia Legette, Project Manager Email: Patricia.Legette@bureauveritas.com Phone# (905)817-5799

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

DURHAM SANITARY & STORM BYLAW (55-2013)

Bureau Veritas ID				WAE502			WAE502		
Sampling Date				2023/06/06			2023/06/06		
COC Number				11:00 938208-01-01			11:00 938208-01-01		
				938208-01-01			938208-01-01 BH1		
	UNITS	Criteria	Criteria-2	BH1	RDL	QC Batch	Lab-Dup	RDL	QC Batch
Calculated Parameters									
Total Animal/Vegetable Oil and Greas	e mg/L	-	150	ND	0.50	8706333			
Inorganics							-		
Total BOD	mg/L	15	300	4	2	8712023			
Fluoride (F-)	mg/L	-	10	0.23	0.10	8711869			
Total Kjeldahl Nitrogen (TKN)	mg/L	1	100	0.37	0.10	8712040			
рН	рН	6.0:9.0	6.0:10.5	7.91		8711941			
Phenols-4AAP	mg/L	0.008	1	ND	0.0010	8713543	ND	0.0010	8713543
Total Suspended Solids	mg/L	15	350	59	10	8714467			
Dissolved Sulphate (SO4)	mg/L	-	1500	23	1.0	8710528			
Total Cyanide (CN)	mg/L	0.02	2	ND	0.0050	8711846			
Petroleum Hydrocarbons				•					
Total Oil & Grease	mg/L	-	-	ND	0.50	8726131			
Total Oil & Grease Mineral/Synthetic	mg/L	-	15	ND	0.50	8726141			
Miscellaneous Parameters									
Nonylphenol Ethoxylate (Total)	mg/L	-	0.2	ND	0.025	8716362			
Nonylphenol (Total)	mg/L	-	0.02	ND	0.001	8716292			
Metals									
Mercury (Hg)	mg/L	0.0004	0.01	ND	0.00010	8715008			
Total Aluminum (Al)	ug/L	-	50000	1200	4.9	8713018			
Total Antimony (Sb)	ug/L	-	5000	0.88	0.50	8713018			
Total Arsenic (As)	ug/L	20	1000	1.0	1.0	8713018			
Total Cadmium (Cd)	ug/L	8	700	ND	0.090	8713018			
Total Chromium (Cr)	ug/L	80	2000	ND	5.0	8713018			
Total Cobalt (Co)	ug/L	-	5000	1.7	0.50	8713018			
Total Copper (Cu)	ug/L	50	3000	3.0	0.90	8713018			
Total Lead (Pb)	ug/L	120	1000	1.5	0.50	8713018			
No Fill No Exceeda	nce								
Grey Exceeds 1 c	riteria policy/le	vel							
	th criteria/levels	5							
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									
Lab-Dup = Laboratory Initiated Duplic	ate								
Criteria: Durham Municipality Storm S	Sewer Discharge	. By-Law I	No. 55-2013	3					

Criteria-2: Durham Municipality Sanitary Sewer Discharge. BY-LAW No.55-2013

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 3 of 13

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

DURHAM SANITARY & STORM BYLAW (55-2013)

Bureau Veritas ID				WAE502			WAE502		
Sampling Date				2023/06/06 11:00			2023/06/06 11:00		
COC Number				938208-01-01			938208-01-01		
	UNITS	Criteria	Criteria-2	BH1	RDL	QC Batch	BH1 Lab-Dup	RDL	QC Batch
Total Manganese (Mn)	ug/L	150	5000	87	2.0	8713018			
Total Molybdenum (Mo)	ug/L	-	5000	16	0.50	8713018			
Total Nickel (Ni)	ug/L	80	2000	3.8	1.0	8713018			
Total Phosphorus (P)	ug/L	400	10000	ND	100	8713018			
Total Selenium (Se)	ug/L	20	1000	ND	2.0	8713018			
Total Silver (Ag)	ug/L	120	5000	0.21	0.090	8713018			
Total Tin (Sn)	ug/L	-	5000	ND	1.0	8713018			
Total Titanium (Ti)	ug/L	-	5000	27	5.0	8713018			
Total Zinc (Zn)	ug/L	40	2000	16	5.0	8713018			
Semivolatile Organics		÷	•		•	•			•
Bis(2-ethylhexyl)phthalate	ug/L	8.8	12	ND	2.0	8714753			
Di-N-butyl phthalate	ug/L	15	80	ND	2.0	8714753			
Volatile Organics		÷	•		•	•			•
Benzene	ug/L	2	10	0.75	0.20	8709671			
Chloroform	ug/L	2	40	ND	0.20	8709671			
1,2-Dichlorobenzene	ug/L	5.6	50	ND	0.40	8709671			
1,4-Dichlorobenzene	ug/L	6.8	80	ND	0.40	8709671			
cis-1,2-Dichloroethylene	ug/L	5.6	4000	ND	0.50	8709671			
trans-1,3-Dichloropropene	ug/L	5.6	140	ND	0.40	8709671			
Ethylbenzene	ug/L	2	160	0.21	0.20	8709671			
Methylene Chloride(Dichloromethane)	ug/L	5.2	2000	ND	2.0	8709671			
Methyl Ethyl Ketone (2-Butanone)	ug/L	-	8000	ND	10	8709671			
Styrene	ug/L	-	200	ND	0.40	8709671			
1,1,2,2-Tetrachloroethane	ug/L	17	1400	ND	0.40	8709671			
Tetrachloroethylene	ug/L	4.4	1000	ND	0.20	8709671			
Toluene	ug/L	2	270	1.1	0.20	8709671			
Trichloroethylene	ug/L	8	400	ND	0.20	8709671			
No Fill No Exceedance	2					•			•
Grey Exceeds 1 crite	ria policy/lev	vel							

Black

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Durham Municipality Storm Sewer Discharge. By-Law No. 55-2013

Criteria-2: Durham Municipality Sanitary Sewer Discharge. BY-LAW No.55-2013

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

Page 4 of 13

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

DURHAM SANITARY & STORM BYLAW (55-2013)

Bureau Veritas ID					WAE502			WAE502		
Sampling Date					2023/06/06			2023/06/06		
COC Number					11:00			11:00 938208-01-01		
		UNITS	Criteria	Criteria-2	938208-01-01 BH1	RDL	QC Batch	BH1 Lab-Dup	RDL	QC Batch
p+m-Xylene		ug/L	-	-	1.3	0.20	8709671			
o-Xylene		ug/L	-	-	0.59	0.20	8709671			
Total Xylenes		ug/L	4.4	1400	1.9	0.20	8709671			
PCBs				1	I.	1				1
Total PCB		ug/L	0.4	1	ND	0.05	8710683			
Microbiological					I	1	1	I		1
Escherichia coli		CFU/100mL	200	-	<10	10	8708652			
Surrogate Recovery (%)		!			<u>+</u>		!	<u>.</u>		
2,4,6-Tribromophenol		%	-	-	86		8714753			
2-Fluorobiphenyl		%	-	-	72		8714753			
2-Fluorophenol		%	-	-	38		8714753			
D14-Terphenyl		%	-	-	88		8714753			
D5-Nitrobenzene		%	-	-	76		8714753			
D5-Phenol		%	-	-	26		8714753			
Decachlorobiphenyl		%	-	-	71		8710683			
4-Bromofluorobenzene		%	-	-	101		8709671			
D4-1,2-Dichloroethane		%	-	-	102		8709671			
D8-Toluene		%	-	-	96		8709671			
No Fill	No Exceedanc	e		•			•			•
Grey	Exceeds 1 crite	eria policy/lev	el							
Black	Exceeds both	criteria/levels								
RDL = Reportable Detect										
QC Batch = Quality Cont										
Lab-Dup = Laboratory In		2								
Criteria: Durham Munici			By-Law I	No. 55-2013	3					
Criteria-2: Durham Mun		-								
ND = Not Detected at a	concentration er	uial or greate	r than the	indicated	Detection Limit					

ND = Not Detected at a concentration equal or greater than the indicated Detection Limit.

TEST SUMMARY

Bureau Veritas ID: WAE502 Sample ID: BH1 Matrix: Water					Collected: 2023/06/06 Shipped: Received: 2023/06/06
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
ABN Compounds in Water by GC/MS	GC/MS	8714753	2023/06/09	2023/06/12	Milijana Avramovic
Biochemical Oxygen Demand (BOD)	DO	8712023	2023/06/08	2023/06/13	Gurjot Kaur
Total Cyanide	SKAL/CN	8711846	2023/06/08	2023/06/08	Prgya Panchal
Fluoride	ISE	8711869	2023/06/08	2023/06/08	Kien Tran
Mercury in Water by CVAA	CV/AA	8715008	2023/06/09	2023/06/09	Japneet Gill
Total Metals Analysis by ICPMS	ICP/MS	8713018	2023/06/08	2023/06/09	Arefa Dabhad
E.coli, (CFU/100mL)	PL	8708652	N/A	2023/06/06	Yizhou Han
Total Nonylphenol in Liquids by HPLC	LC/FLU	8716292	2023/06/09	2023/06/10	Dennis Boodram
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	8716362	2023/06/09	2023/06/10	Dennis Boodram
Animal and Vegetable Oil and Grease	BAL	8706333	N/A	2023/06/15	Automated Statchk
Total Oil and Grease	BAL	8726131	2023/06/14	2023/06/15	Kishan Patel
Polychlorinated Biphenyl in Water	GC/ECD	8710683	2023/06/07	2023/06/08	Li Peng
рН	AT	8711941	2023/06/08	2023/06/08	Kien Tran
Phenols (4AAP)	TECH/PHEN	8713543	N/A	2023/06/08	Mandeep Kaur
Sulphate by Automated Turbidimetry	KONE	8710528	N/A	2023/06/08	Massarat Jan
Total Kjeldahl Nitrogen in Water	SKAL	8712040	2023/06/08	2023/06/08	Jency Sara Johnson
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	8726141	2023/06/14	2023/06/15	Kishan Patel
Total Suspended Solids	BAL	8714467	2023/06/10	2023/06/12	Shaneil Hall
Volatile Organic Compounds in Water	GC/MS	8709671	N/A	2023/06/08	Hai Son Tran

Bureau Veritas ID: Sample ID: Matrix:					Collected: 2023/06/06 Shipped: 2023/06/06 Received: 2023/06/06
Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Phenols (4AAP)	TECH/PHEN	8713543	N/A	2023/06/08	Mandeep Kaur

Page 6 of 13 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	12.0°C	
Result	relate only to th	e items tested.	

Page 7 of 13 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: GTR-22015419-B0 Site Location: 1101A-1105 KINGSTON RD., ON Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8709671	4-Bromofluorobenzene	2023/06/08	102	70 - 130	100	70 - 130	99	%				
8709671	D4-1,2-Dichloroethane	2023/06/08	103	70 - 130	101	70 - 130	100	%				
8709671	D8-Toluene	2023/06/08	98	70 - 130	99	70 - 130	98	%				
8710683	Decachlorobiphenyl	2023/06/08	58 (1)	60 - 130	77	60 - 130	76	%				
8714753	2,4,6-Tribromophenol	2023/06/12	78	10 - 130	82	10 - 130	79	%				
8714753	2-Fluorobiphenyl	2023/06/12	63	30 - 130	56	30 - 130	66	%				
8714753	2-Fluorophenol	2023/06/12	47	10 - 130	50	10 - 130	49	%				
8714753	D14-Terphenyl	2023/06/12	74	30 - 130	75	30 - 130	79	%				
8714753	D5-Nitrobenzene	2023/06/12	78	30 - 130	82	30 - 130	84	%				
8714753	D5-Phenol	2023/06/12	27	10 - 130	29	10 - 130	29	%				
8709671	1,1,2,2-Tetrachloroethane	2023/06/08	95	70 - 130	93	70 - 130	ND, RDL=0.40	ug/L	NC	30		
8709671	1,2-Dichlorobenzene	2023/06/08	92	70 - 130	91	70 - 130	ND, RDL=0.40	ug/L	NC	30		
8709671	1,4-Dichlorobenzene	2023/06/08	100	70 - 130	102	70 - 130	ND, RDL=0.40	ug/L	NC	30		
8709671	Benzene	2023/06/08	91	70 - 130	89	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8709671	Chloroform	2023/06/08	93	70 - 130	90	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8709671	cis-1,2-Dichloroethylene	2023/06/08	97	70 - 130	93	70 - 130	ND, RDL=0.50	ug/L	NC	30		
8709671	Ethylbenzene	2023/06/08	87	70 - 130	87	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8709671	Methyl Ethyl Ketone (2-Butanone)	2023/06/08	113	60 - 140	108	60 - 140	ND, RDL=10	ug/L	NC	30		
8709671	Methylene Chloride(Dichloromethane)	2023/06/08	105	70 - 130	101	70 - 130	ND, RDL=2.0	ug/L	NC	30		
8709671	o-Xylene	2023/06/08	88	70 - 130	88	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8709671	p+m-Xylene	2023/06/08	91	70 - 130	91	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8709671	Styrene	2023/06/08	96	70 - 130	95	70 - 130	ND, RDL=0.40	ug/L	NC	30		
8709671	Tetrachloroethylene	2023/06/08	86	70 - 130	86	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8709671	Toluene	2023/06/08	93	70 - 130	92	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8709671	Total Xylenes	2023/06/08					ND, RDL=0.20	ug/L	NC	30		
8709671	trans-1,3-Dichloropropene	2023/06/08	100	70 - 130	97	70 - 130	ND, RDL=0.40	ug/L	NC	30		
8709671	Trichloroethylene	2023/06/08	99	70 - 130	97	70 - 130	ND, RDL=0.20	ug/L	NC	30		
8710528	Dissolved Sulphate (SO4)	2023/06/08	93	75 - 125	97	80 - 120	ND, RDL=1.0	mg/L	4.8	20		
8710683	Total PCB	2023/06/08	53 (2)	60 - 130	79	60 - 130	ND, RDL=0.05	ug/L	NC	40		

Page 8 of 13

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: GTR-22015419-B0 Site Location: 1101A-1105 KINGSTON RD., ON Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RP	D	QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8711846	Total Cyanide (CN)	2023/06/08	105	80 - 120	103	80 - 120	ND, RDL=0.0050	mg/L	2.2	20		
8711869	Fluoride (F-)	2023/06/08	83	80 - 120	98	80 - 120	ND, RDL=0.10	mg/L	13	20		
8711941	рН	2023/06/08			101	98 - 103			0.54	N/A		
8712023	Total BOD	2023/06/13					ND,RDL=2	mg/L	NC	30	93	80 - 120
8712040	Total Kjeldahl Nitrogen (TKN)	2023/06/08	98	80 - 120	99	80 - 120	ND, RDL=0.10	mg/L	8.3	20	107	80 - 120
8713018	Total Aluminum (Al)	2023/06/09	95	80 - 120	94	80 - 120	ND, RDL=4.9	ug/L				
8713018	Total Antimony (Sb)	2023/06/09	111	80 - 120	105	80 - 120	ND, RDL=0.50	ug/L				
8713018	Total Arsenic (As)	2023/06/09	101	80 - 120	101	80 - 120	ND, RDL=1.0	ug/L				
8713018	Total Cadmium (Cd)	2023/06/09	103	80 - 120	100	80 - 120	ND, RDL=0.090	ug/L	NC	20		
8713018	Total Chromium (Cr)	2023/06/09	100	80 - 120	102	80 - 120	ND, RDL=5.0	ug/L	NC	20		
8713018	Total Cobalt (Co)	2023/06/09	99	80 - 120	99	80 - 120	ND, RDL=0.50	ug/L				
8713018	Total Copper (Cu)	2023/06/09	106	80 - 120	100	80 - 120	ND, RDL=0.90	ug/L	NC	20		
8713018	Total Lead (Pb)	2023/06/09	95	80 - 120	99	80 - 120	ND, RDL=0.50	ug/L	NC	20		
8713018	Total Manganese (Mn)	2023/06/09	NC	80 - 120	96	80 - 120	ND, RDL=2.0	ug/L				
8713018	Total Molybdenum (Mo)	2023/06/09	114	80 - 120	107	80 - 120	ND, RDL=0.50	ug/L				
8713018	Total Nickel (Ni)	2023/06/09	94	80 - 120	96	80 - 120	ND, RDL=1.0	ug/L	1.2	20		
8713018	Total Phosphorus (P)	2023/06/09	105	80 - 120	107	80 - 120	ND, RDL=100	ug/L				
8713018	Total Selenium (Se)	2023/06/09	99	80 - 120	102	80 - 120	ND, RDL=2.0	ug/L				
8713018	Total Silver (Ag)	2023/06/09	99	80 - 120	98	80 - 120	ND, RDL=0.090	ug/L				
8713018	Total Tin (Sn)	2023/06/09	107	80 - 120	101	80 - 120	ND, RDL=1.0	ug/L				
8713018	Total Titanium (Ti)	2023/06/09	101	80 - 120	101	80 - 120	ND, RDL=5.0	ug/L				
8713018	Total Zinc (Zn)	2023/06/09	97	80 - 120	102	80 - 120	ND, RDL=5.0	ug/L	0.19	20		
8713543	Phenols-4AAP	2023/06/08	106	80 - 120	101	80 - 120	ND, RDL=0.0010	mg/L	NC	20		
8714467	Total Suspended Solids	2023/06/12			96	85 - 115	ND, RDL=10	mg/L	NC	20		
8714753	Bis(2-ethylhexyl)phthalate	2023/06/13	85	30 - 130	89	30 - 130	ND, RDL=2.0	ug/L	NC	40		
8714753	Di-N-butyl phthalate	2023/06/13	87	30 - 130	86	30 - 130	ND, RDL=2.0	ug/L	NC	40		

Page 9 of 13

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: GTR-22015419-B0 Site Location: 1101A-1105 KINGSTON RD., ON Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
8715008	Mercury (Hg)	2023/06/09	105	75 - 125	107	80 - 120	ND, RDL=0.00010	mg/L	NC	20		
8716292	Nonylphenol (Total)	2023/06/12	106	50 - 130	102	50 - 130	ND, RDL=0.001	mg/L	NC	40		
8716362	Nonylphenol Ethoxylate (Total)	2023/06/10	94	50 - 130	92	50 - 130	ND, RDL=0.025	mg/L	6.5	40		
8726131	Total Oil & Grease	2023/06/15			99	85 - 115	ND, RDL=0.50	mg/L	0.76	25		
8726141	Total Oil & Grease Mineral/Synthetic	2023/06/15			98	85 - 115	ND, RDL=0.50	mg/L	1.5	25		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(2) Spike recovery is below the control limit stipulated by Ont Reg 153 & 406, however, this recovery is still within Bureau Veritas' performance based limits. Results reported with recoveries within this range are still valid but may have a low bias.

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Tizhou Han

Yizhou Han, Analyst 1

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

	-	Bureau Ventas 6740 Campobello Road	d, Mississauga, Onta	rio Canada L5	N 2L8 Tel:(905) 817-	5700 Toll-free:800	563-6266 Fax(905) 817-577	7 www.bvna.com						CHAI		06-Jun-23 18:02 ricia Legette	e /ot /
	101101	INVOICE TO:					RT TO:					PROJECT	T INFORMATI	222.201		-	New York Control of Co) der #:
ompany Name		United and a second		Com	bany Name:	c P Servi	ces h	~ C		Quotation	#:	C3167			Stream	JDK	ENV-1636	Enviro
tention;	Accounts Payat	percents .		Atten			8.81	~		P.O. #:			1-BRM			1	2111 1050	ADDA
ldress;	1595 Clark Blvd		5	Addr		in Cussi		010	p, com	Project:		GTR-2	22015419-6	B0	1.00			938208
	Brampton ON L				Rya	1. Alexan	der		1	Project Na	ame:						COC #:	Project Manager:
Ł	(905) 793-9800	Fax:(9	905) 793-0641	Tel			Fax			Site #:			-1105 King	gston F	Rd, ON			Patricia Legette
nail		Karen.Burke@exp.co		Emai		neku@exp.cor	n		A	Sampled	By:	El	-	-			C#938208-01-01	
MOE RE	GULATED DRINKIN	NG WATER OR WATE	R INTENDED F	OR HUMAN	CONSUMPTION	MUSTBE			Al	ALYSIS RE	QUESTED	(PLEASE BI	E SPECIFIC)				Turnaround Time (TAT) F	equired:
全國主義	SUBMITTED ON	THE BUREAU VERITA	AS DRINKING W	ATER CHA	IN OF CUSTODY											Skiller and	Please provide advance notice f	ar rush projecta
Regula	ition 153 (2011)		Other Regulations		Special	Instructions	rcle	v (55-									Standard) TAT: ed if Rush TAT is not specified):	
Table 1	Res/Park Mediu	um/Fine CCME	Sanitary Sewer	Bylaw			5 0	Sylav								and a second	T = 5-7 Working days for most tests	4
Table 2	Ind/Comm Coars		Storm Sewer By				CC	E.								Please note:	Standard TAT for certain tests such as E	OD and Dioxins/Furans are >
Table 3 [Table	Agri/Other For R		Municipality	<i>Urhan</i>			Id) BH	Sto								days - contai	ct your Project Manager for details.	
abie			Reg 406 Table		2 (10 (1, 10 (0)))		d Filtered (please ci Metals / Hg / Cr VI	ary 8								Job Specif	ic Rush TAT (if applies to entire sub-	
		Other			_		Filte	anit		-						Date Require	eo	me Required:
	Include Criter	ia on Certificate of An	alysis (VN)? Ye	25			Field Fittered (please circle): Metals / Hg / Cr VI	S E								Rush Confin	mation Number:(call lab for #)
Samp	ple Barcode Label	Sample (Location) lo		Date Sample	d Time Sampled	Matrix	Ē	Durhar 2013)								# of Bottles	Comm	ients
		0111		11			nde Finn	1								1.1	0	1.11
1	4	EHI		23/6/	6 11:00	GW	NA	V		1			0			16	- Mease	final
		-					N/III	IN						- t		1-	1-10000-	0
	4				0	4	N 11 L - F			4 Y			÷				COCIO	final
																	Ch m	1.1.10
											0						Re port	
										+				-				
							14 M - S								-	2		
										-								
							100											
-																		
							1 House											
	1						1											
							(creating)											
							-26-0											
							Tel Loris											
•	RELINQUISHED BY: (S	Signature/Print)	Date: (YY/M	W/DD)	Time	RECEIVED	BY: (Signature	Print)	Date: (Y	(MM/DD)	1	lime	# jars use			Labor	ratory Use Only	
2. +	CL A	his a. scill	23/6/	6 1	8:00	Aneri	AN	1001010021	0022	10610		202	not subr	nitted	Time Sensitive	Tempera	ature (°C) on Recei Custody	Seal Yes
_	6	man unser	- 10/	• I	000	1.00	1110		2025	10010	4 . 3						112112 Intac	
ESS OTHER	WISE AGREED TO IN WI	RITING, WORK SUBMITTED	ON THIS CHAIN OF	CUSTODY IS	SUBJECT TO BURE	AU VERITAS'S STA	DARD TERMS	AND CONDITI	ONS. SIGNING O	THIS CHAI	N OF CUST	ODY DOCUN	MENT IS	CALCON ST	inflation the fat	STAR STAR	White	Bureau Veritas Yellow:
	AND ACCEPTANCE	OF OUR TERMS WHICH AP	RE AVAILABLE FOR	VIEWING AT 1	WWW.BVNA.COM/ENV	IRONMENTAL-LAE	ORATORIES/RE	SOURCES/CO	DC-TERMS-AND-C	ONDITIONS					MUSTREKERT	001 (< 108 C) FROM TIME OF SAMPLING	
		INQUISHER TO ENSURE T											0	SWIFLE'S	UNTIL DELI	VERY TO BURE	ALLVERITAS	1.00
PLE CONT	AINER PRESERVATION	, HOLD TIME AND PACKAG	C INFORMATION O	AN DE VOENE				ES/DESOUD	CERICUAIN CHIEF								and and the state	on ice

Exceedance Summary Table – Durham Storm Sewer

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
BH1	WAE502-06	Total Suspended Solids	15	59	10	mg/L
The exceedance summary table	is for information purp	oses only and should not be	considered a compreh	ensive listing or	statement of	conformance to
applicable regulatory guidelines						

Exceedance Summary Table – Durham Sanitary Sewer Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summa applicable regulatory g	ary table is for information purp uidelines.	oses only and should not	be considered a comprel	hensive listing or	statement of	conformance to

Appendix E – Construction Flow Rate Calculations

*exp.

APPENDIX E: Dewatering Flow Rates 1101A and 1105 Kingston Road, Pickering GTR-22015419-B0

Table E-1: Construction Dewatering Assessments

Parameters	Symbols	Unit	Parcel A1 (P3)	Parcel A2 (P3)	Parcel B (P2)	Parcel C (P2)	Parcel D (P1)
Geological Formation	-	-	Glacial Deposit				
INPUTS							
Ground Elevation	-	mASL	85.43	85.43	85.43	85.43	85.43
Highest Groundwater Elevation	-	mASL	84.47	84.47	84.47	84.47	84.47
Lowest Top Slab Elevation	-	mASL	75.43	75.43	78.43	78.43	81.43
Lowest Foundation Invert Elevation	-	mASL	73.93	73.93	76.93	76.93	79.93
Height of Static Water Table Above the Base of the Water-Bearing Zone	н	m	18.47	18.47	18.47	18.47	18.47
Dewatering Target Elevation	-	mASL	72.93	72.93	75.93	75.93	78.93
Height of Target Water Level Above the Base of Water-Bearing Zone	h _w	m	6.93	6.93	9.93	9.93	12.93
Drawdown	s	m	11.54	11.54	8.54	8.54	5.54
Dupuit Check (> 45%)		m	38%	38%	54%	54%	70%
Base of Aquifer / Water Bearing Zone	-	mASL	66.00	66.00	66.00	66.00	66.00
Hydraulic Conductivity	к	m/s	5.1E-05	5.1E-05	5.1E-05	5.1E-05	5.1E-05
Length of Excavation	-	m	94.00	116.00	164.00	166.00	143.00
Width of Excavation	-	m	88.00	61.00	100.00	103.00	65.00
Equivalent Radius (equivalent perimeter)	r _e	m	57.93	56.34	84.03	85.63	66.21
Method to Calculate Radius of Influence	-	-	Cooper-Jacob	Cooper-Jacob	Cooper-Jacob	Cooper-Jacob	Cooper-Jacob
Time (days)			30.00	30.00	30.00	30.00	30.00
Time (seconds)	t	s	2592000	2592000	2592000	2592000	2592000
Specific Yield	Sy		0.20	0.20	0.20	0.20	0.20
OUTPUTS							
Cooper-Jacob's Radius of Influence from Sides of Excavation	Rcj	m	165.73	165.73	165.73	165.73	165.73
Radius of Influence	Ro	m	223.67	222.08	249.77	251.36	231.94
Dewatering Flow Rate (unconfined radial flow component)	Q	m³/day	3003.7	2958.3	3082.2	3117.7	1920.8
Factor of Safety	fs	-	2.00	2.00	2.00	2.00	2.00
Dewatering Flow Rate (multiplied by factor of safety)	Q.fs	m³/day	6007	5917	6164	6235	3842
Precipitation Event	-	mm/day	15	15	15	15	15
Volume from Precipitation	-	m ³ /day	124	106	246	256	139
Total Volume (L/day) Discharge of Groundwater (Construction dewatering) without Safety Factor (including precipitation	-	m³/day	3128	3064	3328	3374	2060
Total Volume (L/day) Discharge of Groundwater (Construction dewatering) with Safety Factor (including precipitation)	-	m³/day	6131	6023	6410	6492	3981

Precipitation Event 2 year storm	-	mm/day	55.4
Volume from Precipitation	-	m ³ /event	458
Precipitation Event 100 year storm	-	mm/day	121
Volume from Precipitation	-	m ³ /event	1001
Nataa			

Notes: mASL - meters above sea level

Analytical Solution for Estimating Radial Flow from an Unconfined Aguifer to a Fully-Penetrating Excavation

$$\begin{split} Q_w &= \frac{\pi K (H^2 - h^2)}{Ln \left[\frac{R_o}{r_e}\right]} \end{split} (\text{Based on the Dupuit-Forcheimer Equation}) \\ r_e &= \frac{a + b}{\pi} \qquad R_o = R_{cj} + r_e \qquad \qquad \text{R}_{cj} = \sqrt{2.25 K D t/S} \end{split}$$

Where:

 $Q_w = Flow rate per unit length of excavation (m³/s)$ K = Hydraulic conductivity (m/s)

 $\begin{aligned} H &= \text{Height of static water table above base of water-bearing zone (m)} \\ h_w &= \text{Height of target water level above the base of water-bearing zone (m)} \end{aligned}$

 R_{o} =Radius of influence (m) R_{o} =Radius of influence (m)

re=Equivalent perimeter (m)

EXP Services Inc. 1101A, 1105 and 1163 Kingston Road, Pickering, Ontario Preliminary Hydrogeological Investigation GTR-22015419-B0 October 30, 2023

Appendix F - Post-Construction Flow Rate Calculations

*ехр.

APPENDIX F: Dewatering Flow Rates 1101A and 1105 Kingston Road, Pickering GTR-22015419-B0

TableF-1: Post Construction Dewatering Assessments

Parameters	Symbols	Unit	Parcel A1 (P3)	Parcel A2 (P3)	Parcel B (P2)	Parcel C (P2)	Parcel D (P1)
Geological Formation	-	-	Glacial Deposit				
INPUTS							
Ground Elevation	-	mASL	85.43	85.43	85.43	85.43	85.43
Highest Groundwater Elevation	-	mASL	84.47	84.47	84.47	84.47	84.47
Lowest Top Slab Elevation	-	mASL	75.43	75.43	78.43	78.43	81.43
Height of Static Water Table Above the Base of the Water-Bearing Zone	н	m	18.47	18.47	18.47	18.47	18.47
Dewatering Target Elevation	-	mASL	74.93	74.93	77.93	77.93	80.93
Height of Target Water Level Above the Base of Water-Bearing Zone	h _w	m	8.93	8.93	11.93	11.93	14.93
Drawdown	S	m	9.54	9.54	6.54	6.54	3.54
Dupuit Check (> 45%)		m	48%	48%	65%	65%	81%
Base of Aquifer / Water Bearing Zone	-	mASL	66.00	66.00	66.00	66.00	66.00
Hydraulic Conductivity	к	m/s	5.1E-05	5.1E-05	5.1E-05	5.1E-05	5.1E-05
Length of Excavation	-	m	97.00	117.00	117.00	152.00	227.00
Width of Excavation	-	m	55.00	97.00	97.00	83.00	186.00
Equivalent Radius (equivalent perimeter)	r _e	m	48.38	68.12	68.12	74.80	131.46
Method to Calculate Radius of Influence	-	-	Cooper-Jacob	Cooper-Jacob	Cooper-Jacob	Cooper-Jacob	Cooper-Jacob
Time (days)			365.00	365.00	365.00	365.00	365.00
Time (seconds)	t	s	31536000	31536000	31536000	31536000	31536000
Specific Yield	Sy		0.20	0.20	0.20	0.20	0.20
OUTPUTS							
Cooper-Jacob's Radius of Influence from Sides of Excavation	Rcj	m	578.09	578.09	578.09	578.09	578.09
Radius of Influence	Ro	m	626.48	646.21	646.21	652.90	709.56
Dewatering Flow Rate (unconfined radial flow component)	Q	m³/day	1412.96	1608.32	1223.28	1270.32	970.84
Factor of Safety	fs	-	1.50	1.50	1.50	1.50	1.50
Dewatering Flow Rate (multiplied by factor of safety)	Q.fs	m³/day	2119	2412	1835	1905	1456

Analytical Solution for Estimating Radial Flow from an Unconfined Aquifer to a Fully-Penetrating Excavation

 $Q_w = \frac{\pi K (H^2 - h^2)}{Ln \left[\frac{R_o}{r_e}\right]}$
$$\begin{split} Q_w &= \frac{n \kappa \left(n - n^-\right)}{Ln \left[\frac{R_o}{r_e}\right]} \end{split} (Based on the Dupuit-Forcheimer Equation) \\ r_e &= \frac{a+b}{\pi} \qquad R_o = R_{cj} + r_e \qquad \qquad R_{cj} = \sqrt{2.25 KDt/S} \end{split}$$

 $e^{-}\pi$ $h_0 = h_{Cf} + h_0$ $Q_w = Flow rate per unit length of excavation (m³/s)$ <math>K = Hydraulic conductivity (m/s) H = Height of static water table above base of water-bearing zone (m) $<math>h_w = Height of static water level above the base of water-bearing zone (m)$ $<math>h_w = Height of static water level above the base of water-bearing zone (m)$ $<math>R_v = Radius of influence (m)$ re=Equivalent perimeter (m)

EXP Services Inc. 1101A, 1105 and 1163 Kingston Road, Pickering, Ontario Preliminary Hydrogeological Investigation GTR-22015419-B0 October 30, 2023

Appendix G – Architectural Drawings

*exp.

STATISTICS	M2	SF	PHASE 1	
SITE AREA:	77,476	833,953	PHASE 2	
R.O.W. AREA	5,683	61,172	PHASE 3	
TOTAL NFA	340,726	3,667,570	PHASE 4	
FSI (ON NET SITE AREA)	5.00		PHASE 5	
· ,				
			POPS	
TOTAL RETAIL	7,149	76,951	PARK	
	332,861	3,582,915	TOTAL (POPS AND PARK)	
NET AVERAGE APARTMENT UNIT SIZE	59	635	R.O.W	
TOTAL RESIDENTIAL UNIT#		000	SITE AREA EXCLUDING R.O.W.	
	5,238			
TOTAL UPH (ON NET SITE AREA)	768.1		NET SITE AREA	
			TOTAL	

NFA CALCULATION

	DESCRIP	TION	RETAI	_	DAY	YCARE		TOWNHOUSE		RESIDENTIAL A	NET SALEABLE			TOTAL NFA		
										TOTAL N						
	PORTION	FLOORS	m2	ft2	m2	ft2	m2	ft2	UNITS	m2	ft2	m2	ft2	UNIT#	m2	ft2
BUILDING 'A1'	BASE(F1~F6)	6	4,946	53,242						21,374	230,069	19,268	207,404	. 327	26,320	283,31
	TOWER (F7~F19)	13								17,661	190,104	16,634	179,054	282	17,661	190,10
BUILDING 'A2'	BASE(F1~F6)	6			716	6 7,705				13,956	150,224	12,575	135,361	213	14,672	157,92
	TOWER (F7~F23)	17								24,330	261,885	22,973	247,287	. 389	24,330	261,88
	BASE(F1~F6)	6								23,807	256,254	21,271	228,962	361	23,807	256,25
BUILDING 'B'	TOWER (F7~F30)	24								55,364	595,935	51,933	559,006	880	55,364	595,93
	TOWER (F31~F35)	5								3,863	41,579	3,650	39,292	62	3,863	41,57
BUILDING 'C1'	BASE(F1~F6)	6	2,203	23,709						17,396	187,249	15,653	168,493	265	19,598	210,95
BOILDING CT	TOWER (F7~F27)	21								31,648	340,663	29,797	320,732	505	31,648	340,66
BUILDING 'C2'	BASE(F1~F6)	6								5,317	57,233	4,831	52,002	82	5,317	57,23
BOILDING C2	TOWER (F7~F27)	21								15,772	169,770	14,789	159,184	251	15,772	169,77
	BASE(F1~F6)	6								20,694	222,746	18,743	201,751	318	20,694	222,74
	TOWER (F7~F27)	21								64,526	694,559	60,878	655,288	1,032	64,526	694,55
BUILDING 'D'	TOWER (F28-F31)	4								12,495	134,495	11,691	125,844	. 198	12,495	134,49
	TOWER (F32~F33)	2								3,100	33,365	2,922	31,448	50	3,100	33,36
	TOWER (F34~F35)	2								1,559	16,785	1,460	15,717	. 25	1,559	16,78
GRAND TOTAL			7,149	76,951	710	6 7,705		0	0	332,861	3,582,915	309,069	3,326,823	5,238	340,726	3,482,92

JNIT	MIX

	FLOOR			UNIT	ТҮРЕ	
		BACH	1B	1B+D	2B	
	BASE(F1~F6)	33	160	0	108	
	TOWER (F7~F19)	28	138	0	93	
BUILDING 'A1'	тота	61	298	0	201	
PHASE 1A		61	2	98	201	
		10.0%	49.0%		33	33.0%

			59.0%			
[UNIT MIX	10.0%	49.	33.0%		
PHASE 1B	TOTAL	60 295		95	199	
BUILDING 'A2'	TOTAL	60	295	0	199	
	TOWER (F7~F23)	39	191	0	128	
	BASE(F1~F6)	21	104	0	70	

			59.0%			
	UNIT MIX	10.0%	49.0%		33.	.0%
PHASE 2	TOTAL	130	638		4:	30
BUILDING 'B'	TOTAL	130	638	0	430	
	TOWER (F7~F35)	94	462	0	311	
	BASE(F1~F6)	36	177	0	119	

1						
	UNIT MIX	10.0%	49.	0%	33.0	
PHASE 3	TOTAL	110	54	40	364 364	64
BUILDING 'C1', 'C2'	TOTAL	110	540	0	364	
	TOWER (F7~F25)	76	370	0	249	
	BASE(F1~F6)	35	170	0	115	

	BASE(F1~F6)	32	156	0	105			
	TOWER (F7~F35)	130	639	0	430			
BUILDING 'D'	TOTAL	162	795	0	535			
PHASE 4		162	535					
	UNIT MIX	10.0%		0%	33.0%			
	_							
	TOTAL	524	2,567	0	1,729			
ΤΟΤΑΙ	TOTAL	524	2,5	567	1,7	729		
TOTAL		10.0%	10.0% 49.0%			33.0%		
	UNIT MIX							

10,251
9,373
14,096
13,420
28,253
6,180
4,515
10,695
5,683
71,793
68,203
77,476

8.6%	OF SITE AREA EXCLUDING R.O.W.
6.3%	OF SITE AREA EXCLUDING R.O.W.
14.9%	OF SITE AREA EXCLUDING R.O.W.

DEDUCTED BY PARKLAND (5%) AND R.O.W.

		SUB-TOTAL
2B+D	3B	
0	26	327
0	23	282
0	49	609
	49	
	8.0%	100.0%
41.0%		
0	17	213
0	31	389
0	48	603
	48	
	8.0%	100.0%
41.0%		
0	29	361
0	75	942
0	104	1,303
	104	
	8.0%	100.0%
41.0%		
0	28	347
0	60	756
0	88	1,103
	88	
	8.0%	100.0%
41.0%		
0	25	318
0	104	1,304
0	130	1,622
	130	
	8.0%	100.0%
41.0%		
0	419	5,238
	419	0,200
	8.0%	100.0%
		100.0%
41.0%		

PARKING REQUIRED (1)(2)(3)							
	COMMERCIAL	TOWNHOUSE	RESIDENTIAL	VISITOR	TOTAL		
	2/100M2	0.6/UNIT	0.6/UNIT	0.15/UNIT			
PARCEL 'A1'	99	0	365	91	555		
PARCEL 'A2'	0	0	362	90	452		
PARCEL 'B'	0	0	782	195	977		
PARCEL 'C1', 'C2'	66	0	847	212	1,125		
PARCEL 'D'	0	0	973	243	1,216		
TOTAL	165	0	3,329	832	4,326		

PARKING PROVIDED

	ABOVE GRADE/LEVEL1	ABOVE GRADE/LEVEL2-6	UG1	UG2	UG3	TOTAL
PARCEL 'A1'			185	185	187	557
PARCEL 'A2'			157	157	160	474
PARCEL 'B'	42	305	313	321	0	981
PARCEL 'C1', 'C2'	74	475	288	290	0	1,127
PARCEL 'D'	94	920	215			1,229
TOTAL	210	1,700	1,158	953	347	4,368

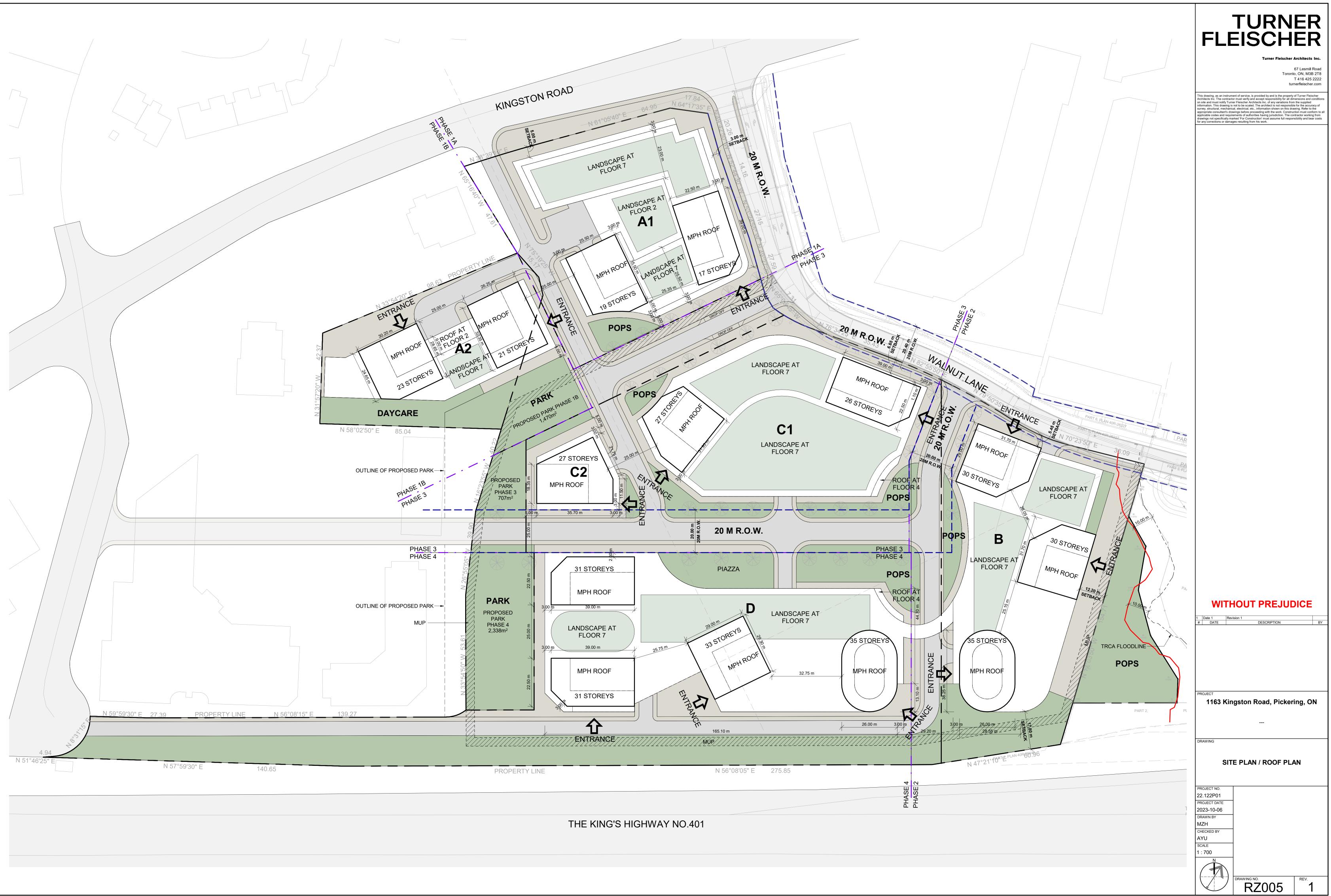
NOTE: 1) ASSUMING COMMERCIAL PARKING RATIO= 2/100M2,

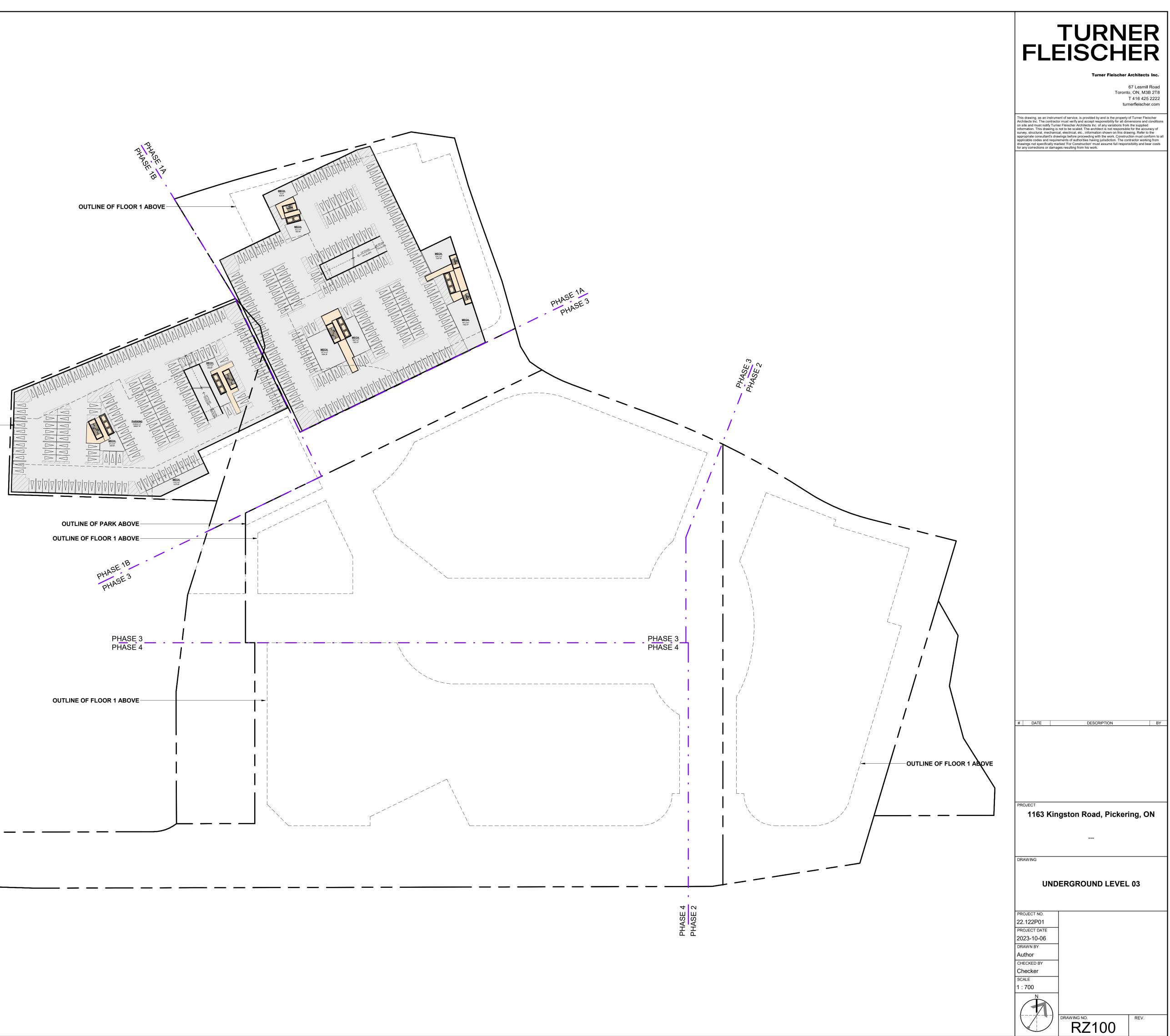
2)ASSUMING RESIDENTIAL PARKLING RATIO= 0.6 /UNIT, 0.15/ VISITOR 3) ASSUMING TOWNHOUSE PARKING=0.6/ UNIT, 0.15/ VISITOR

AMENITY REQUIRED (4)		
	OUTDOOR	INDOO
	2M2/ UNIT	2M2/ UNI
PARCEL 'A1'	1,217	1,21
PARCEL 'A2'	1,205	1,20
PARCEL 'B'	2,605	2,60
PARCEL 'C1', 'C2'	2,206	2,20
PARCEL 'D'	3,244	3,24
TOTAL	10,477	10,47

AMENITY PROVIDED

	OUTDOOR	INDOOR
PARCEL 'A1'	1,217	1,217
PARCEL 'A2'	1,205	1,205
PARCEL 'B'	2,605	2,605
PARCEL 'C1', 'C2'	2,206	2,206
PARCEL 'D'	3,244	3,244
TOTAL	10,477	10,477

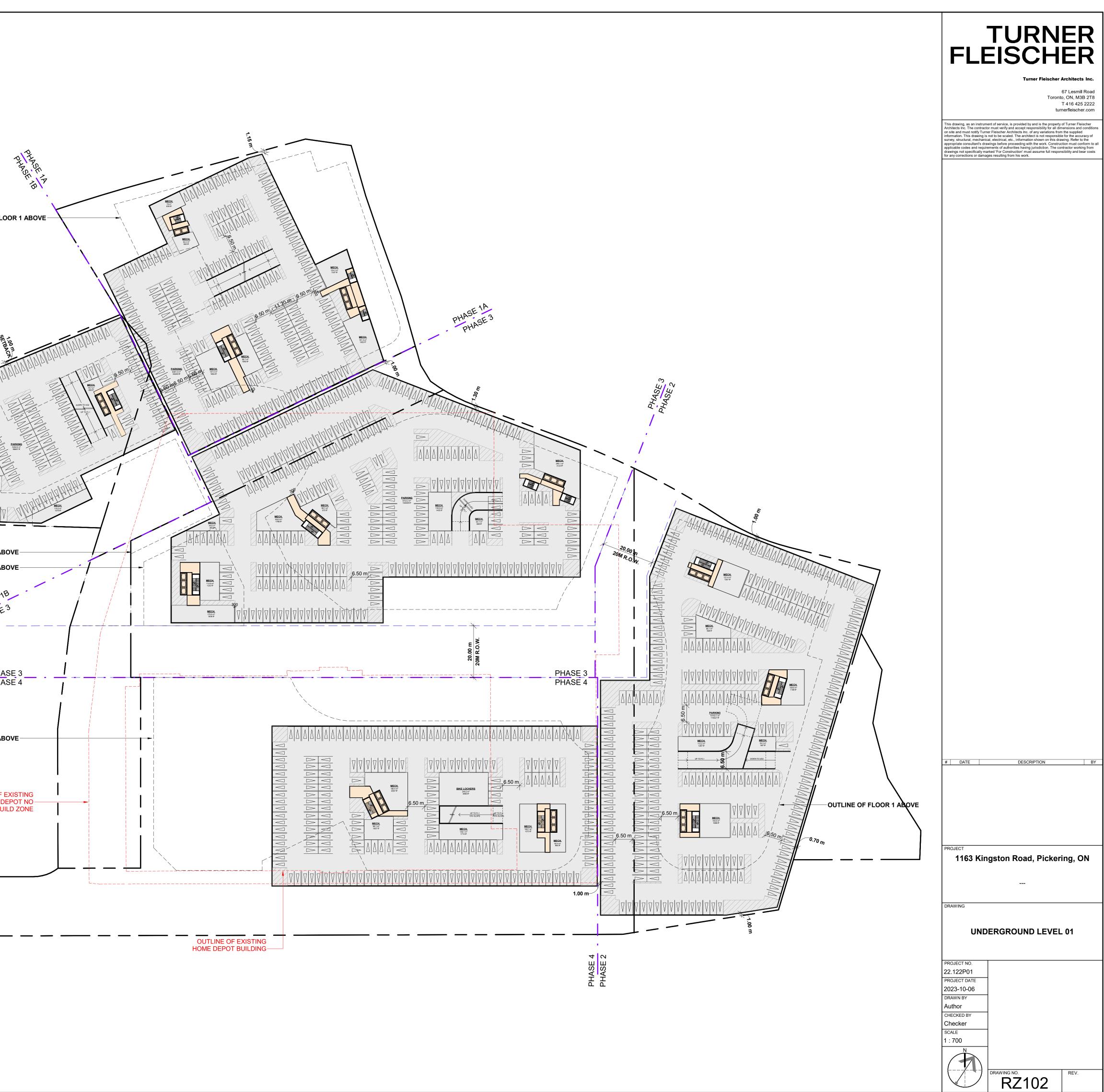

TURNER FLEISCHER

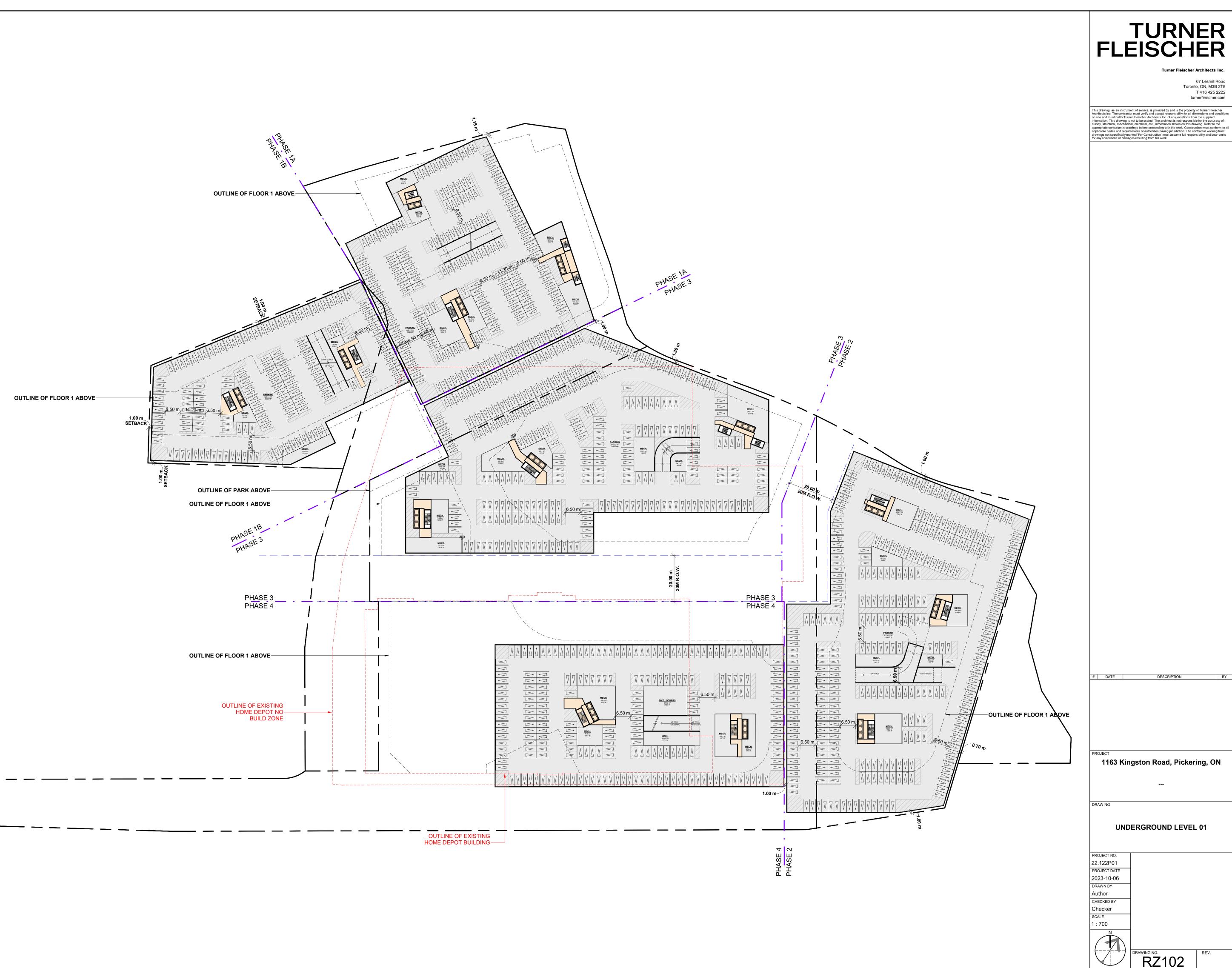

Turner Fleischer Architects Inc.

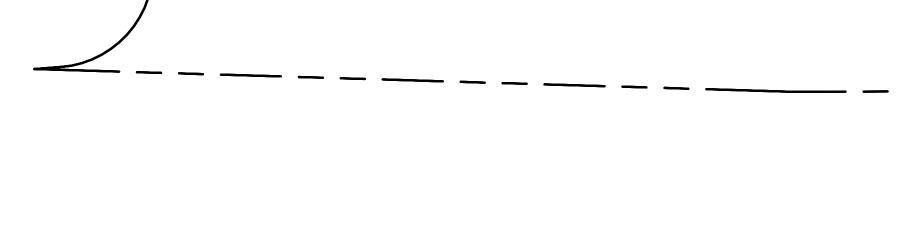
67 Lesmill Road Toronto, ON, M3B 2T8 T 416 425 2222

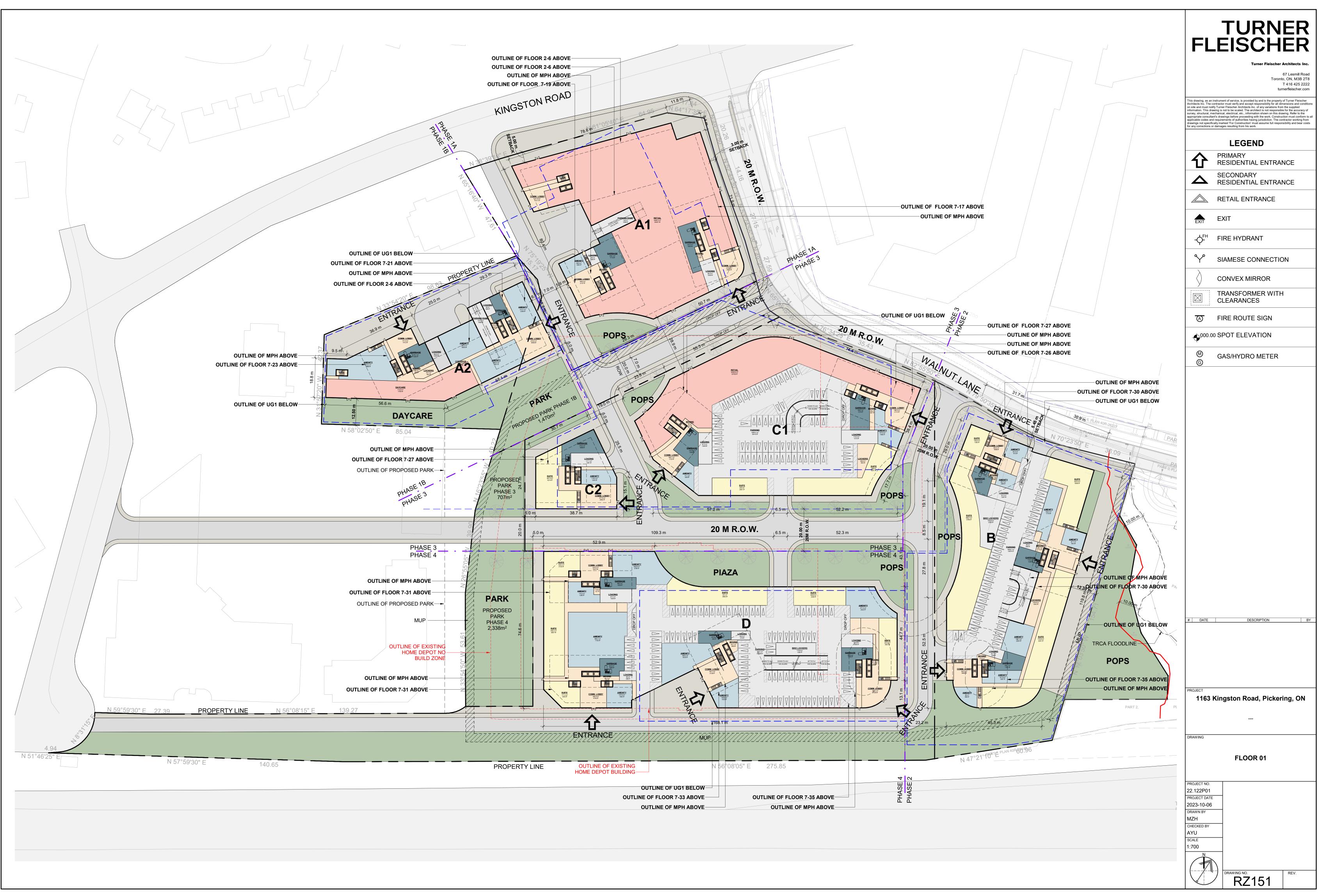
turnerfleischer.com This drawing, as an instrument of service, is provided by and is the property of Turner Fleischer Architects Inc. The contractor must verify and accept responsibility for all dimensions and conditions on site and must notify Turner Fleischer Architects Inc. of any variations from the supplied information. This drawing is not to be scaled. The architect is not responsible for the accuracy of survey, structural, mechanical, electrical, etc., information shown on this drawing. Refer to the appropriate consultant's drawings before proceeding with the work. Construction must conform to all applicable codes and requirements of authorities having jurisdiction. The contractor working from drawings not specifically marked 'For Construction' must assume full responsibility and bear costs for any corrections or damages resulting from his work.

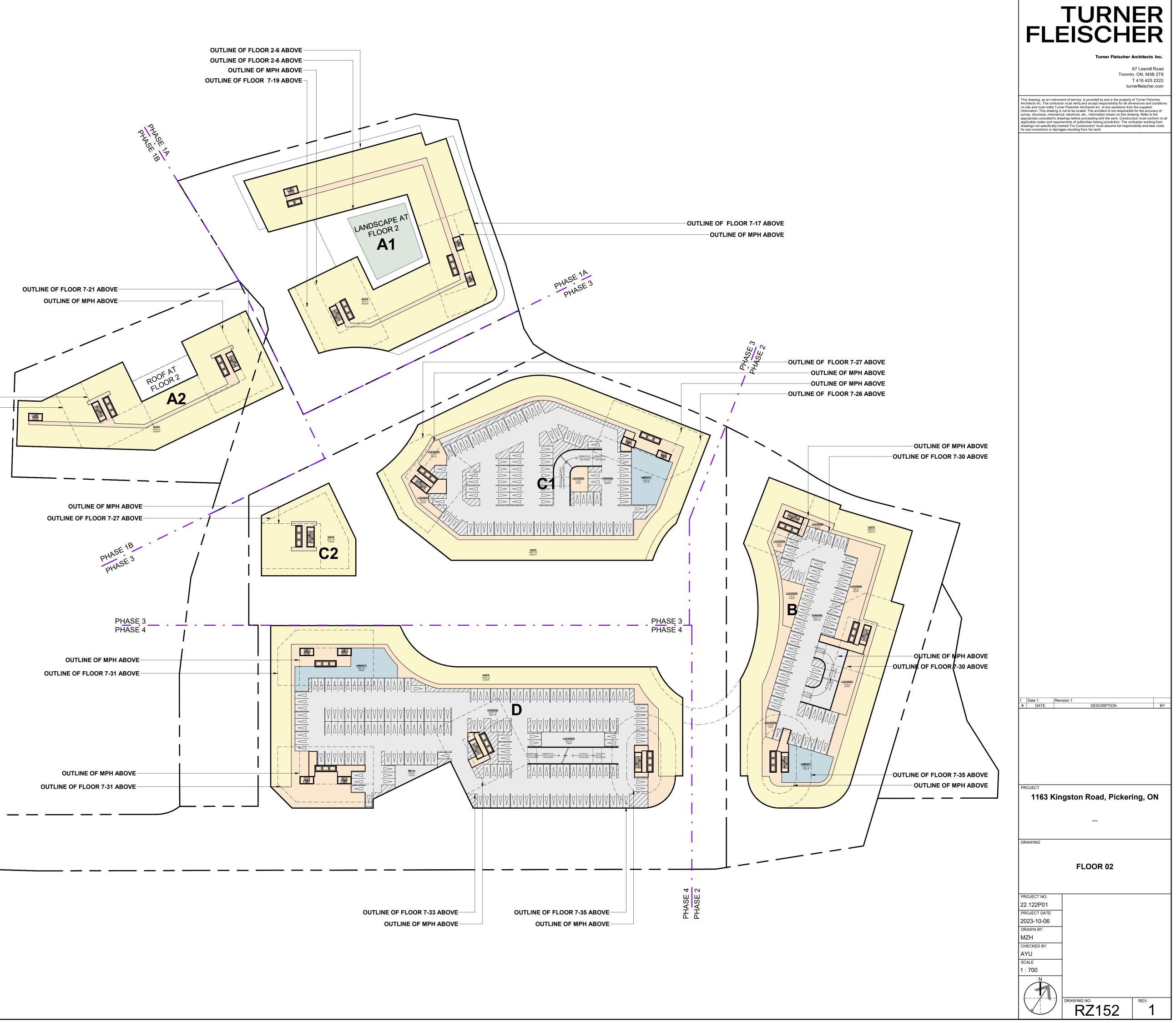
1 Date 1 Rev # DATE	vision 1	DESCRIPTIO	N		BY
PROJECT					
1163 Kir	ngston	Road, Pi	ickeri	ng, O	N
DRAWING	~				
	STA	ATISTICS			
PROJECT NO. 22.122P01 PROJECT DATE	-				
2023-10-06 drawn by MZH	-				
CHECKED BY AYU SCALE					
	-				
		^{vo.}	2	REV.	

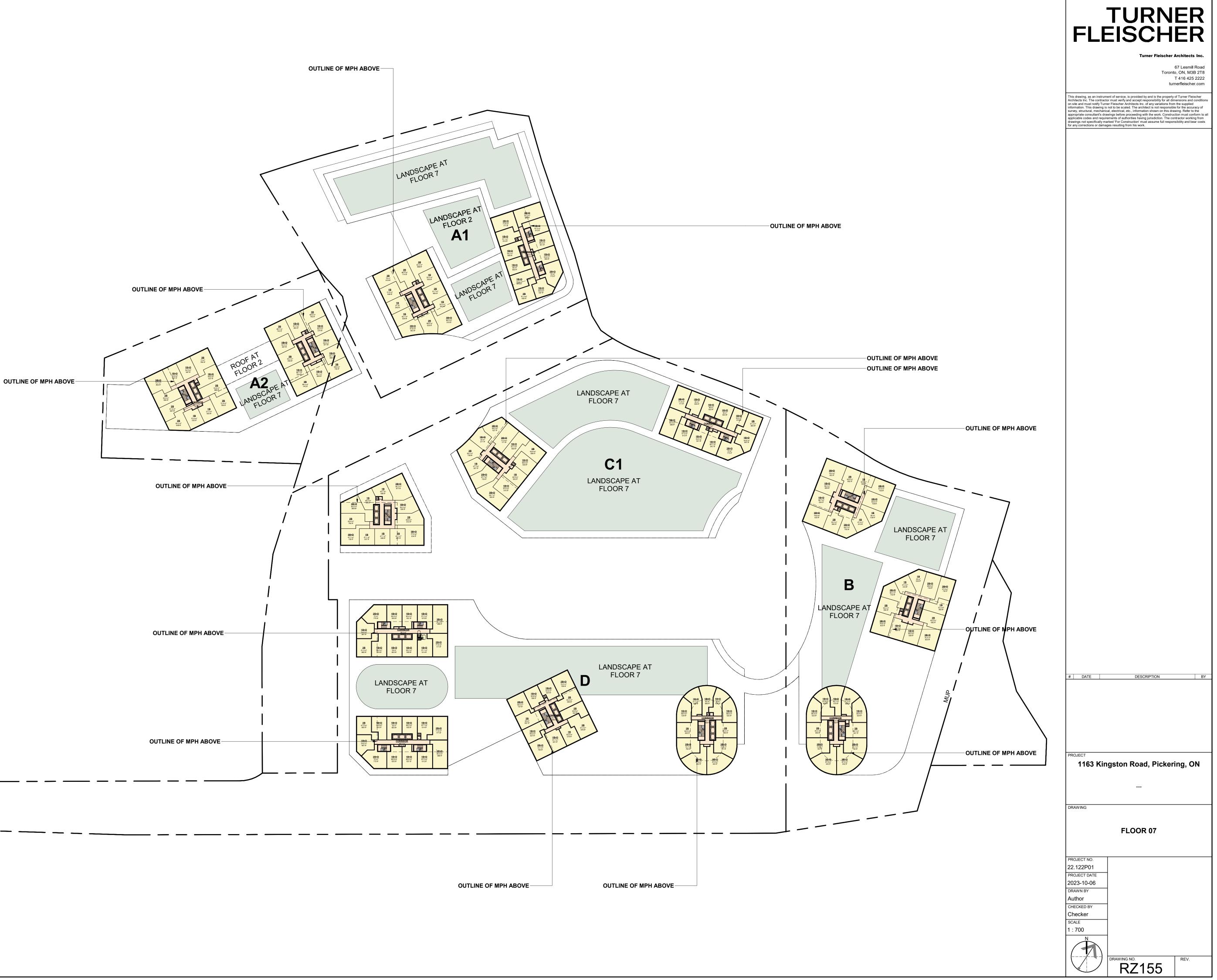





OUTLINE OF FLOOR 1 ABOVE

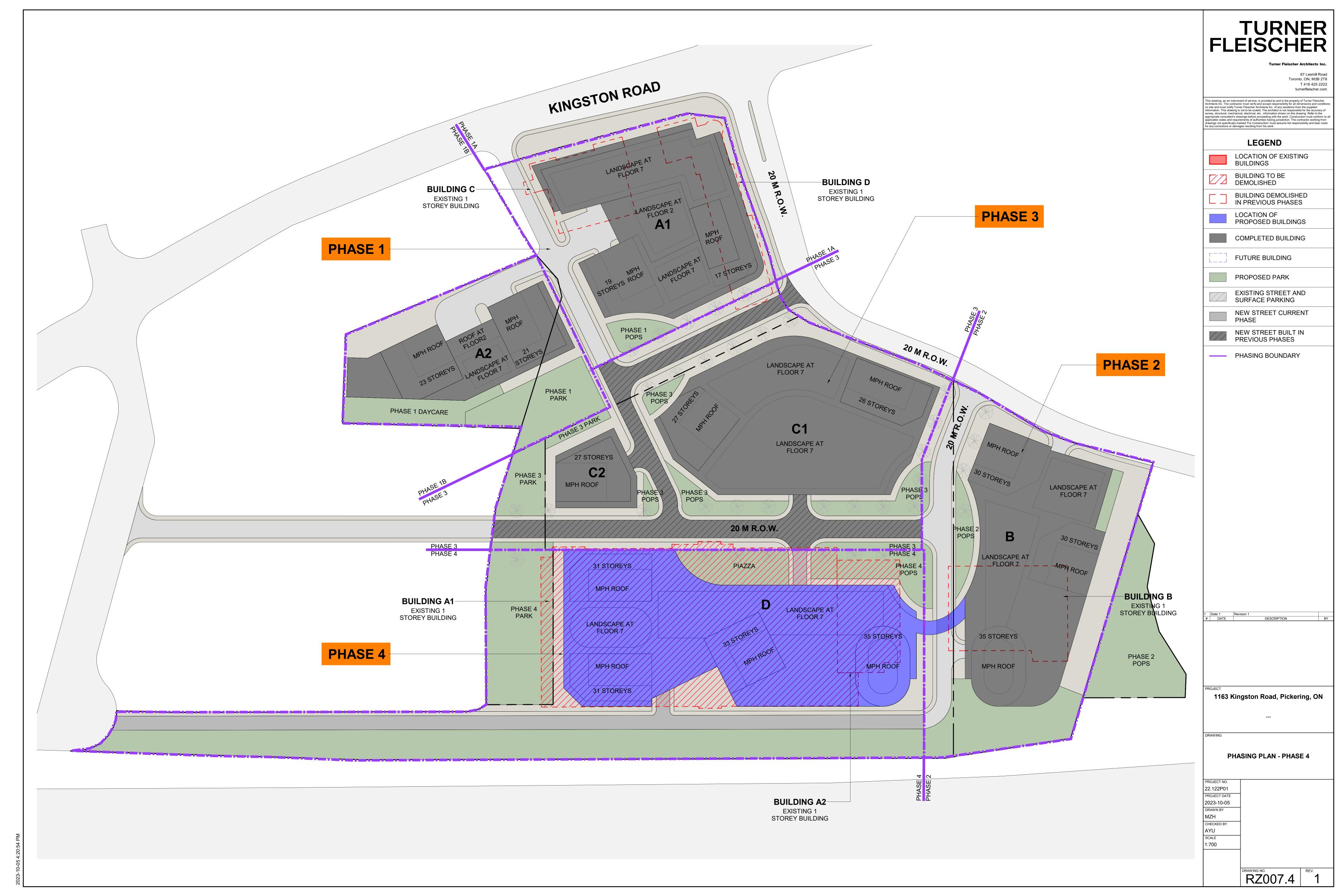


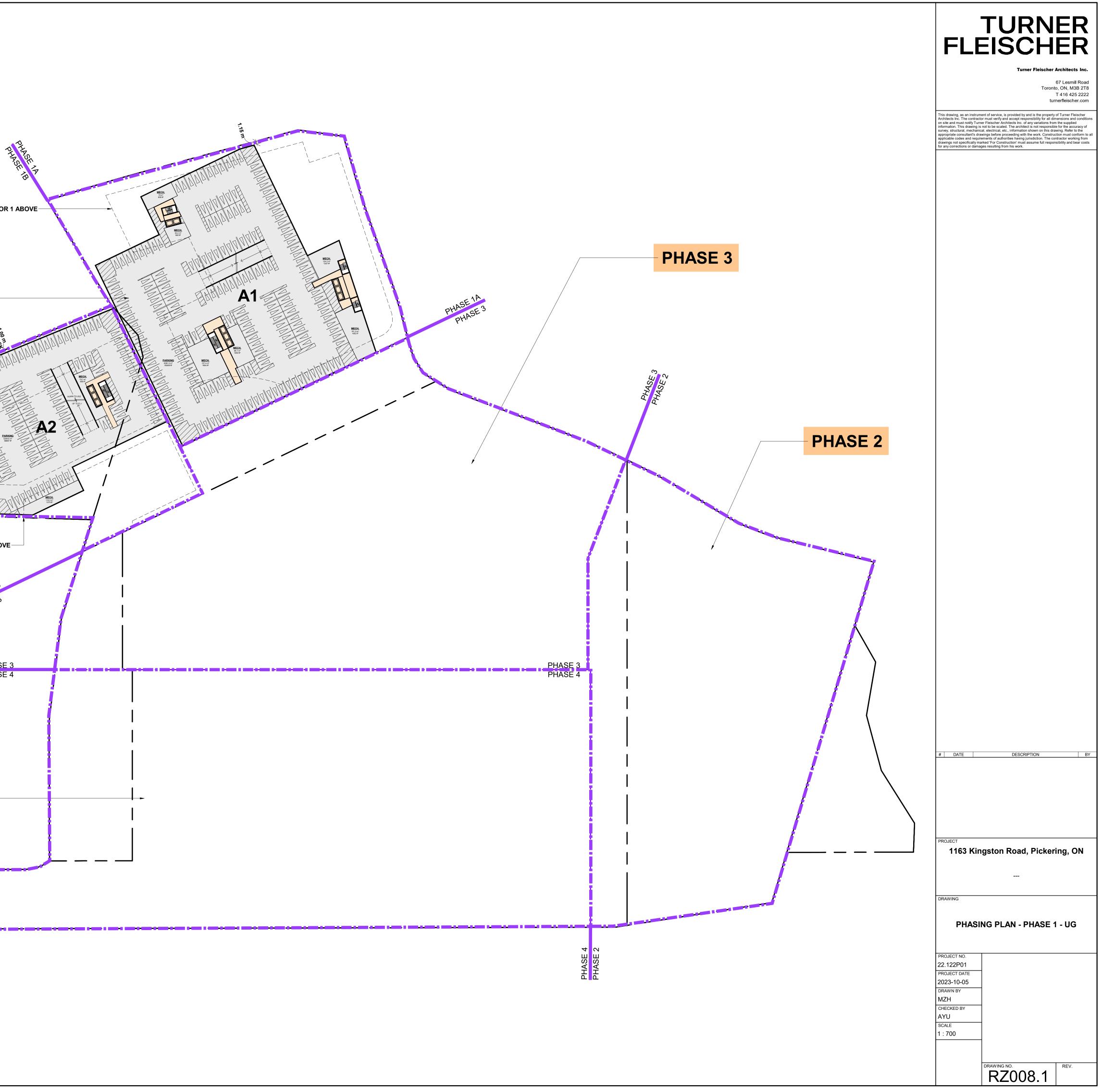

OUTLINE OF FLOOR 1 ABOVE



OUTLINE OF MPH ABOVE

OUTLINE OF FLOOR 7-23 ABOVE




023-10-05 4:20:45 F

