

The Odan/Detech Group Inc. P: (905) 632-3811 F: (905) 632-3363 5230, SOUTH SERVICE ROAD, UNIT 107 BURLINGTON, ONTARIO, L7L 5K2 www.odandetech.com

PROPOSED REDEVELOPMENT 1755 & 1805 Pickering Parkway, City of Pickering, Ontario

MASTER SERVICING AND STORM WATER MANAGEMENT REPORT

Prepared For:

Pickering Ridge Lands Inc. & Bayfield Realty Advisors

- ORIGINAL: January 25, 2022
- REVISED: March 14, 2022 (for Submission)
- REVISED: April 13, 2022 (for Submission)

STANDARD LIMITATIONS

This report was prepared by The Odan/Detech Group Inc. (Odan/Detech) for the client in accordance with the agreement between Odan/Detech and the client. This report is based on information provided to Odan/Detech which has not been independently verified. The disclosure of any information contained in this report is the sole responsibility of the client. The material in this report, accompanying spreadsheets and all information relating to this activity reflect Odan/Detech judgment in light of the information available to us at the time of preparation of this report and any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Odan/Detech accepts no responsibility for damages, if any, suffered by a third party as a result of decisions made or actions based on this report.

Odan/Detech warrants that it performed services hereunder with that degree of care, skill, and diligence normally provided in the performance of such Odan/Detech in respect of projects of similar nature at the time and place those services were rendered. Odan/Detech disclaims all other warranties, representations, or conditions, either express or implied, including, without limitation, warranties, representations, or conditions of merchantability or profitability, or fitness for a particular purpose.

This Standard Limitations statement is considered part of this report.

TABLE OF CONTENTS

DESCRIPTION

Page

1.	INTRODUCTION	1
2.	SCOPE OF WORK	2
3.	SANITARY SERVICING	3
4.	WATER SUPPLY AND DISTRIBUTION	13
5.	STORMWATER MANAGEMENT & FOUNDATION WATERPROOFING	28
6.	WATER BALANCE	53
7.	GRADING CONSIDERATIONS	56
8.	EROSION AND SEDIMENT CONTROL	57
9.	SOILS REPORT AND HYDROGEOLOGY:	57
10.	RECOMMENDATIONS:	58
11.	CONCLUSIONS	58
12.	REFERENCES	59

LIST OF FIGURES

Exhibit 1 Location of the project site	1
Exhibit 2 Full build out layout and location of Phase 1	2
Exhibit 3 Durham Region layout of existing sanitary sewers	4
Exhibit 4 – Region Map 1 North [1899 Brock Rd & Mixed-use Lands]	5
Exhibit 5 – Region Map 1 South [Subject site and 1731/1735 Pickering Pkwy]	6
Exhibit 6 – Region Map 2 South [Metropia Lands]	6
Exhibit 7 Durham Region layout of existing water system	14
Exhibit 8 - KYPIPE MODEL: node number and hydrants numbers	
Exhibit 9 - City layout of existing Storm sewers and Site sewers	29
Exhibit 10 - City layout of existing Storm sewers and Site sewers	30
Exhibit 11 – XPSWM model of existing conditions	
Exhibit 12- XPSWMM POST DEVELOPED GLOBAL MODEL	
Exhibit 13- XPSWMM POST DEVELOPED MODEL WITH PROPOSED TOPOGRAPHY	
Exhibit 14- XPSWMM POST DEVELOPED MODEL WITH NODE LABELS	
Exhibit 15- XPSWMM POST DEVELOPED MODEL WITH TRIBUTARY AREAS	
Exhibit 16- XPSWMM profile plot MTO CULVERT to MH17- 100-YR Chicago	
Exhibit 17- XPSWMM profile plot MTO CULVERT to MH17- 5-YR Chicago	
Exhibit 18- XPSWMM profile plot MH 4 to MH17- 100-YR Chicago	
Exhibit 19- XPSWMM profile plot MH 4 to MH17- 5-YR Chicago	42
Exhibit 20- XPSWMM profile plot MH 8 to MH17- 100-YR Chicago	
Exhibit 21- XPSWMM profile plot MH 8 to MH17- 5-YR Chicago	
Exhibit 22- XPSWMM profile plot MH 1 to MH17- 100-YR Chicago	
Exhibit 23- XPSWMM profile plot MH 1 to MH17- 5-YR Chicago	
Exhibit 24- XPSWMM profile plot MH 10 to MH17- 100-YR Chicago	47
Exhibit 25- XPSWMM profile plot MH 10 to MH17- 5-YR Chicago	
Exhibit 26 – Colour coded existing Site topography	
Exhibit 27 – Colour coded Proposed Site topography	57

LIST OF TABLES

Table 1 – Proposed population and sanitary peak flow estimate (Phase 1)	9
Table 2 – Proposed population and sanitary peak flow estimate (Full Build out)	10
Table 3 – Offsite sewer improvements	11
Table 4 – Demand Calculations at Select Nodes.	13
Table 5 – Allowable pressures	15
Table 6 – Supply Pressure/flow table	17
Table 7 – Average Day: At Select Nodes	21
Table 8 – Maximum Day: At Select Nodes	22
Table 9 – Peak Hour: At Select Nodes	22
Table 10 – Maximum Day + Fire: At Hydrants	23
Table 11 – Summary of required flows and available flows at Select Nodes.	24
Table 12 - Comparison Existing flows to Full Redeveloped - Pickering Parkway sewers	33
Table 13 – Target Peak Flows to Pickering Parkway sewer (allowable)	33
Table 14 – Proposed XPSWMM model hydrology parameters	50
Table 15 – Peak Flows to Pickering Parkway sewer from Site	51
Table 16 – Summary Table of SWMM Quantity Features for Redeveloped Site	52

APPENDIX A

Aerial Photo of Existing Site Site Plan of the Proposed Development (reduced)

APPENDIX B

Existing condition sanitary sewer design sheet

Redeveloped site Phase 1 sanitary sewer design sheet - REQUIRED SIZES

Redeveloped site Phase 1 sanitary sewer design sheet - PROPOSED SIZES

Redeveloped sites (subject, 1899 Brock Road and surrounding tributaries) sanitary sewer design sheet

Region of Durham Tributary Maps & Correspondence indicating population densities

APPENDIX C

Hydrant Flow tests

APPENDIX D

XPSWMM models and output upon request

- Figure S-1a Conceptual Servicing Layout Plan Figure S-1b – Conceptual Phase 1 Servicing Plan
- Figure S-2 Conceptual Grading Plans
- Figure S-3 Existing conditions Sanitary Tributary Plan
- Figure S-4 Phase 1 conditions Sanitary Tributary Plan
- Figure S-5 Conceptual conditions Sanitary Tributary Plan
- Figure S-6 Existing Storm Drainage Boundary Plan
- Figure S-7 Conceptual Storm Tributary Area Plan

1. INTRODUCTION

Site Description

The subject development has a total area of 9.484 ha and is bound by Pickering Parkway to the north, Highway 401 to the south, Notion Road and Saint Francis De Sales Cemetery to the east and Brock Road to the west. Currently, the site is developed with multi-tenant, "big box" and smaller commercial retail establishments with associated asphalt parking lots. The topography of the site is relatively flat sloping northeast. The subject site known as First Pickering Place (FPP) is currently designated as "Mixed Use Areas – Specialty Retailing Node" in the Pickering Official Plan; the lands with this designation are intended to have the widest variety of uses and highest levels of activities. An aerial view of the site can be found in Appendix A showing surrounding uses. Refer to Exhibit 1 below for the site location. Exhibit 2 shows the plan of the redeveloped site and location of Phase 1 within the site.

Background

The objective of this report is to define a feasible servicing plan focusing on the Full Development Build out in order to allow Phase 1 of the development to proceed, which includes Towers A1 and A2. This report will evaluate servicing schemes for the proposed redevelopment at the full build out with respect to sanitary, water and storm servicing and also evaluate the stormwater management (SWM) strategy to meet the SWM requirements set out by regulatory agencies.

Exhibit 1 Location of the project site

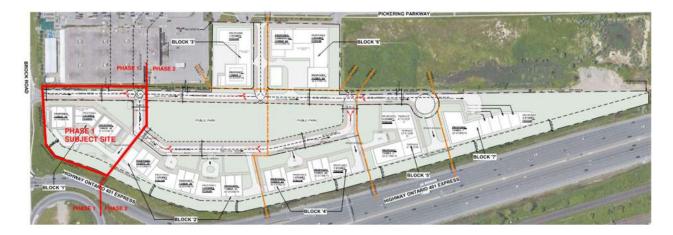


Exhibit 2 Full build out layout and location of Phase 1

2. SCOPE OF WORK

The Odan/Detech Group Inc. was retained by the owners, **Pickering Ridge Lands Inc. & Bayfield Realty Advisors** to propose a servicing scheme(s) for the Redevelopment of 1755 & 1805 Pickering Parkway (Pickering Design Centre). The scope of work in brief involves the following:

- a) Gather information on the existing services for the Site and surrounding the Site.
- b) Work with or assemble a team of Consultants and Vendors to perform specialized tasks required for the global servicing assessment.
- c) Meetings/conversations with consulting team and land owners in order to coordinate developments.
- d) Produce Servicing Schemes that will allow for the development of the intensified site at full build out and focus on the development of Phase 1. The servicing analysis entails a review for sanitary waste water, water distribution, storm water management and grading.

Currently, the proposed development area is divided into 7 blocks (Block '1' to Block '7'), of which Phase one corresponds to Block '1'. The proposed redevelopment in Phase 1 will consist of a mixed-use development with two towers of 31 storeys. The proposed building will have retail at grade, 630 apartment dwelling units, 4 level of underground parking and surface parking, and 1,690 m2 of indoor and 1,264 m2 of outdoor amenity space. Refer to site plan prepared by Turner Fleischer Architects Inc. in Appendix A for additional information.

3. SANITARY SERVICING

Existing Sanitary Sewer Infrastructure

As-constructed and design drawings obtained from the Region of Durham and the Town of Pickering show that an existing 250 mm diameter sanitary sewer in Pickering Parkway are located as the main sanitary outlet of the subject site.

There are two existing sanitary sewer connections to the site, a 250mm sanitary outlet toward Pickering Parkway at the north of the site and a 150 mm sanitary outlet toward Notion Road at the east of the site.

Refer to Exhibit 3 for the location of the Site and the layout of the existing sanitary sewers in the area.

The majority of sanitary flow from the existing commercial site is conveyed through an existing 250 mm diameter sanitary sewer west to east along Pickering Parkway. Then connected to a 250 mm diameter sanitary sewer at the intersection with Marshcourt Dr, which conveys the sanitary flow to the north. The 250 mm diameter sanitary sewer on Marshcourt Dr then increases to a 375 mm diameter sewer at the Region's easement and the sanitary sewer conveys the collected sanitary flow to a 375 mm diameter sanitary sewer on Notion Road. The 375 mm diameter sanitary sewer on Notion Road is connected to a 750 mm sanitary sewer on Orchard Road that conveys the collected flow to the east. The 750mm pipe is the outlet for the subject site.

The sanitary analysis will be conducted considering the flow from all sites that presently flow to Orchard Road and the future flow from the redevelopment of 1899 Brock Road and surrounding tributary areas which have been provided by the Region. Refer to Region sanitary maps and correspondence in Appendix B for additional information.

In completing the analysis, the following information will be used or relied upon:

- Drawings from City of Pickering.
- Drawings from The Regional Municipality of Durham.
- Sanitary system Maps from The Regional Municipality of Durham
- Design guidelines for sanitary sewers systems from The Regional Municipality of Durham
- Master Servicing & Stormwater Management Report -1899 Brock Road, SCHAEFFERS Consulting Engineers, May 2021
- Functional Servicing & Stormwater Management Report Residential Townhouse Development 1856 Notion Road, GHD, Jan 2018

EXISTING SYSTEM REVIEW

Based on review of the existing sanitary sewer sheets in Appendix B, the redeveloped site cannot be routed through the existing sewer system along Pickering Pkwy, Marshcourt Drive, easement between homes to Notion Road to Orchard Drive. Due to limitations of the existing sanitary sewer capacity, it would mean replacing a relatively deep sewer between two existing homes. The recommended and preferred routing would be along Pickering Pkwy to Notion Road to Orchard Drive.

3

FIRST PICKERING PLACE MASTER SERVICING STUDY PICKERING, ONTARIO



Exhibit 3 Durham Region layout of existing sanitary sewers

4

REGION OF DURHAM PREFERRED SYSTEM

Discussion with the Region of Durham (Aaron Christie), regarding redevelopment of the subject site and intensification of future development lands, can be summarized as follows:

- The Region solution for the intensification is to provide a sewage pump station (SP) on the south side of HWY 401. From this SP a large trunk sewer will be extended North under HWY 401 to Notion Road, then continue North on Notion Road. The design and EA for this project will start shortly.
- 2) Sanitary mapping has been provided by the Region which indicates proposed future development lands and the associated tributary areas which will ultimately discharge to the SP on the south side of HWY 401 via Pickering Parkway and the Notion Road trunk sewer. Population densities for these proposed development lands were provided by the Region. Refer to Exhibits 4, 5 & 6 below for the Region's sanitary mapping and related population densities.

Region of Durham Sanitary Maps & Correspondence indicating population densities

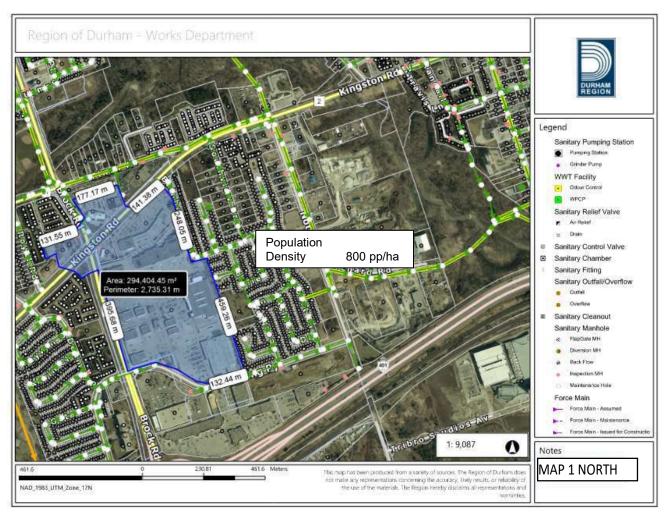


Exhibit 4 – Region Map 1 North [1899 Brock Rd & Mixed-use Lands]

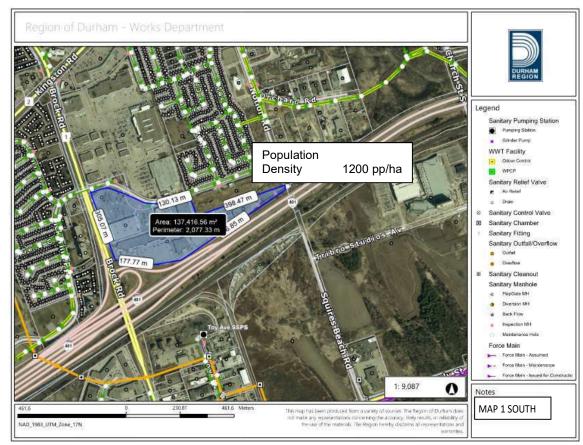


Exhibit 5 – Region Map 1 South [Subject site and 1731/1735 Pickering Pkwy]

Exhibit 6 – Region Map 2 South [Metropia Lands]

- 3) The Region has allowed for the Phase 1 of 1899 Brock Road to be discharged west ward to Brock Road and will therefore not be included in our Phase 1 downstream sanitary analysis.
- 4) The Phase 1 for the subject site will be allowed to discharge to Orchard Drive North on Notion Road, for the interim condition.
- 5) In the full build out condition the temporary sewers on Notion Road will be replaced by the Region with a trunk sewer. Thus, all the sewage from the existing and redeveloped sites will flow south in the Notion Road trunk, under HWY 401 to the new Region SP.
- 6) The Region prefers that the Sewer to Notion Road along Pickering Parkway be installed to accommodate the fully built out sites and the existing sites along the way.
- The Region will allow a smaller sewer diameter pipe on Notion Road than on Pickering Parkway for the interim condition since the trunk sewer will replace this to flow South under the HWY 401.
- 8) The Region did not offer a real time table for the SP and Notion Road trunk sewer, however stated that it would be available for the Phase 2 of either development.

The Region has also given us the approximate reserve capacity of the Orchard Drive sewer from where we show it on Exhibit 3 eastward. See the following e-mail from Aaron Christie.

Hello Mark,

At this time base your study on the assumption that there could be up to a capacity of 150 l/s available within the 750mm sanitary sewer at Orchard Road. This is based on preliminary input received from the Region of Durham and is subject to change as your application and development of the surrounding lands moves forward.

Based on my interpretation of the mapping, the 600mm watermain on Brock Road has a 300mm dia. tee to the west and then there is a 300mm x 300mm dia. tee and 90 degree bend providing the 300mm dia. watermain to the east across Brock Road to Pickering Parkway.

Thanks,

Aaron Christie, P.Eng. | Manager, Engineering Planning & Studies Works Department The Regional Municipality of Durham <u>Aaron.Christie@durham.ca</u> | 905-668-7711 extension 3608 | <u>durham.ca</u> My pronouns are he/his

The analysis will proceed to:

- Provide an existing sewer system analysis to show that the Marshcourt Drive route cannot be used.
- Provide a redeveloped site Phase 1 sanitary sewer design sheet (with Required pipe sizes for context only as this sewer would not be sufficient for future developments and full build out)
- Provide a redeveloped site Phase 1 sanitary sewer design sheet (with Proposed pipe sizes)
- Provide a redeveloped sites (subject, 1899 Brock Road and future tributaries) fully developed sanitary sewer design sheet to Notion Road.

Design Criteria

Sanitary flows for the subject site are calculated based on the Regional Municipality of Durham design specifications for sanitary sewers. The summary is as follows:

Residential

- Average flow: 364 L/person/day
- Infiltration: 22.5 m³ gross ha/day (0.26 l/s/ha/day) when foundation drains are not connected to the sanitary sewer.
- Peaking Factor:

$$\mathbf{K} = 1 + \frac{14}{4 + P^{1/2}}$$

Where K=Harmon Peaking Factor, P = Population in thousands. K-Maximum= 3.8m, K-Minimum= 1.5

• When the number and type of housing units within a proposed development are known, the calculation of population for the proposed development shall be based on the following:

Type of Housing	Persons/ha
Single Family Dwelling, Semi-detached & Duplex Townhouses Apartment(s)	60 100 125
- Low density (62 u/ha)	150
 Medium to low density (86 u/ha) 	210
 Medium density (124 u/ha) 	300
- High Density (274 u/ha)	600
u/ha = units per hectare	
Type of Housing	Persons/Unit
Type of Housing	Persons/Unit 3.5
·	
Type of Housing Single Family Dwelling, Semi-Detached and Links	3.5
Type of Housing Single Family Dwelling, Semi-Detached and Links Townhouses/Stacked Townhouses	3.5
Type of Housing Single Family Dwelling, Semi-Detached and Links Townhouses/Stacked Townhouses Apartment(s)	3.5 3.0
Type of Housing Single Family Dwelling, Semi-Detached and Links Townhouses/Stacked Townhouses Apartment(s) - 1 Bedroom or smaller (Bachelor)	3.5 3.0 1.5

Commercial

Design Flow: 180 m³/gross floor area ha/day (2.08 l/s/day) including infiltration and peaking effect.

EXISTING SANITARY SEWER CAPACITY CALCULATION

The capacity of the existing sanitary sewer system located from the subject site to Orchard Rd was evaluated using a sanitary sewer design sheet based on the above parameters. The design sheet for the existing conditions has been completed based on the drainage areas and existing sewer information provided by the Region of Durham and the City of Pickering. Refer to Appendix B for the existing conditions sewer spread sheet and further details. The existing sanitary tributary areas are found in Appendix E.

PROPOSED SANITARY SEWER DESIGN CONSIDERATION

Based on our discussion with the Region of Durham (Aaron Christie), that they (the Region) want the redeveloped flow from 1899 Brock Road and the updated tributary areas, provided by the Region, to flow from their Site east on Pickering Parkway to Notion Road.

Metropia is planning to develop a new townhouse development at 1856 Notion Road known as the Metropia Site. The details are contained within the "Functional Servicing and Stormwater Management Report", by GHD, Jan 2018. The sanitary flow (11.67 L/s) from the development will be routed to the existing manhole (MH35-6) on Pickering Parkway.

Since four existing retail buildings will remain operational within the site for Phase 1 construction. The construction of new sewers will need to be phased to ensure drainage is maintained to the existing buildings.

Table 1 – Proposed population and sanitary peak flow estimate (Phase 1)									
Unit Type /Land Use	Number of Units /Gross floor Area	Persons/ Unit	Population	Peaking Factor	Infiltration (L/sec)	Sanitary Flow (L/sec)			
North Sanitary Outlet to Pickering Parkway									
Commercial (Ex.)	1.78 ha	-	-	1	-	3.71			
Commercial (Prop.)	0.167 ha	-	-	1		0.35			
Apartments (Prop.)	630 Units	2.5	1,575	3.66	0.26	24.50			
Total	-	-	-	-		28.56			
East Sanitary Outlet to Notion Road									
Commercial (Ex.)	0.425 ha	-	0.425 ha	1		0.88			
Total	-	-	-	-		0.88			

Table 1 is a summary of the flows generated by the Site during Phase 1.

Table 2 – Proposed population and sanitary peak flow estimate (Full Build out)									
Unit Type /Land Use	Number of Units /Gross floor Area	Persons/ Unit	Population	Peaking Factor	Infiltration (L/sec)	Sanitary Flow (L/sec)			
North Sanitary Outlet to Pickering Parkway									
Commercial (Prop.)	2.67 ha	-	-	1		5.56			
Apartments (Prop.)	5226 Units	2.5	13,065	2.84	2.47	156.24			
Total						164.27			

The total flow to the Pickering Parkway sanitary sewer at full build out of the subject site is 164.27 L/sec.

We will show **3 Scenarios** in order to evaluate the improvements required to accommodate the redevelopment. The scenarios are as follows:

- 1. Existing conditions
- 2. Phase 1 of subject site
- 3. Full development of subject site and full development of 1899 Brock Road and future tributaries

Find enclosed in **Appendix B**, spread sheets for each scenario. Sanitary tributary plan maps are included in **Appendix E** for reference.

The purpose of **Scenario 1** (existing conditions) is to establish the base rate into MH 17 at Orchard Road. Durham Region has suggested that the excess capacity in the Orchard Road sewer system is approximately 150 L/sec. The reason for the existing condition is to establish the flow into existing MH 17 from the south side. MH 17 is located at the south side intersection of Orchard Road and Notion Road. If the **Scenario 2** flow into the south side of MH 17 is less than **Scenario 1** plus 150 L/sec, then Phase 1 of First Pickering Place can be accommodated.

The purpose for **Scenario 2** is to establish the flow rate to size the pipes from Pickering Parkway to Orchard Road along Notion Road. These pipes along Notion Road are interim for Phase 1 until the Region replaces them with a trunk sewer along Notion Road. Essentially these pipes will be a throw away along Notion Road.

The purpose for **Scenario 3** is to establish the flow rate to size the pipes from 1899 Brock Road along Pickering Parkway to Notion Road. These pipes will be sized to handle the existing flows and the full future build out of the development sites proposed in the Region's sanitary mapping provided and included in Appendix B for reference.

SUMMARY AND RECOMMENDATION

Based on the above review and analysis we offer the following summary and recommendations:

- 1) Phase 1 of First Pickering Place cannot be accommodated by the existing sanitary sewer system and present routing path. Refer to spread sheet for existing conditions.
- 2) The present path would require the replacement of a sewer between two existing homes. This is not recommended.
- 3) The 750 mm sanitary sewer on Orchard Road has sufficient capacity to accommodate Phase 1 of First Pickering Place and the existing uses.
- 4) We recommend that the owners of First Pickering Place build the sanitary sewer on Pickering Parkway from 1899 Brock Road site to Notion Road to accommodate the full build out of all future development sites and the existing flows. This section of sanitary sewer will be subject to development charges as discussed with the Region of Durham.
- 5) The sanitary pipe on Notion Road (from Pickering Parkway to Orchard Rd) will be sized to convey existing flows and flows from Phase 1 (First Pickering Place) to the existing Orchard Road sanitary sewer. The Region will allow this interim condition at limited capacity until such time that the Ultimate Trunk Sewer is constructed in the future to convey flows to the South SP. The interim pipe will be downsized from that on Pickering Parkway, the Region will allow this, since it is a temporary measure until the Region replaces it with a trunk sewer on Notion Road.

Table 3 – Offsite sewer improvements							
Sewer location	Upstream MH	Downstream MH	Sewer size, length and slope	Comments			
Pickering Parkway	1899 Brock Road	EX MH 34-82	525mm – 112m @ 1.0%	New pipe			
Pickering Parkway	EX MH 34-82	Prop MH9A	675mm – 45m @ 0.37%	Replacement pipe			
Pickering Parkway	Prop MH9A	EX MH 34-83	675mm – 45m @ 0.42%	Replacement pipe			
Pickering Parkway	EX MH 34-83	EX MH 35-5	675mm – 100m @ 0.47%	Replacement pipe			
Pickering Parkway	EX MH 35-5	EX MH 35-6	675mm – 100m @ 0.48%	Replacement pipe			
Pickering Parkway	EX MH 36-6	EX MH 36-7	750mm – 83m @ 0.38%	Replacement pipe			
Pickering Parkway	EX MH 36-7	EX MH 36-8	750mm – 80m @ 0.46%	Replacement pipe			
Pickering Parkway	EX MH 35-8	EX MH 35-28	750mm – 101m @ 0.57%	Replacement pipe			
Notion Road	EX MH 35-28	Prop MH 13A	375mm – 15m @ 0.22%	New pipe			
Notion Road	Prop MH 13A	Prop MH 14A	375mm – 100m @ 0.22%	New pipe			
Notion Road	Prop MH 14A	SAN MH 35-29	375mm – 102m @ 0.22%	New pipe			
Notion Road	Prop MH 35-29	Prop MH 35-30	450mm – 72m @ 0.22%	Replacement pipe			
Notion Road	Prop MH 35-30	Prop MH 17	450mm – 4m @ 0.23%	Replacement pipe			

Note: Notion Road pipes are temporary and will be replaced by the Ultimate Regional Trunk sewer that will be directed South on Notion Road to the downstream SP.

CONCLUSION

Based on the above findings the sanitary pipe along Pickering Parkway will be replaced and constructed to accommodate the full build out of all future development sites and the existing flows.

The sanitary pipe on Notion Road (from Pickering Parkway to Orchard Rd) will be sized and constructed to temporarily convey existing flows and flows from Phase 1 (First Pickering Place) to the existing Orchard Road sanitary sewer.

Notion Road pipes will be removed when the Region constructs their SP and Trunk Sewer.

4. WATER SUPPLY AND DISTRIBUTION

EXISTING SYSTEM:

First Pickering Place (FPP) existing water service is fed from a 300 mm Ø City main on Pickering Parkway. The Plaza has a 300mm Ø service main off of Pickering Parkway with a series of hydrants and lateral services inside the Plaza to feed the multiple buildings. Refer to Exhibit 7 for the Regions existing water system.

The purpose of this report is not to evaluate the existing water distribution system, but to evaluate if the existing system can accommodate the proposed intensification. The rest of this section will deal with the intensified site.

REDEVELOPED SITE:

The unit rate and peaking factors of water consumption, minimum pipe size and allowable pressure in line were established from the Durham Region Criteria. Refer to table 4 for the domestic at demand nodes. The fire demand for First Pickering Place is unknown at this stage, since the building designs are not advanced enough. KYPIPE has a unique algorithm to calculate the available fire flows at all hydrants or selected nodes. We will report the available fire flow + maximum day demand at all hydrants and at the block nodes. The demand from Beechlawn Drive and Marshcourt Drive was taken from the homes from the intersection of Beechlawn Drive and Marshcourt Drive to Pickering Parkway.

NODE	DESCRIPTION OF DEVELOPMENT	NUMBER OF UNITS	Shopping (m2)	POPULATION	Average Day (RESIDENTIAL + ICI) (L/sec)	Peak Day (L/sec)	Peak Hour (L/sec)	Assummed Fire flow required (L/sec)	Total Flow required (Fire + max day) (L/sec)
A-100	BLOCK 1	630	1669	1575	6.73	12.79	19.19	190	202.8
B-200	BLOCK 2	1090	1006	2725	11.54	21.92	32.88	190	211.9
C-300	BLOCK 3	446	920	1115	4.75	9.03	13.54	190	199.0
D-400	BLOCK 4	1022	696	2555	10.80	20.53	30.79	190	210.5
E-500	BLOCK 5	617	665	1543	6.54	12.42	18.63	190	202.4
F-600	BLOCK 6	762	21737	1905	9.28	17.64	26.46	190	207.6
G-700	BLOCK 7	659	0	1648	6.94	13.19	19.78	190	203.2
1899 Brock Rd	Mix use		49522	3366	17.05	32.39	48.58	n/a	n/a
Metropia	Residential		0	672	2.83	5.38	8.07	n/a	n/a
Beechlawn Dr	ex residential	104	0	364	1.53	2.91	4.37	n/a	n/a
Marshcourt Dr	ex residential	120	0	420	1.77	3.36	5.04	n/a	n/a
CTC	ex Canadian Tire		7900	0	0.46	0.87	1.30	n/a	n/a
GAS	ex Gas Bar		600	0	0.03	0.07	0.10	n/a	n/a
TOTALS		5450	84715	17887	80.26	152.49	228.74		
TOTALS		5450	04/15	17007	00.20	152.45	220.74	-	-
EAK DAY FACT	TOR	1.9		APARTMENT U	NITS (average 2 B	edroom)		2.5 ppu	
PEAK HOUR FACTOR		2.85	Single family homes				3.5 ppu		
			TOWNHOME UNITS					3.0 ppu	
			Shopping DEMAND IS					5000 L/Day/100	0m2
	(364 L/CAP/DAY)								

Table 4 – Demand Calculations at Select Nodes.

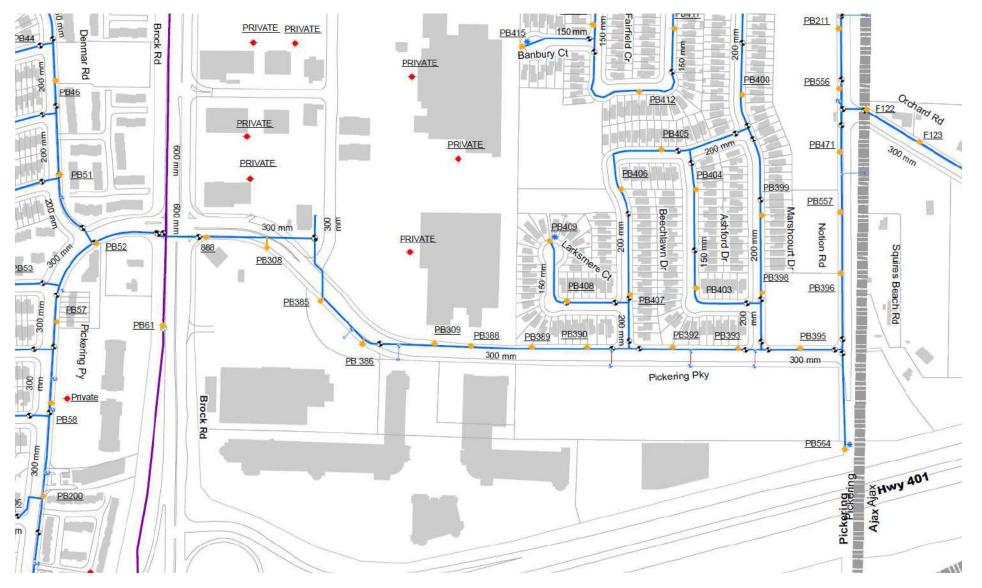


Exhibit 7 Durham Region layout of existing water system

PRESSURE CRITERIA:

The pressures and volumes must be sufficient for Peak hour conditions and under fire conditions as established by the Ontario Building Code. The MOE minimal residual pressure under fire conditions is 140 kPa (20.3 psi). According to the Durham Region, Design Criteria for Water mains the allowable pressures are as per table 5.

SCENERIO	DURHAM REGION CRITERIA Allowable Pressure (kPa)		MOE Allowable Pressure (kPa)		
	min max		max	max	
Min. Hour	275 700		275	700	
Average Day	275	700	275	700	
Max Day	275	700	275	700	
Max Hour	275	700	275	700	
Maximum Day + Fire	140	700	140	700	

Table 5 – Allowable pressures

Note, the subject development will have development blocks that will require booster pumps to deliver domestic supply to upper levels. Where the pressure is greater than 550 kPa at the development blocks, a pressure reducing valve shall be installed to limit the maximum static pressure to not more than 550 kPa as per The Ontario Building Code.

The maximum allowable velocity in the pipes will be limited to 5.0 m/sec for all flow conditions.

First Pickering Place is located Durham Region pressure district A1. The supply points were derived by data from hydrant flow tests. Refer to Appendix C

The existing First Pickering Place water supply will be kept intact with minor variation. The existing ring main will be moved out of the future ROW and future park and town easements for the sewers.

SYSTEM MODEL:

The hydraulic model KYPIPE was used to analyze the water distribution system for the redeveloped Site. See below the KYPIPE model with explanation. The Elevation information within the redeveloped Site is provided by the Odan/Detech Group Inc. Pressure district A1 will continue to provide service to the mall. In addition, a new 300 mm main will be introduced to service the new development contemplated within First Pickering Place. See model in Exhibit 8.

1.0 Friction Factors

The water mains have been designed using a Hazen-Williams C-factor as follows:

Pipe size (mm)	Hazen-Williams C-factor
150 or smaller	100
200 and 300	110
>300 to 600	120
Over 600	130

2.0 Pipe Diameters

The diameter of the proposed water main is 300 mm which is at and above the minimum diameter for water mains that provide fire protection and that are required under the Regions criteria. The 300mm diameter water mains are also capable of providing a flushing velocity of 0.8 m/s during cleaning and flushing procedures.

3.0 Pipe System Design and Minimum Pipe Cover

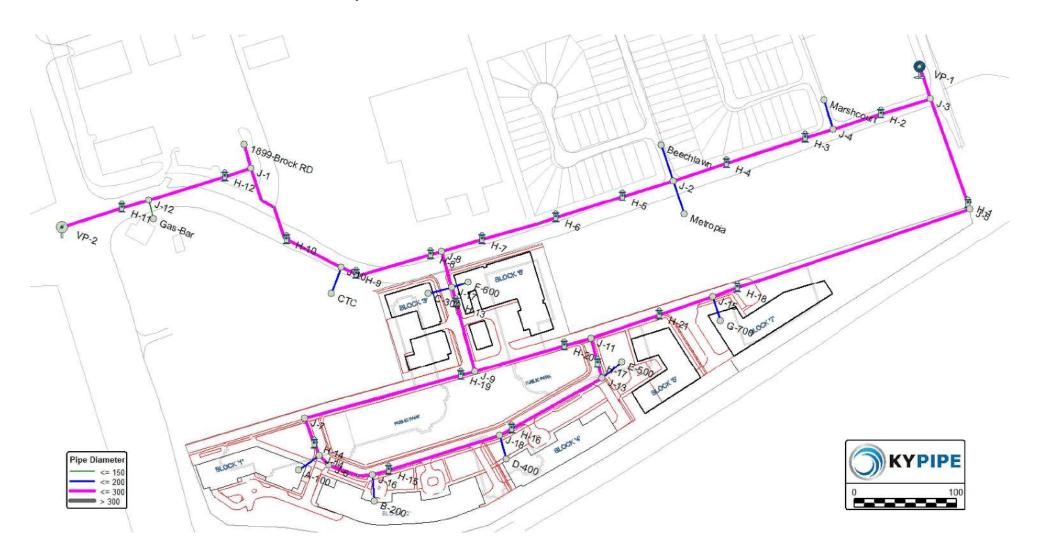
Fire hydrants have been located at dead end location to provide a means for adequate flushing. The minimum cover over the water main shall be 1.8 m which provides for adequate frost protection. The junction elevations were taken from finished grade elevations at the centerline of the road.

4.0 Service Pipes

Suitable Water services will be provided for domestic and for fire at the detailed design stage. The material provided will be acceptable material under Part 7, Division B of the Building Code (O. Reg. 350/13) and AWWA Standards. Water services were not modelled.

5.0 Source node

Water supply for the site is based on the hydrant flow tests as given in Appendix C. The KYPIPE model will use a Variable pressure supply node at the pipe elevation. The input data is summarized in table 6.


Table 6 – Supply Pressure/flow table

Sup (Notion VP-	Road)	Supply (Brock Road) VP-2		
Pressure (kPa)			Flow (L/s)	
621	0	552	0	
517	121.9	510	109.0	
310	219.7	310	269.0	
138	285.3	138	358.8	

The above data will be entered into KYPIPE variable pressure supply node. KYPIPE will take the above data points. The raw data is shown in Appendix C.

Exhibit 8 shows the KYPIPE node numbering and hydrant numbering used in the output tables.

Exhibit 8 - KYPIPE MODEL: node number and hydrants numbers

18

INPUT INFORMATION

UNITS SPECIFIED

FLOWRATE = liters/second HEAD (HGL) = meters PRESSURE = kpa

PIPELINE DATA

STATUS CODE:	XX -CLOSED PIPE		CV	-CHECK V.	ALVE		
PIPE	NODE	NAMES		LENGTH	DIAMETER	ROUGHNES	S MINOR
NAME	#1			(m)			LOSS COEFF.
P-1					300.00		
P-2					300.00	110.0000	
P-3					300.00	110.0000	
P-4	J-2	J-4		163.07	300.00	110.0000	
P-5	J-4	J-3 Metropia Wechlawn		99.18	300.00	110.0000	
P-6	J-2 N	letropia		33.89 36.42	200.00	110.0000	
P-7	J−2 B€	eechlawn		36.42	200.00	110.0000	
P-8		shcourt			200.00	110.0000	
P-9		J-2			300.00	110.0000	
P-10		J-17				110.0000	
P-11	J-10	J-8		101.91	300.00	110.0000	
P-12	J-10	CTC		27.23	200.00	110.0000	0.00
P-13	J-12	J-1		103.93	300.00	110.0000	0.00
P-14	J-12	Gas-Bar		18.48	100.00		
P-15		9-Brock			300.00	110.0000	
P-16		J-5			300.00	110.0000	
P-17		J-7			300.00	110.0000	0.00
P-18		J-14			300.00	110.0000	
P-19	J-6	J-16		44.21	300.00	110.0000	0.00
P-20	J-13	J-11 J-9		40.11	300.00	110.0000	0.00
P-21	J-II	J-9		117.10	300.00	110.0000	0.00
P-22		J-15		124.65	300.00	110.0000	0.00
P-23	J-14	J-6		13.13	300.00	110.0000	0.00
P-24	J-14	A-100		24.49		110.0000	0.00
P-25	J-16	J-18		128.74	300.00	110.0000	0.00
P-26	J-16	B-200		24.98	200.00	110.0000	0.00
P-27	JT-18	.T-13		113.76 23.46	300.00	110.0000	0.00
P-28	J-18	D-400		23.46	200.00	TT0.0000	0.00
P-29		E-500			200.00	110.0000	
P-30	J-15	J-5		263.98	300.00	110.0000	0.00
P-31	J-15	G-700		24.80	200.00	110.0000	0.00
P-32	J-17	J-9			250.00	110.0000	0.00
P-33	J-17	C-300		23.33	200.00	110.0000	0.00
P-34	J-17	F-600			200.00	110.0000	

PUMP/LOSS ELEMENT DATA

THERE IS A DEVICE AT NODE VP-1 DESCRIBED BY THE FOLLOWING DATA: (ID= 1) FLOWRATE EFFICIENCY HEAD (m) (l/s) (%) 75.00 (Default) 63.32 0.00 52.72 122.00 75.00 (Default) 31.61 220.00 75.00 (Default) 14.07 285.00 75.00 (Default)

THERE IS A DEVICE AT NODE VP-2 DESCRIBED BY THE FOLLOWING DATA: (ID= 2)

HEAD	FLOWRATE	EFFICIENCY
(m)	(l/s)	(%)
56.29	0.00	75.00 (Default)
52.00	109.00	75.00 (Default)
31.61	269.00	75.00 (Default)
14.07	359.00	75.00 (Default)

NODE DATA

NODE NAME	NODE TITLE	EXTERNAL DEMAND (l/s)	JUNCTION ELEVATION (m)	EXTERNAL GRADE (m)
Beechlawn CTC Marshcourt Metropia 1899-Brock A-100 B-200 C-300 D-400 E-500 F-600 G-700 Gas-Bar J-1 J-2 J-3 J-4 J-5 J-6 J-7 J-8 J-9 J-10 J-11 J-12 J-13 J-14 J-15 J-16 J-17				
J-18 VP-1 VP-2		0.00	87.10 83.40 88.50	83.40 88.50

SYSTEM ANALYSIS AND RESULTS

SIMULATION RESULTS: Fully connected

Table 7-	Average Day
----------	-------------

Table 8-Maximum Day

Table 9- Peak Hour

Table 7 – Average Day: At Select Nodes

NODE RESULTS

NODE NAME	NODE TITLE	EXTERNAL DEMAND lps	HYDRAULIC GRADE m	NODE ELEVATION m		NODE PRESSURE kPa
Beechlawn		1.53	144.34	84.40	59.94	587.85
CTC		0.46	144.28	85.90	58.38	572.47
Marshcourt		1.77	144.43	83.30	61.13	599.50
Metropia		2.83	144.34	84.40	59.94	587.83
1899-Brock		17.05	144.29	86.40	57.89	567.72
A-100		6.73	144.07	89.50	54.57	535.15
B-200		11.54	144.05	88.90	55.15	540.81
C-300		4.75	144.18	85.80	58.38	572.49
D-400		10.80	144.06	87.50	56.56	554.62
E-500		6.54	144.10	86.50	57.60	564.85
F-600		9.28	144.17	85.80	58.37	572.41
G-700		6.94	144.18	86.20	57.98	568.56
Gas-Bar		0.03	144.39	88.80	55.59	545.14
J-1		0.00	144.30	86.30	58.00	568.77
J-2		0.00	144.35	84.10	60.25	590.80
J-3		0.00	144.49	83.40	61.09	599.13
J-4		0.00	144.43	83.30	61.13	599.51
J-5		0.00	144.40	87.00	57.40	562.92
J-6		0.00	144.08	89.20	54.88	538.18
J-7		0.00	144.09	88.50	55.59	545.15
J-8		0.00	144.26	85.50	58.76	576.25
J-9		0.00	144.13	86.00	58.13	570.06
J-10		0.00	144.28	85.90	58.38	572.47
J-11		0.00	144.13	86.00	58.13	570.05
J-12		0.00	144.39	88.70	55.69	546.12
J-13		0.00	144.11	86.20	57.91	567.89
J-14		0.00	144.08	89.00	55.08	540.15
J-15		0.00	144.19	85.80	58.39	572.60
J-16		0.00	144.08	88.50	55.58	545.02
J-17		0.00	144.18	85.70	58.48	573.52
J-18		0.00	144.08	87.10	56.98	558.78
VP-1			144.58	83.40	61.18	599.96
VP-2			144.46	88.50	55.96	548.83

Table 8 – Maximum Day: At Select Nodes

NODE RESULTS

NODE NAME	NODE TITLE	EXTERNAL H DEMAND lps				NODE PRESSURE kPa
Beechlawn CTC Marshcourt 1899-Brock A-100 B-200 C-300 D-400 E-500 F-600 G-700 Gas-Bar J-1 J-2		2.91(1.90 0.87(1.90 3.36(1.90	<pre>D) 141.55 D) 141.60 D) 141.70 D) 141.54 D) 141.81 D) 140.68 D) 140.63 D) 140.63 D) 140.77 D) 141.09 D) 140.97 D) 141.99 D) 140.97 D) 141.99</pre>	84.40 85.90 83.30 84.40 86.40 89.50 88.90 85.80 87.50 86.50 86.50 86.20 88.80	57.15 55.70 58.40 57.14 55.41 51.70 55.31 53.13 54.27 55.29 54.77 53.55	560.44 546.27 572.67 560.38 543.43 501.88 507.03 542.41 521.01 532.20 542.17 537.14 525.19 544.67
J-3 J-4 J-5 J-6 J-7 J-8 J-9 J-10 J-11 J-12		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	141.81 141.70 141.57 140.71 140.74 141.44 140.88 141.60 140.87 142.35	83.40 83.30 87.00 89.20 88.50 86.00 85.90 86.00 88.70	58.41 58.40 54.57 51.51 52.24 55.94 54.88 55.70 54.87 53.65	572.79 572.70 535.13 505.13 512.32 548.57 538.15 546.27 538.07 526.17
J-13 J-14 J-15 J-16 J-17 J-18 VP-1 VP-2		0.00 0.00 0.00 0.00 0.00 0.00	140.80 140.71 141.01 140.70 141.13 140.71 141.99 142.79	86.20 89.00 85.80 88.50 85.70 87.10 83.40 88.50		541.42 511.89 543.56 525.71

Table 9 – Peak Hour: At Select Nodes

NODE RESULTS

NODE NAME	NODE TITLE		HYDRAULIC GRADE m	NODE ELEVATION m		NODE PRESSURE kPa
Beechlawn		,	,	84.40		
CTC		,	5) 137.08			501.91
Marshcourt			5) 137.09			
Metropia		8.07(2.8	5) 136.82	84.40		
1899-Brock		48.59(2.8	5) 137.63	86.40		
A-100		19.18(2.8	5) 134.99	89.50		
B-200		,	5) 134.83	88.90		450.43
C-300			-,	85.80		
D-400			5) 134.88			
E-500		,	5) 135.18			
F-600		26.45(2.8	5) 135.89	85.80	50.09	491.21
G-700		19.78(2.8	5) 135.59	86.20	49.39	484.39
Gas-Bar		0.09(2.8	5) 138.89	88.80	50.09	491.19
J-1		0.00	137.68	86.30	51.38	503.87
J-2		0.00	136.84	84.10	52.74	517.22
J-3		0.00	137.29	83.40	53.89	528.46
J-4		0.00	137.09	83.30	53.79	527.55
J-5		0.00	136.80	87.00	49.80	488.38
J-6		0.00	135.06	89.20	45.86	449.69
J-7		0.00	135.13	88.50	46.63	457.25
J-8		0.00	136.66	85.50	51.16	501.72
J-9		0.00	135.41	86.00	49.41	484.57
J-10		0.00	137.08	85.90	51.18	501.91
J-11		0.00	135.39	86.00	49.39	484.36
J-12		0.00	138.89	88.70	50.19	492.18
J-13		0.00	135.25	86.20	49.05	481.03
J-14		0.00	135.06	89.00	46.06	451.72
J-15		0.00	135.67	85.80		489.08
J-16		0.00	135.03	88.50	46.53	456.33
J-17		0.00		85.70		
J-18		0.00	135.05	87.10		
VP-1			137.64	83.40		
VP-2			139.91	88.50	51.41	

Table 10 – Maximum Day + Fire: At Hydrants

Fireflow/Hydrant Report:

Scenario: No Title Global Demand Factor for this Scenario: 1.900

Specified Minimum Pressure(kPa): 140.0 Minimum Static Pressure(kPa) : 140.0

Flow-1: Flowrate to maintain the specified
 pressure at (hydrant) node
Node-2: Node that has a lower pressure than
 specified value at Flow-1
Flow-2: Flowrate to maintain the specified
 pressure at Node-2

Hose Constant = 0.00

Hydrant Node	Hydrant Constant	Elevation	Static Pressure	Flow-1 lps	Flow-2 lps	Node-2 lps	Flow Capacity	NFPA Color	
н-11	0.0	88.7	527.5	408.7			408.7	RED	
H-10	0.0	86.1	545.3	376.6	368.0	A-100	368.0	RED	
H-4	0.0	83.8	566.8	353.9			353.9	RED	
Н-З	0.0	83.5	570.5	361.4	352.7	A-100	352.7	RED	
Н-2	0.0	83.3	573.2	374.4	351.2	A-100	351.2	RED	
H-7	0.0	85.3	550.7	357.1	341.3	A-100	341.3	RED	
Н-6	0.0	84.8	556.0	351.9	345.4	A-100	345.4	RED	
Н-5	0.0	84.4	560.2	350.2			350.2	RED	
Н-9	0.0	85.9	546.0	368.5	353.3	A-100	353.3	RED	
H-8	0.0	85.6	547.8	362.9	340.6	A-100	340.6	RED	
H-12	0.0	86.4	545.0	393.6			393.6	RED	
H-1	0.0	87.0	535.2	330.6	323.8	A-100	323.8	RED	
Н-19	0.0	86.1	537.1	297.7	280.5	A-100	280.5	RED	
H-14	0.0	88.9	508.2	262.2	259.6	A-100	259.6	RED	
H-17	0.0	86.2	535.7	292.2	279.7	A-100	279.7	RED	
Н-20	0.0	86.0	538.1	298.0	283.6	A-100	283.6	RED	
H-21	0.0	85.9	539.8	300.8	288.5	A-100	288.5	RED	
Н-15	0.0	88.5	511.9	262.1			262.1	RED	
H-16	0.0	87.1	525.8	273.2	269.4	B-200	269.4	RED	
H-18	0.0	85.8	542.0	305.0	295.3	A-100	295.3	RED	
Н-13	0.0	85.7	543.1	325.1	307.3	A-100	307.3	RED	

At development blocks:

_____ FireFlow/Hvdrant Report Fireflow/Hydrant Report: Scenario: No Title Global Demand Factor for this Scenario: 1.900 Specified Minimum Pressure(kPa): 140.0 Minimum Static Pressure(kPa) : 140.0 Flow-1: Flowrate to maintain the specified pressure at (hydrant) node Node-2: Node that has a lower pressure than specified value at Flow-1 Flow-2: Flowrate to maintain the specified pressure at Node-2 Hose Constant = 0.00 Hydrant Hydrant Elevation Demand Static Flow-1 Flow-2 Node-2 Flow NFPA Node Constant lps Pressure lps lps lps Capacity Color A-1000.089.512.8501.9233.7B-2000.088.921.9507.0241.4C-3000.085.89.0542.4282.3D-4000.087.520.5521.0250.8 0.086.512.4532.20.085.817.6542.20.086.213.2537.1 E-500 254.7 F-600 302.6 G-700 264.3

The following table 11 provides a summary of the flows:

Table 11 – Summary of required flows and available flows at Select Nodes.

NODE	Description of development	Total Flow Assumed required (L/sec) (Fire + max day)	Available Flow from KYPIPE (L/sec) (Fire + max day)
A-100	BLOCK 1	202.8	234
B-200	BLOCK 2	211.9	241
C-300	BLOCK 3	199.0	282
D-400	BLOCK 4	210.5	251
E-500	BLOCK 5	202.4	255
F-600	BLOCK 6	207.6	303
G-700	BLOCK 7	203.2	264

Note, fire flows to building blocks are based on a 200mm service pipe to the building. A bigger pipe would allow larger flows.

DISCUSSION OF RESULTS:

- The pipe sizes shown are required for the fire flows and to ensure velocities are below 5.0 m/sec for fire flows.
- First Pickering Place will require new mains and hydrants. Some will be relocated to suit the development.
- Pressures for normal operation (average, maximum and peak day) have been achieved in the fully connected scenario.
- The pipe sizes chosen are adequate.
- Where pressures are greater than 80 psi (550 kPa) buildings will require pressure reducing valves prior to meter connection. Hydrant tests prior to permit stage will confirm this.
- Looping to Notion Road or Brock Road is required to provide redundancy to the development since many buildings are taller than 84 m. The OBC requires a second connection to a public system when buildings are greater than 84 m.

DESIGN CRITERIA: The following data was used in the design of the system:

1.0 Transient Pressures

The proposed water main will be designed to withstand pressures up to 1034 kPa (150 psi) which is sufficient to withstand the maximum operating pressure of 150 psi, plus any transient pressure it may be subjected to.

The pipes and joints have also been designed to withstand the maximum operating pressure plus the surge pressure that would be created by stopping a water column moving at 0.6 m/s.

The transient pressure surge in a PVC Class 150 DR 18 pipe is 0.6m/s water column is 35 psi.

2.0 Pipe Strength

The proposed water main pipe material is PVC Class 150 DR18 conforming to CSA B137.3 and AWWA C900.

Loading calculations for pipe strength are based on the internal pressures of the system. The pipe stiffness values for the specified pipe class are relatively high; therefore deflection from static and/or live loads is not a critical design factor.

For water main pipe material consisting of PVC Class 150 DR18 conforming to CSA B137.3 and AWWA C900, the maximum internal pressure is 150 psi with a long-term FS of 2.5 and 4 for short term surge pressures.

3.0 Fire Hydrants

All hydrants shall be 3-way hydrants and shall be spaced as detailed on the engineering drawings. All hydrants shall

- Be in accordance with the approved water main materials list
- Be dry-barrel type in accordance with AWWA C502: Dry-Barrel Fire Hydrants
- Be 3-way, two nozzles which are 180° to each other and parallel to the street and a 100mm pumper "STORZ" connection facing the street
- Open as per Region Standard.
- Have a 25mm top operating nut size
- Be painted as per Region Standard
- Be controlled by a secondary valve close-coupled to the hydrant
- Have a hydrant lead of 150mm from the water main to the hydrant
- Be installed plumb and in accordance with the Region Standard drawing which provides adequate thrust blocking to prevent movement caused by thrust forces.

The water table is not expected to rise above the hydrant drain ports.

4.0 Valves

The water main will be designed such that there are a minimum of 3 gate valves at each T-intersection and 4 at cross intersections.

All gate valves shall be in accordance with the Regions approved water main materials list which conforms to AWWA standards.

5.0. Air Release and Vacuum Release Valves

Not applicable

6.0 Valve, Meter and Blow-off Chambers

Not applicable

7.0 **Separation Distances from Contamination Sources**

The water main has been located such that there is a minimum of 2.5m horizontal separation from the nearest sewer. Crossing of sewers as per MOE criteria.

8.0 **Restraints**

Mechanical joint restraints are to be installed on bell and spigot joints for all water mains constructed in fill material and at all tees, horizontal bends, vertical bends, hydrants, end of mains and valves. Concrete thrust blocks are not permitted unless expressly approved by the Region. All mechanical restraint systems shall be installed with cathodic protection.

9.0 Additional Design Considerations

The water mains within the proposed site shall be installed in accordance with the current Region specifications and requirements.

If there is a crossing of the water main and a sewer, the water main shall cross above the sewer with sufficient vertical separation to allow for proper bedding and structural support of the water main, (0.5m minimum).

In cases where there is a conflict with the elevation of the sewer and the water main such that the water main cannot cross above the sewer, the water main has been designed to cross below the sewer subject to the following conditions.

- a) There shall be a minimum vertical separation of 0.5m between the bottom of the sewer pipe and the top of the water main,
- b) The water main shall be lowered below the sewer using vertical thrust blocks and restraining joints,
- c) The length of the water main pipe shall be centered at the point of crossing so that the joints are equidistant and as far as possible from the sewer, and
- d) The sewer shall be adequately supported to prevent joint deflection and settling.

DEVELOPMENT PHASING:

The Site will be developed in phases. Refer to Appendix A. The above analysis assumes a completed development of the First Pickering Place. The waterman around the Mall is looped and will remain that way.

The Developer has indicated that the new development will proceed with Block 1 first. The following is the watermain staging.

Phase	Block	Install
Phase 1	Block 1	New 300mm to Pickering Parkway and new 300 mm redundant line from Pickering Parkway with valve on Pickering Parkway main line. Refer to Figure S-1b for details
Phase 2	Block 2	New 300mm to Pickering Parkway and new 300 mm redundant line from Pickering Parkway with valve on Pickering Parkway main line. Refer to Figure S-1b for details
Phase 3 to 7	Block 3 to 7	As per final layout. 300mm to Pickering Parkway looped and redundant new 300mm line from Notion Road. Refer to Figure S-1a for details.

Refer to Figure S-1b in Appendix E for the proposed water service system for Phase 1 and 2. Refer to Figure S-1a in Appendix E for the proposed water service system for Phase 3 to 7. Based on the recent KYPIPE model results, the system can deliver the above noted service.

5. STORMWATER MANAGEMENT & FOUNDATION WATERPROOFING

Design Criteria

Stormwater management for the proposed development will follow the stormwater management criteria set out by the City of Pickering, Toronto and Region Conservation Authority and the Ontario Ministry of the Environment, Conservation and Parks.

A summary of the stormwater management criteria applicable to the site are as follows:

Quantity Control:

Stormwater Management Criteria, prepared by TRCA, 2012. The TRCA criteria for Duffin's Creek are to control post-development peak flows to pre-development levels for all storms up to and including the 100-year storm (i.e., 2-, 5-, 10-, 25-, 50-, and 100-year storms) **except** for the main branches of the East and West Duffin's Creek where no quantity control is required. The subject site is located within the watershed designated by the TRCA as not requiring quantity control.

At the Pre-consultation for 1755 & 1805 Pickering Parkway the City of Pickering Storm water management criteria was outlined as follows:

Stormwater Management Criteria that must be included in the FSSR are as follows:

- Control of post-development peak flow rates to pre-development levels.
- A maximum runoff coefficient of 0.5 should be used to represent pre-development conditions.
- Follow Stormwater Management Design Guidelines, prepared by City of Pickering. Runoff Conveyance will be as follows, the minor system is to be designed to accommodate the 5-year storm, while the major overland system is to be designed for the 100-year storm event. Where there is no suitable overland flow route, the minor system must convey the 100-year storm after on site attenuation.

Quality Control:

Quality control measures are to be designed to provide Enhanced Protection - long term average removal of 80% of Total Suspended Solids (TSS) on an annual loading basis from all runoff leaving the proposed development site based on the post-development level of imperviousness.

Water Balance:

Retention of the runoff from up to a 5mm storm event on site for reuse, evaporation or infiltration.

Existing Storm Servicing and Drainage Patterns

As-constructed and design plans and profiles drawings obtained from the Region of Durham and the City of Pickering show that the following storm sewers are located within and around the site.

Refer to Exhibit 9 for the existing storm sewer system in and around the Site.

FIRST PICKERING PLACE MASTER SERVICING STUDY PICKERING, ONTARIO

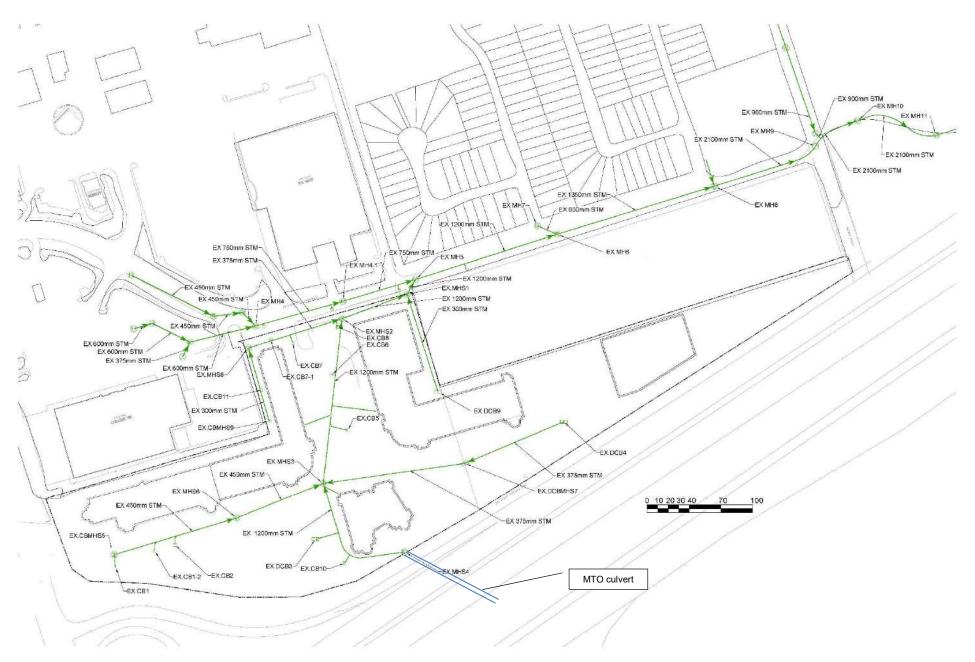


Exhibit 9 - City layout of existing Storm sewers and Site sewers

Exhibit 10 - City layout of existing Storm sewers and Site sewers

The subject site is located within the Duffin's Creek watershed. Refer to Exhibits 9 and 10 for the existing storm drainage infrastructure for the subject site and surrounding area. Note Exhibit 10 is from the AECOM Class EA environmental report for the Notion Road overpass of Hwy 401.

The drainage from the subject site can be summarized as follow:

- MTO box culvert discharges flow from Hwy # 401 to a short ditch on the south side of the subject site. The flow is captured by an inlet structure attached to an existing 1200 ø storm sewer system which is routed north to Pickering Parkway where it discharges to a 1200 ø existing storm on Pickering Parkway. The pipe continues east on Pickering parkway, changes pipe sizes as shown on Exhibit 10, crosses Notion Road, continues east and discharges via a head wall to a drainage channel which empties into Duffin's Creek.
- 2. The subject site drains via a series of catch basins and sewers which connect to the 1200 ø storm from the 401 to Pickering Parkway as described in 1 above.
- 3. The overland flow from the site is conveyed more or less from the south through the lands onto the Pickering Parkway and ultimately conveyed via Pipes and existing channel, east of the Notion Road, to the Duffin's Creek.
- 4. Currently, there is no stormwater quantity, quality control measures implemented within the existing site.

A pre-development tributary plan has been prepared based on a drainage pattern analysis of the site's digital terrain model created from existing topographic survey and information obtained from the Region and the City. The pre-development storm tributary plan is included in Appendix E.

Pre-development/Allowable Flow Rates

The post-development flows from the site will be limited to the pre-development flows for the 2-year to 100-year design storm event. The pre-development flows were calculated based on pre-development tributary area of **9.48 ha** with runoff coefficient of 0.5. Please note that the actual runoff coefficient for the existing site condition is much higher than 0.5. The flows were calculated using both rational method and hydrologic model. The City of Pickering's Intensity Duration Frequency (IDF) curve values were used for rational method calculation.

The hydrodynamic model (XPSWMM) was used to simulate flows for pre-development condition. The Atmospheric Environment Service (AES) 1-hour and 12-hour storm hyetographs and the Chicago 4-hour storms provided in the City of Pickering's SWM design guidelines were used for pre-development condition peak flow simulation. For modeling the site under existing condition, the calculation of effective rainfall in XPSWMM was accomplished using the EPA runoff method. Losses are calculated using the Horton infiltration method and initial abstraction of 1 mm and 5 mm for impervious and pervious areas respectively.

The allowable flows for the site are presented in Table 13.

- The City 2 to100 year Chicago 4 hour, AES 1-hour and 12-hour Storms were used.
- Horton infiltration parameters were used for soil types C.

 $F_0 = 75$ mm/hr, $F_c = 5$ mm/hr, decay rate $\dot{\alpha} = 0.000556$ 1/sec

- Flows were calculated using the EPA SWMM5 runoff method (similar to Stanhyd in VO2).
- Area = 9.48 ha, w= 188.5 m, C= $0.5 \rightarrow \%$ impervious = 43%

 $TIMP = (C - 0.2) \div 0.7 = 0.43$

TIMP = total impervious fraction (dimensionless)

C = runoff coefficient

In order to review the existing storm system an XPSWMM model was created. See Exhibit 11 below. The model is not detailed within the report, since it is not the target flows for the redeveloped site. The model was created for review in order to determine how much flow reduction the redevelopment would create. Table 12 below summarizes the comparison of existing (as is) flows to Pickering Parkway sewers to that of the fully redeveloped site.

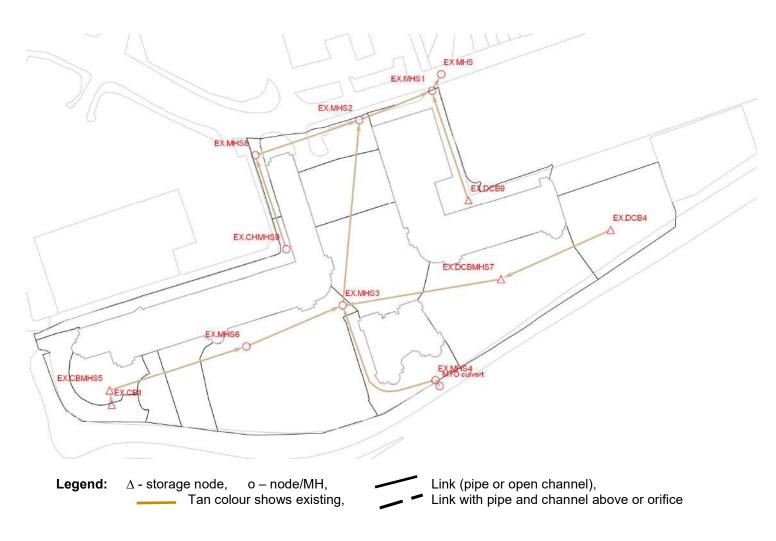


Exhibit 11 – XPSWM model of existing conditions

Table 12 – Co	mparison Exis	sting flows to Fu	II Redeveloped	l - Pickering Pa	rkway sewers	
			Storm	п Туре		
Storm Event	E>	cisting Condition	ons	Full red	leveloped Cor	nditions
	Chicago 4 hr (m3/s)	AES 1 hour (m3/s)	AES 12 hour (m3/s)	Chicago 4 hr (m3/s)	AES 1 hour (m3/s)	AES 12 hour (m3/s)
2- year	2.136	1.726	0.601	1.236	0.858	0.552
5- year	3.015	2.563	0.779	1.886	1.376	0.719
10- year	3.556	3.103	0.900	2.356	1.781	0.831
25- year	4.287	3.855	1.083	2.942	2.320	1.018
50- year	4.834	4.396	1.204	3.439	2.720	1.146
100- year	5.258	4.822	1.322	4.038	3.124	1.265

Table 13 shows the flows from the site only to Pickering Parkway. The flows shown in table 12 is flow from the MTO culvert and the site.

			Storm Type	
Storm Event	Chicago 4 hr (m3/s)	AES 1 hour (m3/s)	AES 12 hour (m3/s)	Rational method for comparison using IDF curves
2- year	1.366	1.235	0.383	0.811
5- year	1.878	1.677	0.496	1.116
10- year	2.182	1.961	0.574	1.320
25- year	2.615	2.406	0.705	1.734
50- year	2.861	2.721	0.785	2.117
100- year	2.951	2.934	0.862	2.447

Rational method uses As per City criteria for; 25-year storm - Ca = 1.10 50-year storm - Ca = 1.20 100-year storm - Ca = 1.25 C = 0.5 for 2 to10 year events, Tc = 15 min (conservative)

Rational method is very similar to EPA runoff using the City IDF curves (Chicago storms).

The City of Pickering uses the AES storm for sizing SWMM facilities.

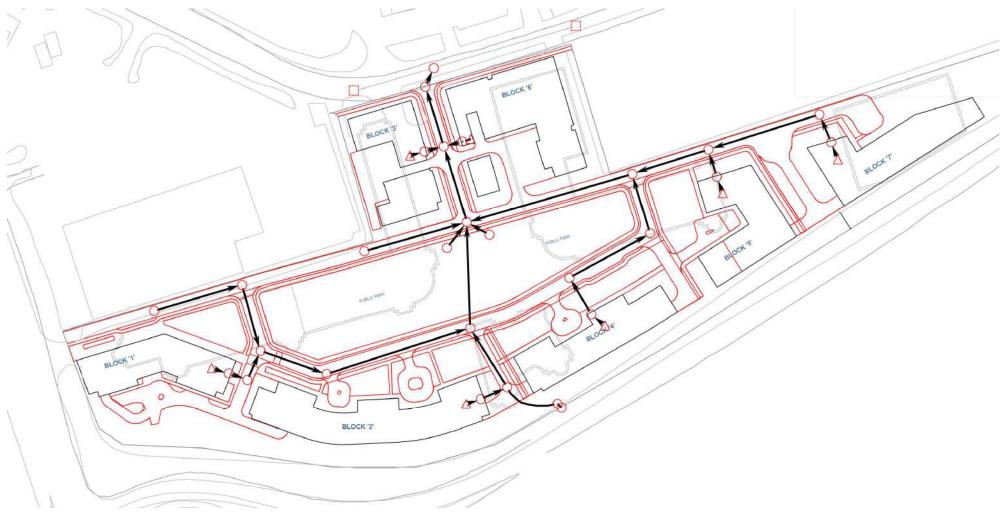
POST-DEVELOPMENT

- 1. The SWM for the redeveloped First Pickering Place will establish/analyse the following:
- 2. Flows to the Pickering Parkway storm sewer based on the criteria established above.
- 3. Establish SWM criteria for the redeveloped First Pickering Place in order to limit the flows.
- 4. Evaluate the flows entering the down-stream sewer system.
- 5. Evaluate the water quality requirements.
- 6. Evaluate the water balance for the Site.
- 7. Make recommendations as to the implementation of the SWM.
- 8. Evaluate the staging of construction.

Hydrology and Hydraulics:

We will utilize a Hydrodynamic model to evaluate the sewer items such as flow, velocity, HGL along with the above-mentioned items. The Hydrodynamic model we will use is XPSWMM by INNOVYZE version 2021. XPSWMM is using the modified EPA SWMM 5 engine. SWMM 5 models can be imported and exported into XPSWMM. The Hydrodynamic models provide the most accurate, reliable and defensible representation of flows in the collection system. They account for varying inflows, non-coincident peak flows, in system storage, hydrograph attenuation, and tail and backwater effects. The hydrology will be done using the SWM runoff methods which is similar to Otthymo Standhyd. In addition, if rural watersheds are required, XPSWMM fully implements the Nash unit hydrograph technique. The peak flows for these small tributary areas can be hand verified using the rational equation. XPSWMM will balance the entire system such as stage/storage/discharge without having to input orifice type equations. The added feature of XPSWMM is the integrated 1D/2D capability.

What to Model:


Based on the description of the existing system, and the imposition by the City of flow reduction to a C =0.5 from the existing site C= 0.85 (See table 13 above). The post developed site will reduce flows to the sewers on Pickering Parkway, therefore the outlet can be the sewer on Pickering Parkway. The new Site layout will not allow outlet to the existing 1200 ø sewer. The new development will require to partially replace the existing 750 ø pipe with a 1200 ø pipe. Refer to Appendix E for the site servicing drawings. The existing downstream 1200 ø sewer is at a 0.50% slope. The new 1200 ø sewer extension will be at 0.61% slope. Thus the new sewer will offer more capacity than the existing outlet sewer.

Therefore, the model will include the flow from the MTO culvert and the new site sewers. The boundary conditions are outfall at the new MH17 at Pickering Parkway.

The City of Pickering uses the AES storm for sizing SWM facilities. It will be shown that the 4 hour Chicago storm is the critical storm for all storage facilities.

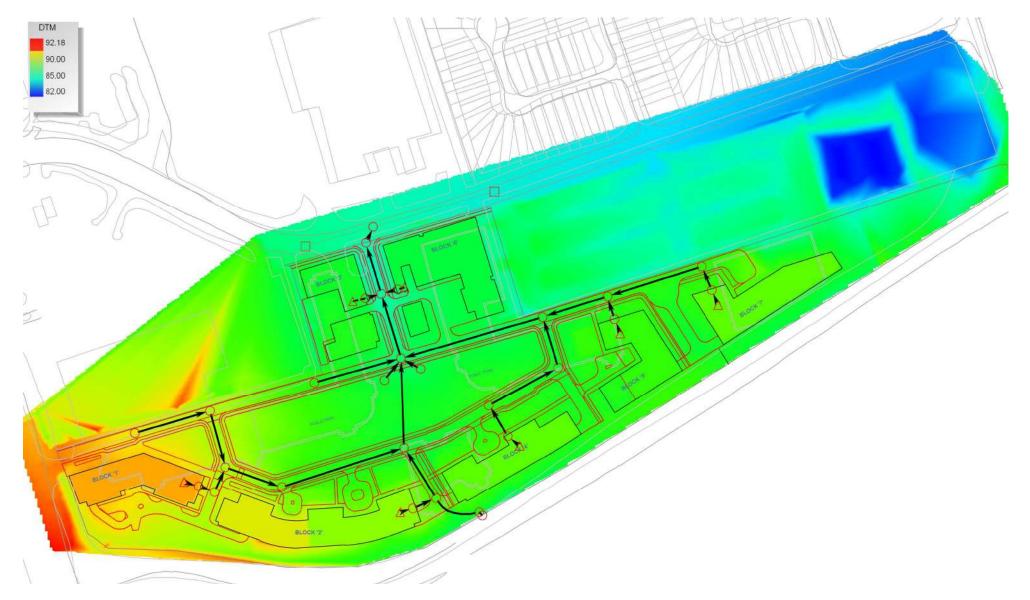

35

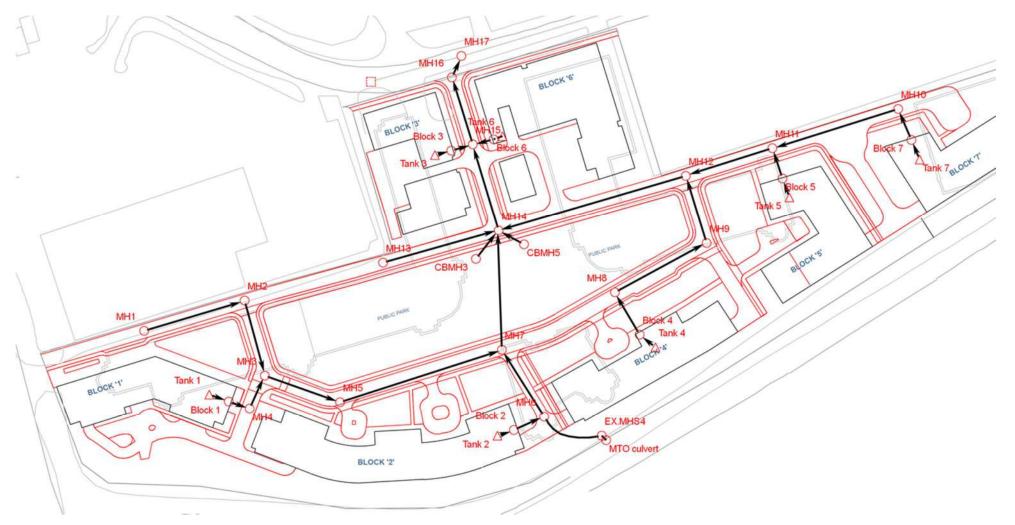
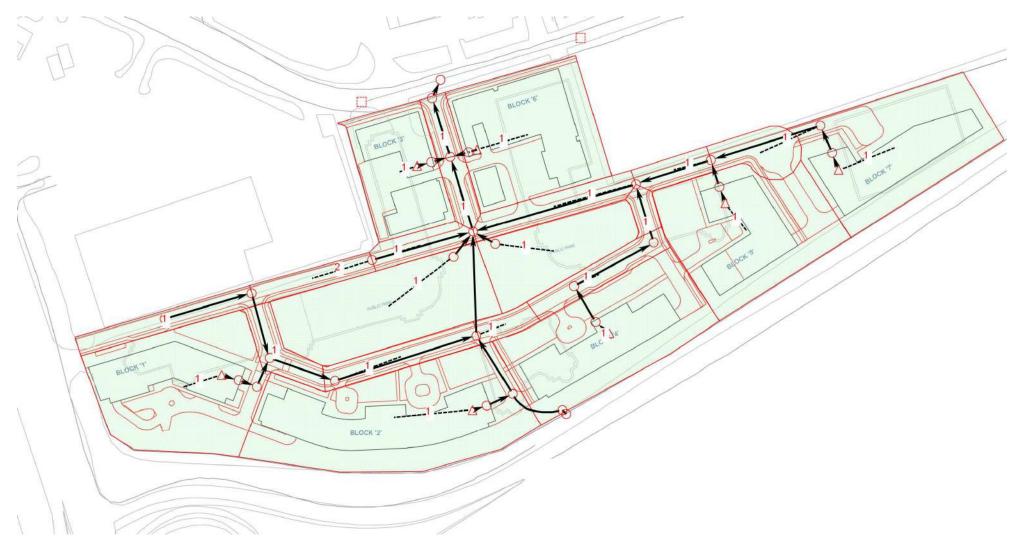
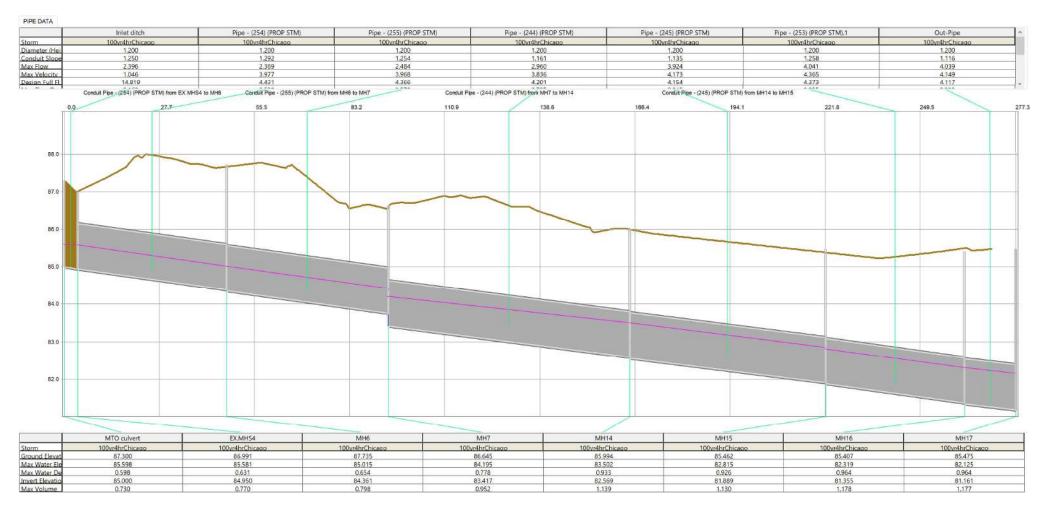
Exhibit 12- XPSWMM POST DEVELOPED GLOBAL MODEL

Legend: △ - storage node, o – node/MH, Link (pipe or open channel), — Tan colour shows existing — — – Link with pipe and channel above or orifice

Exhibit 13- XPSWMM POST DEVELOPED MODEL WITH PROPOSED TOPOGRAPHY

37

Exhibit 14- XPSWMM POST DEVELOPED MODEL WITH NODE LABELS

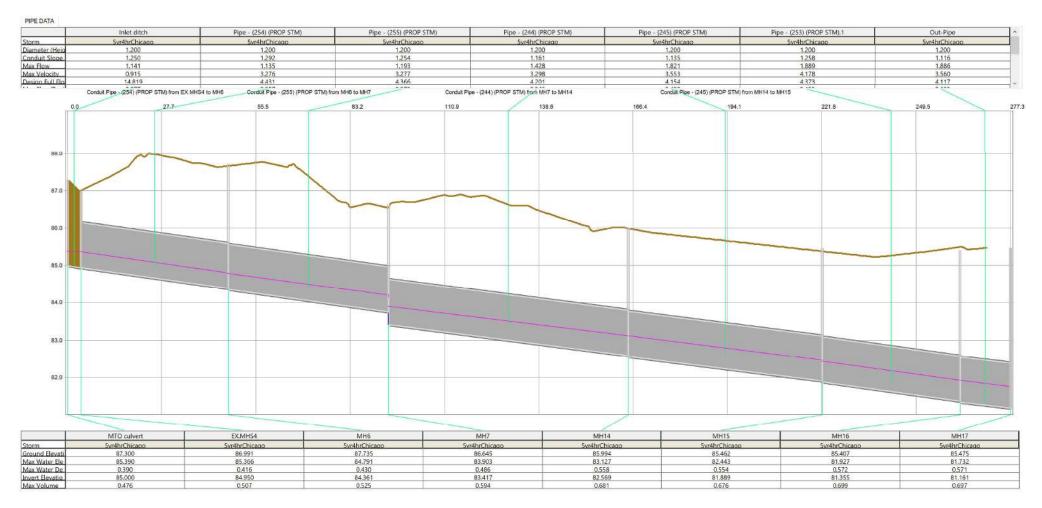

Exhibit 15- XPSWMM POST DEVELOPED MODEL WITH TRIBUTARY AREAS

Exhibit 16- XPSWMM profile plot MTO CULVERT to MH17- 100-YR Chicago

Exhibit 17- XPSWMM profile plot MTO CULVERT to MH17- 5-YR Chicago

PIPE DATA Pipe - (240) (PROP STM) Pipe - (244) (PROP STM) Out-Pipe Pipe - (241) (PROP STM) Pipe - (242) (PROP STM) Pipe - (245) (PROP STM) Pipe - (253) (PROP STM).1 Storm 100vr4hrChicao 100vr4hrChicad 100vr4hrChic 00vr4hrChica 100vr4hrChica 100vr4hrChica 00vr4hrChica Diameter (Hei 0.450 0.525 0.600 1.200 1.200 1.200 1.200 Conduit Slope Max Flow Max Velocity 1.273 1.258 0.917 0.923 1,161 1,135 1.116 4.041 0.163 0.362 0.440 2.960 3.924 4.039 1.790 2.456 2.285 4.149 3.836 4.173 4.365 Design Full FL 4.373 0.485 4.117 4.201 4.154 Conduit Pipe - (242) (PROP STM) from MH5 to MH7 Conduit Pipe - (244) (PROP STM) from MH7 to MH14 Conduit Pipe - (245) (PROP STM) from MH14 to MH15 0.0 35.8 71.6 107.4 143.3 179.1 214.9 250.7 286.5 322.3 89.0 88.0 87.0 86.0 85.0 84.0 83.0 82.0

MH7

00vr4hrChica

86.645

84.195

0.778

83.417

0.952

Exhibit 18- XPSWMM profile plot MH 4 to MH17- 100-YR Chicago

MH3

88.853

86,109

0.339

85.770

0.413

100vr4hrChica

MHS

00vr4hrChicad

87.952

85.518

0.388

85.130

0.473

MH4

100vr4hrChica

88.934

86.295

0.250

86.045

0.305

Storm

Ground Elevat Max Water Ele

Max Water De

Invert Elevatio Max Volume MH14

85.994

83 502

0.933

82.569

1,139

100vr4hrChic

MH15

85.462

82.815

0.926

81.889

1.130

100vr4hrChica

MH16

85.407

82.319

0.964

81.355

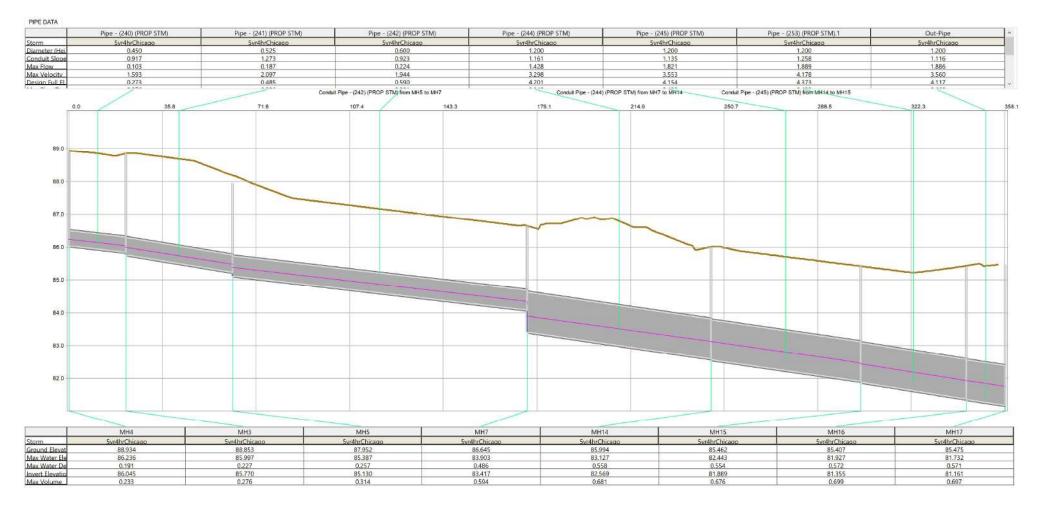
1.178

100vr4hrChicao

MH17

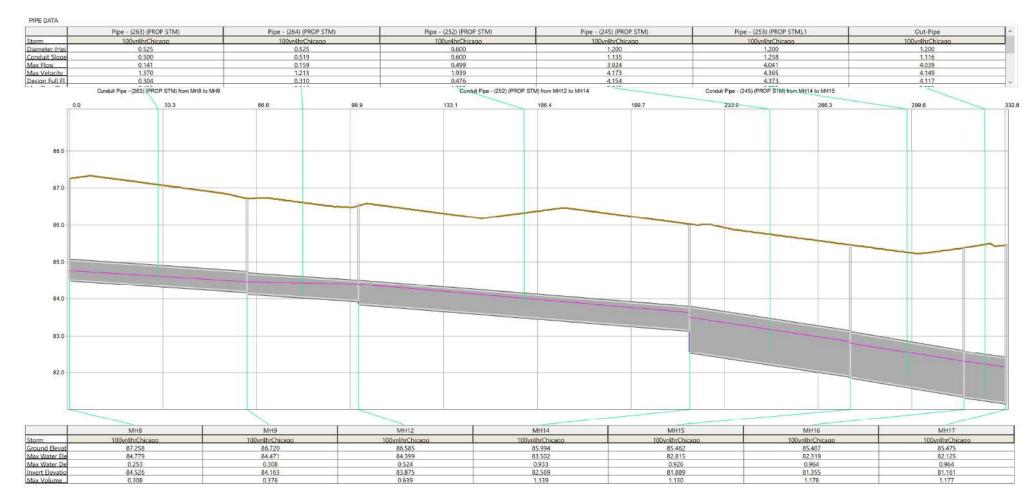
100vr4hrChica

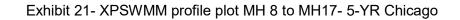
85.475

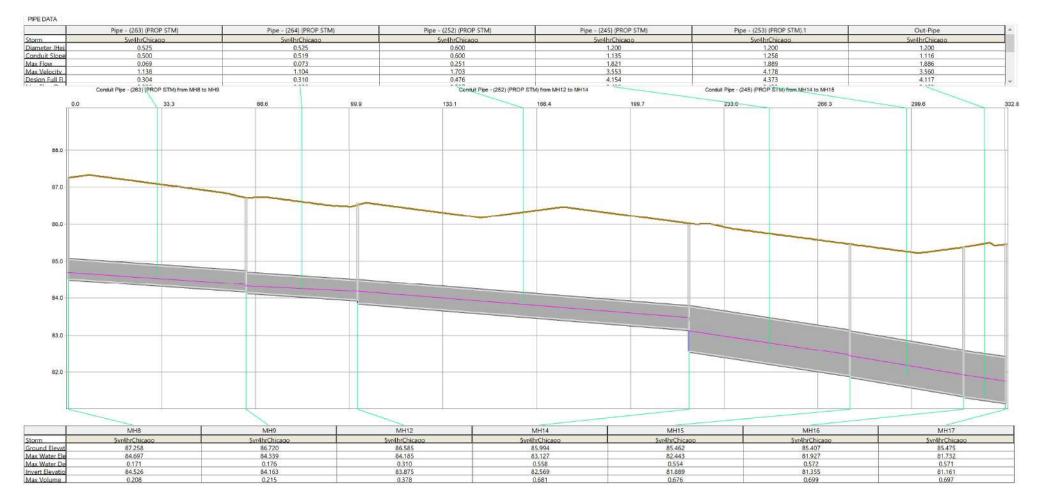

82.125

81.161

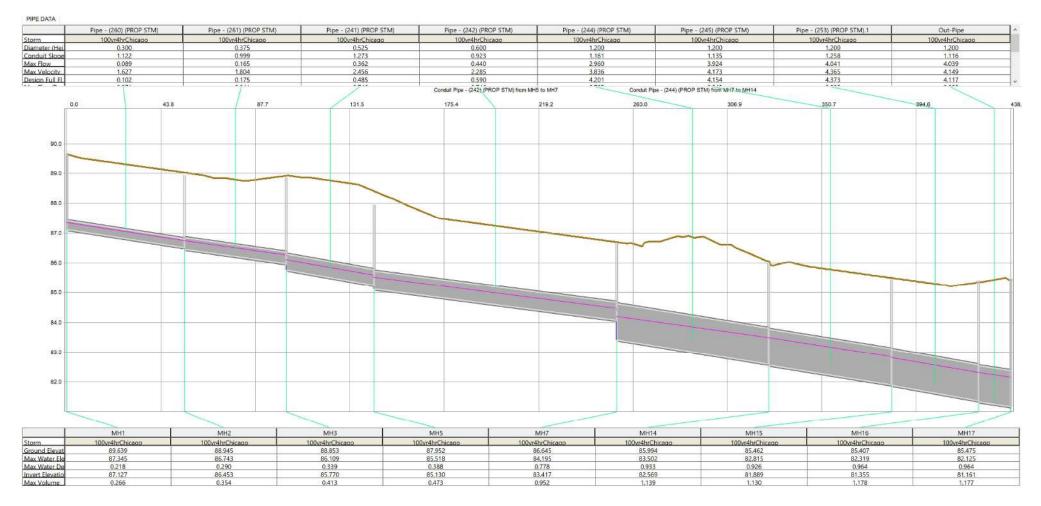
1.177

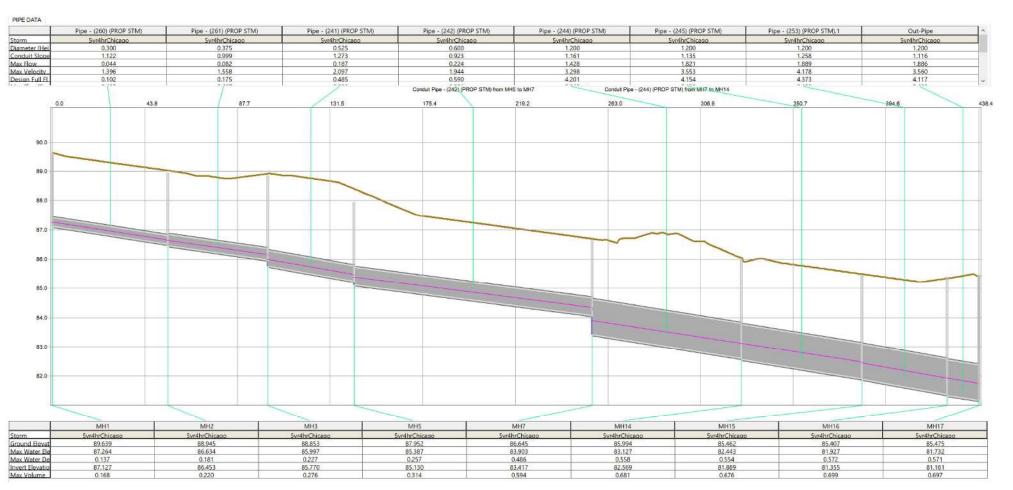

0.964

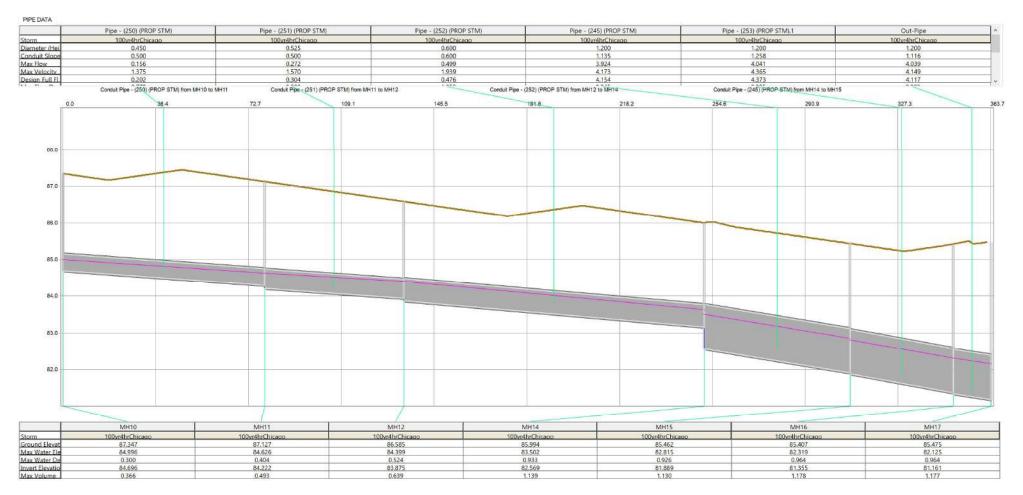

Exhibit 19- XPSWMM profile plot MH 4 to MH17- 5-YR Chicago



43


Exhibit 20- XPSWMM profile plot MH 8 to MH17- 100-YR Chicago




Exhibit 22- XPSWMM profile plot MH 1 to MH17- 100-YR Chicago

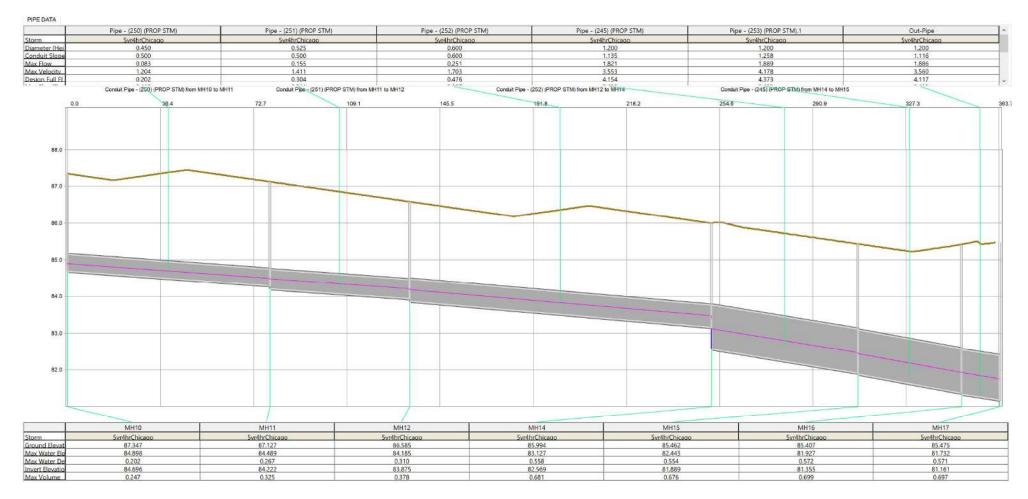

Exhibit 23- XPSWMM profile plot MH 1 to MH17- 5-YR Chicago

Exhibit 24- XPSWMM profile plot MH 10 to MH17- 100-YR Chicago

48

Exhibit 25- XPSWMM profile plot MH 10 to MH17- 5-YR Chicago

XPSWMM MODEL:

The XPSWMM model is a series of node Links forming a 1D dynamic model with hydrology and hydraulics coupled together. Flow (runoff) is calculated at nodes and dynamically routed through pipes, culverts, storage structures and open channels. The following are the info used in the model:

- All plastic and concrete pipes Manning n = 0.013.
- All CSP pipes Manning n = 0.024.
- All open channels Manning n = 0.040 (considering dense vegetation along the channels).
- Pipe Manhole loss coefficients for entrance and exit were accounted for via drop in manhole inverts.
- Pipe obverts were more or less matched.
- XPSWMM was chosen to accurately show the HGL.
- Refer to sewer profile plots for calculations of flows and other hydraulic stats.
- XPSWMM in 1D, uses a Finite difference Runge-Kutta explicit scheme. Scheme solves all terms of the St. Venant equations. 1D and 2D schemes automatically switch between upstream and downstream controlled flow regimes to represent shocks.

TIME STEP:

We have adapted the following time steps: 1D model start with 15.0 sec. Note the explicit nature of the algorithm automatically reduces the time step. In the case of this model the program has reduced the time step to 1.25 sec or less.

- The City 2 to 100 year 4-hour Chicago, AES 1-hr and AES 12-hr Storms were used.
- Horton infiltration parameters were used for soil types C and D.

 $F_0 = 75 \text{ mm/hr},$ $F_c = 5 \text{ mm/hr},$ decay rate $\dot{\alpha} = 0.000556 \text{ 1/sec}$

Depression storage 1mm impervious and 5mm pervious

Refer to table 14 for the existing XPSWMM model hydrology parameters. Refer to Exhibit 12 for the Proposed Site XPSWMM model.

								-
								Time to
			Impervious				Infiltration	peak Tp
Name (node)	Subcatchment	Area (ha)	Percentage %	Width m	Slope m/m	Hydrology Methods	Reference	(min)
MH1	1	0.190	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
MH8	1	0.175	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
MH13	1	0.124	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
MH13	2	0.121	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
MH2	1	0.160	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
MH9	1	0.052	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
MH3	1	0.137	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
MH5	1	0.183	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
MH7	1	0.070	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
MH14	1	0.090	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
MH10	1	0.162	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
MH11	1	0.095	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
MH12	1	0.207	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
СВМНЗ	1	0.730	15.0	54.2	0.01	RUNOFF	Urban-C-soils	
CBMH5	1	0.500	15.0	40.6	0.01	RUNOFF	Urban-C-soils	
MH15	1	0.080	85.0	10.0	0.01	RUNOFF	Urban-C-soils	
MTO culvert	1	41.900	10.0	396.0	0.01	RUNOFF	OFF SITE	
Tank 1	1	0.919	85.0	58.7	0.01	RUNOFF	ROOF	
Tank 2	1	1.230	85.0	67.7	0.01	RUNOFF	ROOF	
Tank 4	1	0.902	85.0	31.7	0.01	RUNOFF	ROOF	
Tank 5	1	0.890	85.0	57.8	0.01	RUNOFF	ROOF	
Tank 7	1	1.020	85.0	57.8	0.01	RUNOFF	ROOF	
Tank 6	1	0.818	85.0	55.4	0.01	RUNOFF	ROOF	
Tank 3	1	0.478	85.0	42.3	0.01	RUNOFF	ROOF	
	Total	51.23						

Table 14 – Proposed XPSWMM model hydrology parameters

DISCUSSION OF XPSWMM MODEL:

- 1) The Model tributary areas follow the minor system tributary areas. See model above.
- 2) There are no celerity issues with the model. There were no warnings or errors.
- 3) All conduits were stable. The continuity error was less than 1% in all storm runs which is considered excellent.
- 4) There were no warnings or error messages from the analysis.
- 5) In a dynamic model the orifice size and co-efficient are entered. The Model calculates the HGL and volume required. There is no need for a rating curve.
- 6) Outfalls are considered free flow, since the outlet is to a trunk sewer.
- 7) The HGL plots show the brown service line as the spill crest when representing surface storage nodes and rim elevation for MH nodes. The plots are for the 5 year and 100-year storms.
- 8) The long plots (profile) have tables that give hydraulic stats for each length of run.
- 9) The stats show that the City criteria for sewers has been achieved.

Storm Event	Р	Allowable eak Flow (m3	3/s)	Post-Deve	lopment Peak (m3/s)	Flow
	Chicago 4 hr (m3/s)	AES 1 hour (m3/s)	AES 12 hour (m3/s)	Chicago 4 hr (m3/s)	AES 1 hour (m3/s)	AES 12 hour (m3/s)
2 year	1.366	1.235	0.383	0.466	0.367	0.333
5 year	1.878	1.677	0.496	0.745	0.491	0.436
10 year	2.182	1.961	0.574	0.974	0.636	0.504
25 year	2.615	2.406	0.705	1.258	0.857	0.637
50 year	2.861	2.721	0.785	1.444	1.026	0.725
100 year	2.951	2.934	0.862	1.642	1.207	0.803

Post-Development Analysis Results

Post development Site Flow is site out-pipe flow – MTO inlet ditch flow.

Note the post development flows to the City sewer is reduced considerably due to storage tanks.

SUMMARY OF SWM Quantity Control Features:

Refer to table 16 for the SWM used for quantity control on the redeveloped Site.

DESCRIP [®] FLOW ARE	CK OR TION AND A TO TANK Ia)	SWMM FEATURE DESCRIPTION & FOOTPRINT (m2)	VOLUME REQUIRED 100-year flow (m3) max of 4 hr Chicago or AES	ORIFICE CONTROL C=0.62	ORIFICE max head (m)	Maximum 100-year flow (L/sec)
BLOCK 1	(0.919 ha)	1-Storage Tank (150)	TANK 1 – 236	250 mm	1.57	163
BLOCK 2	(1.230 ha)	1-Storage Tank (300)	TANK 1 – 400	250 mm	1.33	147
BLOCK 3	(0.478 ha)	1-Storage Tank (150)	TANK 1 – 168	150 mm	1.12	50
BLOCK 4	(0.902 ha)	1-Storage Tank (200)	TANK 1 – 302	200 mm	1.51	98
BLOCK 5	(0.890 ha)	1-Storage Tank (200)	TANK 1 – 294	200 mm	1.47	102
BLOCK 6	(0.818 ha)	1-Storage Tank (200)	TANK 1 – 316	150 mm	1.58	62
BLOCK 7	(1.02 ha)	1-Storage Tank (200)	TANK 1 – 350	200 mm	1.75	111

 Table 16 – Summary Table of SWMM Quantity Features for Redeveloped Site

All Maximum Volumes created by 4-hour Chicago storm

FOUNDATION WATERPROOFING STRATEGY

Dewatering discharge during construction and long term will be as follows:

At the Pre-consultation for 1755 & 1805 Pickering Parkway the City of Pickering made the following statement:

Please note that the City will not accept discharge of foundation drainage to the storm system due to the potential for adverse impacts.

Please note that Region of Durham will not accept discharge of foundation drainage to the sanitary sewers. This statement is part of their sewer bylaw.

Based on the above we recommend the Architect, Structural Engineer, Geotechnical Engineer and Mechanical Engineer devise a waterproofing system with the shoring and foundation design.

Based on the above we have not incorporated any allowance for foundation drainage in the SWM for the site.

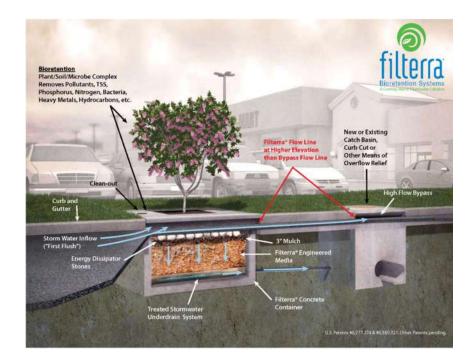
6. WATER BALANCE

The City Pickering and TRCA will require that the first 5mm of any storm be captured and reused or returned to the environment. Water balance can be addressed by various methods including, infiltration by use of soak-away pit or permeable pavers, irrigation, vegetative cover and water reuse for toilet flushing of commercial uses. It is recommended that a separate cistern be installed for storm water reuse adjacent to the SWM tank with an overflow baffle to the SWM tank for when the site has reached its reuse potential.

LIDS:

- Imbrium Filterra Bioretention System
- Silva Cells
- Soak away pits
- Bio swales
- others

Infiltration gallery footprints are to be designed considering in-situ percolation rates.


A drain-down time of 48 hours should be applied to any infiltration gallery calculations.

Other Options:

1. Imbrium Filterra Bio retention System

This is an appropriate method for water quality treatment in a train treatment environment. Storm water runoff enters the Filterra system through a curb-inlet opening and flows through a specially designed filter media mixture contained in a landscaped modular container. The following photos show the installed Filterra unit and a section through the unit.

2. Silva Cells

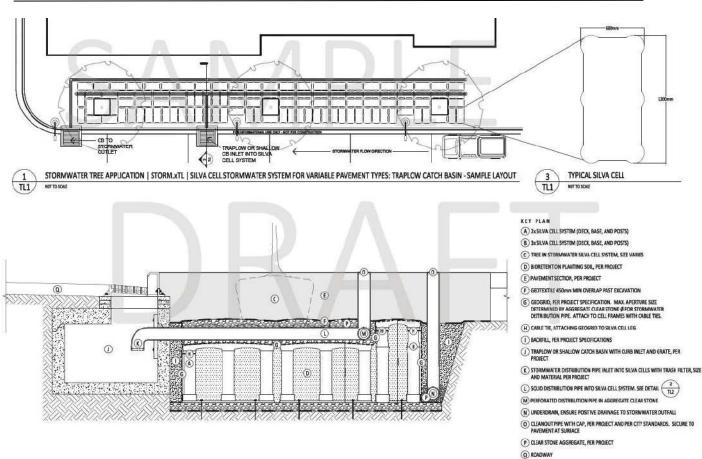
The Silva Cell is a modular suspended pavement system that uses soil volumes to support large tree growth and provide powerful on-site storm water management through absorption, evapotranspiration, and interception. The system is typically installed under pavement applications and can be configured in several different ways:

Streetscapes

Adjacent to or under sidewalks Between buildings and streets.

Parking Areas

Under parking stalls adjacent to medians or islands.


Public Spaces

Under plazas, promenades, courtyards, or other public spaces at office buildings, museums, schools, and transit centers

The Region of York is using Silva Cells on the widening and reconstruction of Yonge Street.

The following detail is a typical Silva Cell application.

FIRST PICKERING PLACE MASTER SERVICING STUDY PICKERING, ONTARIO

3. Bio swales

We have reviewed the possibility of bio swales. The use of boulevard bio swales was dismissed due to lack of room. The opportunity to deploy bios swales in the blocks is a possibility but based on our past experience not practical. The Park area could have soak away pits rather than bio swales.

The individual quality control and water balance methods can be determined at the site plan stage.

55

7. GRADING CONSIDERATIONS

The existing topography of the site generally slopes from west to northeast towards the low point of the site located on the east side of the Site. Under the new development and existing adjacent developments there will be several grading constraints for this development to match. The constraints are the existing commercial buildings, Metropia new residential, Pickering Parkway and Notion Road right of ways.

Refer to Exhibit 26 for the color-coded existing topography for the Site.

Refer to the concept grading plan in Appendix E for details of the proposed grades for the fully developed site. The proposed grading of the redeveloped site will follow the general lay of the land as shown in Exhibit 26.

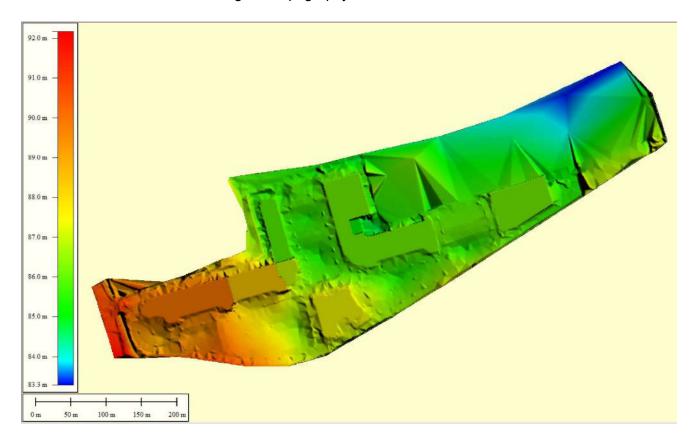
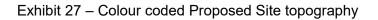
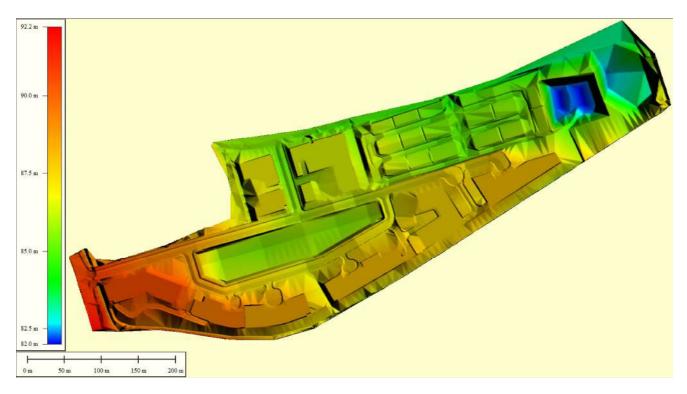




Exhibit 26 – Colour coded existing Site topography

Refer to Exhibit 27 for the colour coded proposed Site topography.

Refer to the Conceptual Grading Plan included in Appendix E for additional detail. Grading for each parcel will be detailed at the Site Plan stage of development.

8. EROSION AND SEDIMENT CONTROL

Erosion and sediment controls for the site will be implemented according to the Golden Horseshoe Area Conservation Authorities' Erosion and Sediment Control Guidelines for Urban Construction. A detailed erosion control plan will be prepared upon final design and each Site Plan Stage.

9. SOILS REPORT AND HYDROGEOLOGY:

A preliminary Geotechnical investigation has been completed for the site. The purpose of the study is to characterize hydrogeological conditions and determine permitting requirements for the proposed development at the First Pickering Place. The study was completed by Terraprobe dated May 27, 2021 for Pickering Ridge Lands Inc. & Bayfield Realty Advisors.

Native clayey silt glacial till, underlying dense to very dense matrix of sandy silt to silty sand till is the typical soil underlying the site. The soils have some infiltration capacity. The water table underneath varies from 4 to 6 m below grade. Based on the grading it may be possible to provide infiltration galleries. The water table should be monitored further in order to get a wide range of potential water table levels. Monitoring will provide better confidence in the potential maximum ground water levels.

10. RECOMMENDATIONS:

- We recommend that the owners of First Pickering Place build the sanitary sewer on Pickering Parkway from 1899 Brock Road site to Notion Road to accommodate the full build out of all future development sites and the existing flows. This section of sanitary sewer will be subject to development charges as discussed with the Region of Durham.
- 2) The sanitary pipe on Notion Road (from Pickering Parkway to Orchard Rd) will be sized to convey existing flows and flows from Phase 1 (First Pickering Place) to the existing Orchard Road sanitary sewer. The Region will allow this interim condition at limited capacity until such time that the Ultimate Trunk Sewer is constructed in the future to convey flows to the South SP. The interim pipe will be downsized from that on Pickering Parkway, the Region will allow this, since it is a temporary measure until the Region replaces it with a trunk sewer on Notion Road.
- 3) We recommend looping the watermain to Notion Road or Brock Road to provide redundancy to the development since many buildings are taller than 84 m. The OBC requires a second connection to a public system when buildings are greater than 84 m.

11. CONCLUSIONS

The findings of our investigation and analysis can be concluded as follows:

The proposed site is serviceable with the added density with respect to sanitary, water and storm by connecting to the existing infrastructure surrounding the site as outlined in this report.

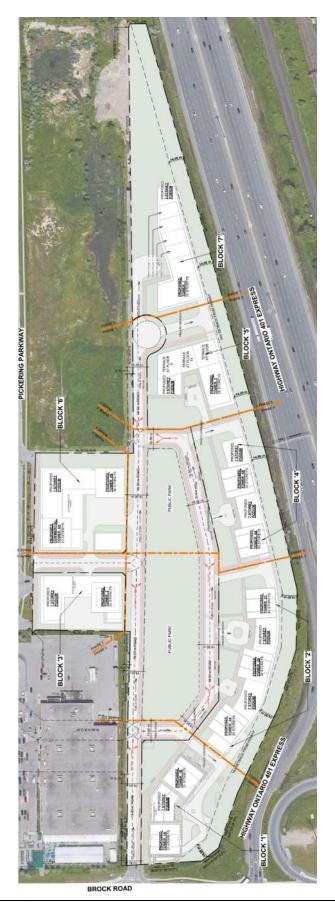
12. REFERENCES

- 1. City of Pickering (September 18, 2020). Summary of Comments, Pre-consultation for 1755 & 1805 Pickering Parkway. City of Pickering, Ontario.
- 2. City of Pickering (July 2019). **Stormwater Management Design Guidelines**. City of Pickering, Ontario.
- 3. TRCA (August 2012). **Stormwater Management Criteria**, Version 1.0. Toronto and Region Conservation Authority, Ontario.
- 4. GGHA CAs (December, 2006). **Erosion and Sediment Control Guideline for Urban Construction**, Greater Golden Horseshoe Area Conservation Authorities, Ontario.
- 5. Ontario Ministry of the Environment (March, 2003). **Stormwater Management Planning and Design** Manual. Ministry of the Environment, Ontario. ISBN 0-7794-2969-9.
- 6. Ontario Ministry of the Environment (2008). **Design Guidelines for Drinking-Water Systems**. Ministry of Environment, Ontario. ISBN 978-1-4249-8517-3.
- 7. Ontario Ministry of the Environment (2008). **Design Guidelines for Sewage Works**. Ministry of Environment, Ontario. ISBN 978-1-4249-8438-1.
- 8. Fire Underwriter Survey (1999). Water Supply for Public Fire Protection, Ontario.
- 9. NEW JERSEY STORM WATER BEST MANAGEMENT PRACTICES MANUAL, April 2004.
- 10. MNR Technical Guide River and Streams Systems: Flooding Hazard Limits, 2002.
- 11. FEMA Chapter 4 Flood Risk Assessment.
- 12. ROAD AND BRIDGE DECK DRAINAGE SYSTEMS by MTO, November 1982.
- 13. XPSWMM users Guide by INNOVYZE 2021.
- 14. **EPA SWMM 5**, Build 5.1.012, Manual.
- 15. LOW IMPACT DEVELOPMENT STORMWATER MANAGEMENT MANUAL, 2008, by Credit Valley Conservation Authority and Toronto Town Conservation Authority.
- 16. **Master Servicing and Stormwater Management Report**, for 1899 Brock Road, City of Pickering, May 2021 by SCHAEFFERS.
- 17. Functional Servicing & Stormwater Management Report Residential Townhouse Development – 1856 Notion Road Durham Region – City of Pickering, January 19, 2018, by GHD.
- City of Pickering and Pickering Developments Inc. New Highway 401 Road Crossing (from Notion Road to Squires Beach Road) Schedule "C' Municipal Class Environmental Assessment, October 2019, by AECOM.

Respectfully Submitted: The Odan Detech Group Inc. April 13, 2022

John Krpan, M.S.C.E., P.Eng.

Scott Ahonen, B.Eng.


APPENDIX A

Aerial Photo of Existing Site Site Plan of the Proposed Development (reduced)

Aerial Photo of Existing Site

Site Plan of the Proposed Development (reduced)

APPENDIX B

Existing condition sanitary sewer design sheet

Redeveloped site Phase 1 sanitary sewer design sheet - REQUIRED SIZES

Redeveloped site Phase 1 sanitary sewer design sheet - PROPOSED SIZES

Redeveloped sites (subject, 1899 Brock Road and surrounding tributaries) sanitary sewer design sheet

Region of Durham Tributary Maps & Correspondence indicating population densities

	ENCT	NG CONDITION	19					-			DESICI	NED BY: S	Ahone	n	DATE: 2022	2-01-14						
SCENARIO 1:	1.200	nd 1805 Picker		xistin	a Conditi	ons Sani	tary Flow	Calcul	ation			ED BY: M										
					3		RESIDENTIA		5540004		COMM	ERCIAL			FLOW (L/s)	1				E	(ISTING S	EWER
STREET	TRIBID	UPSTREAM MH	DOWNSTREAM MH	LOT	AREA	POP. DENSITY	POP. DENSITY	# OF UNITS	POP.	PEAK FLOW	LOT	FLOOR		s floor Rea	RESIDENT	TAL FLOW	COMM. 2.08	TOTAL FLOW	Length	Size	Slope	Full Flow Capacity
		IVIT1		UNIT (ha)	ACCUM. (ha)	(Persons/ ha)	(Persons /Unit)	UNITS		FACTOR, K _H	(Ha)	NDEX	2.08.096	ACCUM. (ha)	NFIL. 0.26 (1/s)	SEWAGE 0.0042 (L/s)	I/s	I/s	L (m)	D (mm)	S (%)	Qcap (L/s)
Canadian Tire Site	4	EX.MH090	EX MH 34-82	(may	(nu)					· H			0.79	0.79	0.20 (20)	0.0012 (0.0)	1.65	1.65	59.8	200	25.5.8	17.9
Subject Site	1	CAP-3	EX.MH4A										0.28	0.28	2. 2.	· · · · · · · · · · · · · · · · · · ·	0.59	0.59	12.0	150	1.00	15.2
Subject Site	<u>a</u>	EX.MH4A	EX.MH3A				-	-			· · · ·	-	0.20	0.28			0.59	0.59	53.9	150		14.9
Subject Site	2	EX.MH5A	EX.MH3A				-		2 Y	1	2	2 C	0.92	0.92	-	2	1.91	1.91	51.8	150		15.0
Subject Site	3	CAP-1	EX.MH3A	- i					÷	-	÷.		0.94	0.94	-	<u>.</u>	1.96	1.96	13.0	150		14.6
Subject Site		EX.MH3A	EX.MH2A				e			· · · · · · · · · · · · · · · · · · ·			0.07	2.15	-		4.46	4.46	85.0	250		43.2
Subject Site		EX.MH2A	EX.MH1A			1			2 - X			2		2.15		2	4.46	4.46	38.1	250	0.45	39.8
Subject Site		EX.MH1A	EX MH 34-82											2.15		6	4.46	4.46	14.0	250	0.0008-000	42.0
Pickering Parkway	13	EX MH 34-82	EX MH 34-83	0.25	0.25									2.94	0.07		6.11	6.17	91.2	250	0.35	35.1
Pickering Parkw ay	14	EX MH 34-83	EX MH 35-5	0.24	0.49									2.94	0.13		6.11	6.23	100.0	250	0.49	41.6
Pickering Parkw ay	15	EX MH 35-5	EX MH 35-6	0.28	0.77					1				2.94	0.20		6.11	6.31	99.8	250	0.48	41.2
BEECHLAWN DR	7	EX MH018	EX MH 35-6	2.89	2.89	60			173	3.8					0.75	2.77		3.52	59.0	200	0.95	31.9
METROPIA	6	EX MH3A	EX MH 35-6	3.65	3.65				672	3.8				;; ;;	0.95	10.73		11.67	38.2	200	0.75	28.4
Pickering Parkway	16	EX MH 35-6	EX MH 35-7	0.22	7.53			-	845	3.8	<u>, s</u>	<u>.</u>		2.94	1.96	13.49	6.11	21.56	82.5	250	0.36	35.6
Pickering Parkway	17	EX MH 35-7	EX MH 35-8	0.22	7.77		-	-	845	3.8				2.94	2.02	13.49	6.11			250		40.3
	_			-						1												
Subject Site	5	EX MH 35-34	EX MH 35-33				-				-		0.42	0.42			0.88		145.7	150		15.2
Notion Road	20	EX MH 35-33	EX MH 35-28	0.20	122200403									0.42	0.05		0.88	0.93	109.4	200	C 2000/0250	44.2
Pickering Parkway Pickering Parkway	19 18	EX MH 35-28 EX MH 35-9	EX MH 35-9 EX MH 35-8	0.22	0.42						<u> </u>			0.42			0.88	0.99	99.7 10.4	250 250		45.2
Ficketing Faikway	10	EX MIT 33-3		0.01	0.45						1.	1		0.42	0.11		0.00	0.55	10.4	250	1.12	02.5
MARSHCOURT DR		EX MH 35-8	EX MH 35-25	0.00	8.20				845	3.8				3.36	2.13	13.49	6.99	22.62	58.7	250	0.41	38.0
ASHFORD DR	8	EX.MH023	EX MH 35-25	1.93	1.93	60			116	3.8		-			0.50	1.85		2.35	73.0	200	0.40	20.7
MARSHCOURT DR	9	SAN MH 35-25	EX MH 35-26	0.29	10.42	60		-	979	3.8				3.36	2.71	15.62	6.99	25.32	72.8	250	0.55	44.1
MARSHCOURT DR	10	SAN MH 35-26	EX MH 35-27	0.60	11.02	60			1014	3.8				3.36	2.86	16.17	6.99	26.03	70.3	250	0.55	44.1
MARSHCOURT DR	11, 12	EX MH 032	EX MH 35-27	17.39	17.39	60		-	1043	3.8			0.67	0.67	4.52	16.60	1.39	22.52	40.5	250	0.27	30.9
EASEMENT		SAN MH 35-27	SAN MH 35-29		28.41				2058	3.6				4.03	7.39	30.91	8.38	46.68	124.0	375	0.16	70.1
NOTION ROAD		SAN MH 35-29	SAN MH 35-30			1	2	-	s	1	ac - 5	.		-	-a			46.68	71.8	375	0.22	82.2
NOTION ROAD		SAN MH 35-30	SAN MH 17															46.68	4.0	375		84.0
ORCHARD ROAD							2					-			-			46.68		750	Available	capacit
																				_	pipe is 1 Total flov	50 L/s.
Design Criteria as per The Average daily per capita flo Average daily per capita flo I = Unit of peak extraneous Q(p) = peak population flow Q(d) = peak design flow (L/ PEAKING FACTOR (Harmo PEAK POPULATION FLOW PEAK DESIGN FLOW, Q(d PIPE ROUGHGNESS, n = (w = 364 L/ w = 180,00 flow when v (L/s) Q(I) s) on; Reside V, Q (p) = 0 W, Q(i) = 1) = Q(p) +	cap/day (Residential) N0 L/GFA hectares/da foundation drains are = peak extraneous fk ntial) M =1 + 14/(4+(P q*P*M / 86400 L / Sec *AL / Sec. Q() L / Sec.	y (commercial&indu NOT connected to ow (L/s) /1000/0.5))	strial)	15		2) M 3) IN IN Co 4) Co 5) ED 6) US 7) Co	NIMUM V AXIMUM V IFILTRATI IFILTRATI INNECTIONS OMMERCI ISTING C SE ACTUA	VELOCIT ON 0.26 I ON 0.52 I ON 0.26 I ON 0.52 I ON 0.55	Y = 0.60 m/s Y = 3.65 m/s /s = 22.5 m3/H /s = 45.0 m3/H /s (local sewers ON INCLUDES C I.D. PIPE SI OR SPACE IND	la/DAY (F s) 1.04 // COMMIT ZE IN mr	s (trunk sev TED DEVE n	vers) ELOPMEN	T	Population De lousing Type Single & Semi fownhouse Apartment-2Bd lousing Type Single Family Semi Detached	m	Use		1 1 1		Total flov the exist on Notion	ing sanit

		PRESENT	
w ity	Full Flow Velocity V	% Ful	NOTES
р)	(m/s)	Q(d)/Qcap	-
, .96	0.57	9.2	
.23	0.86	3.9	
.92	0.84	3.9	
.00	0.85	12.8	
.61	0.83	13.4	
.29 .89	0.88	10.3 11.2	-
.09	0.81	10.6	-
.00	0.00	10.0	
.18	0.72	17.5	
.63	0.85	15.0	
.20	0.84	15.3	
.97	1.02	11.0	
10	0.00		
.40	0.90	41.1	
.68	0.73	60.4	-
.33	0.82	53.6	
.23	0.86	5.8	
.25	1.41	2.1	
.29	0.92	2.2	
.93	1.28	1.6	-
.08	0.78	59.4	
.00	0.70	55.4	
.74	0.66	11.3	
.10	0.90	57.4	
.10	0.90	59.0	
00	0.00	70.0	
.90	0.63	72.9	
.13	0.63	66.6	-
.24	0.74	56.8	
.09	0.76	55.5	
ulate nitar	ed here doe	Rd 750mm dia. s not include weyed south	see note below about capacity*
		0	ODAN.DETECH

Redeveloped site Phase 1 sanitary sewer design sheet – REQUIRED PIPE SIZES (SEE FOLLOWING SHEET FOR PROPOSED)

FIGURE S-4

SCENARIO 2:													-		DBY:S.Ah			DATE 2	022-04-0	6					
	Redev	eloped subject :	site Phase 1 sa	anitary T	sewerd				PIPE	SIZES					DBY:M.AH/ T									PRESENT	
							RESIDENTI	21200 21200			549403340493890 	ERCIAL				FLOW (L				E	XISTING			CONDITION	
STREET	TRIB ID	UPSTREAM MH	DOWINSTREAM MH			POP. DENSITY	POP. DENSITY	#OF UNITS	POP.	PEAK FLOW	AREA		AI	REA			2.08	FLOW	Length	Size	Slope	Full Flow Capacity	Full Flow Velocity	% Full	NOTES
				UNIT (ha)	ACCUM. (ha)	(Persons/ ha)	(Persons /Unit)			FACTOR, K _H	(na)	INDEX	(ha)	ACCUM. (ha)	INFIL. 0.26 (L/s)	SEWAGE 0.0042 (L/s)	Vs	Vs	(m)	D (mm)	S (%)	Qcap (L/s)	V (m/s)	Q(d)/Qcap	
Canadian Tire Site	4	EX.MH090	EX MH 34-82								-	2-	0.79	0.79	9		1.65	1.65	59.8	200	0.30	17.96	0.57	9.2	
Pickering Parkw ay		EX MH 34-82	Prop MH9A	0.52	0.52									0.79	0.14	0.00	1.65	1.78	49.4	250	0.33	34.16	0.70	5.2	required pipe see follow ing sheet
Subject Site	P1	Prop MH1A	Prop MH2A	1.18	1.18		2.5	630	1575	3.66	6		0.17	0.17	0.31	24.24	0.35	24.90	20.7	300	0.87	90.20		27.6	required pipe see follow ing sheet
Subject Site		Prop MH2A	Prop MH3A		1.18				1575			80 25		0.17	0.31	24.24	0.35		44.7			94.25			required pipe see follow ing sheet
Subject Site	P2	Prop MH3A	Prop MH4A		1.18				1575				0.28	0.45	(1) (A. (2004) (A. (2004)	24.24			83.5			85.40	2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	29.8	required pipe see follow ing sheet
Subject Site		Prop MH4A	Prop MH1A-1		1.18			-	1575	3.66		1d	1.50	0.45	0.31	24.24	()		97.4	100000110		71.72	12 10/02/02	35.5	Interim pipe Phase 1
Subject Site Subject Site	P3,2	Prop MH1A-1 Prop MH7A	Prop MH7A Prop MH8A		1.18 1.18				1575 1575			×	1.50	1.95	10-19-10-0	24.24 24.24	4.05		45.4 29.9		/ 10 \$ 0 \$ 1000.	53.84 69.73		53.1 41.0	Interimpipe Phase 1 required pipe see following sheet
Subject Site		Prop MH8A	Prop MH9A		1.10				1575				4 8	1.95		24.24			14.3			82.05			required pipe see following sheet
												2													
Pickering Parkway	-	Prop MH9A	EX MH 34-83	0.25	1.95				1575	3.66		2	+	2.74		24.24			42.0			55.55	0.79	54.8	required pipe see following sheet
Pickering Parkw ay Pickering Parkw ay	15	EX MH 34-83 EX MH 35-5	EX MH 35-5 EX MH 35-6	0.24	2.19			-	1575 1575			-		2.74	0.57	24.24	5.70 5.70		100.0			67.69 67.00	0.96	45.1 45.6	required pipe see follow ing sheet required pipe see follow ing sheet
FICKETING FOLKW Dy	13	EX MIT 35-5	EX MIT 33-0	0.20	2.41				13/3	5.00	1	5); 		2.14	0.04	24.24	3.70	30.30	33.0	300	0.40	07.00	0.55	45.0	required pipe see rollowing sneet
BEECHLAWNDR	-	EX MH018	EX MH 35-6	2.89	2.89	60			173	3.80					0.75	2.77		3.52	59.0	200	0.95	31.97	1.02	11.0	
METROPIA	6	EX MH3A	EX MH 35-6	3.65	3.65				672	3.80		10			0.95	10.73		11.67	38.2	200	0.75	28.40	0.90	41.1	
Pickering Parkw ay	16	EX MH 35-6	EX MH 35-7	0.22	9.23				2420	3.52	2	16	-	2.74	2.40	35.78	5.70	43.88	82.5	300	0.38	59.61	0.84	73.6	required pipe see follow ing sheet
Pickering Parkw ay	17	EX MH 35-7	EX MH 35-8	0.24	9.47		1	90 - P	2420	3.52		15		2.74		35.78			80.0		0.1000000000	65.59	0.93	67.0	required pipe see following sheet
Pickering Parkw ay	18	EX MH 35-8	SAN MH 35-28	0.22	9.69				2420	3.52	2	2		2.74	2.52	35.78	5.70	44.00	110.1	300	0.57	73.01	1.03	60.3	required pipe see follow ing sheet
0.11.101	-	D/ 14105 04	DY 14105-00								-	1	0.40	0.40	0.00		0.00	0.00	445.7	450	1.00	45.00	0.00	5.0	
Subject Site Notion Road	5 20	EX MH 35-34 EX MH 35-33	EX MH 35-33 SAN MH 35-28	0.50	0.50			-	-			-	0.42	0.42	2 0.00		0.88	0.88	145.7 109.4	-		15.23 44.25		5.8 2.3	
				0.00	0.00			1						0.12			0.00								
MARSHCOURT DR		EX MH 35-8	EX MH 35-25		0.00					0.00					0.00	0.00	0.00	0.00	58.9	250	0.41	38.08	0.78	0.0	pipe to remain as cleanout access
ASHFORD DR	8	EX.MH023	SAN MH 35-25	1.93	1.93	60			116	3.80					0.50	1.85		2.35	73.0	200	0.40	20.74	0.66	11.3	
MARSHCOURT DR	9	SAN MH 35-25	SAN MH 35-26	0.29	2.22	60			133	3.80			4 4		0.58	2.13	0.00	2.70	72.8	250	0.55	44.10	0.90	6.1	
MARSHCOURT DR	10	SAN MH 35-26	SAN MH 35-27	0.60	2.82	60			169	3.80		2			0.73	2.70	0.00	3.43	70.3	250	0.55	44.10	0.90	7.8	
MARSHCOURT DR	11, 12	EX MH 032	SAN MH 35-27	17.39	17.39	60			1043	3.79	9	19 22	0.67	0.67	4.52	16.60	1.39	22.52	40.5	250	0.27	30.90	0.63	72.9	
EASEMENT		SAN MH 35-27	SAN MH 35-29	0.00	20.21				1212	3.74	1			0.67	5.25	19.07	1.39	25.71	124.0	375	0.16	70.13	0.63	36.7	
Pickering Parkw ay		SAN MH 35-28	Prop MH 13A	0.01	10.20				2420	3.52	2	20 <u>.</u>		3.16	2.65	35.78	6.58	45.02	14.5	375	0.22	82.24	0.74	54.7	Interim pipe Phase 1
NOTION ROAD		Prop MH 13A	Prop MH 14A	0.25					3904					3.16		54.82			100.0			82.24		78.0	Interim pipe Phase 1
NOTION ROAD		Prop MH 14A	SAN MH 35-29	0.25	10.70				3904	3.34	•	-		3.16	6 2.78	54.82	6.58	64.18	101.8	375	0.22	82.24	0.74	78.0	Interim pipe Phase 1
NOTION ROAD	-	SAN MH 35-29	SAN MH 35-30	0.25	31.16				5117	3.24				3.83	8 8.10	69.54	7.98	85.61	71.8	450	0.22	133.73	0.84	64.0	Interim pipe Phase 1
NOTION ROAD		SAN MH 35-30	SANMH17	0.25					5117					3.83		69.54			4.0			136.73			Interim pipe Phase 1
ORCHARDROAD	-	SANMH17	SAN MH 18		31.41						-	8						85.68	-	750	Availab	le capacity	at Orchard	Rd 750mm dia.	see note below about capacity*
Design Criteria as per Th Average daily per capita f Average daily per capita f I = Unit of peak extraneou Q(p) = peak population fk Q(d) = peak design flow (I) PEAKING FACTOR (Harr PEAK POPULATION FLC PEAK EXTRANEOUS FL	low = 364 low = 180, los flow whe bw (L/s) Q(L/s) mon; Resid DW, Q (p) = OW, Q(i) =	I Municipality of Durh //cap/day (Residentia 000 L/GFA hectares// n foundation drains a) = peak extraneous lential) M =1 + 14/(4++ q*P*M / 86400 L / Set.	am ' <i>Design Specific</i> , I) Iay (commercial&ind re NOT connected to flow (L/s) (P/1000'0.5))	lustrial)	r Sanitary Se	ewers'	2) 3) 4) (5) 6)	AXIMUM NFILTRA NFILTRA Connectio COMMERCE EXISTING	VELOCI TION 0.26 TION 0.52 ns) CIAL 2.08 CONDIT JAL METH	TY = 0.60 m/s TY = 3.65 m/s 5 l/s = 22.5 m3 2 l/s = 45.0 m3 3 l/s (local sew 10N INCLUDE RIC I.D. PIPE RIC I.D. PIPE DOR SPACE IN	/Ha/DAY /Ha/DAY ers) 1.04 S COMMI SIZE IN m	(Foundatio I/s (trunk s TTED DE nm	sewers) VELOPMEI		Housing Type Single & Sem Townhouse Apartment-2E Housing Type Single Family	i Detached 3drm 2	i Use	Dens 3.5 P 3.0 P 2.5 P Dens 60 p	ity /u /u /u ty ersons/ha		pipe is ' Total flo the exis	150 L/s. w calculat	ed here doe ry flowsco	s not include nveyed south	ODAN-DETECH
PEAK DESIGN FLOW, Q PIPE ROUGHGNESS, n								NOWN					1		Semi Detach	CHARD ROAD	as per co		ersons/ha ence wiłl	h Durhan	n Region				CONSULTING ENGINEERS

FILE No. 20266 - Bayfield-1755&1805 Pickering Pkway-MSS-Apr 2022

NOTE: THIS DESIGN SHEET IS PROVIDED FOR REFERENCE ONLY, AND INTENDED TO PROVIDE CONTEXT OF REQUIRED PHASE 1 PIPE SIZES WITH NO FUTURE BUILD OUT.

SCENARIO 2:		E 1 CONDITION											-		DBY: S. Ah			DATE 20	022-04-0	6					
	Redeve	eloped subject :	site Phase 1 sa	anitar	y sewer (design sh	eet PRO	POSE) PIPE	SIZES				CHECKED	BY: M. AH	Awad									
					T 4 DF 4	-	RESIDENTIA		000	DEAL/		RCIAL	Lopoor	FLOOR		FLOW (L		TOTAL		E	XISTING S	enesterner Gesterner		PRESENT	
STREET	TRIB ID	UPSTREAM MH	DOWINSTREAM MH	UNIT	A CCUM.	POP. DENSITY (Persons/	POP. DENSITY (Persons	#OF UNITS	POP.	PEAK FLOW FACTOR	AREA	FLOOR SPACE INDEX	A	REA ACCUM	INFIL.	TAL FLOW	COMM. 2.08 1/s	TOTAL FLOW Vs	Length L	Size D	Skope S	Full Flow Capacity Qcap	Full Flow Velocity V	% Ful	NOTES
				(ha)	(ha)	ha)	/Unit)			K _H			(ha)	(ha)	and the second se	0.0042 (L/s)			(m)	(mm)	(%)	(L/s)	(m/s)	Q(d)/Qcap	1
nadian Tire Site	4	EX.MH090	EX MH 34-82										0.79	0.79			1.65	1.65	59.8	200		17.96	0.57	9.2	
æring Parkw ay		EX MH 34-82	Prop MH9A	0.52	2 0.52	2								0.79	0.14	0.00	1.65	1.78	49.4	675	0.37	511.31	1.43	0.3	pipe sized for full build-out
ject Site	P1	Prop MH1A	Prop MH2A	1.18	3 1.18		2.5	630	1575	3.66			0.17	0.17	0.31	24.24	0.35	24.90	20.7	300	0.87	90.20	1.28		pipe sized for full build-out
oject Site		Prop MH2A	Prop MH3A		1.18				1575	3.66				0.17	0.31	24.24				(i)	1 (1) (27) (27) (20)	94.25	1.33	26.4	pipe sized for full build-out
oject Site		Prop MH3A	Prop MH4A		1.18				1575	3.66			0.28	0.45	0.31	24.24			83.5			85.40	1.21	29.8	pipe sized for full build-out
bject Site		Prop MH4A	Prop MH1A-1		1.18				1575	3.66		-		0.45	0.31	24.24			97.4			71.72	1.01	35.5	Interim pipe Phase 1
bject Site		Prop MH1A-1	Prop MH7A		1.18				1575	3.66			1.50	1.95	0.31	24.24	4.05	and the second data and the se	45.4		-	53.84	0.76		Interim pipe Phase 1
bject Site	-	Prop MH7A	Prop MH8A		1.18		a a		1575	3.66				1.95	0.31	24.24			29.9	2		205.59	1.29		pipe sized for full build-out
oject Site		Prop MH8A	Prop MH9A		1.18				1575	3.66				1.95	0.31	24.24	4.05	28.60	14.3	450	0.72	241.92	1.52	11.8	pipe sized for full build-out
kering Parkw ay		Prop MH9A	EX MH 34-83	0.25	5 1.95	i			1575	3.66				2.74	0.51	24.24	5.70	30.44	42.0	675	0.33	482.88	1.35	6.3	pipe sized for full build-out
kering Parkway		EX MH 34-83	EX MH 35-5	0.24	2.19				1575	3.66				2.74	0.57	24.24	5.70		100.0	675	0.49	588.41	1.64	5.2	pipe sized for full build-out
kering Parkw ay	15	EX MH 35-5	EX MH 35-6	0.28	3 2.47				1575	3.66				2.74	0.64	24.24	5.70	30.58	99.8	675	0.48	582.38	1.63	5.3	pipe sized for full build-out
ECHLAWN DR		EX MH018	EX MH 35-6	2.89	2.89	60	1		173	3.80					0.75	2.77		3.52	59.0	200	0.95	31.97	1.02	11.0	
TROPIA	6	EX MH3A	EX MH 35-6	3.65	5 3.65	6			672	3.80	1		G		0.95	10.73	0:	11.67	38.2	200	0.75	28.40	0.90	41.1	
kering Parkw ay	16	EX MH 35-6	EX MH 35-7	0.22	9.23				2420	3.52				2.74	2.40	35.78	5.70	43.88	82.5	675	0.38	518.17	1.45	8.5	pipe sized for full build-out
kering Parkway	1000000	EX MH 35-7	EX MH 35-8	0.24	21 Jan - 100 (200) (2		6		2420	3.52		-		2.74	2.46	2 S76 KOR S25 C	AL SPREASE	1	80.0		1 10/200401	570.11	1.59		pipe sized for full build-out
kering Parkw ay		EX MH 35-8	SAN MH 35-28	0.22					2420	3.52				2.74	2.52					2		634.63	1.77		pipe sized for full build-out
			1						1	0000866				200002200		19						10000000000000000000000000000000000000	1992/021/24	4:07004 To	
bject Site	5	EX MH 35-34	EX MH 35-33									1	0.42	0.42	0.00		0.88	0.88	145.7	150	1.00	15.23	0.86	5.8	
tion Road	20	EX MH 35-33	SAN MH 35-28	0.50	0.50					2 C				0.42	0.13	а 2	0.88	1.01	109.4	200	1.82	44.25	1.41	2.3	
RSHCOURT DR		EX MH 35-8	EX MH 35-25		0.00					0.00					0.00	0.00	0.00	0.00	58.9	250	0.41	38.08	0.78	0.0	pipe to remain as cleanout acce
HFORD DR	8	EX.MH023	SAN MH 35-25	1.93	3 1.93	60			116	3.80					0.50	1.85	2 4	2.35	73.0	200	0.40	20.74	0.66	11.3	
RSHCOURT DR	9	SAN MH 35-25	SAN MH 35-26	0.29	2.22	60	2		133	3.80			10		0.58	2.13	0.00	2.70	72.8	250	0.55	44.10	0.90	6.1	
ARSHCOURT DR	-	SAN MH 35-26	SAN MH 35-27	0.20					169	3.80					0.30		12	- 12 · · · · · · · · · · · · · · · · · ·				44.10			
RSHCOURT DR	11, 12	EX MH 032	SAN MH 35-27	17.39	17.39	60			1043	3.79			0.67	0.67	4.52	16.60	1.39	22.52	40.5	250	0.27	30.90	0.63	72.9	
SEMENT		SAN MH 35-27	SAN MH 35-29	0.00	20.21				1212	3.74				0.67	5.25	19.07	1.39	25 71	124.0	375	0.16	70,13	0.63	36.7	
										3.52					2.65		j								Interim ning Three 4
kering Parkway TION ROAD		SAN MH 35-28 Prop MH 13A	Prop MH 13A Prop MH 14A	0.01	at an		i i		2420 3904	3.52				3.16 3.16	2.65				14.5 100.0			82.24 82.24	0.74	54.7 78.0	Interim pipe Phase 1 Interim pipe Phase 1
DTION ROAD		Prop MH 14A	SAN MH 35-29				2 2		3904	3.34			+ +	3.16	2.72		50 CAPOLO	Contraction of the second s	100.0	0.0000	5	82.24	0.74	78.0	Interim pipe Phase 1
			Griffin 100-20	0.20	10.70				0004	0.04				0.10	2.70	54.52	0.00	04.10	101.0	0/0	9.22	52.24	0.74	10.0	interimpipe r made r
TION ROAD		SAN MH 35-29	SAN MH 35-30	0.25	5 31.16				5117	3.24				3.83	8.10	69.54	7.98	85.61	71.8	450	0.22	133.73	0.84	64.0	Interim pipe Phase 1
TION ROAD		SAN MH 35-30	SANMH17	0.25	5 31.41				5117	3.24				3.83	8.17	69.54	7.98	85.68	4.0	450	0.23	136.73	0.86	62.7	Interim pipe Phase 1
CHARD ROAD		SANMH 17	SAN MH 18		31.41											00 1		85.68		750	Availabl	e capacity	at Orchard	Rol 750mm dia.	see note below about capacity
Design Criteria as per The verage daily per capita fi = Unit of peak extraneous 2(p) = peak population flow (d) = peak design flow (L PEAKING FACTOR (Harm PEAK POPULATION FLO PEAK EXTRANEOUS FLO	ow = 364 L ow = 180,00 s flow when w (L/s) Q(I) /s) ton; Reside W, Q (p) =	/cap/day (Residentia 00 L/GFA hectares/d 1 foundation drains a = peak extraneous 1 ential) M =1 + 14/(4+(q*P*M / 86400 L / Se	I) lay (commercial&indu re NOT connected to low (L/s) P/1000*0.5))	ustrial)	<i>1</i> 0		2) M 3) II C 4) C	INIMUM IAXIMUM NFILTRA NFILTRA ONNECTION OMMERCIAN	VELOCI TION 0.26 TION 0.52 ns) CIAL 2.08 CONDIT	Y = 0.60 m/s TY = 3.65 m/s 1/s = 22.5 m3/ 1/s = 45.0 m3/ 1/s (kocal sewe ION INCLUDE RIC 1.D. PIPE S	Ha/DAY Ha/DAY rs) 1.04 SCOMMI	Vs(trunks) TTED DEV	ewe <i>r</i> s)	нт <u>н</u>	Population D lousing Type Single & Semi cownhouse partment-2Bo lousing Type Single Family	Detached drm	Use	<u>Densit</u> 3.5 P/ 3.0 P/ 2.5 P/ <u>Densit</u> 60 pe	U U U		the exist	w calculate	y flowscor	s not include weyed south	
PEAK EXTRANEOUS FLC PEAK DESIGN FLOW, Q(PIPE ROUGHGNESS, n =	d) = Q(p) +	Q(i) L / Sec.								OR SPACE IN			í		Semi Detache	d & Duplex			rsons/ha rsons/ha						

Redeveloped site Phase 1 sanitary sewer design sheet – PROPOSED PIPE SIZES TO ACCOMMODATE FUTURE BUILD OUT

* ASSUMED 150 L/s AVAILABLE EXCESS FLOW CAPACITY AT ORCHARD ROAD as per correspondence with Durham Region

FILE No. 20266 - Bayfield-1755&1805 Pickering Pkway-MSS-Apr 2022

FIGURE S-4

Redeveloped sites (subject site, 1899 Brock Road and surrounding tributaries) fully developed sanitary sewer design sheet

CENIADIO 2.		evelopment of s	BUILDOUT C			y sanitar	y design :	sheet						1987 C 2011 N CO // C - 100) by: S. Ah by: M. Al-/			DATEZ	022-04-13						
						F	RESIDENTIA	L			COMME	RCIAL				FLOW (I	L/s)			Ð	ISTING S	SEWER		PRESENT	
STREET	trib id	UPSTREAM MH	DOWNSTREAM MH	838005	ACCUM.	POP. DENSITY (Persons/	POP. DENSITY (Persons	# OF UNITS	POP.	PEAK FLOW FACTOR,	AREA	FLOOR SPACE INDEX		FLOOR REA ACCUM.	NFIL.	TAL FLOW	COMM. 2.08 Vs	TOTAL FLOW Vs	Length L	Size D	Slope S	Full Flow Capacity Qcap	Full Flow Velocity V	% Full	NOTES
				(ha)	(ha)	ha)	/Unit)			К _н			(ha)	(ha)		0.0042 (L/s)			(m)	(mm)	(%)	(L/s)	(m/s)	Q(d)/Qcap	
399 Brock Road	P9	Prop MH16A	EX MH 34-82	29.50	29.50	800			23600	2.58					7.67	255.78	0.00	263.45	112.0	525	1.00	430.06	1.99	61.3	FUTURE PROPOSED
anadian Tire Lands	4	EX.MH090	EX MH 34-82	4.10	4.10	1200			4920	3.25					1.07	67.19	0.00	68.25	59.8	450	0.30	156.16	0.98	43.7	EX PIPE OUTSIDE SCOPE OF WOR
ckering Parkway	13	EX MH 34-82	Prop MH9A	0.25	33.85	2			28520	2.50	-			0.00	8.80	299.32	0.00	308.12	49.4	675	0.37	511.31	1.43	60.3	PROPOSED
chering Farkway	15		пор мпэх	0.25	33.65				20520	2.30	2	-		0.00	0.00	299.32	0.00	300.12	49.4	0/5	0.57	511.51	1.43	00.3	
ıbject Site	P1	Prop MH1A	Prop MH2A	1.18	1.18		2.5	630	1575	3.66			0.17	0.17	0.31	24.24	0.35	24.90	20.7	300	0.87	90.20	1.28	27.6	PROPOSED
ubject Site		Prop MH2A	Prop MH3A		1.18				1575	3.66				0.17	0.31	24.24	0.35	24.90		300			1.33	26.4	PROPOSED
ubject Site	P2	Prop MH3A	Prop MH4A	1.23	6		2.5	1090					0.10	0.27	0.63	1.10 (1970) 1.1	0.56	60.88	83.5	300	0.78	85.40	1.21	71.3	PROPOSED
ubject Site		Prop MH4A	Prop MH5A		2.41				4300	3.31				0.27	0.63	and the second sec	2 CON 2 CON	60.88	47.2	300	5 P.	A 27	1.57		PROPOSED
ubject Site			Prop MH6A	3.11	01/21/01/21		2.5	245.0 25.0 28		3.12			0.07	0.34	1.44		5	91.84	37.6	300			1.65	2022/04/04	PROPOSED
ubject Site			Prop MH7A	2.51			2.5		10045	2.95			0.07	0.41	2.09		0.85	127.51	19.0	450	0.77	250.18	1.57		PROPOSED
ubject Site	P7,P8	Prop MH7A	Prop MH8A	1.45	5		2.5	1208		2.84	5		2.26	2.67	2.46			163.78	29.9	450	0.52		1.29		PROPOSED
ubject Site		Prop MH8A	Prop MH9A	-	9.48			-	13065	2.84				2.67	2.46	155.76	5.55	163.78	14.3	450	0.72	241.92	1.52	67.7	PROPOSED
ckering Parkw av	13	Prop MH9A	EX MH 34-83	0.25	43.58	2 2			41585	2.34				2.67	11.33	408.68	5.55	425.56	41.8	675	0.42	544.76	1.52	78.1	PROPOSED
ckering Parkway		EX MH 34-83	EX MH 35-5	0.24					41585	2.34				2.67	11.39	1. 17 JULY 10 10 10 10 10 10 10 10 10 10 10 10 10	5.55	425.62	100.0	675			1.61		PROPOSED
ckering Parkway		EX MH 35-5	EX MH 35-6	0.28				2	41585	2.34	-			2.67	11.47	408.68	- 17	425.70		675			1.63		PROPOSED
,										,															
ECHLAWN DR	7	EX MH018	EX MH 35-6	2.89	2.89	60			173	3.80					0.75	2.77		3.52	59.0	200	0.95	31.97	1.02	11.0	EX
															1010 - 1010 I										
etropia	20	EX MH3A	EX MH 35-6	3.65	3.65				672	3.80					0.95	10.73		11.67	38.2	200	0.75	28.40	0.90	41.1	EX
			EV MUSE OF					<u>.</u>		0.00					0.00	0.00	0.00	0.00	50.0	250	0.44	38.08	0.70	0.0	ning to rampin as alconout access
ARSHCOURT DR	-	EX MH 35-8	EX MH 35-25	-		· · · ·				0.00					0.00	0.00	0.00	0.00	58.9	250	0.41	00.00	0.78	0.0	pipe to remain as cleanout access
SHFORD DR	8	EX.MH023	SAN MH 35-25	1.93	1.93	60			116	3.80		<u> </u>			0.50	1.85		2.35	73.0	200	0.40	20.74	0.66	11.3	EX
and a second second second for the first second sec																			1.						
ARSHCOURT DR			SAN MH 35-26	0.29		60			133						0.58			2.70		108.127.220.271			0.90		EX
ARSHCOURT DR	10	SAN MH 35-26	SAN MH 35-27	0.60	2.82	60			169	3.80					0.73	2.70	0.00	3.43	69.5	250	0.55	44.10	0.90	7.8	EX
	4.4	D/ 141000	041110-07-07	47.05					40.17				0.07			10.51				0.55	0.07	00.00		70.0	2
ARSHCOURT DR	11	EX MH 032	SAN MH 35-27	17.39	17.39	60			1044	3.79			0.67	0.67	4.52	16.61	1.39	22.52	40.5	250	0.27	30.90	0.63	72.9	EX
ASEMENT		SAN MH 35-27	SAN MH 35-29	-	20.21			0	1213	3.74	-			0.67	5.25	19.08	1.39	25.72	124.0	375	0.16	70.13	0.63	36.7	outlet to Region Trunk on Notion Ra
		2. 0 0 0 21	2		20.21				.2.10	0.74				5.07	0.20	10.00	1.00	20.72	,24.0	0/0	5.15		0.00		
ckering Parkway	16	EX MH 35-6	EX MH 35-7	0.22	50.86				42430	2.33	-		\vdash	2.67	13.22	415.50	5.55	434.28	82.5	750	0.38	686.27	1.55	63.3	PROPOSED
ckering Parkway			EX MH 35-7 EX MH 35-8	0.22					42430	2.33				2.67	13.22			434.28	82.5	100000			1.55		PROPOSED
ckering Parkway			EX MH 35-28	0.24					42430					2.67	13.34	1 N N N N N N N N N N N N N N N N N N N			-	750			1.90	1	outlet to Region Trunk on Notion R
				5.22	51.52					2.00				2.07	10.01	110.00	0.00				5.01	0.0.01	1.00		
Design Criteria as per Av erage daily per capita Av erage daily per capita = Unit of peak extraner Q(p) = peak population 1 Q(d) = peak design flow PEAKING FACTOR (Ha PEAK POPULATION FI PEAK EXTRANEOUS F	a flow = 36 a flow = 18 ous flow v flow (L/s) v (L/s) armon; Re LOW, Q (p LOW, Q (p	64 L/cap/day (Řeside 80,000 L/GFA hectar when foundation drai Q(I) = peak extrane esidential) M =1 + 14. b) = q*P*M / 86400 L	ential) res/day (commercia ns are NOT connec ous flow (L/s) /(4+(P/1000 ⁴ 0.5))	al&indust	trial)	•	/Ha	2) MA 3) INF Co 4) CC 5) EX 6) US	NIMUM V XIMUM V FILTRATI FILTRATI nnections MMERCI ISTING (E ACTUA	AL 2.08 I/s (loc CONDITION INC AL METRIC I.D	65 m/s 2.5 m3/H 5.0 m3/H al sewers CLUDES	a/DAY (Fou) 1.04 l/s (COMMITTE	trunk sewe D DEVEL	ers)	Hous Sing Towr Apar Hous Sing	ulation Density sing Type le & Semi Detac nhouse tment-2Bdm sing Type le Family		se	Density 3.5 P/u 3.0 P/u 2.5 P/u Density 60 pers					0	ODAN-DETECH

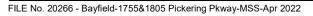
FIGURE S-5

Hello Mark,

I have attached some maps showing the approximate areas. If you can get more precise areas from your base, please use them, otherwise just use the numbers below:

- Map 1 North +/- 30 ha @ 800 people/ha = 24,000
- Map 1 South +/- 14 ha @ 1200 people/ha = 16,800
- Map 2 South approved application for 130 units x 3 people per unit = population of 390 (connection at Beachlawn)

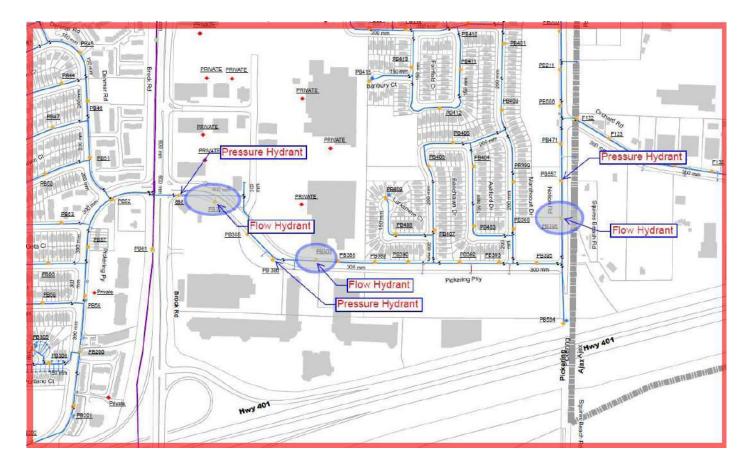
Be sure that the pipe on Pickering Parkway is sized to be at no more than 80% capacity based on these populations.


Let me know if you have any questions.

Thanks,

Aaron Christie, P.Eng. | Manager, Engineering Planning & Studies Works Department The Regional Municipality of Durham Aaron.Christie@durham.ca | 905-668-7711 extension 3608 | durham.ca My pronouns are he/his

f in 💟 🖸

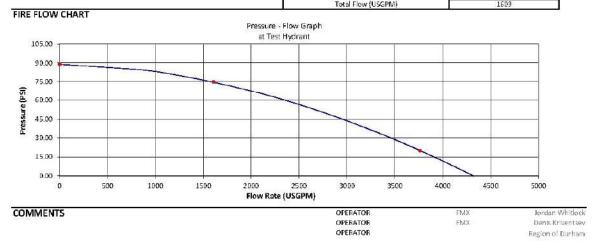


THE ODAN/DETECH GROUP INC.

APPENDIX C

Location of hydrant flow tests Hydrant flow tests

Location of hydrant flow tests



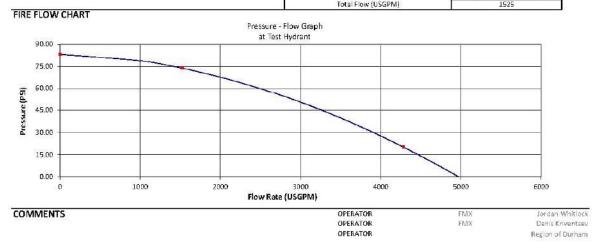
Fire Flow Testing Report

000	FLOWME	TRIX	Fire Flow Testing Repo				
SEG	INDU-TE PROCES		Residual Hydrant #	PB557			
	WESTCA	.N	NFPA Colour Code	BLUE			
			DATE TIME	September 8, 2021 10:30 AM			
			ADDRESS	1972 Notion Rd Pickering, ON			
			SIZE-Inches/mm MATERIAL	12 300 PVC			
RESIDUAL HYDRANT INFO. HYDRANT # N.F.P.A. COLOUR CODE	PB557 BLUE		CONTACT INFO	The Odan/Detech Group Inc. Mark Harris C: (905) 632-3811 ext.122			
STATIC PRESSURE RESIDUAL PRESSURE	88.9	iaq Iaq		E: mark@odandetech.com			
PRESSURE DROP % PRESSURE DROP	14.3 15.0	psī % psī					
Flow on Water Main At Test Hydrant -	20 psi	3766 USGPM					

FLOW HYDRANT(S) INFO.

HYDRANT ASSET ID	HYD. # PORTS	OUTLET DIAMETER (INCHES)	NOZZLE COEFFICIENT	DIFFUSER TYPE	DIFFUSER	PITOT READING (psi)	PITOT FLOW (USGPM)	FLOW METER (USGPM)
PB396		2.5	Round	LPD250	0.90	28.4	804	0
	2	2.5	Round	LPD250	0.90	28.4	204	0
				Contraction of the second	Total Flow (USGPM)	1609	0
					Total Flow (HCCDMA	i.	16	0.0

OD G_FireFlowTestingReport_Pickering


'If we don't measure it, how do you manage it?'

Fire Flow Testing Report

000			Fire Fi	ow resting Report
SLE	INDU-TE PROCES	s	Residual Hydrant #	PB386
	WESTCA	IN	NFPA Colour Code	BLUE
			DATE	September 8, 2021
			TIME	10:45 AM
			ADDRESS	1735 Pickering Pkwy
				Pickering, ON
			SIZE-inches/mm	12 300
			MATERIAL	PVC
RESIDUAL HYDRANT INFO.			CONTACT INFO	The Odan/Detech Group Inc.
HYDRANT#	PB386			Mark Harris
N.F.P.A. COLOUR CODE	BLUE			C: (905) 632-3811 ext.122
				E: mark@odandetech.com
STATIC PRESSURE	83.2	per		
RESIDUAL PRESSURE	73.8	psi		
PRESSURE DROP	9.3	psi		
% PRESSURE DROP	11.2	% psī)(<u> </u>
Flow on Water Main At Test Hydrant -	2D psi	4283 USGPM		

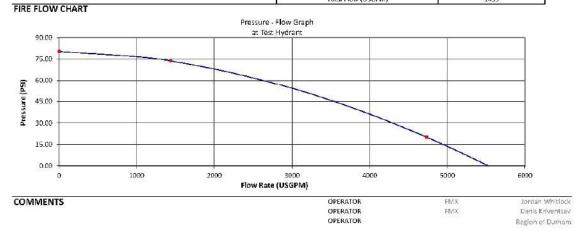
FLOW HYDRANT(S) INFO.

HYDRANT	HYD.	OUTLET	NOZZLE	DIFFUSER	DIFFUSER	PITOT	PITOT	FLOW
ASSET	#	DIAMETER	COEFFICIENT	TYPE	COEFFICIENT	READING	FLOW	METER
ID	PORTS	(INCHES)	Bears and a second second	Cleborole Ch	12 12	(psi)	(USGPM)	(USGPM)
PB309		2.5	Round	LPD250	0.90	25.5	762	Ð
		2.5	Round	LPD250	0.90	25.5	762	D
					Total Flow (USGPM	}	1525	0
				1	Tabal Class (I) CONT		10	25

 $ODG_FireFlowTestingReport_Pickening$

"If we don't measure it, how do you manage it?"

FLOWMETRIX


1

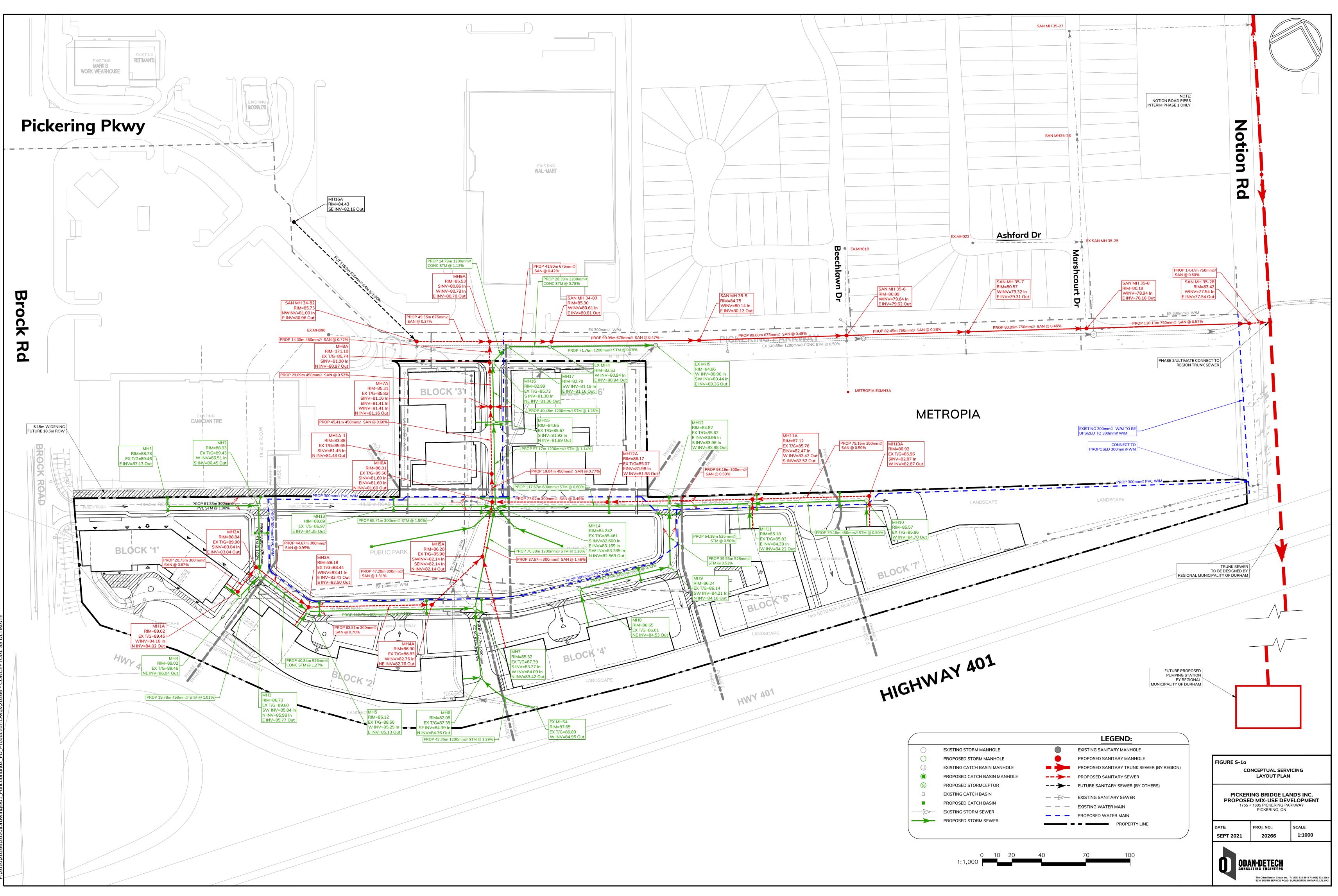
Fire Flow Testing Report

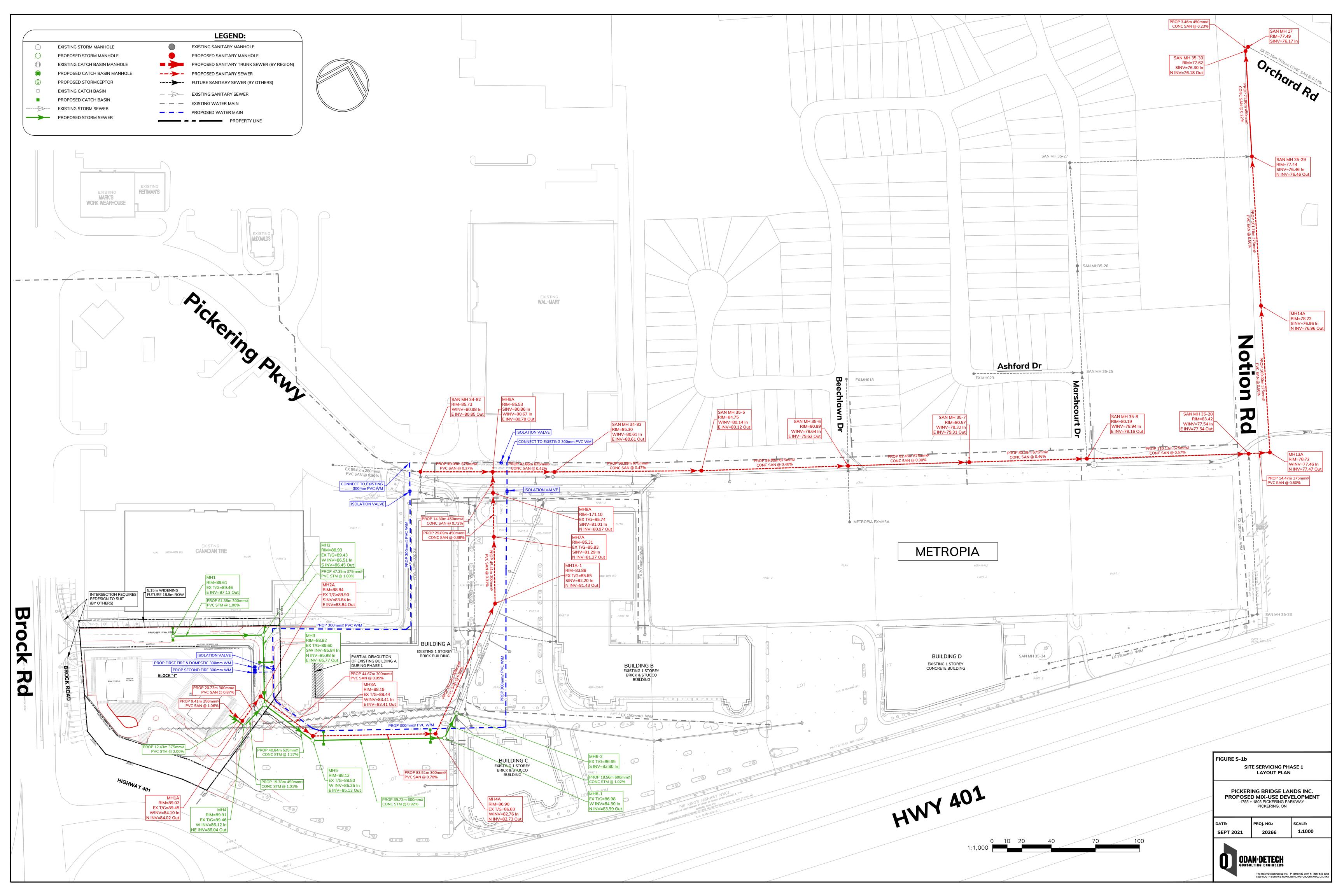
S.L.	INDU-TEC PROCESS		Residual Hydrant #	PB888				
	WESTCAI	4	NFPA Colour Code	BLUE				
			DATE	September 8, 2021				
			TIME	11:00 AM				
			ADDRESS	1785 Pickering Pkwy				
				Pickering, ON				
			SIZE-inches/mm	12 300				
			MATERIAL	DV9				
RESIDUAL HYDRANT INFO.	55000		CONTACT INFO	The Odan/Detech Group Inc.				
HYDRANT# N.F.P.A. COLOUR CODE	PB668 BLUE			Mark Harris C: (905) 632-3811 ext 122				
				E: mark@odandetech.com				
STATIC PRESSURE	60.3	psi		3				
RESIDUAL PRESSURE	73.7	psi						
PRESSURE DROP	6.7	psi		S				
% PRESSURE DROP	6.3	% psi						
Flow on Water Main At Test Hydrant	20 psi	4735 USGPM						

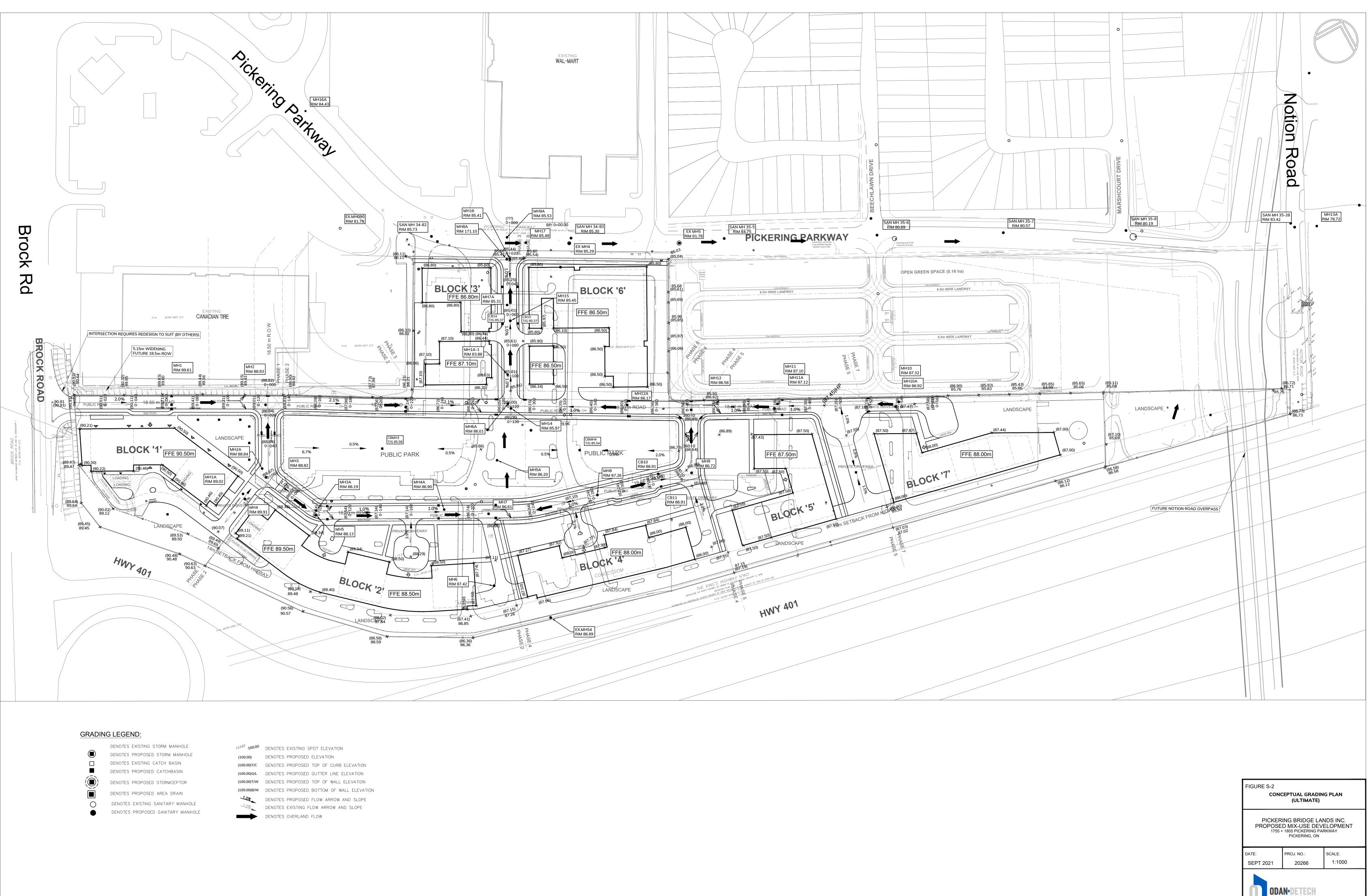
FLOW HYDRANT(S) INFO.

HYDRANT ASSET ID	HYD. # PORTS	OUTLET DIAMETER (INCHES)	NOZZLE COEFFICIENT	DIFFUSER TYPE	DIFFUSER	PITOT READING (psi)	PITOT FLOW (USGPM)	FLOW METER (USGPM)
00.202		2.5	Round	LPD250	0.90	22.7	720	0
PB308	2	2.5	Round	LPD250	0.90	22.7	720	0
					Total Flow (USGPM)		1439	0
					Total Flow (USGPM)		14	139

ODIG_FireFlowTestingReport_Pickering

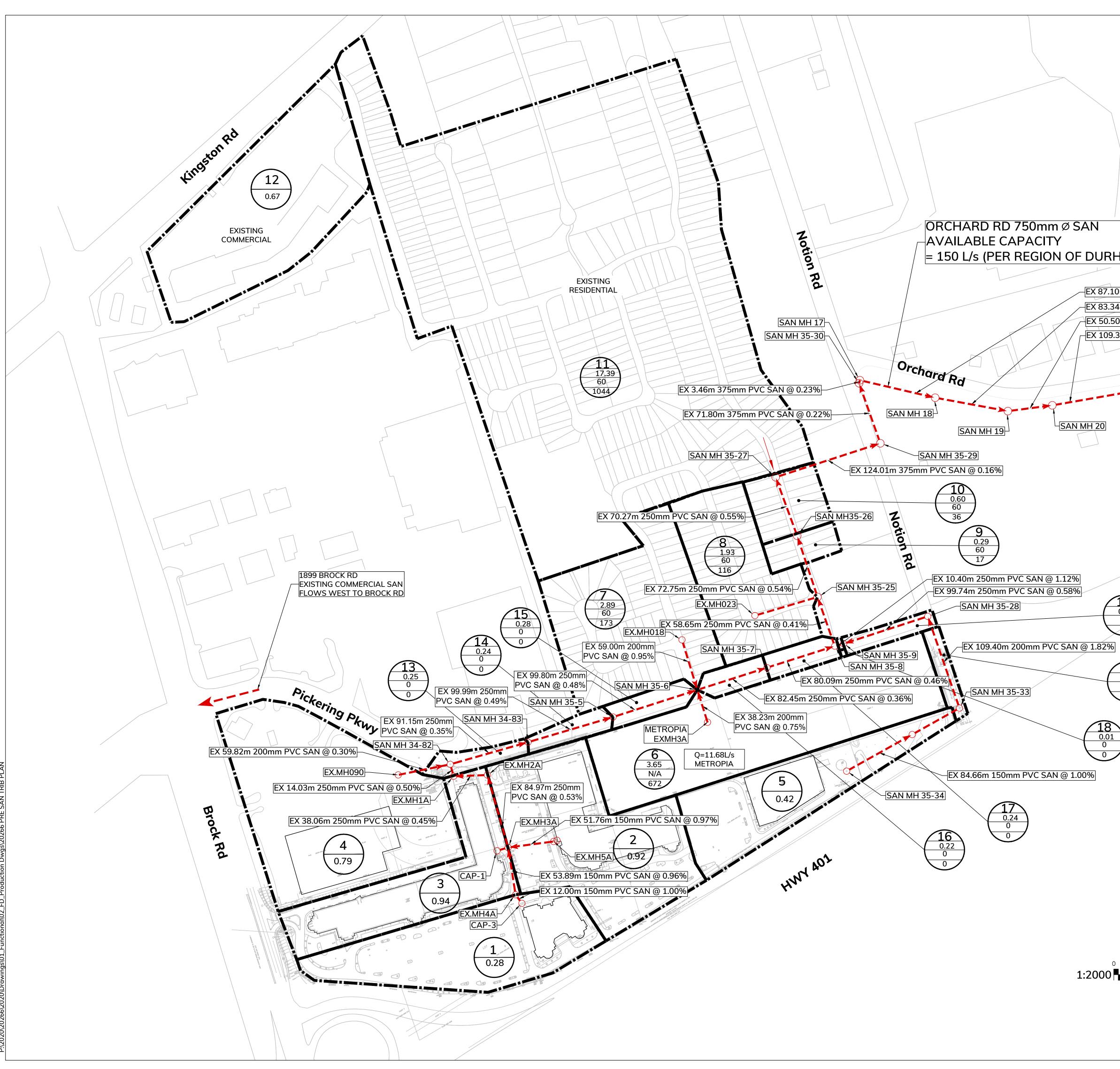

"If we don't measure it, how do you manage it?"

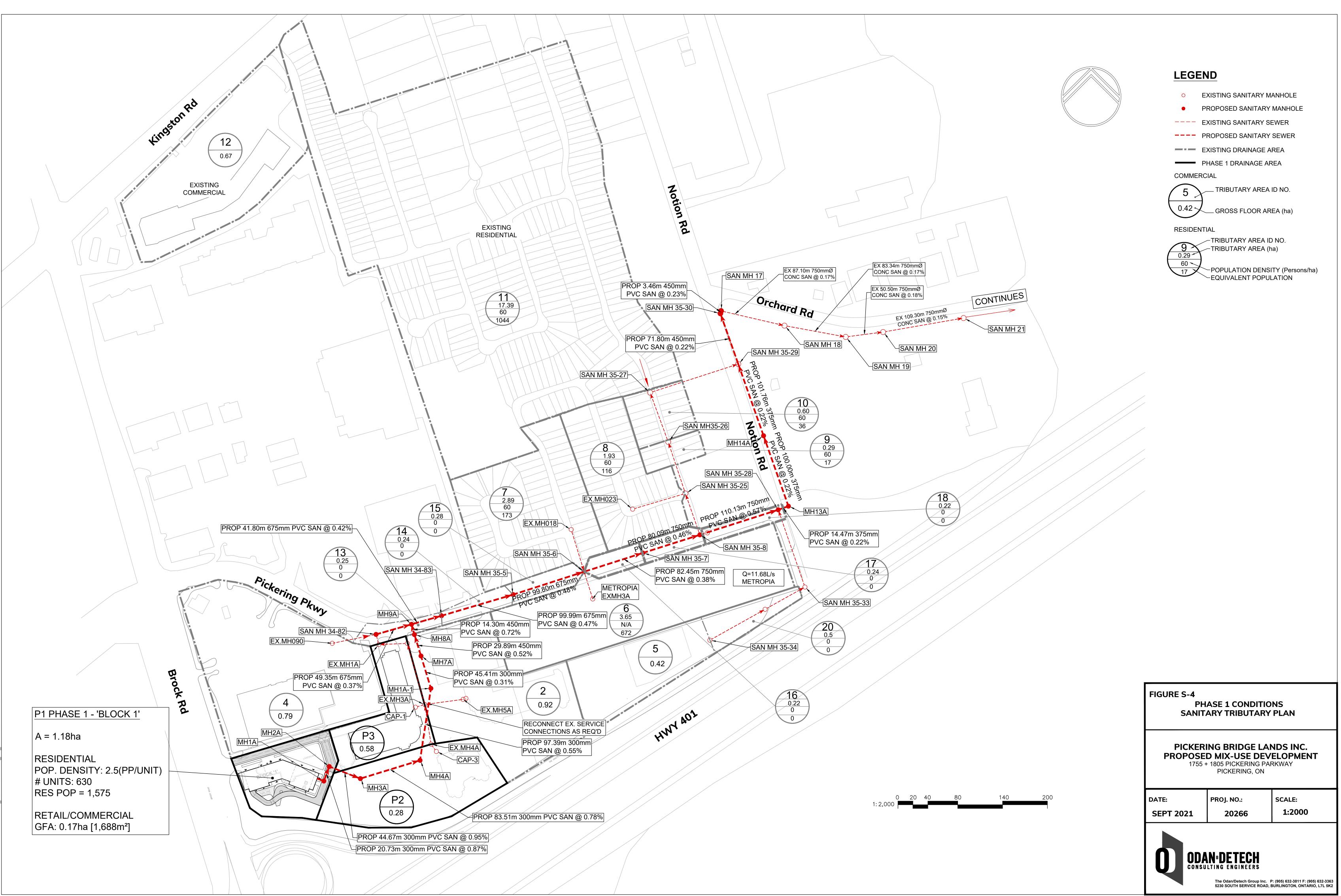

APPENDIX D

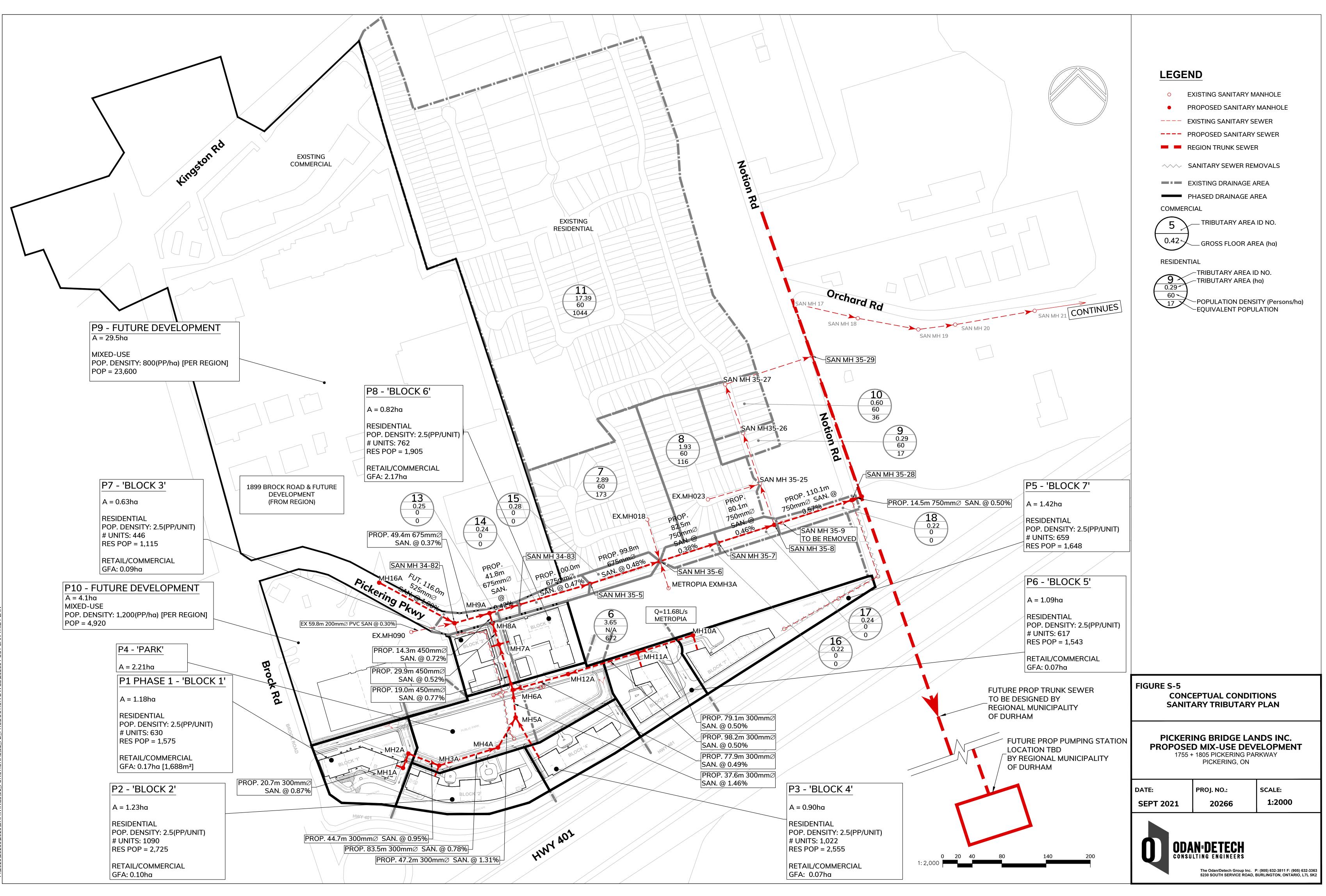

XPSWMM models and output upon request

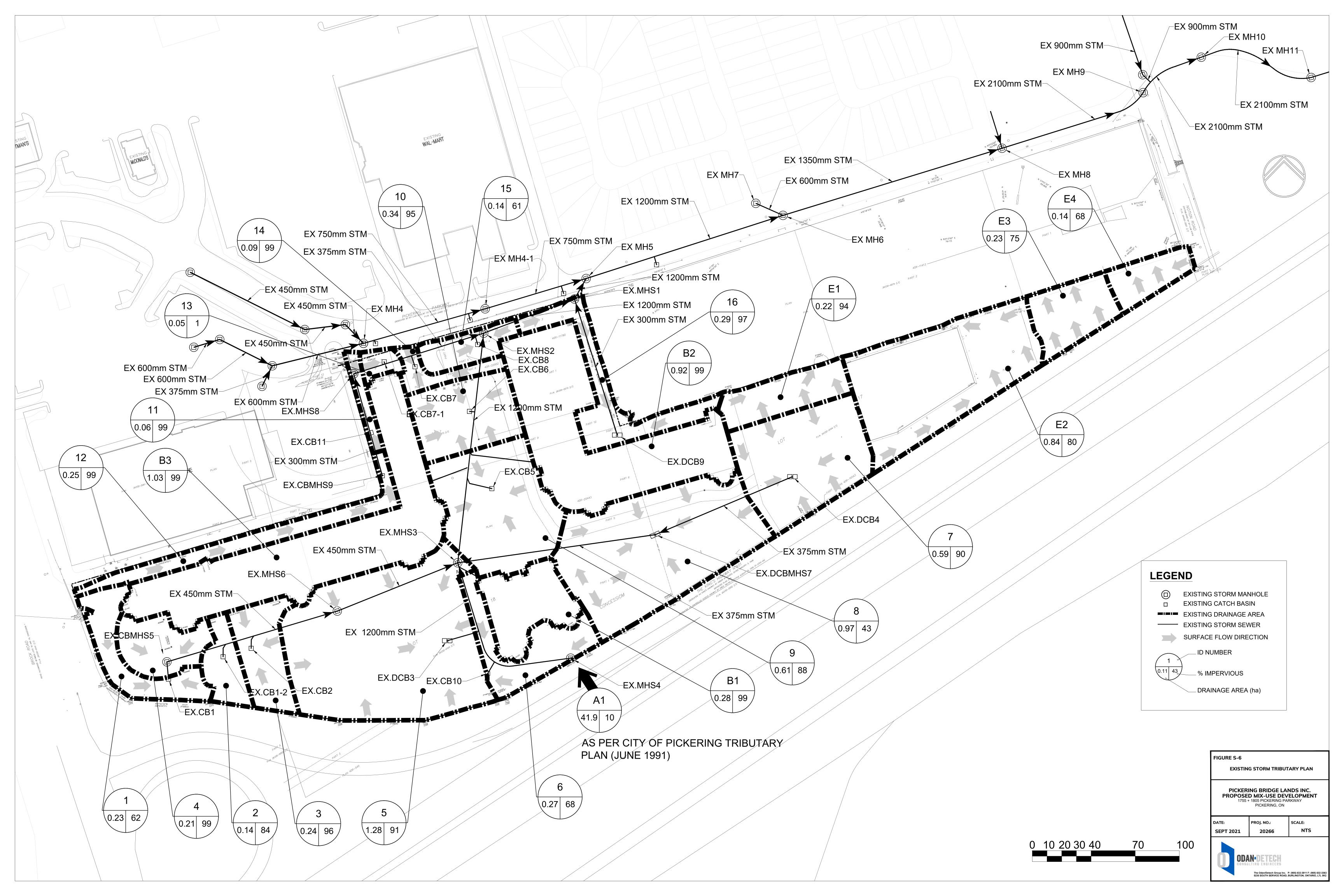
APPENDIX E

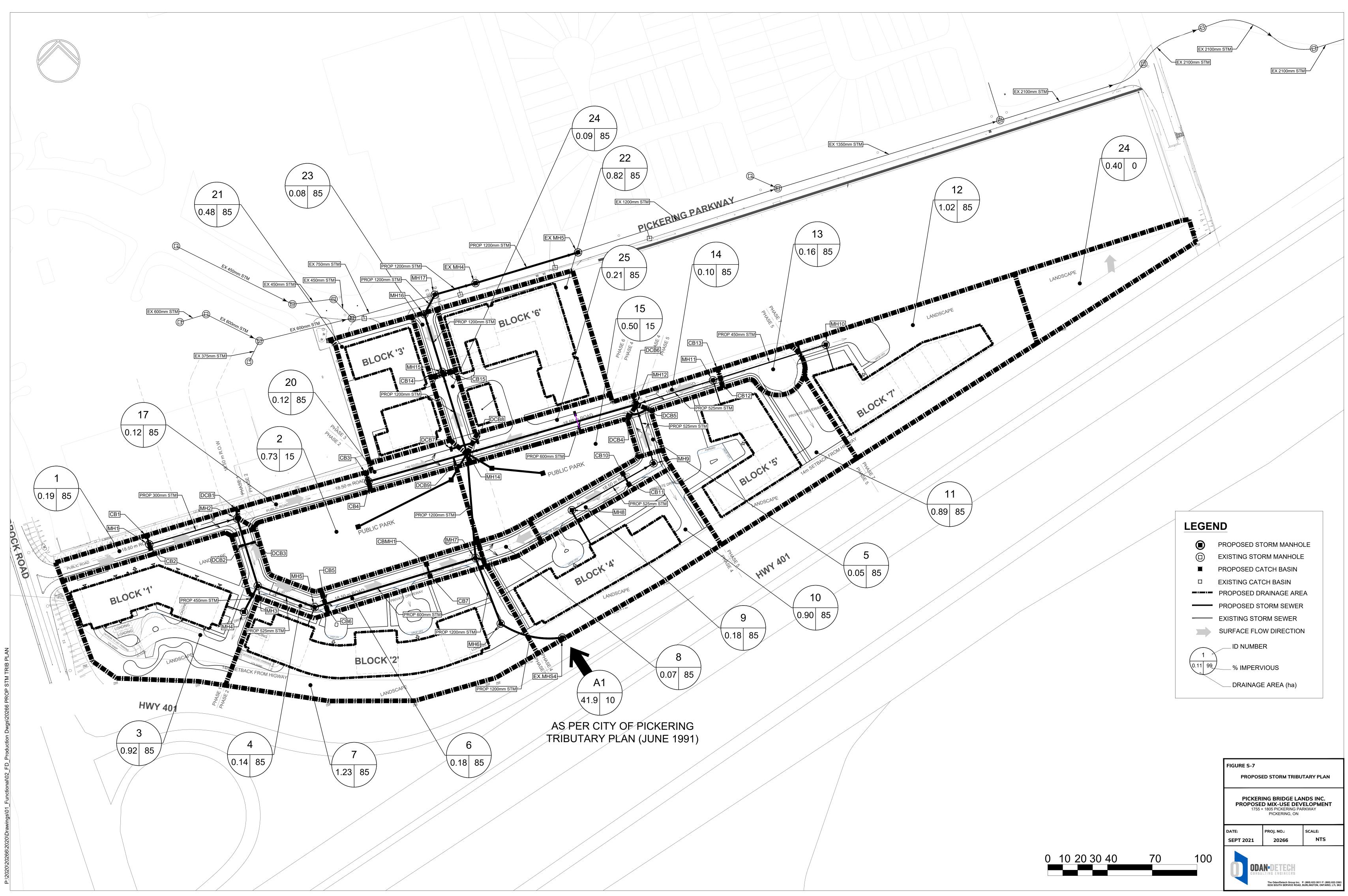
- Figure S-1a Conceptual Servicing Layout Plan
- Figure S-1b Conceptual Phase 1 Servicing Plan
- Figure S-2 Conceptual Grading Plans
- Figure S-3 Existing conditions Sanitary Tributary Plan
- Figure S-4 Phase 1 conditions Sanitary Tributary Plan
- Figure S-5 Conceptual conditions Sanitary Tributary Plan
- Figure S-6 Existing Storm Drainage Boundary Plan
- Figure S-7 Conceptual Storm Tributary Area Plan




The Odan/Detech Group Inc. P: (905) 632-3811 F: (905) 632-33 5230 SOUTH SERVICE ROAD, BURLINGTON, ONTARIO, L7L 5




13.6 ² .100.00	DENOTES EXISTING SPOT ELEVATION
(100.00)	DENOTES PROPOSED ELEVATION
(100.00)T/C	DENOTES PROPOSED TOP OF CURB ELEVATION
(100.00)G/L	DENOTES PROPOSED GUTTER LINE ELEVATION
(100.00)T/W	DENOTES PROPOSED TOP OF WALL ELEVATION
(100.00)B/W	DENOTES PROPOSED BOTTOM OF WALL ELEVATIO
1.0%	DENOTES PROPOSED FLOW ARROW AND SLOPE
1.0%	DENOTES EXISTING FLOW ARROW AND SLOPE
	DENOTES OVERLAND FLOW



HAM) 10m 750mm CONC SAN @ 0.17% 34m 750mm CONC SAN @ 0.17% 50m 750mm CONC SAN @ 0.18%		E	LISTING SANITARY M XISTING SANITARY SE XISTING DRAINAGE A LIAL TRIBUTARY AREA GROSS FLOOR AR	EWER REA ID NO. EA (ha) D NO. ha) ITY (Persons/ha)
2.30m 750mm CONC SAN @ 0.15% SAN MH 21				
		SANI PICKERI	(ISTING CONDITION TARY TRIBUTARY	Y PLAN NDS INC.
	200	DATE: SEPT 2021	D MIX-USE DEV 1805 PICKERING PAF PICKERING, ON PROJ. NO.: 20266 N-DETECH LTING ENGINEERS The Odan/Detech Group Inc. F 5230 SOUTH SERVICE ROAD, E	

