

REPORT

Hydrogeological Investigation

Lebovic - Seaton Whitevale East Development, Pickering, Ontario

Submitted to:

1133373 Ontario Inc. (Lebovic Enterprises)

P.O. Box 1240 Stouffville, Ontario L4A 8A2 Attention: Mr. Lloyd Cherniak

Submitted by:

Golder Associates Ltd.

100 Scotia Court, Whitby, Ontario, L1N 8Y6, Canada

20140088 (2000)

September 29, 2020

Distribution List

E-Copy - 1133373 Ontario Inc. (Lebovic Enterprises)

E-Copy - Golder Associates Ltd.

Table of Contents

1.0	INTR	ODUCTION1
2.0	BAC	KGROUND1
	2.1	Previous Reports1
	2.2	Site and Project Description1
	2.3	Topography, Drainage and Natural Heritage Features2
	2.4	Surficial Geology
	2.5	Water Well Records
3.0	SITE	CHARACTERIZATION4
	3.1	Drilling and Monitoring Well Installation4
	3.2	Subsurface Soil Conditions
	3.2.1	Topsoil5
	3.2.2	Fill / Re-worked Soils5
	3.2.3	Glacial Till
	3.2.4	(SM) Silty Sand5
	3.2.5	(SP) Sand6
	3.2.2	(ML) Silt
	3.3	Water Level Monitoring
	3.4	Hydraulic Testing
	3.5	Guelph Permeameter Testing7
	3.6	Summary8
4.0	TEMF	PORARY CONSTRUCTION DEWATERING PERMITTING9
5.0	HYDF	ROLOGIC WATER BALANCE11
	5.1	Methods11
	5.2	Water Balance Parameters12
	5.3	Water Balance Results13
	5.3.1	Pre-Development Condition

	5.3.2	Post-Development Condition	13
	5.3.3	Post-Development Condition Including Mitigation	14
6.0	DISCUS	SION	15
7.0	CLOSUR	RE	17
8.0	REFERE	NCES	19

TABLES

Table 1: Summary of Estimated Hydraulic Conductivity	6
Table 2: Summary of Estimated Infiltration Rates	8
Table 3: Pre-Development Average Annual Water Balance Results	13
Table 4: Post-Development Average Annual Water Balance Results	14
Table 5: Mitigated Post-Development Average Annual Water Balance Results	15

FIGURES

Figure 1 – Key Plan
Figure 2 – Borehole Location Plan
Figure 3 – Quaternary Geology Map
Figure 4 – Ministry Recorded Wells
Figure 5 – Groundwater Flow
Figure 6 – Section A - A'
•

APPENDICES

APPENDIX A Important Information and Limitations of this Report

APPENDIX B Supporting Documentation

APPENDIX C MECP Water Well Records

APPENDIX D

Method of Soil Classification Abbreviations and Terms Used on Records of Boreholes and Test Pits List of Symbols Record of Borehole Sheets Plasticity Chart Grain Size Analysis

APPENDIX E Water Level Measurements and Hydraulic Conductivity Testing

APPENDIX F

Water Balance Results

1.0 INTRODUCTION

Golder Associates Ltd. (Golder) has been retained by 1133373 Ontario Inc. (Lebovic Enterprises) to conduct hydrogeological and geotechnical investigations for the proposed Lebovic – Seaton Whitevale East Development in Pickering, Ontario (the Site), at the location shown on the Key Plan (see Figure 1). This report provides the results of the hydrogeological investigation only; the results of the geotechnical investigation are submitted under separate cover.

The purposes of this hydrogeological investigation are to assess the existing hydrogeological conditions, to prepare a preliminary pre- and post-development water budget assessment including the use of proposed low impact development (LID) measures and to assess the potential hydrogeological impacts of development.

The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location, elevation, or if the project is not initiated within eighteen months of the date of the report, Golder should be given an opportunity to confirm that the recommendations are still valid. In addition, this report should be read in conjunction with the attached "*Important Information and Limitations of This Report*" which are included in Appendix A. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report.

2.0 BACKGROUND

2.1 **Previous Reports**

Stantec Consulting Limited (Stantec) previously completed a water taking report and discharge plan in support of proposed extension and servicing of Peter Mathews Drive. The accompanying road allowance is located just west of the Site, except for a small portion in the southwest corner of the Site. The results of the investigation were provided in the following report:

Stantec Consulting Limited. (November 1, 2018). "Water Taking Report and Discharge Plan, Peter Mathews Drive, Seaton Community Assignment 6, Pickering, Ontario". (Stantec 2018). Reference No. 122450165. Prepared for North Pickering Community Management Inc.

The investigation included three boreholes (BH14, BH15A and BH16) drilled on the Site and others near the Site, at the locations shown on Figure 2, Borehole Location Plan. Golder's 2020 geotechnical investigation, referenced below, was carried out concurrently with the hydrogeological field investigation discussed in this report (Golder 2020).

 Golder Associates Ltd. (August 2020). "Geotechnical Investigation, Lebovic – Seaton Whitevale East Development, Pickering, Ontario" (Golder, 2020).

The locations of the boreholes drilled as part of the geotechnical investigation are also shown on Figure 2. The factual subsurface data and information in the previous reports were reviewed and pertinent data were used in preparation of this report.

2.2 Site and Project Description

The Site is comprised of an irregular shaped Draft Plan area, situated east of Sideline 22 and south of Whitevale Road in Pickering, Ontario, as shown on Figure 1. Other draft plan areas owned by Lebovic Enterprises are present to the northwest of Whitevale Road and to the west of Sideline 22 (see Figure 2) but are excluded from

this study. The Site consists of undeveloped agricultural lands and cultivated farmlands. Surrounding the Site are agricultural lands to the north, south, east, and west.

Details of the proposed development (including site grading, the development layout and servicing depths) have been provided to Golder and are shown in the drawings referenced as follows:

- Proposed Draft Plan, Drawing No. WEDP-1 entitled "1133373 Ontario Inc., Whitevale East SP-2015-05" prepared by GHD, dated February 2019.
- Drawing No. GR-01 entitled "Functional Grading Plan, 1133373 Ontario Inc., Whitevale East (SP-2015-05, A-10-15)" prepared by Cole Engineering Ltd., dated May 2019.
- Drawing No. SER-1 entitled "Functional Servicing Plan, 1133373 Ontario Inc., Whitevale East (SP-2015-05, A-10-15)" prepared by Cole Engineering Ltd., dated May 2019.
- Figure No. LANDUSE-2 entitled "Post-Development Land Use Plan, 1133373 Ontario Inc., Seaton Whitevale East" dated February 2019.
- Topographic Plan Illustrating "Part of Lots 22 and 23 and Part of the Road Allowance Between Lots 22 and 23, Concession 4, City of Pickering, Regional Municipality of Durham" prepared by J.D. Barnes Limited, dated January 5, 2017.

Copies of these drawings are provided in Appendix B. Based on the proposed draft plan of subdivision prepared by GHD, it is understood that the proposed development will include detached and semi-detached dwellings and townhouses, open spaces, accompanying roads and a storm water management facility (SWMF) pond to the southeast of the Site. Based on the Grading Plans prepared by Cole Engineering Ltd. (Cole), it is understood that grade changes of up to about 6 m are anticipated as part of Site development.

2.3 Topography, Drainage and Natural Heritage Features

Based on the topographic survey prepared by J.D. Barnes Ltd. dated January 5, 2017 (see Appendix B), the Site is generally of a gentle slope that gradually dips from the north toward the south and east. Ground surface elevations are shown to range from Elevation 183 metres above sea level (masl) in the northwest portion of the Site to Elevation 156 masl in the southeast portion of the Site. Surface water run-off from the Site is expected to ultimately drain toward Ganatsekiagon Creek located off-site to the east and toward two tributaries of Ganatsekiagon Creek located off-site to the south (see Figure 2).

According to the Ministry of Natural Resources and Forestry (MNRF; http://www.gisapplication.lrc.gov.on.ca) and as shown on Figure 2, two unevaluated wetland areas are mapped off-site in the natural heritage system lands near to the southwest and southeastern boundaries of the Site. The wetland to the southwest is located, at its closest approach, approximately 30 m southwest of the Site; in the post-development plan it will be located on the far (west) side of Peter Matthews Drive relative to the Site. The wetlands to the southeast are generally located on the far (east) side of Ganatsekiagon Creek relative to the Site.

Based on the on-line Ontario Flow Assessment Tool from the Ministry of Natural Resources and Forestry (MNRF; http://www.gisapplication.lrc.gov.on.ca), the Site is located in the Ganatsekiagon Creek watershed. Ganatsekiagon Creek drains southward and at its closest approach is located approximately 45 m east of the Site. Two tributaries to Ganatsekiagon Creek are present to the west of the main creek in the area of the Site (see Figure 2). The shortest and closest tributary to the Site drains southeastward (see Figure 2). During all monitoring events (i.e., June 5, July 25 and August 5, 2020), Golder observed part of this tributary to be flowing and part of it was dry.

2.4 Surficial Geology

The Site is within the physiographic region of southern Ontario known as the Iroquois Plain (Chapman and Putnam, 1984). According to published mapping (Quaternary Soils, Geological Survey of Canada/Ontario Geological Survey, 2016) and as presented in Figure 3, the surficial geology at the Site is mainly comprised of stone-poor, sandy silt- to silty sand-textured till, known as the Newmarket Till. Modern alluvial deposits consisting of clay, silt, sand and gravel are reported to be present overlying the till off-Site to the south associated with the tributary of Ganatsekiagon Creek floodplain area.

2.5 Water Well Records

Water well records were obtained from the Ministry of the Environment, Conservation and Parks (MECP). Approximately forty-five water well records were reported within 500 m of the Site, and their locations are shown on Figure 4, Ministry Recorded Wells. A table summarizing the water well record data is provided in Appendix C, MECP Recorded Wells. It is noted that historically there was not a requirement to register dug wells with the MECP, and they can be under-represented in the water well record database.

Fourteen of the records were records of well abandonment/not used and three wells had no information provided which are not considered further. The remaining twenty-eight wells were constructed between 1952 and 2015 and include seventeen observation wells/test holes, including two test holes recorded on the southwest boundary of the Site (nos. 7260789, 7260790), and eleven water supply wells. The depths of the observation wells/test holes ranged from 7.6 m to 18.3 m, with an average of 11.0 m. The observation wells/test holes were generally reported to encounter units of silt and sand that are inferred to be silt and sand till. The water supply wells are comprised of:

- One shallow bored water well with well depth 7.9 m below ground surface (mbgs);
- Four deep bored water wells with well depths ranging from 11.6 mbgs to 20.7 mbgs, including one bored water well record recorded within approximately 25 m of the northwest corner of the Site (no. 4603704).
- Six deep drilled wells, with well depths ranging from 17.1 mbgs to 45.7 mbgs.

The subsurface conditions at the water supply wells were reported to be comprised of thin surficial topsoil overlying clay, silt and sand units that sometimes contained gravel and are interpreted as glacial till, which commonly contained confined sand or gravel layers/units or was underlain by confined sand or gravel units. Bedrock was encountered in one record at a depth of 82.6 mbgs. These various confined layers are inferred to be the primary aquifers utilized by the private wells, although some use of the glacial till unit was inferred. The sand and gravel units were encountered overlying/underlying/within the till at depths ranging from 7.9 mbgs to 45.7 mbgs, and with thicknesses ranging from approximately 1 m to 5 m.

Based on the water wells records and observations during our field program, active private well use may be present off-Site associated with an existing farm and rural residences to the west, northwest and northeast of the Site within 100 to 400 m Golder did not observe any private wells on the Site during site visits. The off-Site rural residences are not inferred to be in a hydraulically downgradient direction from the Site. One shallow bored private well (No. 4603704, reportedly used for stock watering) is indicated to be present approximately 25 m in a hydraulically upgradient location from the Site. This bored well was not observed by Golder, but if present, is

located on lands owned by the proponent. Therefore, any active use of this bored well is expected to cease, and the well will be abandoned as development of the Site progresses.

3.0 SITE CHARACTERIZATION

3.1 Drilling and Monitoring Well Installation

As reported in our concurrent geotechnical investigation report, a geotechnical field investigation was carried out between between May 21 to May 25, 2020, during which time nine boreholes (designated as BH20-1 to BH20-9) were advanced to depths ranging from 3.3 m to 8.1 mbgs (Elevations 179.1 m to 157.4 m). The borehole locations are shown on the Borehole Location Plan, Figure 2. The reader is referred to the concurrent geotechnical report (Golder 2020) for additional details.

The as-drilled borehole locations and elevations (referenced to a geodetic datum) were surveyed by the project surveyor, J.D. Barnes Ltd., and provided to Golder.

The shallow groundwater conditions were noted in the open boreholes during drilling. Following the completion of drilling to allow for further groundwater measurements, 50 mm diameter monitoring wells were installed in Boreholes BH20-1, BH20-4, BH20-5, BH20-6, BH20-7 and BH20-8. A sand filter pack was placed to surround the screen in each well. Above the screen, the annulus surrounding the PVC standpipe was backfilled to the ground surface with bentonite pellets. Each monitoring well was completed with a protective monument-style protective casing set in concrete.

The field work was observed by a member of our technical staff, who located the boreholes in the field, arranged for the clearance of underground utility services, observed the drilling, sampling and in situ testing operations, logged the boreholes, and examined and took custody of the recovered soil samples. The samples were identified in the field, placed in appropriate containers, labelled, and transported to our Whitby geotechnical laboratory for further examination and selected laboratory testing. Index and classification tests, consisting of water content determinations as well as selective gradation and Atterberg limit testing were carried out on the recovered soil samples. The results of the geotechnical laboratory tests are presented in Appendix D and on the borehole records.

3.2 Subsurface Soil Conditions

The subsurface soil and shallow groundwater conditions encountered in the boreholes, as well as the results of the field and laboratory testing are shown on the Record of Borehole sheets and on the soil laboratory figures provided in Appendix D, respectively. Golder's "*Method of Soil Classification*", "*Abbreviations and Terms Used on Records of Boreholes and Test Pits*" and "*List of Symbols*" are attached to assist in the interpretation of the borehole logs. It should be noted that the boundaries between the soil strata have been inferred from drilling observations and non-continuous samples. They generally represent a transition from one soil type to another and should not be inferred to represent an exact plane of geological change. Further, conditions will vary between and beyond the boreholes.

The following is a summarized account of the subsurface conditions encountered in the boreholes drilled during this investigation, followed by more detailed descriptions of the major soil strata and shallow groundwater conditions.

The subsurface soils encountered are consistent with geological mapping for the area, and generally consist of topsoil and reworked native materials underlain by the predominant non-cohesive and cohesive glacial till deposit.

Gravelly sand, silty sand, and silt deposits were interlayered within the glacial till deposit. Similar conditions were encountered in the three boreholes drilled at the Site by Stantec (2018) to depths ranging from 12.4 m to 15.4 mbgs.

3.2.1 Topsoil

The topsoil was observed to be approximately 0.3 m to 0.7 m thick and was encountered in all boreholes. It should be noted that due to current Site activities, the thickness may no longer be representative.

3.2.2 Fill / Re-worked Soils

Fill/reworked native soils consisting of cohesive clayey silt to silty clay were encountered in Boreholes BH20-1, BH20-2, BH20-3, BH20-4 and BH20-7. The cohesive fill was encountered underlying the topsoil and extended to depths between 0.7 m and 1.4 mbgs. The fill contained organic inclusions, rootlets, and oxidation staining and are assumed to be reworked native soils.

3.2.3 Glacial Till

A deposit of glacial till was encountered in all boreholes advanced at the site. The till ranges in composition from non-cohesive silty sand to cohesive sandy silty clay to clayey silt and sand. The deposit generally extends to the borehole termination depths and contains non-cohesive interlayers. Although cobbles and boulders were not noted during drilling through the till deposits at this site, cobbles and boulders are commonly encountered in glacially derived materials and should be expected within these deposits. Further, the presence of cobbles and/or boulders in the cohesive and non-cohesive till deposits can be inferred from the multiple instances of auger grinding during drilling as well as the split-spoon sampler not advancing the full sample depth.

(CL-ML) Silty Clay to Clayey Silt (Till)

A cohesive till deposit consisting of silty clay to clayey silt, sand to sandy, containing trace to some gravel and rock fragments was encountered in Boreholes BH20-1 to BH20-6. The cohesive till deposit was generally encountered underlying fill/reworked native soil with the exception of Borehole BH20-5 at which it underlies a silty sand till deposit. Sand seams and pockets were observed in Boreholes BH20-2 and BH20-6.

Atterberg limits testing was performed for a single sample of the silty clay to clayey silt and sand till deposit and is shown on a plasticity chart on Appendix D, Figure D-2. The results of the Atterberg limit test indicate the material is classified as a silty clay to clayey silt of low plasticity. A grain size distribution curve for a single sample of the silty clay to clayey silt and sand till is shown on Figure D-3.

(SM/ML) Silty Sand (Till)

A silty sand till deposit, gravelly to trace gravel, containing rock fragments was encountered in Boreholes BH20-5, BH20-7, BH20-8 and BH20-9. Oxidation staining was observed in some of the boreholes.

A grain size distribution curve for a single sample of the silty sand till deposit is shown on Figure D-4 Appendix D.

3.2.4 (SM) Silty Sand

A silty sand deposit, gravelly to trace gravel, was encountered in Boreholes BH20-5, BH20-6, BH20-7, and BH20-9, typically interlayered within the till deposits. Oxidation staining was observed at some of the borehole locations. The presence of cobbles and/or boulders can be inferred from the multiple instances of auger grinding during drilling.

A grain size distribution curve for a single sample of the silty sand deposit is shown on Figure D-5 in Appendix D.

3.2.5 (SP) Sand

Sand deposits ranging in composition from gravelly sand to sand, containing trace to some fines were encountered in Boreholes BH20-6 and BH20-8 underlying the glacial till deposit. Grain size distribution curve for a single sample of the gravelly sand deposit is shown on Figure D-6 in Appendix D.

3.2.2 (ML) Silt

A 0.7m thick silt deposit, containing some sand and slightly plastic, was encountered in Borehole BH20-8 below the topsoil.

3.3 Water Level Monitoring

Groundwater levels were manually monitored at the monitoring wells on June 5, July 25 and August 5, 2020. Water level depths and elevations are provided in Table E-1, Groundwater Depths and Elevations (Appendix E). It should be noted that these observations reflect the groundwater conditions encountered at the time of the field investigation (selected dates in June, July and August 2020) and some seasonal and annual fluctuations should be anticipated.

The depth to groundwater at the monitoring wells ranged from 1.07 mbgs (BH20-4 on June 5, 2020) to 6.29 mbgs (BH20-6 on August 5, 2020) and from approximate elevations of 153.79 masl (BH20-8 on August 5, 2020) to 177.99 masl (BH20-1 on June 5, 2020) on the dates monitored. The groundwater elevation data on June 5, 2020 are shown on the Record of Borehole Sheets (Appendix D). The groundwater elevation data on July 25, 2020 are shown on Figure 5, Shallow Groundwater Flow, and Figure 6, Cross Section A - A'. As shown on Figure 5, groundwater was inferred to flow toward the southeast to toward the east, depending on location, and generally toward Ganatsekiagon Creek and its nearby tributaries which are off-site to the south and east.

3.4 Hydraulic Testing

Single well response testing (i.e., rising head tests) was carried out at monitoring wells BH20-1, BH20-4, BH20-5 and BH20-7, on July 25, 2020. The rising head tests were carried out by rapidly lowering the water levels by purging with a dedicated Waterra® footvalve and tubing. The resulting water level recoveries were monitored with an electronic water level tape. The recovery data were analyzed using the AQTESOLV for Windows (1996 – 2007) Version 4.5 software. The Bouwer and Rice (1976) method for unconfined conditions was applied to the rising head test data. Estimates of hydraulic conductivity (K) obtained from the rising head tests are summarized below in Table 1. Summary printouts of the rising head test data and results from AQTESOLV are included in Appendix E.

Location	Unit Screened	Depth of Monitoring Well (mbgs)	Method	K (cm/s)
BH20-1	(CL-ML) SILTY CLAY TILL to CLAYEY SILT and SAND TILL	3.5	Bouwer and Rice (1976), unconfined	1x10 ⁻⁶

Table 1: Summary of Estimated Hydraulic Conductivity

Location	Unit Screened	Depth of Monitoring Well (mbgs)	Method	K (cm/s)
BH20-4	(CL-ML) sandy SILTY CLAY TILL to CLAYEY SILT and SAND TILL	6.5	Bouwer and Rice (1976), unconfined	4x10 ⁻⁶
BH20-7	(SM) SILTY SAND	6.5	Bouwer and Rice (1976), unconfined	2x10 ⁻⁴

Note:

mbgs - metres below ground surface. cm/s - centimetres per second

The hydraulic conductivity estimates for (CL-ML) silty clay till to clayey silt till ranged from $1x10^{-6}$ cm/s to $4x10^{-6}$ cm/s. The hydraulic conductivity estimate for (SM) silty sand unit is $2x10^{-4}$ cm/s. The estimated hydraulic conductivities are within the range expected for these soil types.

An attempt was made to perform a rising head test at BH20-5, but the water level recovery was too rapid for accurate manual readings. Thus, the data were not used to estimate a K value for Borehole BH20-5, but the rapid recovery suggests a hydraulic conductivity in the order of 10⁻³ cm/s. This value is higher than expected for glacial till soils and may suggest that the till is lean (i.e., contains few fines) at this location or the presence of sand layer(s).

3.5 Guelph Permeameter Testing

Soil infiltration rate testing was carried out on August 5, 2019 in the unsaturated zone using a Guelph Permeameter (Soilmoisture Equipment Corp., Model 2800K1). The Guelph Permeameter was operated in general accordance with the procedures outlined by the manufacturer (Soilmoisture Equipment Corp., 2012) using a single head method. The apparatus was installed at the base of hand augered test holes.

Once the outflow of water at the depth of installation reached a steady-state flow rate, the field-saturated hydraulic conductivity, K_{fs}, of the soil was estimated using the following equation (Elrick et. al., 1989):

$$K_{fs} = \frac{C_1 Q_1}{2 \pi H_1^2 + \pi a^2 C_1 + 2 \pi \frac{H_1}{\alpha^*}}$$

Where: $C_1 = \text{shape factor}$

 $Q_1 = flow rate (cm^3/s)$

 H_1 = water column height (cm)

a = well radius (cm)

 α^* = alpha factor (0.04 cm⁻¹ for Type 2 soils, 0.12 cm⁻¹ for Type 3 soils)

The field data and analysis of the infiltration rate tests are presented as Figure E-1 to Figure E-7, Appendix E. Based on the resulting K_{fs} (cm/s), the corresponding infiltration rates (mm/hr) were estimated using the approximate relationship presented in the *Low Impact Development Stormwater Management Planning and Design Guide* (or "*Design Guide*") (TRCA and CVCA, 2010). A summary of the infiltration rate test results is presented in Table 2, below.

Test	Soil Description	Depth Relative to Grade (mbgs)	Est. Field- Saturated Hydraulic Conductivity K _{fs} (cm/s)	Estimated Infiltration Rate ¹ (mm/hr)	Correction Factor	Corrected Estimated Infiltration Rate ² (mm/hr)
GP 20-2	(CL-ML) SILTY CLAY to CLAYEY SILT and SAND TILL	0.72	2 x 10 ⁻⁴	58	2.5	23
GP 20-5	(SM) SILTY SAND	0.92	6 x 10 ⁻⁴	69	2.5	28
GP 20-8	(ML) SILT	0.80	2 x 10 ⁻⁴	58	3.5	17

Note:

mbgs - metres below ground surface. cm/s - centimetres per second. mm/hr - millimetres per hour

¹ – based on Table C1 from TRCA and CVCA (2010).

 2 – correction factor in accordance with Table C2 from TRCA and CVCA (2010).

The field-saturated hydraulic conductivity value for the silty clay till to clayey silt and sand till is estimated to be 2×10^{-4} cm/s, corresponding to an infiltration rate of 58 mm/hr. The field-saturated hydraulic conductivity value for the surficial silty sand and silt units ranged from 2×10^{-4} cm/s to 6×10^{-4} cm/s, with corresponding infiltration rates ranging from 58 mm/hr to 69 mm/hr.

The infiltration rate estimates from this investigation are based on the test methods discussed above and are for the corresponding soil types encountered. They represent the soil conditions at the tested locations and depths only; conditions may vary between and beyond the tested locations.

For design discussion purposes, a correction factor was applied to estimate the design infiltration rate in accordance with guidance provided in TRCA and CVCA (2010), to account for potential reductions in soil permeability due to compaction, smearing during the construction of a given infiltration feature and the gradual accumulation of fine sediments over the lifespan of the infiltration feature. Based on the guidance, correction factors of 2.5 and 3.5 was applied to the estimated infiltration rates. The corrected infiltration rate estimates for the surficial silty sand and silt units ranged from 17 mm/hr to 28 mm/hr, with a geometric mean of 22 mm/hr (n=2). The corrected infiltration rate estimate for the silty clay till to clayey silt and sand till was 23 mm/hr.

3.6 Summary

Based on a review of the published information and results of the subsurface investigations, glacial till soils are predominant at the Site. The subsurface investigation indicates that the till ranges from cohesive sandy silty clay till to clayey silt and sand till to non-cohesive or slightly plastic silty sand till to sandy silt till. Non-cohesive layers or lenses of silty sand, and silt, sand and gravel were encountered within the glacial till unit at several locations, and surficial silty sand or silt units were encountered overlying the glacial till at two borehole locations. The lateral extent of the non-cohesive layers/lenses was not investigated and may be continuous between several borehole locations (e.g. Boreholes BH20-6, BH20-7 and BH20-8), but they are not inferred to be laterally continuous across the Site.

The estimated hydraulic conductivity (below the water table) of silty clay till to clayey silt till soils ranged from 1×10^{-6} cm/s to 4×10^{-6} cm/s, and the estimated hydraulic conductivity of the silty sand at BH20-7 was 2×10^{-4} cm/s.

The design infiltration rate (above the water table) for the silty clay till to clayey silt and sand till is estimated to be 23 mm/hr (n = 1). The design infiltration rates for the discontinuous surficial silty sand and silt were estimated to range from 17 mm/hr to 28 mm/hr with a geometic mean of 22 mm/hr (n = 2).

Ganatsekiagon Creek drains southward and at its closest approach is located approximately 45 m east of the Site. Two tributaries to Ganatsekiagon Creek are mapped to the west of the main creek and are located within the natural heritage system lands adjacent to the south of the Site. A portion of the closest and shortest tributary was observed by Golder to be partly flowing during three groundwater level monitoring events in June, July and August 2020.

The depth to groundwater at the monitoring wells ranged from 1.07 mbgs (BH20-4 on June 5, 2020) to 6.29 mbgs (BH20-6 on August 5, 2020) and from approximate elevations of 153.79 masl (BH20-8 on August 5, 2020) to 177.99 masl (BH20-1 on June 5, 2020). These observations reflect the groundwater conditions encountered at the time of the field investigation, and seasonal and annual groundwater fluctuations should be expected. Groundwater at the Site was inferred to flow toward the southeast to toward the east depending on location, and generally toward Ganatsekigaon Creek and its nearby tributaries which are off-site to the south and east. Given the setting of the Site on a glacial till plain, the Site is not expected to represent a significant groundwater recharge or discharge area in the Ganatsekiagon Creek watershed.

Two unevaluated wetland areas are mapped in the natural heritage system lands near to the southwest and southeastern boundaries of the Site. The wetland to the southwest is located, at its closest approach, approximately 30 m southwest and hydraulically cross-gradient to the Site; in the post-development plan it will be located on the far (west) side of Peter Matthews Drive relative to the Site. The wetlands to the southeast are generally located on the far (east) side of Ganatsekiagon Creek relative to the Site, and therefore on the other side of an inferred groundwater flow divide represented by the creek. An evaluation of groundwater conditions in the off-Site wetland areas and tributaries was outside of this scope of services.

Based on the water wells records and observations during our field program, no active private well use is reported or was observed on the Site, although active private well use may be present at off-site agricultural operations/rural residences to the northeast, northwest and west of the Site within 500 m. Confined sand or gravel layers within or underlying the glacial till, or in some cases the glacial till itself, were reported to be utilized for water supply. One deep bored private well (No. 4603704) for stock watering use is recorded to be present approximately 25 m in a hydraulically upgradient direction from the Site, although the current status of this well is not known to Golder. The off-Site private water wells are not inferred to be in a hydraulically downgradient direction from the Site. As the development proceeds on lands owned by the proponent (i.e., the Site plus the adjoining subdivision to the west), it is assumed the use of the upgradient bored well (No. 4603704), if present, and any other private wells on the adjacent property to the west owned by the proponent will cease and the well(s) will be abandoned.

4.0 TEMPORARY CONSTRUCTION DEWATERING PERMITTING

The design of Site servicing for the proposed residential development is shown on the functional servicing plan dated May 2019 (Appendix B). Generally, site servicing will include the construction of local storm and sanitary sewers and a third roof drain collector (RDC) pipe on the local road network, and storm water management facility (SWMF) Block 92, located to the southeast of the Site. Dewatering requirements for construction of the trunk sanitary sewer on Peter Matthews Drive have been considered by others and are not included in this report.

Based on the servicing information provided and the June 2020 groundwater elevation data (see Table E-1, Appendix E), the storm and sanitary sewers and RDC will require excavations ranging up to 3.2 m to 15.0 m below existing grade, or approximately 0.0 m to 7.0 m below groundwater levels measured in June 2020. SWMF Block 92 will be constructed with a forebay cell invert of 155.5 masl and a main cell invert of 154.0 masl, requiring excavations of approximately 4.0 m to 5.0 m below existing grade, or approximately up to 2.5 m below groundwater levels measured in June 2020. Both seasonal and annual groundwater level fluctuations should be expected. As such, it is anticipated that excavations for Site servicing will mostly be at or below the groundwater level with only a few areas being above the groundwater level, and the need for temporary groundwater control during construction is anticipated. Engineering information and recommendations concerning the SWM ponds, excavations and groundwater control are provided in our concurrent geotechnical investigation report, to which the reader is referred.

The method of construction dewatering should be solely determined by the Contractor based on their own assessment of the Site-specific conditions, and likely by their specialist dewatering contractor. In any case, the groundwater level should be lowered to a minimum of 1 m below the inverts in advance of the excavation reaching the invert levels. Surface water runoff must be directed away from any open excavation.

It is recommended that a licensed, specialist dewatering subcontractor supervise the installation, operation and decommissioning of any dewatering systems for this project, in accordance with applicable legislation. It is understood that a dewatering plan from a specialist subcontractor has not yet been prepared.

Water takings in excess of 50 m³/day are regulated by the MECP. Certain takings of groundwater and storm water for construction site dewatering purposes with a combined total less than 400 m³/day qualify for self-registration on the MECP's Environmental Activity and Sector Registry (EASR). A Category 3 PTTW is required where the proposed water taking is greater than 400 m³/day.

The rate of groundwater inflow to excavations will vary during construction. Initially, higher inflow rates will occur as groundwater is removed from storage within the zone of influence. With time, rates will decrease toward a steady-state condition. Incident precipitation into excavations will also need to be managed with the groundwater contributions and factored into the total pumping rate.

Based on the hydrogeological conditions encountered at the borehole locations, the steady state groundwater inflow rate to a typical open length of servicing trench encountering mainly glacial till soils and using a conventional cut and cover method may not individually exceed 50 m³/day. However, initial dewatering rates may be higher than expected from only glacial till soils depending on the lateral extent of saturated non-cohesive silty sand to sand and gravel layers or lenses encountered within or below the excavation. Including the initial removal of groundwater from storage and the management of incident precipitation the excavation, combined pumping rate is not likely to exceed 400 m³/day.

Portions of the excavations for the construction of the SWMF may encounter groundwater, depending on seasonal groundwater levels at the time of construction. If construction occurs at a time of seasonal low groundwater levels, excavation of the forebay cell may not encounter groundwater, and excavation of only the deepest portion of the main cell may encounter groundwater. At times of seasonal high groundwater levels, the deepest portions of both cells may encounter groundwater. In either case, if the pumping of incident precipitation into the SWMF excavation is carefully managed (e.g. incident precipitation into the two cells is pumped one at a time, or large storm events are pumped out over multiple days), it is estimated that the combined dewatering rate for SWMF construction will not likely exceed 400 m³/day..

Therefore, if construction dewatering for linear servicing takes place separately from SWMF construction dewatering, the pumping rate for each task is estimated to be less than 400 m³/day and the need to prepare a Water Taking Report and Discharge Plan and to register the water taking on the EASR should be anticipated at this time. If construction dewatering for linear servicing and SWMF construction takes place concurrently, the need to prepare a hydrogeological investigation to support at PTTW application should be anticipated. These findings should be re-evaluated as site designs progress and construction plans are developed.

5.0 HYDROLOGIC WATER BALANCE

A water balance assessment was carried out to assess the potential hydrogeological impacts of the proposed Site development with respect to post-development infiltration rates, including potential impacts to groundwaterdependent resources. To estimate current and future water balances on the approximately 5.56 ha Site, Golder prepared a water balance assessment for the existing land uses as shown on the Functional Pre-Development Land Use Plan and proposed land uses as shown on the Draft Plan (provided in Appendix B). The water balance was prepared on a site-wide basis. The site-wide water balance has been completed to include the proposed Low Impact Development (LID) mitigation measure details provided to Golder, comprised of the direction of roof drainage via the RDC to a bio-retention swale located at the southeast flank of the Site just north of the SWMF.

5.1 Methods

The water balance assessment was based on meteorological data obtained from Environment and Climate Change Canada (ECCC) for the Buttonville A Meteorological Station (ID 6158410) from 1986 to 2017, information on current and proposed land uses and existing soil types as identified through the subsurface investigation activities at the Site.

Water balance calculations are based on the following equation, which is described in more detail below:

$$P = S + ET + R + I$$

Where: P = precipitation;

S = change in soil water storage;

ET = evapotranspiration;

R = surface runoff; and

I = infiltration (groundwater recharge).

Precipitation data obtained from ECCC for the Buttonville A station indicate a mean annual precipitation (P) of 863 mm/yr.

Short-term or seasonal changes in soil water storage (S) are anticipated to occur on an annual basis as demonstrated by the typically dry conditions in the summer months and the wet conditions in the winter and spring. Long-term changes (e.g. year to year) in soil water storage are considered to be negligible in this assessment.

Evapotranspiration (ET) refers to water lost to the atmosphere from vegetated surfaces. The term combines evaporation (i.e. water lost from soil or water surfaces) and transpiration (i.e. water lost from plants and trees). Potential ET refers to the loss of water from a vegetated surface to the atmosphere under conditions of an unlimited water supply. The actual rate of ET is typically less than the potential rate under dry conditions (e.g.

during the summer months when there is a moisture deficit). The mean annual potential ET for the areas considered in the water balances is approximately 635 mm/yr based on data provided by ECCC.

The mean annual water surplus is the difference between P and the actual ET. The water surplus represents the total amount of water available for either surface runoff (R) or groundwater infiltration (I) on an annual basis. On a monthly basis, surplus water remains after actual evapotranspiration has been removed from the sum of rainfall and snowmelt, and maximum soil or snow pack storage is exceeded. Maximum soil storage is quantified using a water holding capacity (WHC) specific to the soil type and land use. The WHC data obtained from ECCC are shown in Table F-1, Appendix F.

Infiltration rates were estimated using the method presented in the Ontario Ministry of the Environment (MOE) *Stormwater Management Planning and Design (SWM) Manual* (MOE, 2003). There are three main factors that determine the percent infiltration of the water surplus: topography, soil type and ground cover. The sum of the fractions representing these three factors establishes the approximate annual percentage of surplus which can be infiltrated in an area with a sufficient downward groundwater gradient. The on-Site portion of SWMF Block 92 was assumed to have a negligible downward gradient, resulting in all surpluses being contained in this area, which was assumed to provide increased evaporation and no infiltration.

Land use at the Site under existing (pre-development) conditions was obtained from the Functional Pre-Development Land Use Plan (provided in Appendix B). Land use at the Site under post-development conditions was based on the Draft Plan (provided in Appendix B). The land use data was compiled to estimate the total area of each land use within the Site boundary. Provided information and data and from this investigation were used with Table 3.1: Hydrologic Cycle Component Values, from the MOE *SWM Manual* (MOE, 2003), to identify appropriate WHCs and to sum an infiltration factor for each land use.

5.2 Water Balance Parameters

Based on the results of subsurface investigation activities at the Site (see Section 3), the existing surficial soil type (predominantly cohesive clayey silt to silty clay fill [i.e. re-worked glacial till] and native glacial till) was considered for the purposes of this report to be silt loam based on the U.S. Bureau of Soils classification system and the relative percentages of sand, silt and clay obtained from selected soil samples. Post-development grade changes are assumed to result in the same soil types at grade (i.e. native glacial till or re-worked glacial till). Therefore, the post-development surficial soil type was also considered to be silt loam for the purposes of this report. Water holding capacities were assigned to this soil type using the values listed in Table 3.1: Hydrologic Cycle Component Values, from the MOE *SWM Manual* (MOE, 2003), as summarized in Table F-2, Appendix F.

The surplus data obtained from ECCC for the respective water holding capacities were split into infiltration and runoff components by applying an infiltration factor based on Table 3.1 (MOE, 2003). The infiltration factors were based on a sum of Site-specific topography, surficial soil type and vegetative cover factors as presented in Table F-2 of Appendix F. Based on the Functional Grading Plan (see Appendix B), a topography factor of 0.1, representing hilly land (with an average slope of 28 m/km to 47 m/km), was applied to the pre-development and post-development conditions at the Site. The silt loam soil was considered to be between open sandy loam and medium combinations of clay and loam and was assigned a soils factor of 0.3. Grass-covered areas and agricultural areas were assigned a cover factor of 0.1, representing cultivated land, while woodlots were assigned a cover factor of 0.2, representing woodland. For SWM ponds and impervious surfaces (buildings and paved areas), no infiltration factor was applied.

The water balance analysis was developed under the following assumptions:

- WHCs were chosen based on Table 3.1 in the MOE SWM Manual (2003) corresponding to the silt loam soil type, land uses and proposed post-development conditions.
 - Woodlot (Mature Forest): 400 mm WHC and 0.6 infiltration factor (pre-development condition).
 - Agricultural (Moderately Rooted Crops): 200 mm WHC and 0.5 infiltration factor (pre-development condition).
 - Lawn (Urban Lawn): 125 mm WHC and 0.5 infiltration factor (post-development conditions).
 - SWM ponds: Surplus assumed to equal precipitation minus potential evapotranspiration, with a null (i.e. 0%) infiltration factor.
 - Impervious Areas (i.e. buildings, roads, driveways and sidewalks): Surplus assumed as 90% of precipitation and null (i.e. 0%) infiltration factor (Conservation Authorities Geoscience Group, June 2013).
- Net surplus was estimated by multiplying the estimated monthly surplus (mm/month) for the assumed WHC by the associated drainage area. Annual evapotranspiration and surplus values were obtained from the meteorological data from the Buttonville A ECCC Meteorological Station based on the WHC assigned to each land use area.
- Runoff was calculated as the difference between surplus and infiltration.

5.3 Water Balance Results

5.3.1 Pre-Development Condition

Based on the results of this assessment, the average annual pre-development water balance was estimated as summarized in Table 3, and as detailed in Table F-3, Appendix F.

Table 3: Pre-Development Average Annual Water Balance Results

Component	Annual Volume m³/yr
Precipitation (P)	47,980
Evapotranspiration (ET)	33,640
Surplus (S)	14,340
Infiltration (I)	7,250
Runoff (R)	7,090

For the pre-development condition, the estimated average annual runoff from the Site is approximately 7,090 m³ and the estimated average annual infiltration on the Site is approximately 7,250 m³.

5.3.2 Post-Development Condition

The post-development condition water balance was based on the Draft Plan provided in Appendix B without the proposed LID measure. Since the design of the Site is still in early stages, the perviousness of each land type was assumed as the following:

Residential (including a mixture of low and medium density units): 67% impervious, 73% of the impervious area is roofs;

- Open space and Overland Flow: 100% urban lawn;
- SWM Ponds: 100% open water; and
- Road Right of Way: varies between 61% to 65% impervious based on the Seaton Right of Way Details drawing (refer to Appendix B).

Based on the results of this assessment, the average annual post-development water balance was estimated as summarized in Table 4, and as detailed in Table F-3, Appendix F.

Component	Annual Volume m³/yr
Precipitation (P)	47,980
Evapotranspiration (ET)	15,120
Surplus (S)	32,860
Infiltration (I)	2,740
Runoff (R)	30,120

In the post-development condition, the total estimated average annual runoff from the Site is approximately 30,120 m³ and the estimated average annual infiltration is approximately 2,740 m³. As a result of land use changes, runoff is expected to increase by 325% and infiltration is expected to decrease by 62% compared to average annual pre-development conditions.

5.3.3 Post-Development Condition Including Mitigation

As a result of development average annual infiltration volumes at the Site are expected to decrease relative to pre-development conditions and runoff volumes are expected to increase. Although the glacial till plain setting of the Site is not expected to be a significant groundwater recharge/discharge area within the Ganatsekiagon Creek watershed, it is considered prudent to incorporate LID measures into the Site design to mitigate against reductions in post-development infiltration rates to the extent practical. Further, the use of LID measures for stormwater runoff from development sites assists to support the natural hydrologic cycle by helping to maintain groundwater recharge, provide additional water quality treatment and reduce the volume of runoff from a site.

The Functional Grading Plan (see Appendix B) includes a bioretention LID feature located along the southeast flank of the Site. Although Site development plans are in a preliminary stage, the Roof Drainage Area Plan indicates that all roofs will be directed to the LID with a minimum footprint area of 731.4 m². For the purpose of this assessment, it was assumed that all roofs will be directed to the bioretention feature for infiltration prior to any overflow reporting to the SWMF in Block 92 and that all other roads and lawn areas will be report to the SWMF directly. Bioretention facilities temporarily store, treat and infiltrate runoff by using a filter bed overlain by a mulch ground cover and plants adapted to the conditions of a stormwater practice.

It is noted that bioretention cells work best for smaller drainage areas as flow is better distributed over the filter bed. The ratio of impervious drainage area to footprint area for the bioretention feature (i.e., 23:1) exceeds the recommended maximum ratio (i.e. 15:1 as per TRCA & CVC, 2010). This could result in an increased rate of

accumulation of sediments and premature clogging of the features and can be addressed at the time of detailed design by increasing the footprint area and decreasing the depth of the bioretention feature while maintaining the same overall storage volumes.

Detailed information on seasonal groundwater elevations within the footprint of the bioretention feature is not available. Based on the inferred groundwater elevations in area of the feature (see Figure 4) and postdevelopment ground surface elevations where the feature is shown outside of the grading limits (see Functional Grading Plan, Appendix D), it is estimated that the depth to groundwater along the bioretention alignment would be about 2.2 m or more. As such, a bioretention thickness of 1.2 m would maintain 1 m separation between the invert of the feature and the seasonally high groundwater level.

A frequency analysis of precipitation observed at the Buttonville A station (1986 to 2017) was conducted based on the available storage of the proposed bioretention feature assuming a time to drain of 48 hours. No underdrain would be required because the corrected infiltration rate of the native glacial till soil was observed to be 23 mm/hr. Based on the frequency analysis, a runoff reduction factor of 71% was applied to the roofs of all buildings draining to the bioretention feature.

Based on the results of this assessment using the proposed bioretention LID technique, the average annual mitigated post-development water balance was estimated as summarized in Table 5 and as detailed in Table F-3, Appendix F.

Component	Annual Volume m³/yr
Precipitation (P)	47,980
Evapotranspiration (ET)	15,120
Surplus (S)	32,860
Infiltration (I)	12,020
Runoff (R)	20,840

Table 5: Mitigated Post-Development Average Annual Water Balance Results

In the mitigated post-development condition, the total estimated average annual runoff from the Site is approximately 20,840 m³ and the estimated average annual infiltration is approximately 12,020 m³. As such, runoff is expected to increase by 194% and infiltration is expected to increase by 66% compared to predevelopment conditions.

6.0 **DISCUSSION**

The findings of this investigation indicate that soils at the Site are predominantly comprised of glacial till ranging from cohesive sandy silty clay till to clayey silt and sand till to non-cohesive or slightly plastic silty sand till to sandy silt till. Non-cohesive layers or lenses of silty sand, and silt, sand and gravel were encountered within and/or overlying the till unit at several locations. The lateral extent of the non-cohesive layers/lenses was not investigated and may be continuous between several borehole locations, but they are not inferred to be laterally continuous across the Site.

Ganatsekiagon Creek drains southward and at its closest approach is located approximately 45 m east of the Site. Two tributaries to Ganatsekiagon Creek are mapped to the west of the main creek and are located within the natural heritage system lands adjacent to the south of the Site. Portion of the closest and shortest tributary was observed by Golder to be partly flowing during three groundwater level monitoring events in June, July and August 2020.

The depth to groundwater at five monitoring wells installed as part of the investigation ranged from 1.07 mbgs to 6.29 mbgs, and from approximate elevations of 153.79 masl to 177.99 masl, on the dates monitored in June, July and August 2020 although seasonal and annual fluctuations should be expected. Groundwater at the Site was inferred to flow toward the southeast to toward the east depending on location, and generally toward Ganatsekigaon Creek and its nearby tributaries which are off-site to the south and east. Two unevaluated wetland areas are mapped in the natural heritage system lands adjacent to the southwest and southeastern boundaries of the Site, but are not inferred to be hydraulically downgradient of the Site. Given the setting of the Site on a glacial till plain, the Site is not expected to represent a significant groundwater recharge or discharge area in the Ganatsekiagon Creek watershed.

Excavations for Site servicing are expected to be below the water table, and the need for temporary dewatering during the construction of linear underground Site services and the SWMF is expected. If construction dewatering for linear servicing takes place at a different time than for SWMF construction, the need to prepare a Water Taking Report and Discharge Plan and to register the water taking on the EASR, should be anticipated at this time. If linear servicing and SWMF construction are to occur at the same time, the need to prepare a hydrogeological investigation to support a PTTW application should be anticipated. These findings should be re-evaluated as site designs progress and construction methods are developed. The potential impacts of temporary construction dewatering on existing resources, including private well users and local natural heritage features, should be evaluated at the time of detailed design.

A site-wide water balance assessment was carried out to assess the potential hydrogeological impacts of the proposed development with respect to average annual post-development infiltration rates. The development of the approximately 5.56 ha Site, without the implementation of mitigation measures, is expected to result in an approximate 62% reduction in average annual infiltration rates.

Although the Site is not expected to be a significant groundwater recharge or discharge area within the Ganatsekiagon Creek watershed, it is considered prudent to utilize LID measures to mitigate against reductions in post-development infiltration rates to the extent practical. Further, the use of LID measures for stormwater runoff from development sites assists to support the natural hydrologic cycle by helping to maintain groundwater recharge, provide additional water quality treatment and reduce the volume of runoff from a site. A bioretention feature with a footprint of at least 731.4 m² along the southeast flank of the Site is proposed to treat and infiltrate runoff from the residential roofs. Based on implementation of this LID measure, the average annual mitigated post-development runoff volume is expected to increase by approximately 13,750 m³ (or 194%) and the average annual mitigated post-development infiltration volume is expected to increase by 4,770 m³ (or 66%), compared to pre-development conditions.

The implementation and location of the bioretention feature should consider grading plans and the separation distance between the invert elevation of the feature and the seasonally high groundwater elevation. Guidance from the conservation authorities generally recommends a separation distance of 1.0 m. While detailed groundwater elevation data within the footprint of the bioretention feature is not available, the existing groundwater elevation data suggests that the separation distance will be maintained for bioretention thickness

of 1.2 m. Additional assessment of groundwater elevations could be carried out at the time of detailed design. The ratio of impervious drainage area to footprint area for the bioretention feature (i.e. 23:1) exceeds the recommended maximum ratio (i.e. 15:1 as per TRCA & CVC, 2010). This could result in an increased rate of accumulation of sediments and premature clogging of the features and can be addressed at the time of detailed design by increasing the footprint area and decreasing the depth of the bioretention feature while maintaining the same overall storage volumes.

Given the estimated 66% increase in average annual post-development infiltration rate relative to the predevelopment condition, the development of the Site is not expected to have an overall impact on groundwater contributions in the Ganatsekiagon Creek watershed. Consideration can be given at the time of detailed design to sizing the feature to maintain average annual post-development infiltration rates within 10% of pre-development.

Private water well use has been reported at rural residences and agricultural farms along Whitevale Road within 500 m of the Site. A deep bored well (No. 4603704) for stock watering use is recorded to be present approximately 25 m in a hydraulically upgradient direction from the Site. The well was not observed by Golder in the field; current status of this well is not known to Golder. It is recommended that this well, if present, be decommissioned in accordance with applicable legislation in association with Site development. Other recorded water wells within 500 m of the Site are not located in a hydraulically downgradient direction from the Site, and no quantity or quality impacts to private water well uses as a result of Site development are anticipated.

Precipitation falling on residential roofs will be directed to the bioretention feature to be infiltrated. A limited amount of precipitation from paved areas (e.g. driveways) may also infiltrate. This infiltration is not expected to degrade the groundwater quality at the Site, although stormwater from roads and driveways may have increased concentrations of one or more of metals, oil and grease, and road salt. With the exception of road salt, these materials quickly become immobile in the shallow subsurface.

7.0 CLOSURE

We trust that this submission meets your current requirements. Please contact the undersigned with any questions.

Signature Page

Yours truly,

Golder Associates Ltd.

DRAFT

DRAFT

Syed Ali, Ph.D. Project Scientist David Hinton, P.Eng. Surface Water Engineer

DRAFT

Chris Kozuskanich, P.Geo. Associate, Senior Hydrogeologist

SAA/DH/MK/CMK/mlk/sv

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/123870/project files/6 deliverables/hydrog/20140088 (2000) rep 2020'09'29 hydrogeological investigation - lebovic whitevale (reva).docx

8.0 **REFERENCES**

Bouwer, H. and R. C. Rice. (1976). A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, 12 (3): 423-428.

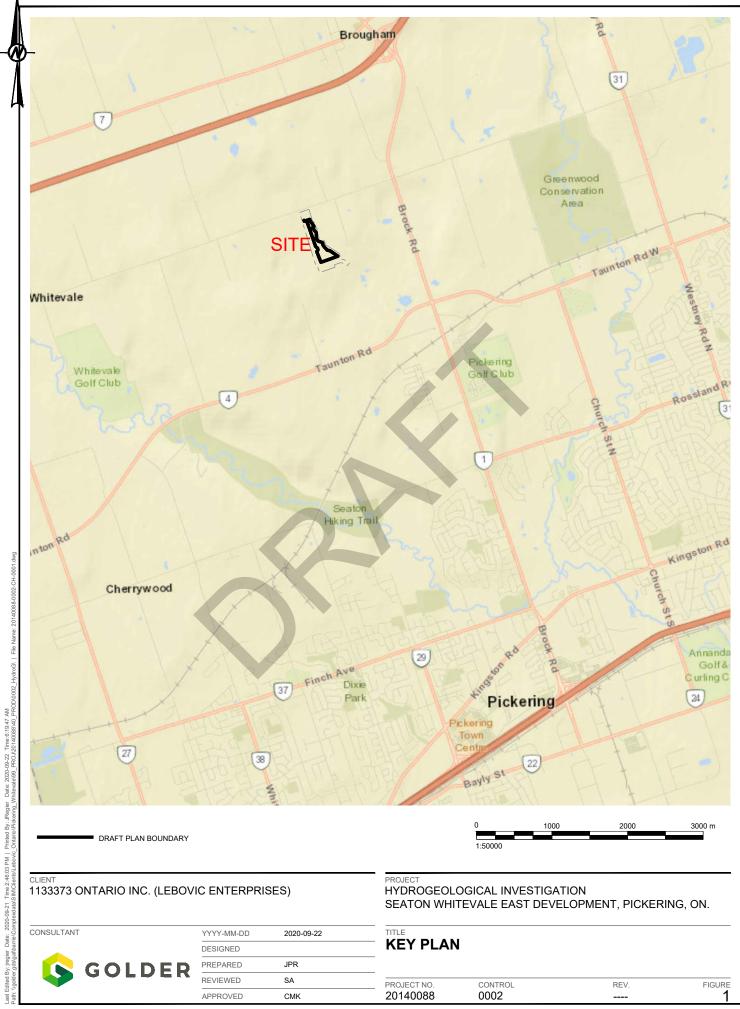
Chapman, L.J. and Putnam, D.F. (2007). Physiography of southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 228.

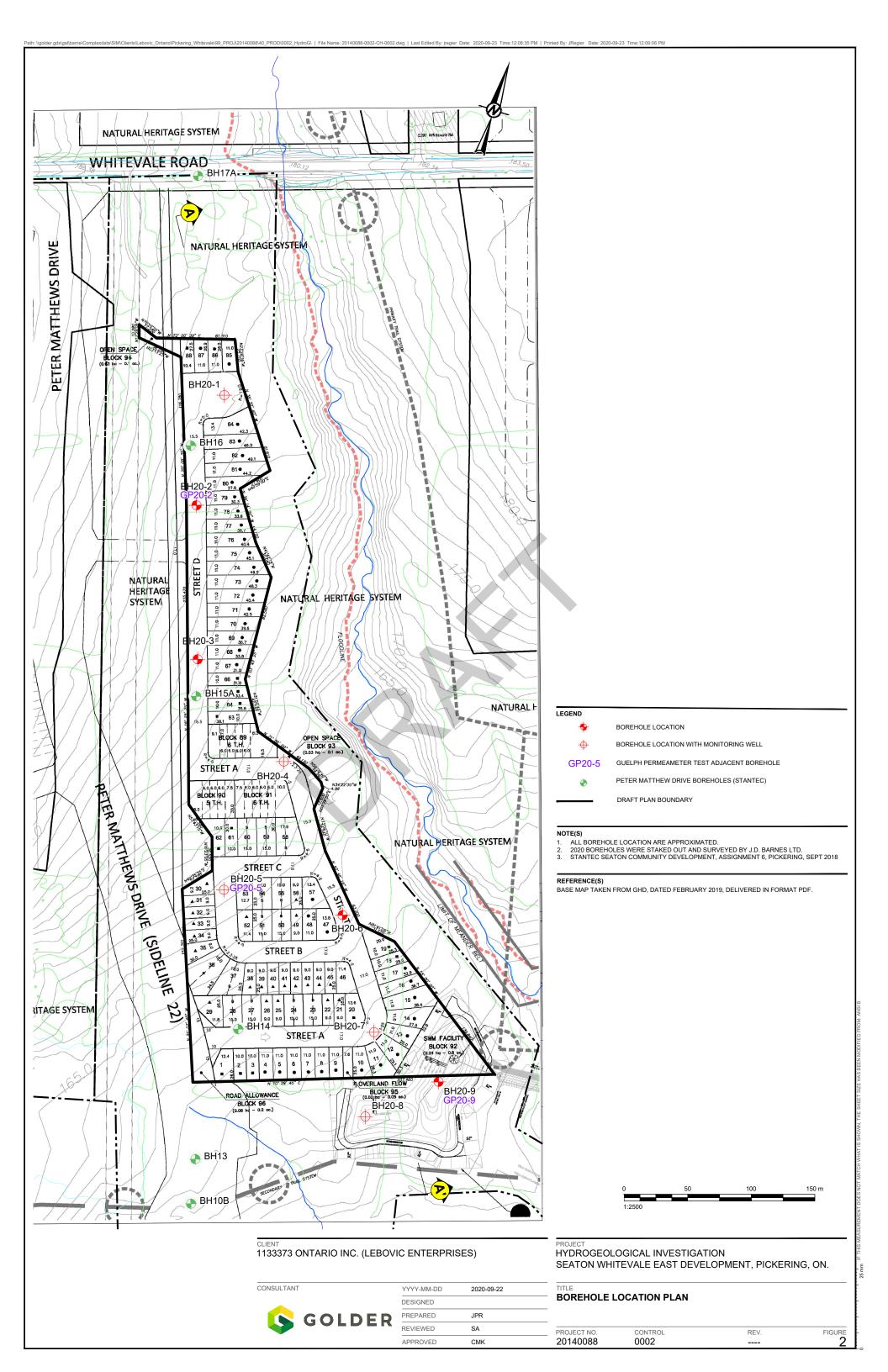
Elrick, D. E., Reynolds, W. D., and Tan, K. A. (1989). Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Ground Water Monitoring. 9:184-193.

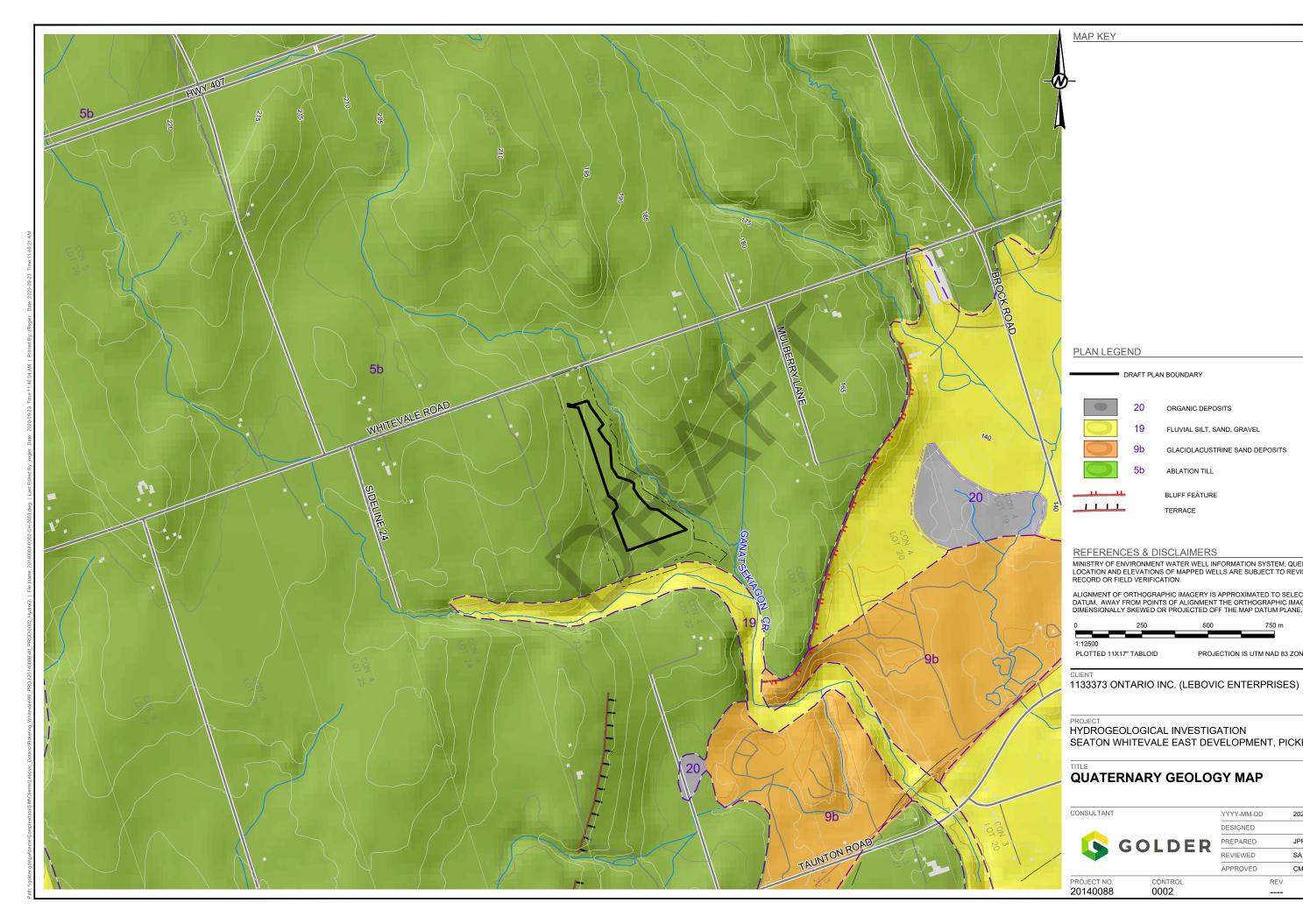
Ontario Geological Survey. (2010). Surficial geology of Southern Ontario, Ontario Geological Survey, Miscellaneous Release--Data 128-REV.

Ontario Ministry of the Environment (MOE). (2003). Stormwater Management Planning and Design (SWM) Manual. Queen's Printer for Ontario, ISBN 0-7794-2969-9.

Ministry of Natural Resources and Forestry Mapping. (2018). Natural heritage features retrieved from https://www.gisapplication.lrc.gov.on.ca.


Soilmoisture Equipment Corp., 2012. Guelph Permeameter 2800 Operating Instructions Manual, Version 0898-2800K1.


Toronto Region Conservation Authority and Credit Valley Conservation Area (TRCA and CVCA). (2010). Low Impact Development Stormwater Management Planning and Design Guide, Version 1.0.



PLAN LEGEND

DRAFT PLAN BOUNDARY	

	20	ORGANIC DEPOSITS
0	19	FLUVIAL SILT, SAND, GRAVEL
0	9b	GLACIOLACUSTRINE SAND DEPOSITS
0	5b	ABLATION TILL
<u> </u>		BLUFF FEATURE
		TERRACE

REFERENCES & DISCLAIMERS

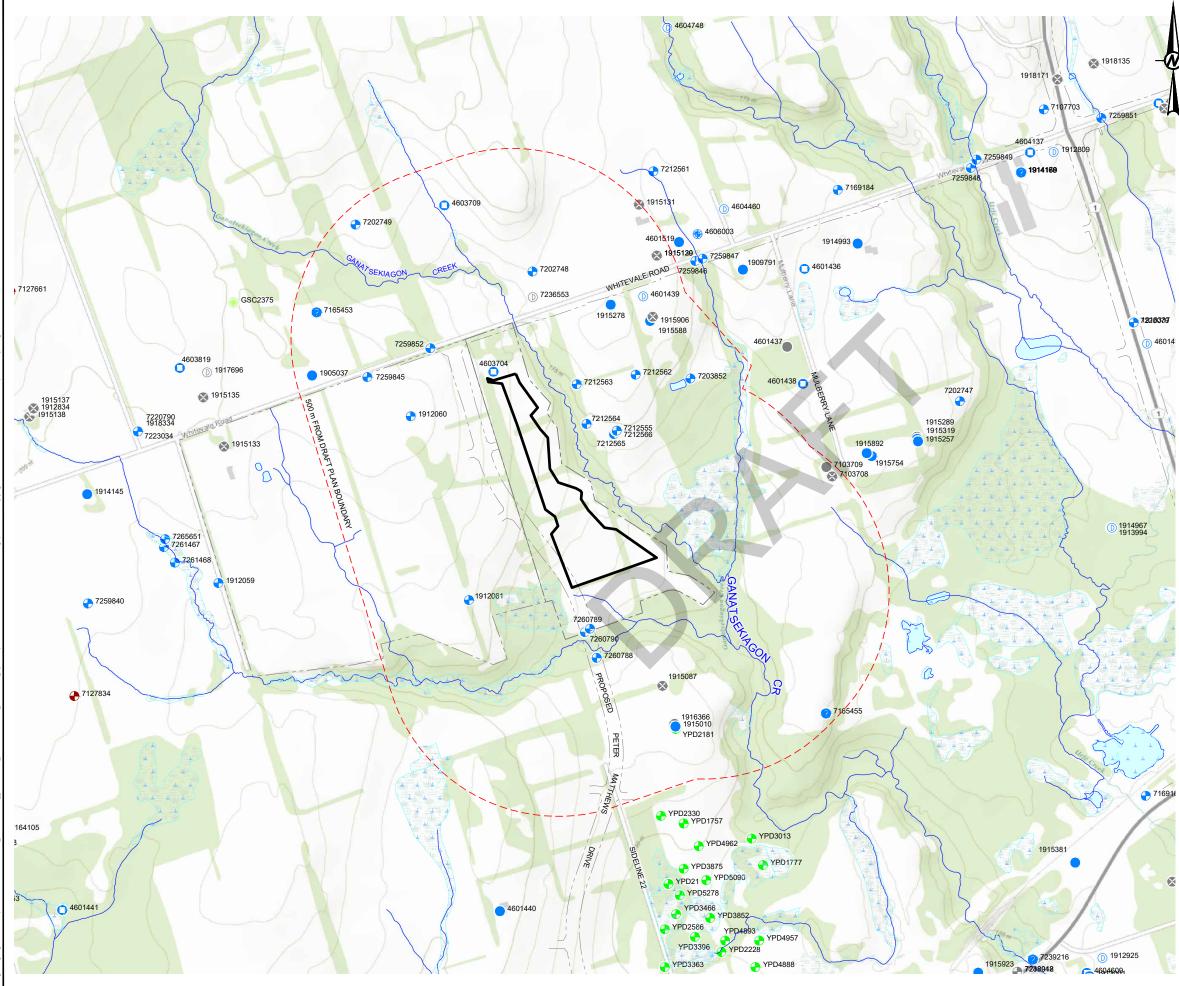
MINISTRY OF ENVIRONMENT WATER WELL INFORMATION SYSTEM, QUEEN'S PRINTER.
LOCATION AND ELEVATIONS OF MAPPED WELLS ARE SUBJECT TO REVISION BASED ON DRILL
RECORD OR FIELD VERIFICATION.

ALIGNMENT OF ORTHOGRAPHIC IMAGERY IS APPROXIMATED TO SELECT FEATURES ON DATUM. AWAY FROM POINTS OF ALIGNMENT THE ORTHOGRAPHIC IMAGE MAY BE DIMENSIONALLY SKEWED OR PROJECTED OFF THE MAP DATUM PLANE.

0	250	500	750 m
1:12500			
	1X17" TABLOID	PROJECTION	IS UTM NAD 83 ZONE 17

0	230	500	750 111
1:12500			
PLOTTED 1	1X17" TABLOID	PROJECTION	IS UTM NAD 83 ZONE 17

1:12500	
PLOTTED 11X17" TABLOID	PROJECTION IS UTM NAD 83 ZONE 17


TITLE QUATERNARY GEOLOGY MAP

CONSULTANT

GOLDER

YYYY-MM-DD	2020-09-22
DESIGNED	
PREPARED	JPR
REVIEWED	SA
APPROVED	СМК
REV.	FIGURE
	3

PROJECT NO. 20140088

28379	

-(W)

46014

PI AN	LEGEND
	LEOLIND

DRAFT	PLAN	BOUNE	DARY

\bigcirc SHALLOW DUG OR BORED <10 M

- 0 DEEP BORED WELL >10 M
- DRILLED OVERBURDEN WELL
- 4 TEST OR OBSERVATION WELL
- DRILLED BEDROCK WELL \otimes
- SCREENED ABOVE BEDROCK

REFERENCES & DISCLAIMERS

- WETLAND

 \otimes

RECORD OF ABANDONMENT INFORMATION UNRECORDED

MULTIPLE TAGGED NEST

- ORM REPORTED WELL ⊕

LOCATION AND ELEVATIONS OF MAPPED WELLS ARE SUBJECT TO REVISION BASED ON DRILL RECORD OR FIELD VERIFICATION. ALIGNMENT OF ORTHOGRAPHIC IMAGERY IS APPROXIMATED TO SELECT FEATURES ON DATUM. AWAY FROM POINTS OF ALIGNMENT THE ORTHOGRAPHIC IMAGE MAY BE DIMENSIONALLY SKEWED OR PROJECTED OFF THE MAP DATUM PLANE.

MINISTRY OF ENVIRONMENT WATER WELL INFORMATION SYSTEM, QUEEN'S PRINTER.

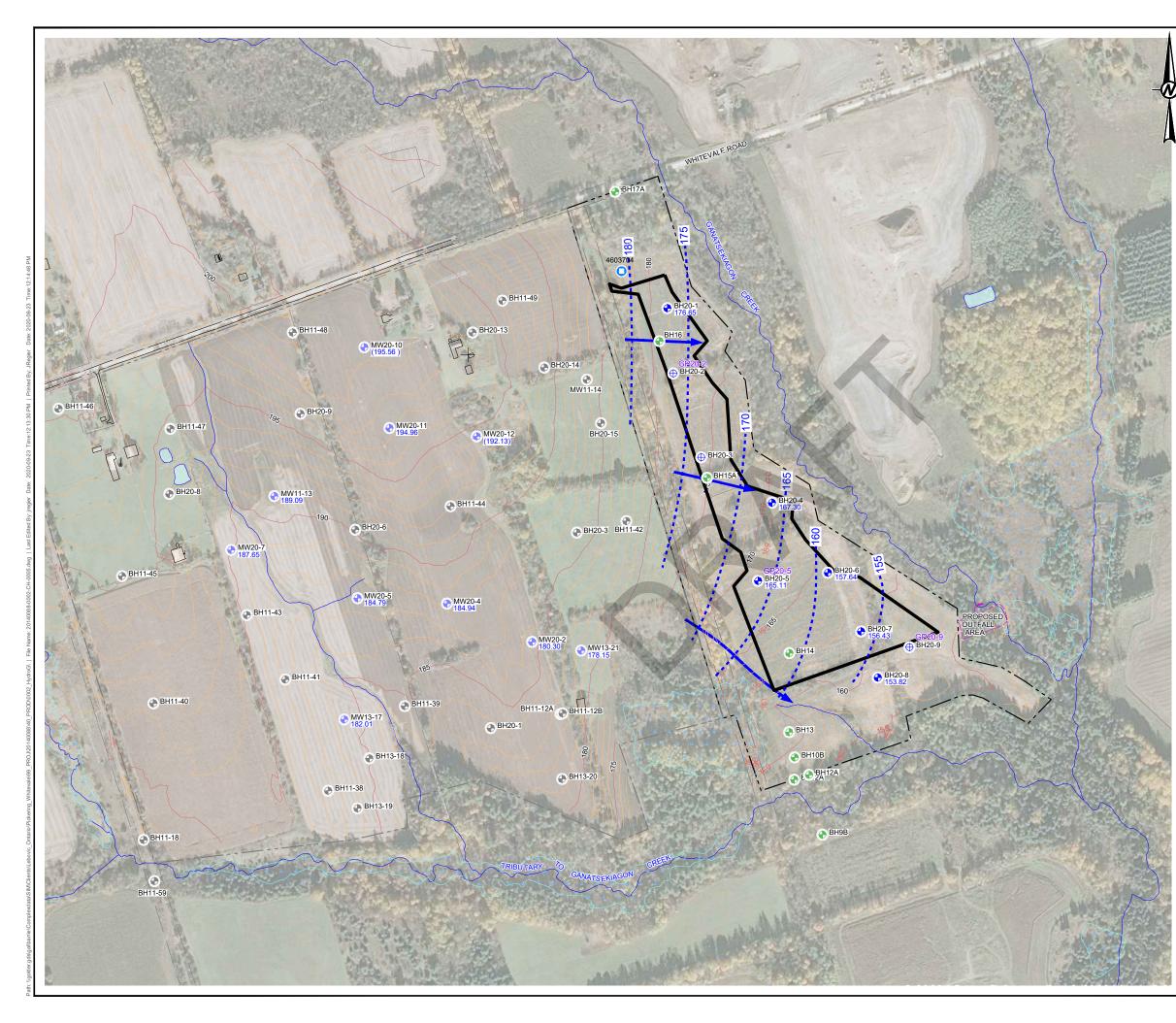
0	200	400	600 m
1:10000			
PLOTTED	11X17" TABLOID	PROJECTION	IS UTM NAD 83 ZONE 17

CLIENT 1133373 ONTARIO INC. (LEBOVIC ENTERPRISES)

PROJECT

HYDROGEOLOGICAL INVESTIGATION SEATON WHITEVALE EAST DEVELOPMENT, PICKERING, ON.

TITI F


X

MINISTRY RECORDED WELLS

CONSULTANT

PROJECT NO. 20140088

GOLDER		YYYY-MM-DD	2020-09-22	
		DESIGNED		
		PREPARED	JPR	
00		REVIEWED	SA	
		APPROVED	CMK	
D.	CONTROL	RE	EV.	FIGURE
8	0002			4

PROJECT HYDROGEOLOGICAL INVESTIGATION SEATON WHITEVALE EAST DEVELOPMENT, PICKERING, ON.						
GROUND	WATER FLO	W				
CONSULTANT		YYYY-MM-DD	2020-09-22			
		DESIGNED				
- 🔼 G	OLDER	PREPARED	JPR			
· 🔷 ·	OLDER	REVIEWED	SA			
		APPROVED	CMK			
PROJECT NO.	CONTROL	RE	V.	FIGURE		
20140088	0002		-	5		

CLIENT 1133373 ONTARIO INC. (LEBOVIC ENTERPRISES)

0	100	200	300 m
1:5000 PLOTTED 11X17" TABLOID		PROJECTION	IS UTM NAD 83 ZONE 17

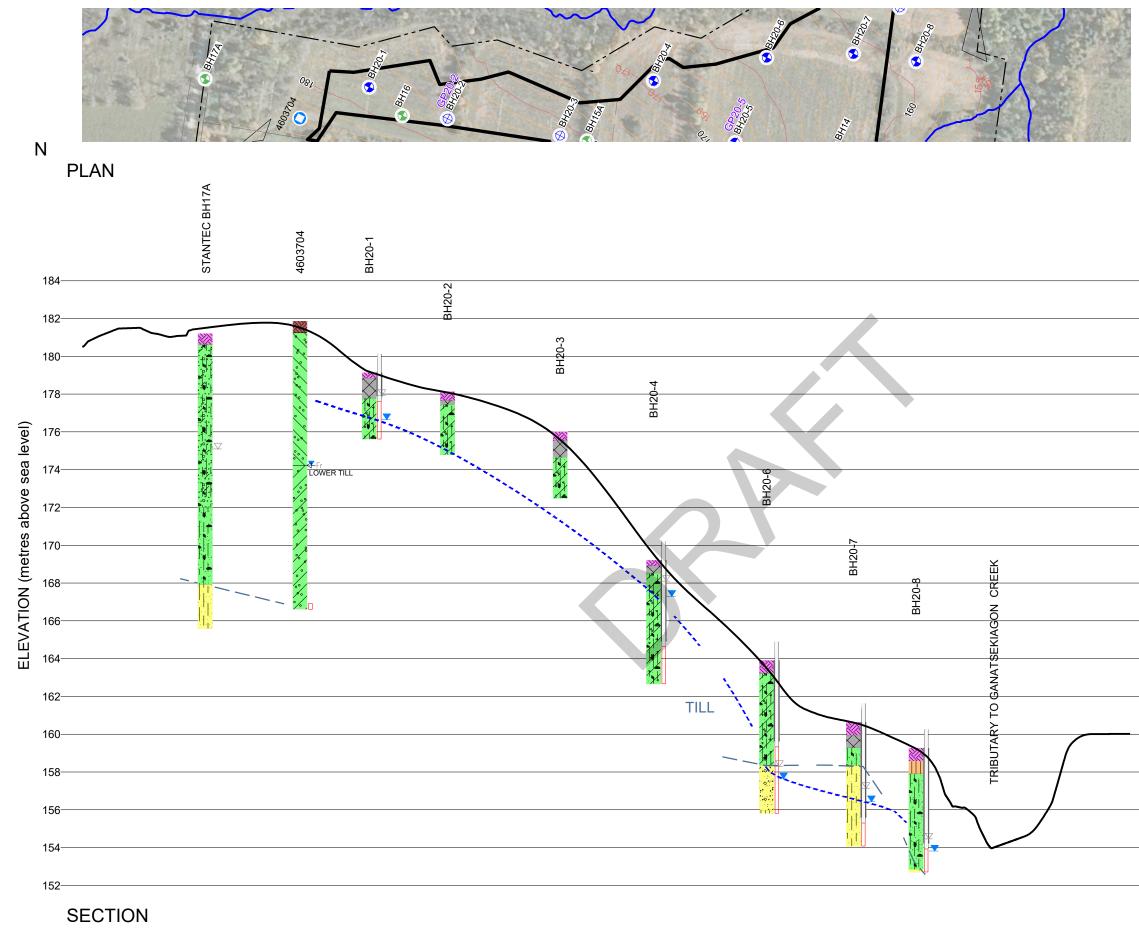
ALIGNMENT OF ORTHOGRAPHIC IMAGERY IS APPROXIMATED TO SELECT FEATUR
DATUM. AWAY FROM POINTS OF ALIGNMENT THE ORTHOGRAPHIC IMAGE MAY BE
DIMENSIONALLY SKEWED OR PROJECTED OFF THE MAP DATUM PLANE.

URES ON BE

REFERENCES & DISCLAIMERS ON-SITE WATER LEVELS JULY 25th 2020, OFF-SITE WATER LEVELS 23rd JULY 2020.

٠	SITE MONITORING WELL
•	ADJACENT SITE INVESTIGATIONS MONITORING WELL
•	ADJACENT SITE INVESTIGATIONS BOREHOLE
•	PETER MATTHEW DRIVE BOREHOLE (STANTEC)
189.45	STATIC WATER ELEVATION (25 July 2020)
	GROUNDWATER CONTOUR (masl)
	INFERRED GROUNDWATER FLOW DIRECTION

PLAN LEGEND


 \oplus

- PROPERTY LINES

WETLAND

SITE BOREHOLE

DRAFT PLAN BOUNDARY

PLAN LEGEND

- ⊕ BOREHOLE
- MONITORING WELL
- OFFSITE MONITORING WELL
- OFFSITE BOREHOLE
- C RECORDED BORED WELL

S

	SOIL PAT	TERN LEGEND	AND GENERIC SH	IADING			
		ORGANICS / T	OPSOIL			GRANULAR TILL	
	\bigotimes	FILL				SILT TILL	
404		SAND				SILTY CLAY TILL	
— 184		SILTY SAND			• • •	CLAY, STONE (MINISTRY RECOR	
— 182	<u>المام</u>				<u>/* </u>		
— 180							
— 178							
— 176							
170							
— 174							
— 172	SECTION	WELL SYMBOL	s				
— 170	BH1	BOREHOLE ID					
		RECORDED STA 25th JULY 2020	TIC WATER LEVE			ROUNDWATER PO	
— 168	s	SCREEN					
— 166	BOREHO		ORING WELLS SU	RVEYED BY SE	RNAS /	ASSOCIATES (2011)	;;
— 164	BOUNDA WELL LO	RIES BETWEEN CATIONS. BET		S AND TEST WI		ED ONLY AT WELL A SOUNDARIES ARE N	
— 162	0	80		160	24	40 m	
— 160	CLIENT 113337	3 ONTARI	O INC. (LEB	OVIC ENT	ERPF	RISES)	
— 158	PROJECT						
— 156	HYDRO	DGEOLOGI	ICAL INVES ⁻ ALE EAST [MENT	ſ, PICKERING	, ON.
— 154	TITLE SECT	rion a	- A'				
— 152							
	CONSULT	ANT		YYYY-MI	Л-DD	2020-09-22	
	-			DESIGNE	D		
		C C C	LDEI	PREPAR	ED	JPR	
	- 💊			REVIEWE	ED	SA	
				APPROV	ED	СМК	
	PROJECT		CONTROL 0002			REV.	FIGURE

APPENDIX A

Important Information and Limitations of this Report

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

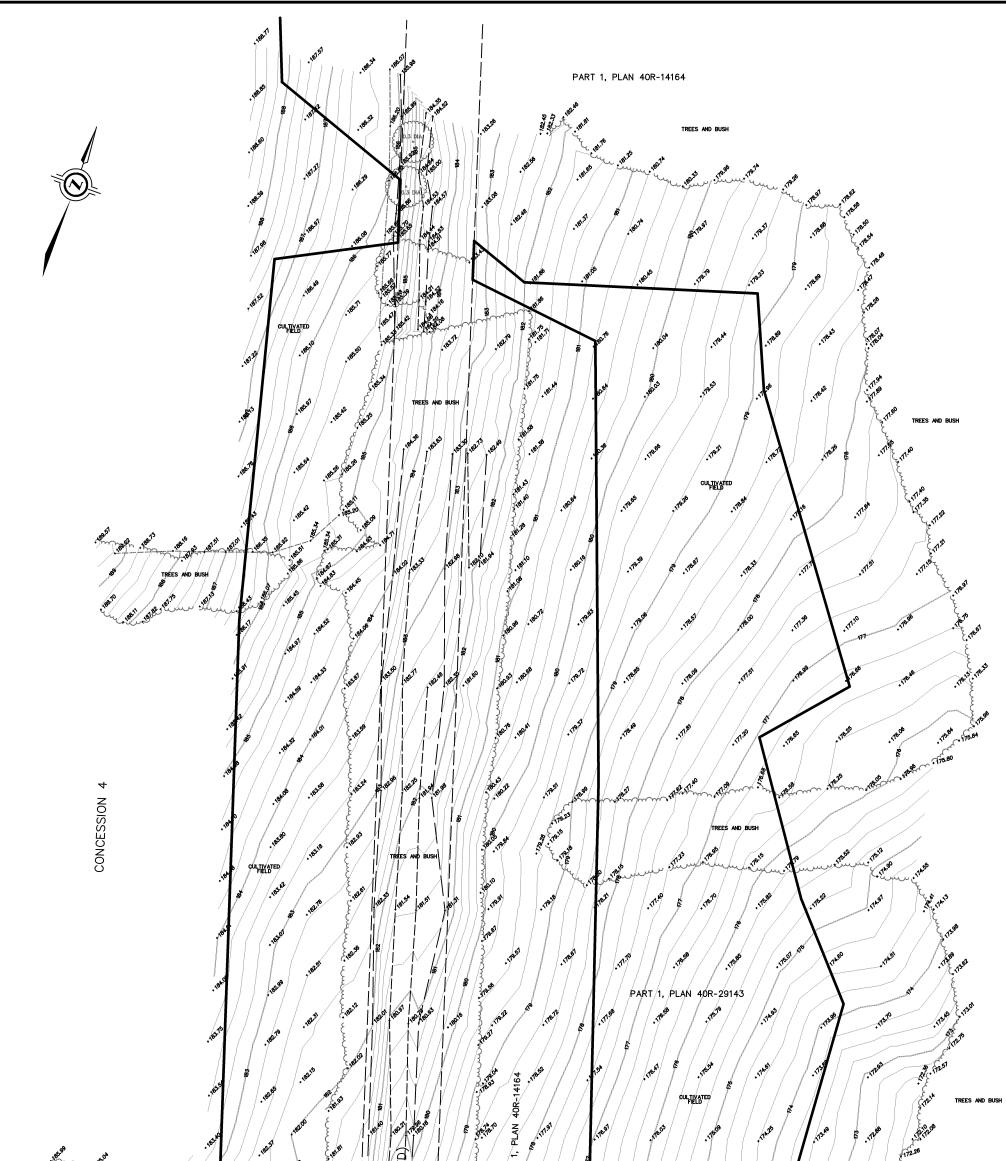
Soil, Rock and Ground Water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

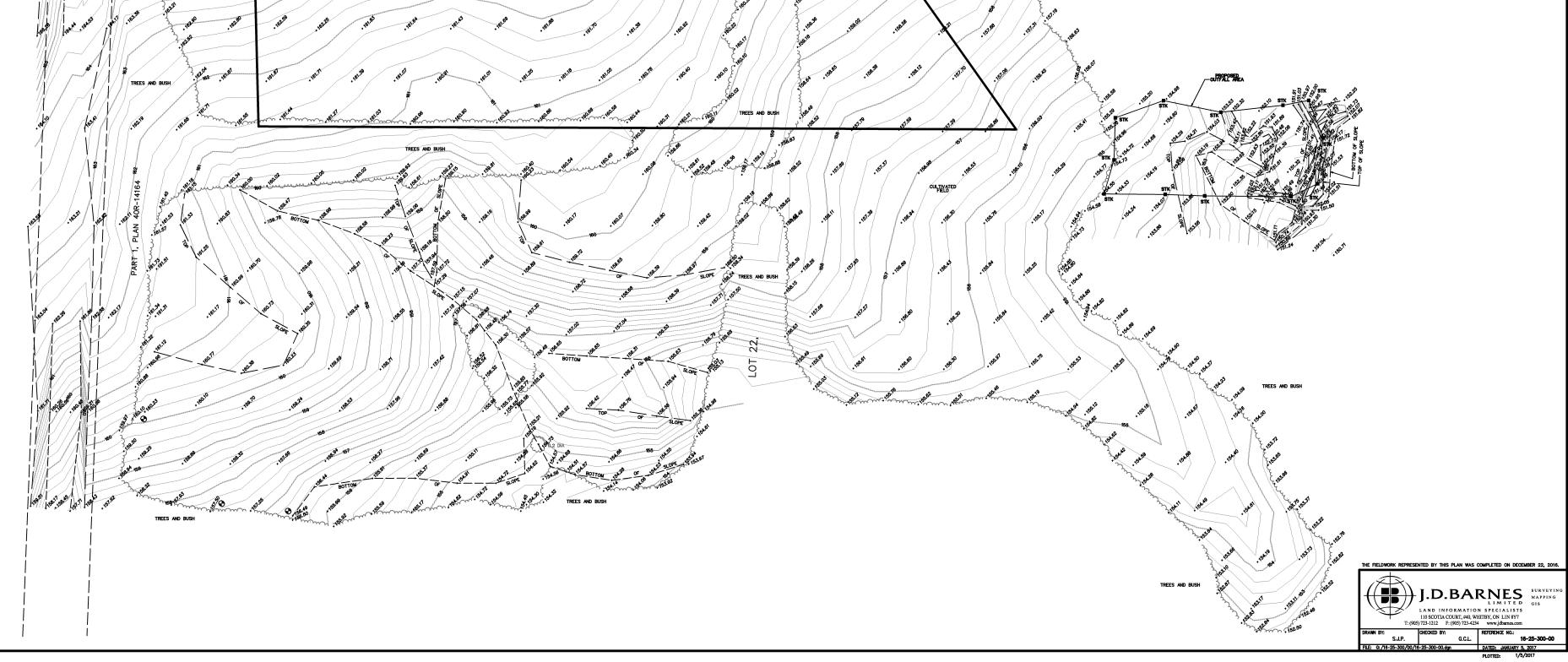
Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

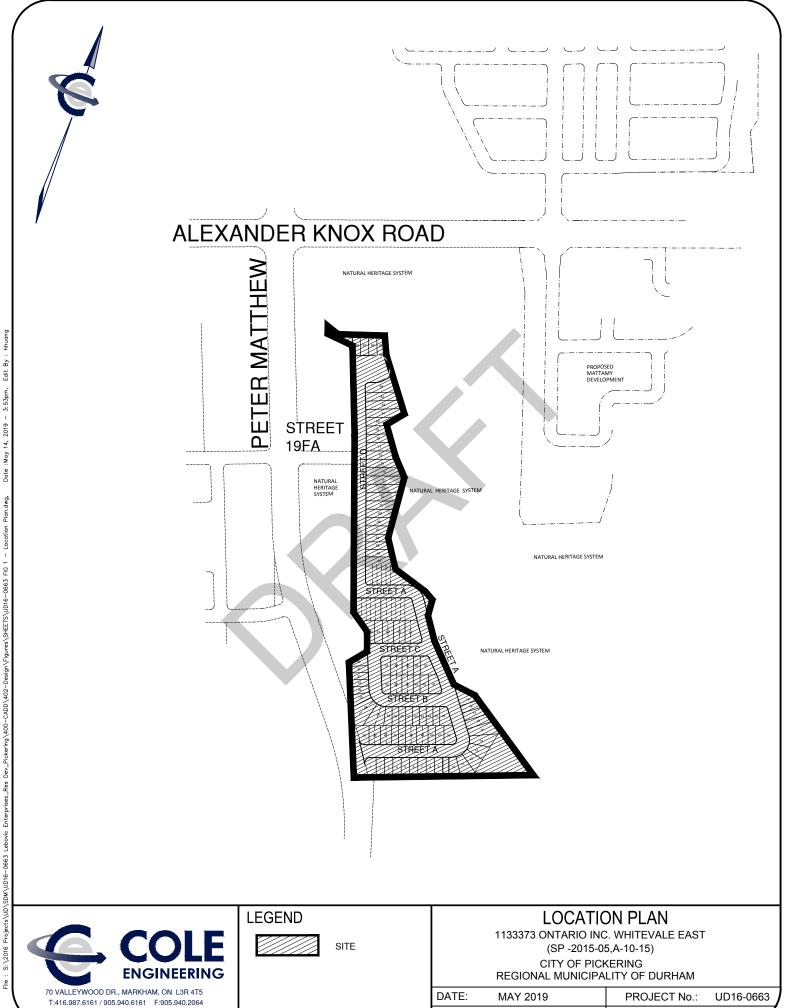

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

APPENDIX B

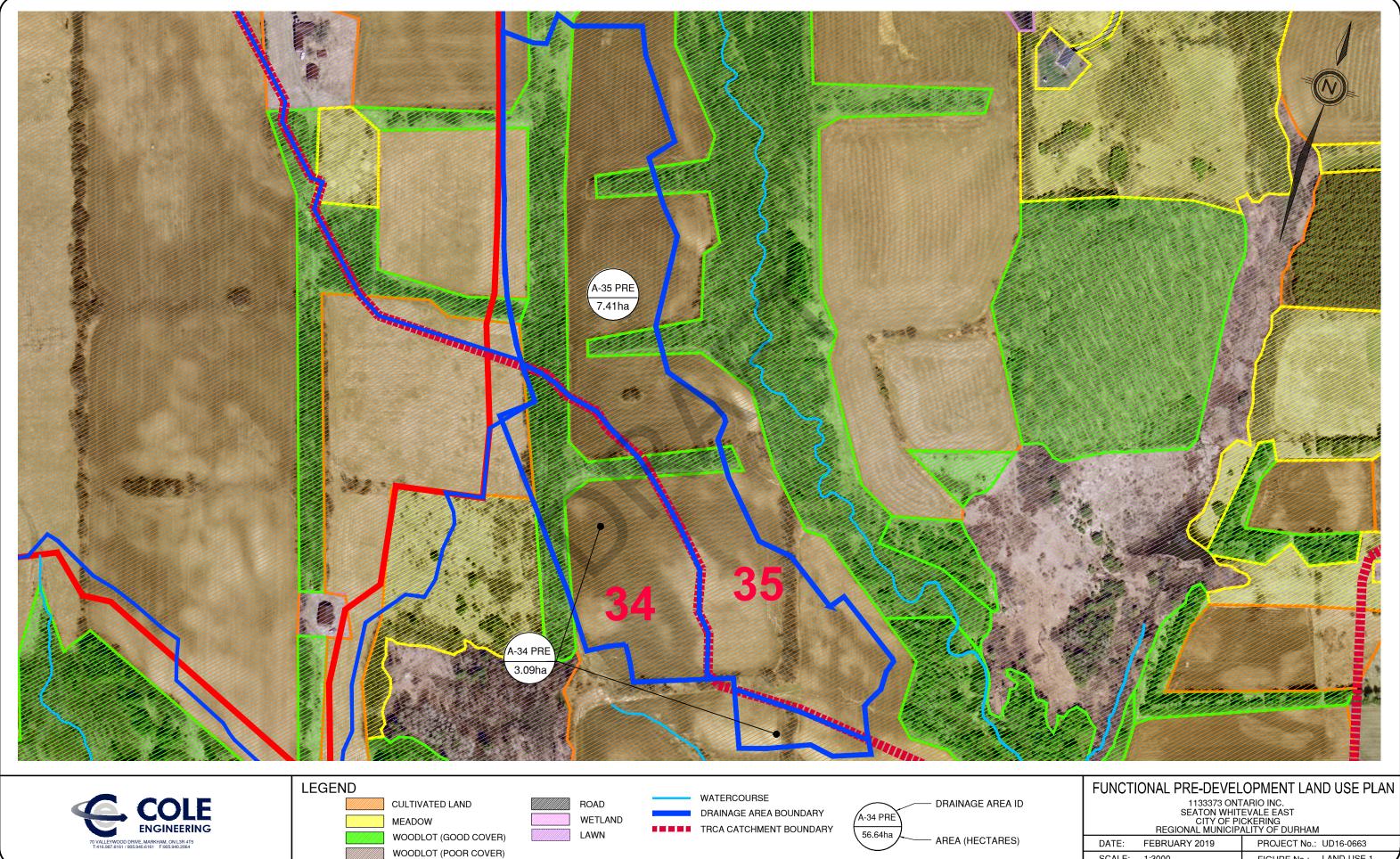

Supporting Documentation



LOT 23,

CESSION 4

TRA 19:19:19:00 1 818 18/ 182.10 /ġ) PART 1, PLAN 40R-14164 TREES AND BUSH TOPOGRAPHIC PLAN ILLUSTRATING PART OF LOTS 22 AND 23 AND PART OF THE ROAD ALLOWANCE BETWEEN LOTS 22 AND 23 CONCESSION 4 (GEOGRAPHIC TOWNSHIP OF PICKERING) NOW IN THE CITY OF PICKERING REGIONAL MUNICIPALITY OF DURHAM A 76.39.29 SCALE 1 : 1000 J. D. BARNES LIMITED © COPYRIGHT 2017 30 metres METRIC DISTANCES AND/OR COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048. CULTIVATED .18.TI TREES AND BUSH **BENCHMARK** ELEVATIONS HEREON ARE GEODETIC AND ARE REFERRED TO CITY OF PICKERING BENCHMARK No. 2-045, HAVING A PUBLISHED ELEVATION OF 102.055m (CGVID-1928/1978) AND MINISTRY OF TRANSPORTATION OF CMTARIO BENCHMARK No. 0081968322, HAVING A PUBLISHED ELEVATION OF 227.833m (CGVD-1928/1978). 14.00 10 5 15 5 13 83 TREES AND BUSH NOTES AND LEGEND BEARINGS HEREON ARE GRID AND ARE REFERRED UTM ZONE 17, NAD83 (ORIG.). Distances on this plan are ground and can be converted to grid using a scale factor of 0.99966197. MAN 163.69 THE LOCATION OF POLE LINES, OF DESIGNATION WATERMAINS, SEWERS AND ANY OTHER UNDERGROUND AND ABOVEROUND UTLITES AND STRUCTURES ARE NOT NEESSARILY SHOWN OF THIS PLAN, AND WHERE SHOWN, THE ACCURACY OF THE LOCATION OF SUCH UTLITES AND STRUCTURES ARE NOT CURARITIED, THE CONTROL OF SUCH UTLITES AND STRUCTURES ARE NOT CURARITIED, THE CONTROL THE SUCH UTLITES AND STRUCTURES FOR AND INVERT MESSARIDITS OF ALL SIGNIFIC THESA AND STRUCTURES FOR TO CONSTRUCTION AND SHALL ASSUME LUBBLITY FOR ANY CALAGE TO THEM. 61 TREES AND BUSH BOUNDARY INFORMATION IS COMPILED FROM REGISTRY OFFICE DOCUMENTS AND HAS NOT BEEN CONFIRMED BY FIELD MEASUREMENTS. . 186.65 186.30 165 PART 2, PLAN 40R-29143 ∭ MW BH ∎ STK denotes deciduous tree denotes monitoring well denotes bore hole denotes wooden stake 183.51 CULTIVATED -16h.h 163.10 164.0 181 105205-39 163.30 trees and bush -182.M 162.60 160.54 (160.48 161.1



SCALE:

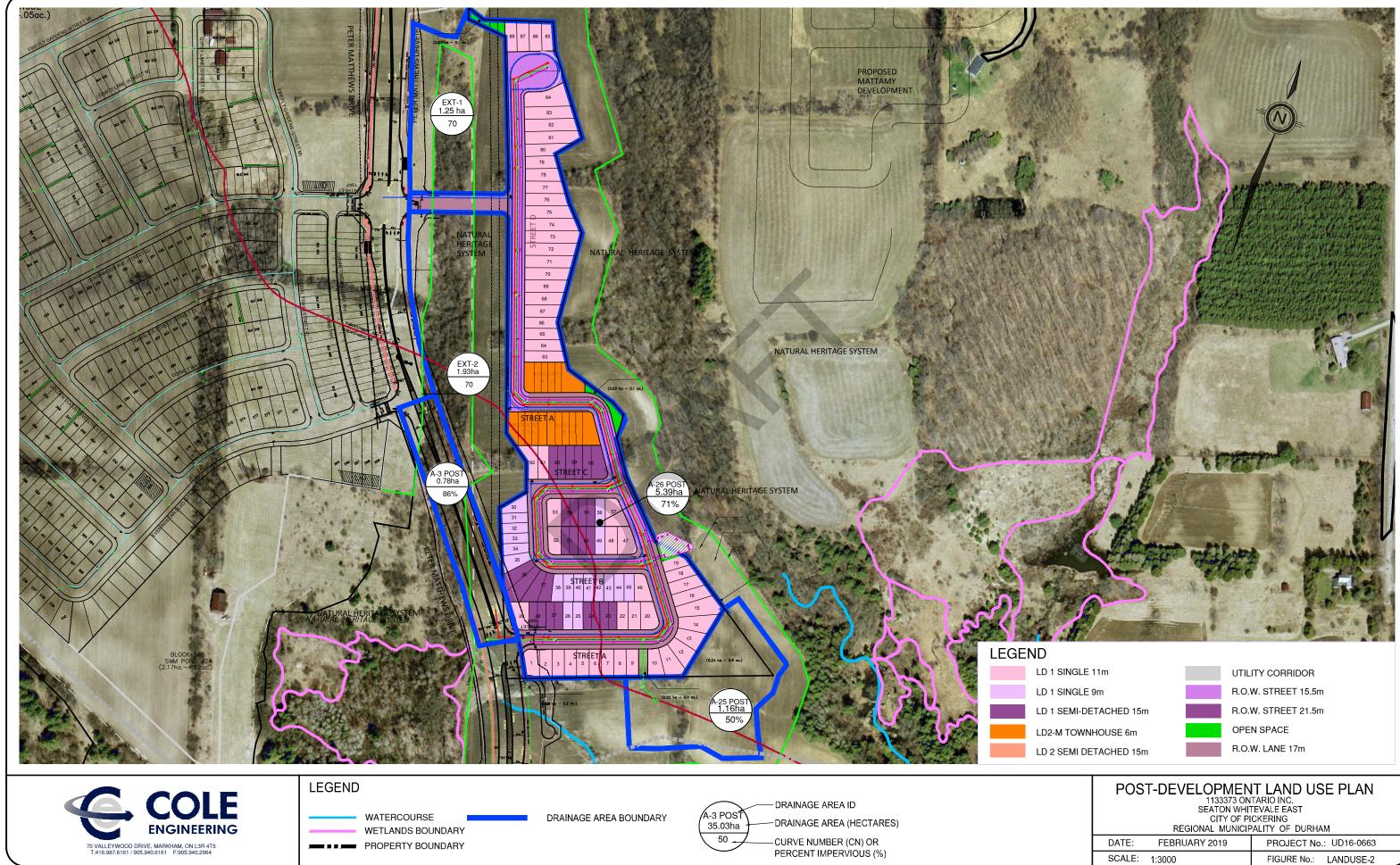
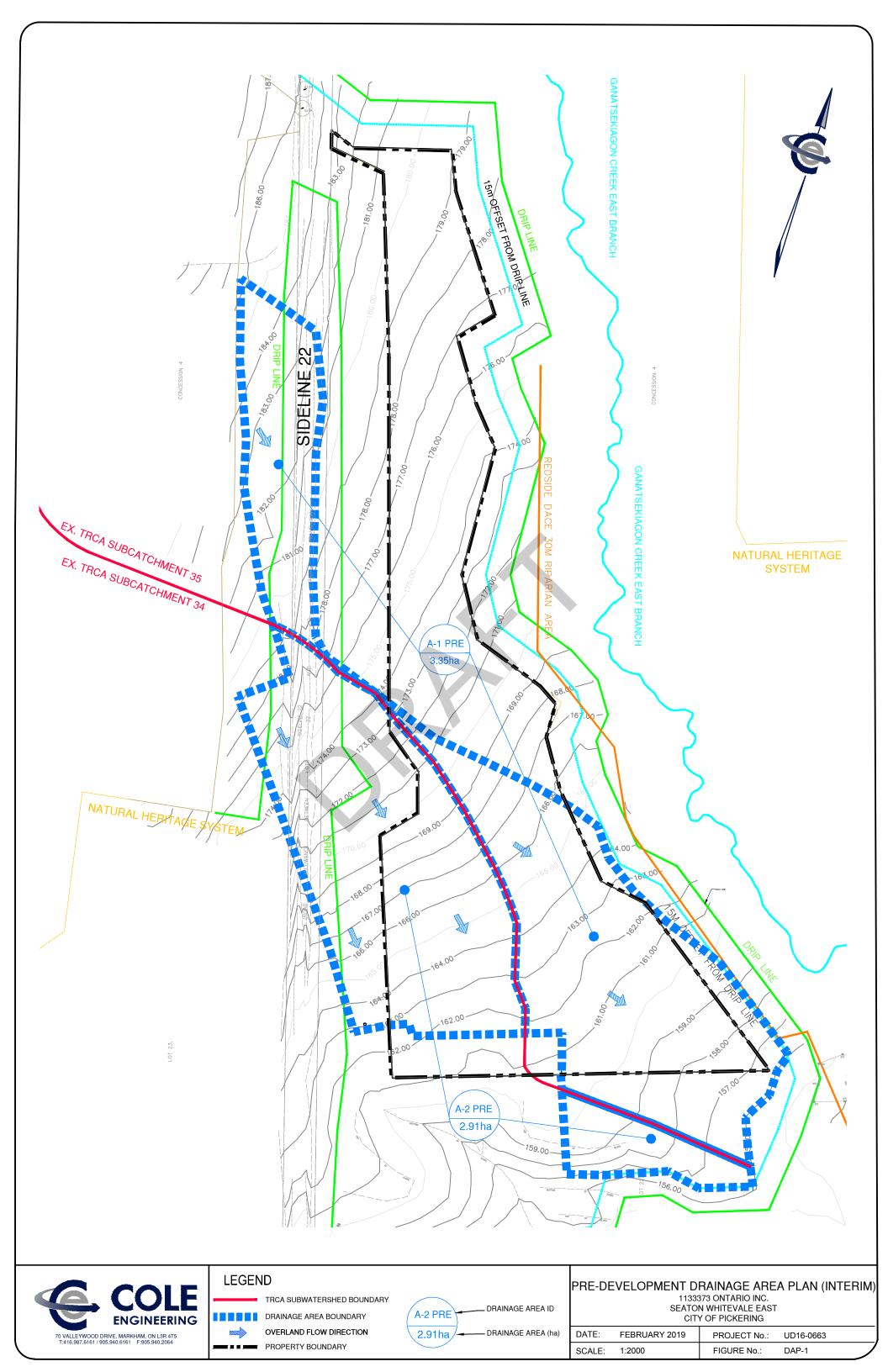
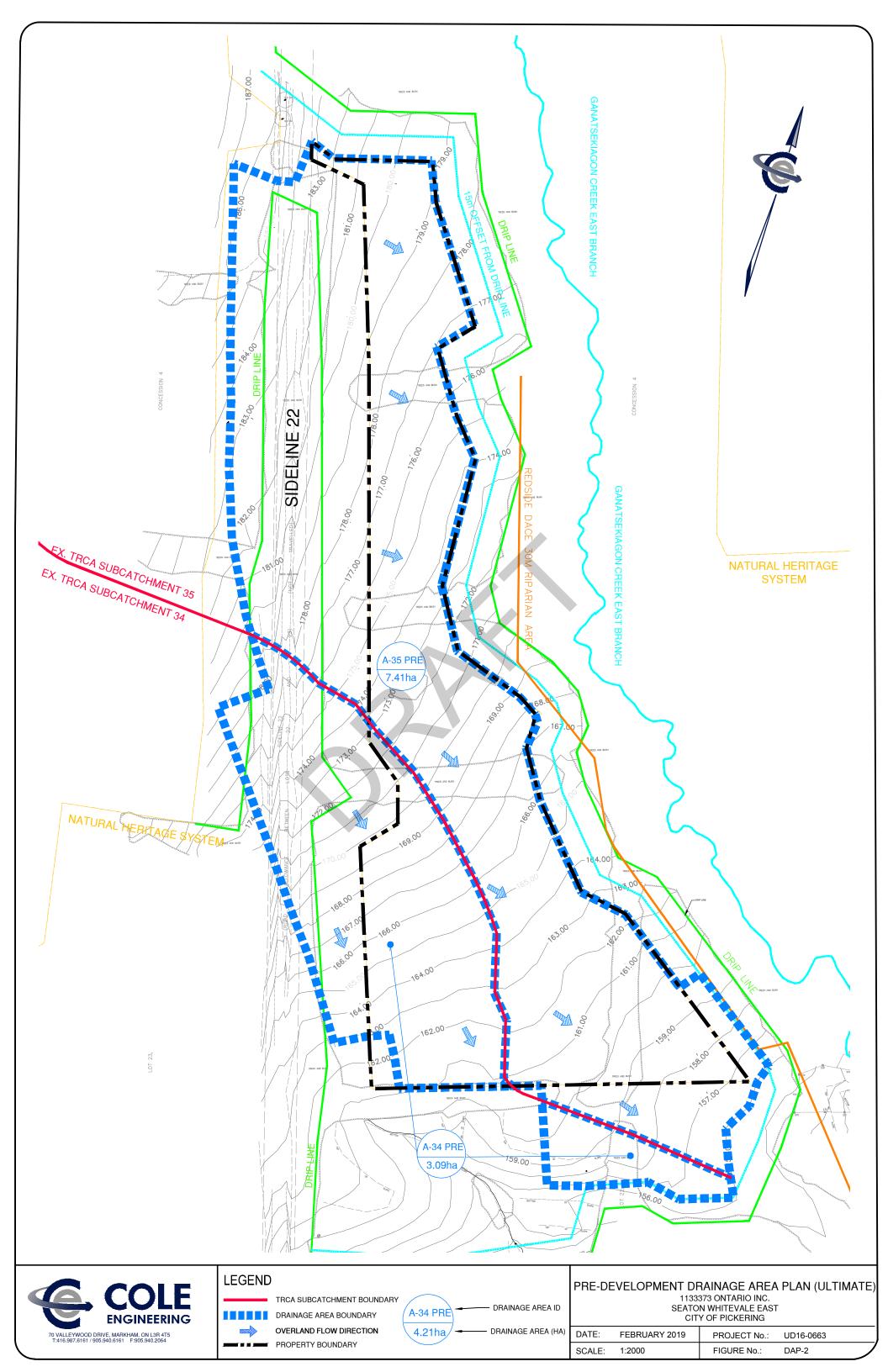
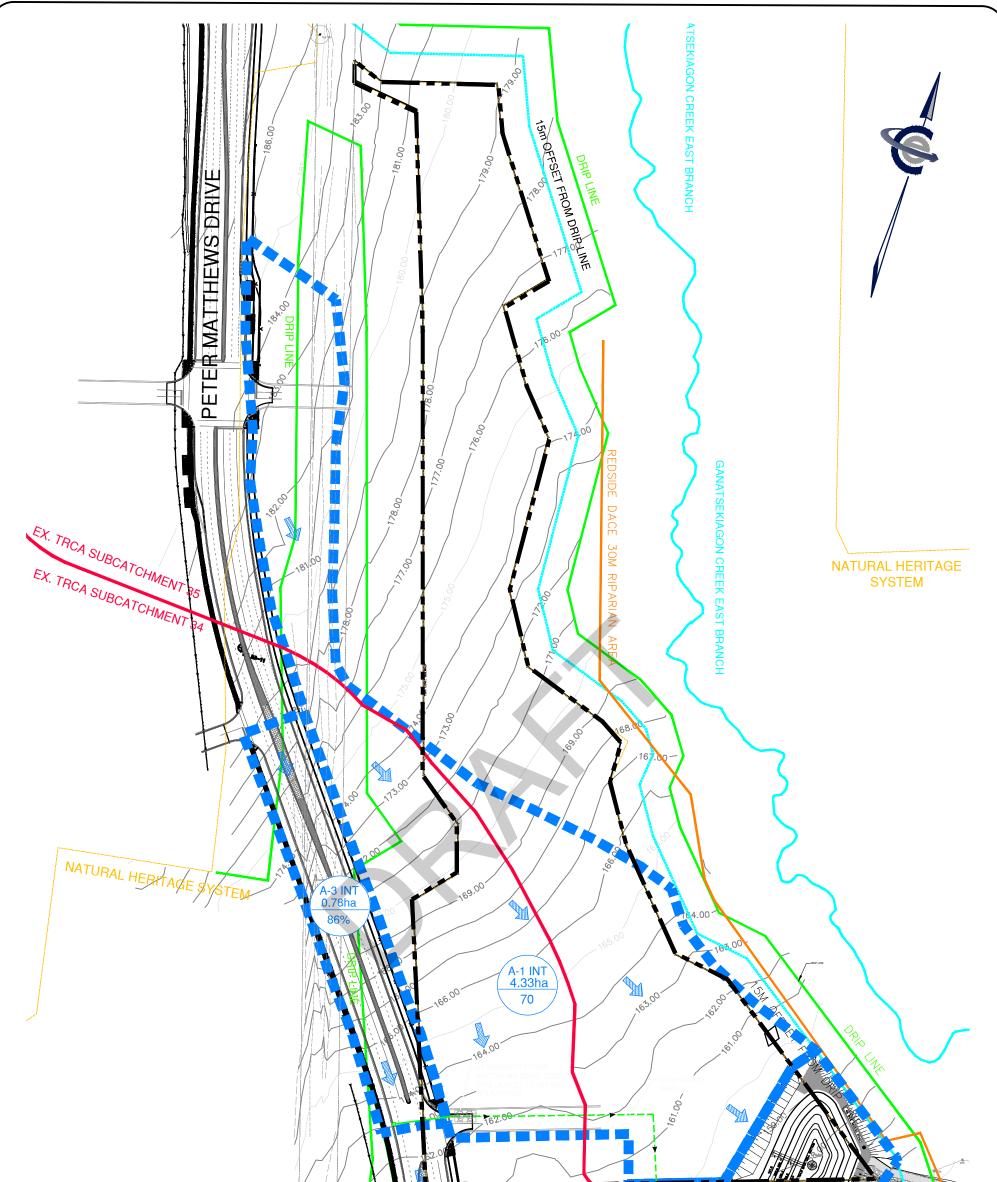

N.T.S

FIGURE No .:

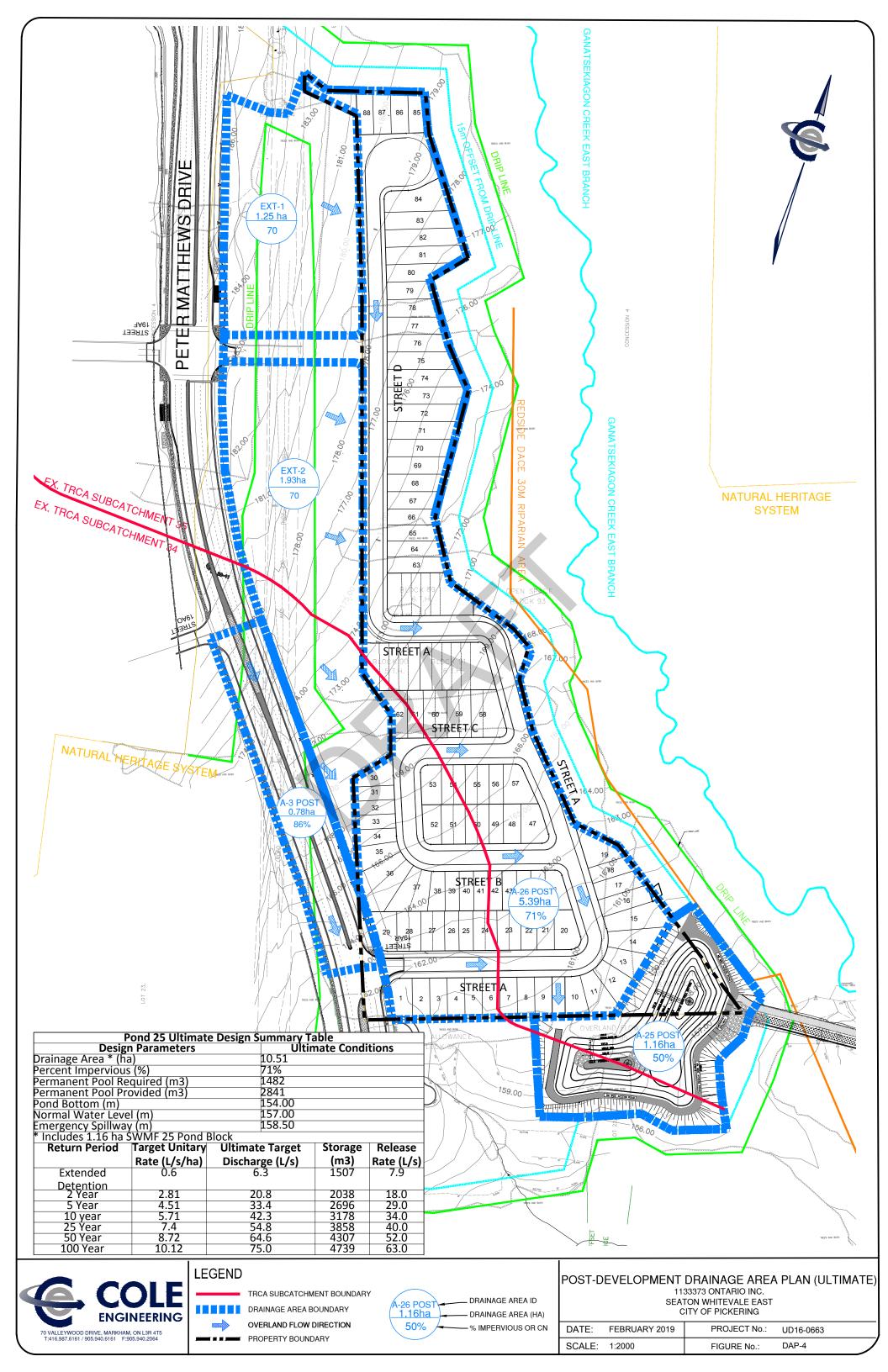
LOC

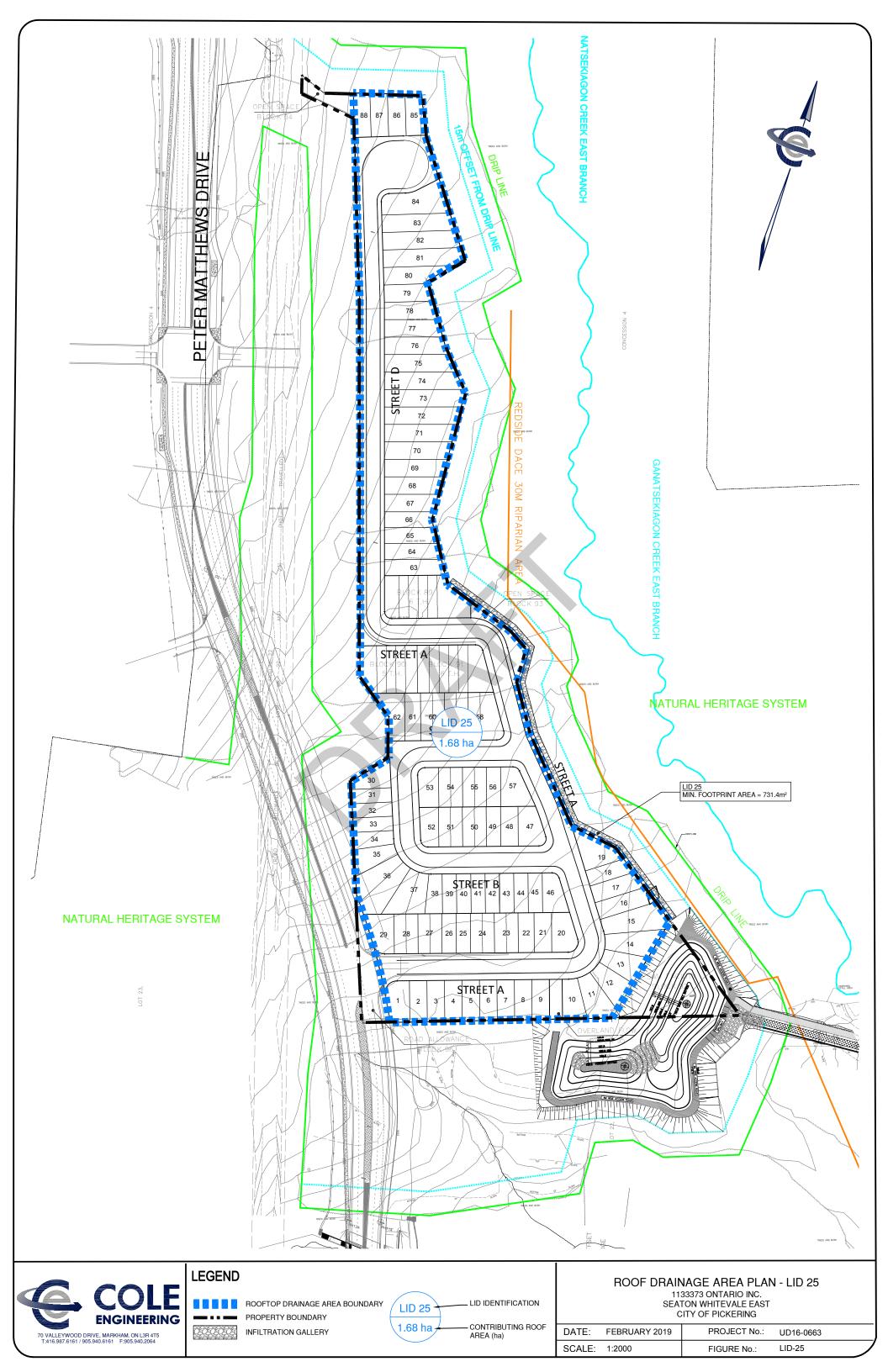


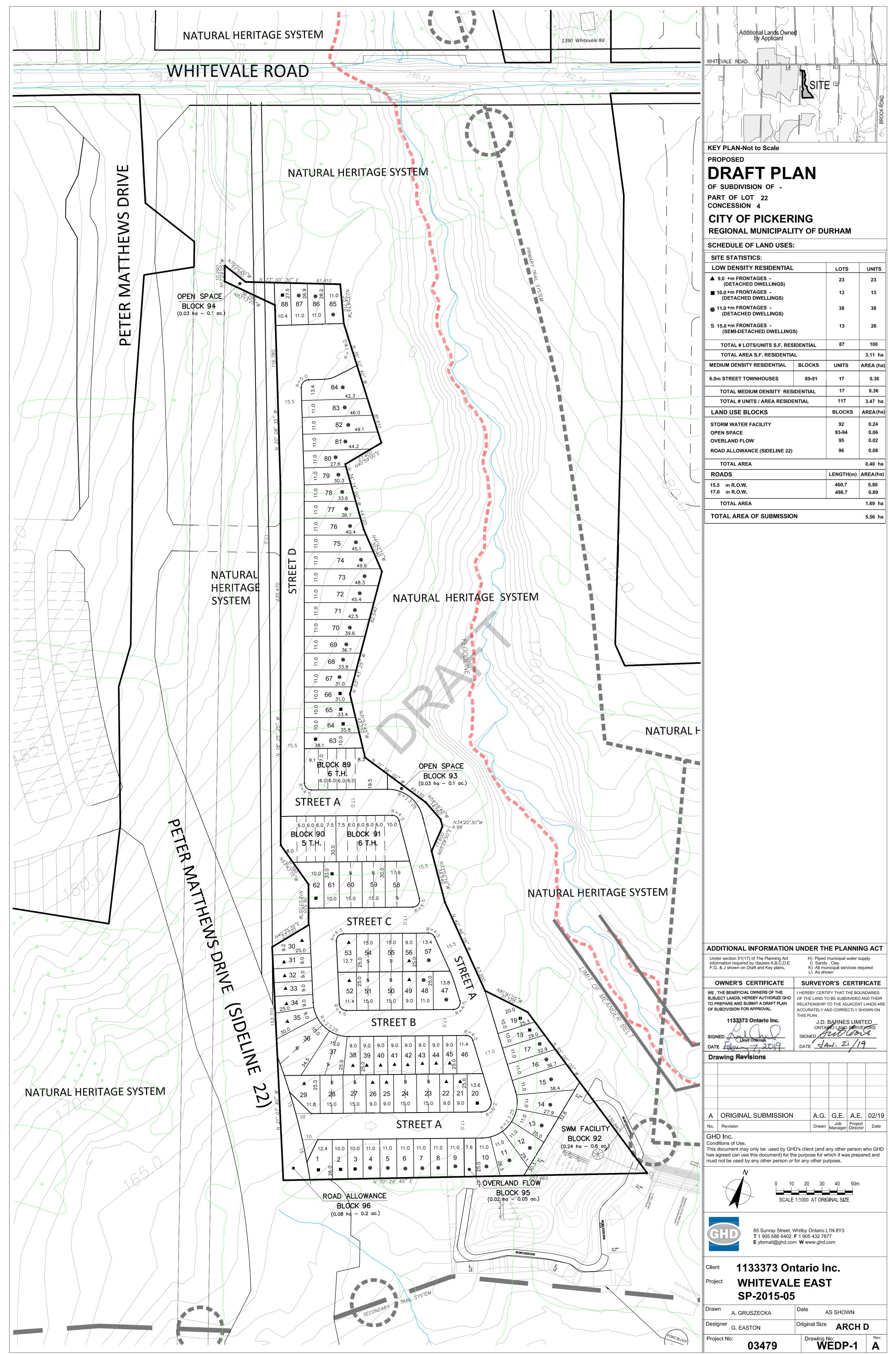

SEATON WHITEVALE EAST CITY OF PICKERING REGIONAL MUNICIPALITY OF DURHAM								
DATE:	FEBRUARY 2019	PROJECT No.: UD16-0663						
SCALE:	1:3000	FIGURE No.: LAND-USE 1						



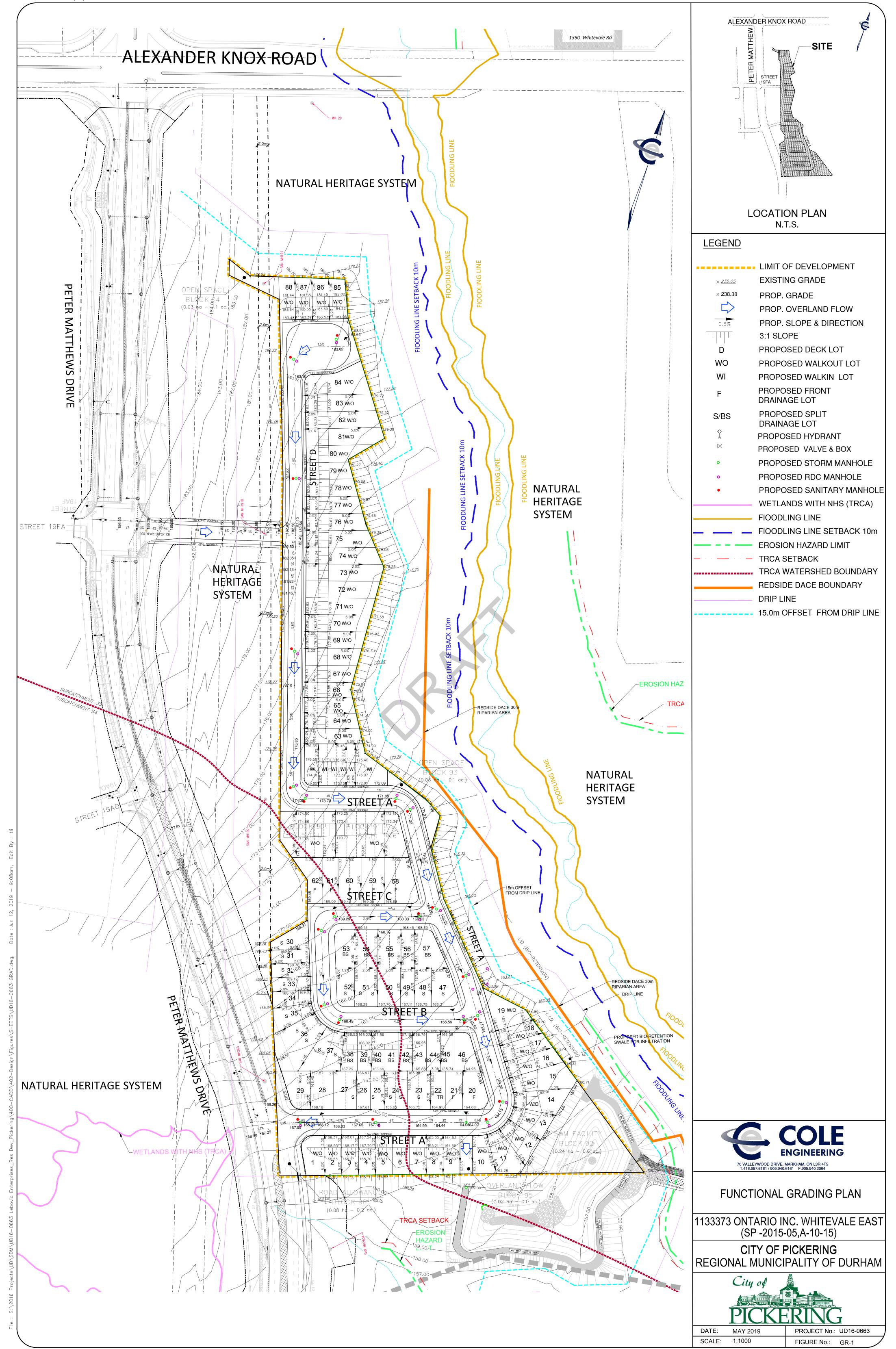
File: P:\mrk\2012\LD12-0605 11333730N_TauntonWSubdn_PKR\400-CADD\401-CAD\3-WR\FSR - MID\Figures\East\Post Landuse July 2018.dwg - Revised by <TMARTIN> : Wed, Sep 19 2018 - 9:40am

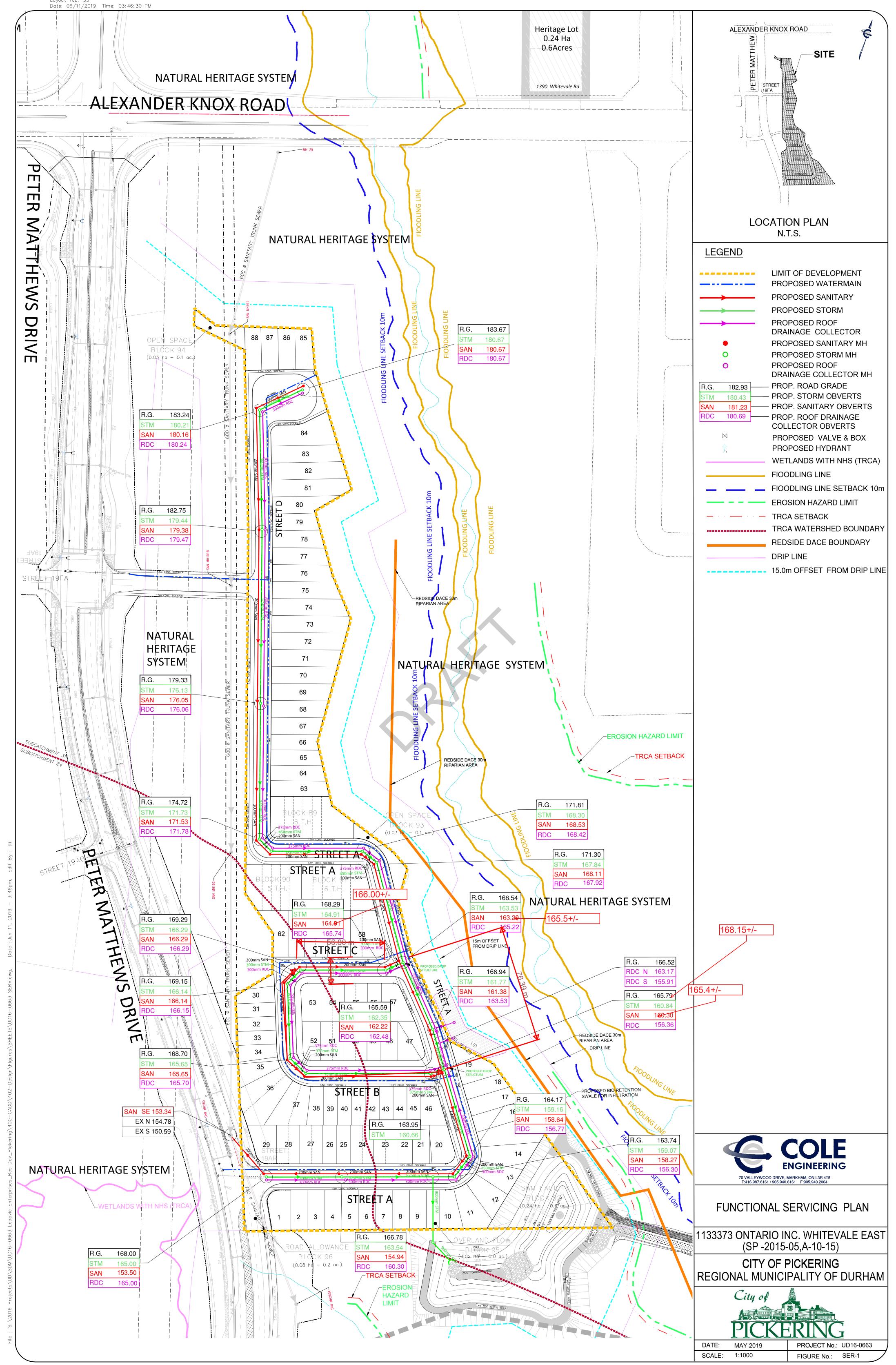

POS	T-DEVELOPMEN 1133373 ON SEATON WHI CITY OF PI REGIONAL MUNICIE	TEVALE EAST CKERING	
DATE:	FEBRUARY 2019	PROJECT No.: UD16-0663	
SCALE:	1:3000	EIGURE No : LANDUSE-2	





Desigr Drainage Area * (ha Percent Impervious Permanent Pool Rec Permanent Pool Pro Pond Bottom (m) Normal Water Leve Emergency Spillway * Includes 1.16 ha S	n Parameters) (%) quired (m3) ovided (m3) I (m) r (m) WMF 25 Pond B	6.26 27% 497 2841 154.00 157.00 158.50	erim Condit		159.00 	A-21 1.16 509 Exercises	ha
Return Period	Target Unitary Rate	Interim Target Discharge (L/s)	Storage (m3)	Release Rate (L/s)		TOP - OF JUNE	
	(L/s/ha)		(IN A REAL PROPERTY OF	
Extended Detention	n 0.6	3.8	452	4.1			
2 Year	2.81	9.4	782	7.0			
5 Year	4.51	15.1	1099	9.0			
10 year	5.71	19.1	1300	14.0			
25 Ýear	7.4	24.8	1602	20.0			
50 Year	8.72	29.2	1810	25.0			
100 Year	10.12	33.9	2029	28.0			
	LE –	GEND TRCA SUBWATERS		A-2 IN 1.16ha 50%	DRAINAGE AREA (ha)	1133 SEATO	RAINAGE AREA PLAN 3373 ONTARIO INC. DN WHITEVALE EAST TY OF PICKERING
70 VALLEYWOOD DRIVE, MARKHAM, ON L3 T:416.987.6161 / 905.940.6161 F:905.940.	3R 4T5	PROPERTY BOUND	ARY			DATE: FEBRUARY 2019	PROJECT No.: UD16-0663
_		-► TEMPORARY SWAL	E		OVERLAND FLOW DIRECTION	SCALE: 1:2000	FIGURE No.: DAP-3





Plot Date: 7 February 2019 - 2:43 PM Plotted by: Agnes Gruszecka

Cad File No: N:\CA\Whitby\Projects\Legacy\GMS\Proj\2003\03479 LEBOVIC - SEATON\Planning\Planning Group\Draft Plans\LEBOVIC-WHITEVALE EAST\Lebovic-WEdp1-Feb7-19.dwg

Drawing: S:\2016 PROJECTS\UD\SDM\UD16-0663 LEBOVIC ENTERPRISES_RES DEV_PICKERING\400-CADD\402-DESIGN\FIGURES\SHEETS\UD16-0663 SERV.DWG Layout Tab: SS

APPENDIX C

MECP Water Well Records

LABEL		DATE		ELEV		CR TOP LEN	SWL		TIME				
		-	NORTHING	masl	mbgl Qu	mbgl m	•	L/min	min		METHOD		DESCRIPTION OF MATERIALS
1905037	5	Jan-78	650813	201.2	13.7 Fr	11.3 -1.2	3.0	23	120	9.1	2214	WS	MOE# 1905037
	23		4862121								СТ	DO	0.0 BRWN CLAY STNS CMTD 4.6 BLUE CLAY STNS
													CMTD 13.7 BRWN SAND GRVL LOOS 15.2 BLUE CLAY
													STNS SAND 17.1
1912060	4	Feb-93	651074	197.8		5.2 -1.5	NR				1508	OW	MOE# 1912060
	23		4862013								DM	NU	0.0 TILL SAND SILT 2.7 SAND SILT 9.4 TILL
													SAND SILT 37.2 SILT SAND CLAY 41.5 TILL SILT
													SAND 44.2 SAND SILT 52.7 CLAY SILT 56.4 TILL
													CLAY SILT 57.9
1912061	4	Feb-93	651228	181.4		3.0 -1.5	NR				1508	OW	MOE# 1912061
	23		4861527								DM	NU	0.0 SAND SILT 3.0 TILL SILT SAND 3.7 TILL
													SILT SAND 15.5 TILL SAND SILT 18.6 TILL SILT
													SAND 20.1 CLAY SILT 21.6 TILL SILT SAND 23.2
													TILL SILT SAND 25.6 SAND SILT 30.8
1915010	4	Feb-01	651775	162.5	24.7 Fr	23.8 -0.9	17.7	45	60	22.9	1413	WS	MOE# 1915010
	22		4861193								RA	DO	0.0 BRWN CLAY BLDR HARD 17.4 BRWN SAND PCKD
													22.6 BLCK CGVL 24.7
1915087	4	May-01	651740	162.5			NR				1413	AB	MOE# 1915087
	22		4861300								-	DO	0.0
1915129	5	May-01	651725	182.6			NR				3136	AB	MOE# 1915129
	26		4862438								-	-	0.0
1915130	5	May-01	651725	182.6			NR				3136	AB	MOE# 1915130
	26		4862438								-	-	0.0
1915131	5	May-01	651678	181.1			NR				3136	AB	MOE# 1915131
	26		4862573								-	-	0.0
1915278	4	Feb-01	651603	185.0	25.0 Fr	22.6 -1.2	9.4	18	140	17.4	2662	WS	MOE# 1915278 TAG#ASSMNT
	22		4862308								RA	DO	0.0 BLCK TPSL 0.9 BRWN CLAY SNDY GRVL 5.8
													GREY CLAY SNDY GRVL 18.3 GREY CLAY GRVL 23.5
													GREY SAND GRVL WBRG 24.7 GREY SAND SLTY GRVL
													25.6
1915305	4	May-01	651741	162.5			NR				2662	AQ	MOE# 1915305
	22		4861299								OTH	NU	0.0
1915588	4	Nov-01	651707	182.9	44.8 -	42.4 -1.2	14.0	23	110	20.7	2662	WS	MOE# 1915588 TAG#ASSMNT
	21		4862265								СТ	DO	0.0 BLCK TPSL 0.3 BRWN CLAY GRVL 5.8 GREY
													CLAY GRVL HARD 18.9 BRWN SILT SAND 20.7 GREY
													CLAY SILT 23.2 GREY SILT 43.6 GREY SAND 44.8
1915754	4	Mar-02	652294	NR			NR				6974	WS	MOE# 1915754 TAG#ASSMNT
	20		4861908								-	DO	0.0
1915892		Feb-02	652281	161.8	45.7 -	43.9 -0.9	FLW	68	80	0.9	2662	WS	MOE# 1915892 TAG#ASSMNT
	20		4861916								СТ	DO	0.0 BLCK TPSL 0.3 BRWN CLAY STNS 15.2 GREY
L													CLAY STNS 44.5 BRWN SAND GRVL WBRG 45.7
1915906	4	Mar-02	651714	NR			NR				2662	AB	MOE# 1915906 TAG#ASSMNT
L	21		4862276								OTH	-	0.0
1916366	4	Feb-03	651772	NR			NR				6974	AQ	MOE# 1916366 TAG#ASSMNT
	22	-	4861199								-	DO	0.0
4601437	4	Aug-66	652070	168.2			NR				2610	AS	MOE# 4601437
	21		4862197								BR	-	0.0 GRVL 3.4 CLAY STNS 9.1

LABEL		DATE mmm-yr	EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	CR TOP LEN mbgl m	SWL mbgl	RATE L/min	TIME min		DRILLER METHOD		WELL NAME DESCRIPTION OF MATERIALS
4601438	4	Sep-66	652112	166.1	13.7 Fr		5.5			Ŭ	5420	WS	MOE# 4601438
1001100	21	000 00	4862099	100.1	9.1 Fr		0.0				BR	DO	0.0 TPSL 0.3 BRWN CLAY 2.4 GRVL STNS 4.6
	21		4002000		5.111						DIX	00	BLUE CLAY 8.5 MSND 9.8 CLAY 13.7 MSND 14.0
4601439	4	Aug-66	651689	185.3	4.0 Fr		3.7	9			5412	WS	MOE# 4601439
1001100	21	, lug 00	4862330	100.0			0.1	Ũ			BR	DO	0.0 TPSL 0.3 BRWN CLAY 3.0 BLUE CLAY MSND
	21		1002000								BIX	20	7.9
4601519	5	Nov-52	651784	179.8	18.3 Fr		5.5	27	60	5.5	3421	WS	MOE# 4601519
	21		4862474								RC	ST	0.0 PRDG 7.0 GREY CLAY HPAN 18.3 GRVL 20.7
4603704	4	Oct-68	651293	182.3	7.6 Fr	14.9 -0.3	7.6	14			3102	WS	MOE# 4603704
	22		4862131								BR	ST	0.0 TPSL 0.6 BRWN CLAY STNS 7.6 GREY CLAY
												•••	STNS 15.2
4603709	5	Mar-68	651163	189.0	10.7 Fr		4.3				5420	WS	MOE# 4603709
	22		4862571								BR	DO	0.0 TPSL 0.3 BRWN CLAY 3.7 BLUE CLAY 10.7
			1002071								Dire	20	CLAY GRVL 11.6
4606003	5	Sep-74	651833	182.9	46.3 Fr	49.7 -2.7	7.6	59	1440	8.2	1413	OW	MOE# 4606003
	23		4862495		30.5 Fr					0.2	RC	NU	0.0 BRWN SILT SAND FILL 3.7 GREY SILT SAND
	20		1002100		00.011								FILL 16.8 GREY SAND STNS FILL 30.5 GREY FSND
													39.0 GREY SILT FILL 46.3 GREY MSND STNS 78.0
													GREY CLAY SHLE FILL 81.1 LMSN SHLE 82.6
7103708		Feb-08	652189	159.4			NR				7219	AB	MOE# 7103708 TAG#A071861
			4861854								-	NU	0.0
7103709		Feb-08	652174	160.3			8.8				7219	AB	MOE# 7103709 TAG#A071852
1 1001 00		1 05 00	4861879	100.0			0.0				-	NU	0.0 CLAY FILL 8.8 8.8 GRVL 9.1
7165453		Apr-11	650825	195.4			NR				7360	-	MOE# 7165453 TAG#A061311
1100100		7 (p) 1 1	4862288	100.1							-	-	0.0
7165455		Apr-11	652173	153.3			NR				7360	-	MOE# 7165455 TAG#A061305
			4861227								-	-	0.0
7202748		Apr-13	651396	184.1		12.2 -3.0	NR				7501	OW	MOE# 7202748 TAG#A143185
			4862396								RC	MO	0.0
7202749		Apr-13	650928	191.4		4.6 -3.0	NR	>			7501	OW	MOE# 7202749 TAG#A143153
		, p. 10	4862520								RC	MO	0.0
7203852		Apr-13	651814	168.9	10.4 Un	9.1 -3.0	NR				7501	TH	MOE# 7203852 TAG#A143110
			4862113								RC	-	0.0
7212555		Apr-13		172.8		18.3 -3.0	NR				7472	-	MOE# 7212555 TAG#A158956
			4861975								BR	МО	0.0 BRWN SILT FSND PCKD 3.0 GREY SILT FSND
											2		HARD 21.0
7212561	5	Apr-13	651716	178.3		6.1 -3.0	NR				7472	TH	MOE# 7212561 TAG#A158962
0 0 .	21	, p. 10	4862661			011 010					BR	MO	0.0 BRWN SILT FSND PCKD 3.0 GREY SILT FSND
											2		HARD 9.1
7212562		Apr-13	651669	181.1		15.2 -3.0	NR				7472	OW	MOE# 7212562 TAG#A158961
0 0 -		, p. 10	4862123								BR	MO	0.0 BRWN SILT FSND PCKD 3.0 GREY SILT FSND
			1002120								5.1		HARD 18.3
7212563		Apr-13	651513	176.2		9.1 -3.0	NR				7472	OW	MOE# 7212563 TAG#A158960
			4862098								BR	MO	0.0 BRWN SILT FSND PCKD 3.0 GREY SILT FSND
													HARD 12.2
7212564		Apr-13	651539	170.7		9.1 -3.0	NR				7472	OW	MOE# 7212564 TAG#A158959
						0.1 0.0						0	
1212001			4861993								BR	MO	0.0 BRWN SILT FSND PCKD 3.0 GREY SILT FSND

LABEL	CON	DATE	EASTING	ELEV	WTR FND SC	R TOP LEN	SWL	RATE	TIME	PL	DRILLER	TYPE	WELL NAME
	LOT n	nmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl	METHOD	STAT	DESCRIPTION OF MATERIALS
212565		Apr-13	651612	172.2		2.4 -0.6	NR				7472	OW	MOE# 7212565 TAG#A158958
		•	4861966								BR	MO	0.0 BRWN SILT FSND PCKD 3.0
212566		Apr-13	651619	172.8		4.6 -3.0	NR				7472	OW	MOE# 7212566 TAG#A158957
		·	4861975								BR	MO	0.0 BRWN SILT FSND PCKD 3.0 GREY SILT FSND HARD 7.6
236553	5	Jan-15	651397	181.4			NR				7407	AS	MOE# 7236553
	22		4862328								DG	DO	0.0
259845		Dec-15	650959	198.4		6.1 -3.0	NR				7472	OW	MOE# 7259845 TAG#A197547
			4862117								BR	МО	0.0 BRWN SILT SAND PCKD 3.0 BRWN SILT GRVL
													PCKD 6.1 GREY SILT CGVL PCKD 9.1
259846		Dec-15	651827	173.7		12.2 -1.5	NR				7472	OW	MOE# 7259846 TAG#A176115
			4862424								BR	MO	0.0 WSTE WSTE PCKD 0.3 BRWN SILT FSND PCKD
													4.6 GREY FSND SILT PCKD 13.7
259847		Dec-15	651846	174.3		13.7 -1.5	NR				7472	OW	MOE# 7259847 TAG#A197551
			4862430								BR	MO	0.0 WSTE WSTE PCKD 0.3 BRWN SILT FSND PCKD
													4.6 GREY FSND SILT PCKD 15.2
259852		Dec-15	651126	190.2		6.1 -3.0	NR				7472	OW	MOE# 7259852 TAG#A197540
			4862193								BR	MO	0.0 WSTE WSTE PCKD 0.3 BRWN CLAY PCKD 3.0
													BRWN SAND GRVL LOOS 9.1
260788		Nov-15	651566	155.1		13.7 -3.0	NR				7383	TH	MOE# 7260788 TAG#A195018
			4861374								BR	TH	0.0
260789		Nov-15	651548	157.0		13.7 -3.0	NR				7383	TH	MOE# 7260789 TAG#A195042
			4861451								BR	TH	0.0
260790		Nov-15	651535	157.0		13.7 -3.0	NR				7383	TH	MOE# 7260790 TAG#A195041
			4861442								BR	TH	0.0
PD2181		Dec-61	651776	163.4			NR					-	MOE# YPD2181
			4861186						P		-	-	0.0 SOIL 0.6 SAND SILT GRVL 1.8
ć	QUALITY	v .		TYPE:				USE:				N/C	ETHOD :
Fr	Fresh		ws	Water S	Supply	со	Comercia		NU	Not Use	-d	CT	Cable Tool
Mn	Minera	I	AQ		oned Quality	DO	Domestic		IR	Irrigatio		JT	Jetting
Sa	Salty		AQ		ned Supply	MU			AL	Alterati		RC	Rotary Conventional
Sa Su	Sulphu	ır	AB		onment Record	PU	Public		MO	Monitor		RA	Rotary Conventional
	Unreco		TH		ole or Observatio		Stock		-	Not Re	0	BR	Boring
	0111000	naca		1000110			JUOUN		-	1101110	Jonaca		Doing

Easting and Northings UTM NAD 83 Zone 17, Translated from Recorded UTM NAD, subject to Field Verified Location or Improved Location Accuracy. Records Copyright Ministry of Environment Queen's Printer. Selected information tabulated to metric with changes and corrections subject to Driller's Records.

APPENDIX D

Method of Soil Classification Abbreviations and Terms Used on Records of Boreholes and Test Pits List of Symbols Record of Borehole Sheets Plasticity Chart Grain Size Analysis

Organic or Inorganic	Soil Group	Type of	Soil	Gradation or Plasticity	$Cu=\frac{D_{60}}{D_{10}}$			$Cc = \frac{(D)}{D_{10}}$	$(xD_{60})^2$	Organic Content	USCS Group Symbol	Group Name					
		of is nm)	Gravels with ≤12%	Poorly Graded		<4		≤1 or ≥	23		GP	GRAVEL					
(ss	5 mm)	ELS senif (sem vd) 4.75 T senif (sem vd) 4.75 T senif		Well Graded		≥4		1 to 3	3		GW	GRAVEL					
INORGANIC (Organic Content s30% by mass)	COARSE-GRAINED SOILS (>50% by mass is larger than 0.075 mm)	GRAVELS (>50% by mass of coarse fraction is larger than 4.75 mm)	Gravels with >12%	Below A Line			n/a				GM	SILTY GRAVEL					
sANIC t ≤30%	AINED rger th:	larg c (>	fines (by mass)	Above A Line			n/a			≤30%	GC	CLAYEY GRAVEL					
INOR(SE-GR. ss is la	of is mm)	Sands with	Poorly Graded		<6		≤1 or 2	≥3	\$30%	SP	SAND					
ganic (COARS by ma	SANDS (≥50% by mass of coarse fraction is smaller than 4.75 mm)	≤12% fines (by mass)	Well Graded		≥6		1 to 3	3		SW	SAND					
Ō	(>50%	SAN 50% by barse fi ller tha	Sands with	with	with	with	Sands with		Below A Line			n/a				SM	SILTY SAND
		sma (2	fines (by mass)	Above A Line			n/a				SC	CLAYEY SAND					
Organic	Soil			Laboratory		I	ield Indica	itors		Organic	USCS Group	Primary					
or Inorganic	Group	Type of	Soil	Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	Toughness (of 3 mm thread)	Content	Symbol	Name					
		L plot		Liquid Limit	Rapid	None	None	>6 mm	N/A (can't roll 3 mm thread)	<5%	ML	SILT					
(ss	75 mm	SILTS SILTS (Non-Plastic or Pl and LL plot below A-Line on Plasticity Chart below)		<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT					
by ma	OILS Ian 0.0			SILTS tic or P low A-I nart be			Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT			
INORGANIC ≎ontent ≤30%	FINE-GRAINED SOILS (≥50% by mass is smaller than 0.075 mm)	(Non-Plast be or Ch		Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT					
INORGANIC (Organic Content ≤30% by mass)	-GRAII s is sm			Ň)		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT			
ganic (FINE by mas	plot	hart	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0% to	CL	SILTY CLAY					
Ō	250%	CLAYS (Pl and LL plot above A-Line on Plasticity Chart below)		Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	30%	CI	SILTY CLAY					
	_	(PI a	Plas	Liquid Limit ≥50	None	High	Shiny	<1 mm	High	(see Note 2)	СН	CLAY					
× º	30% s)	Peat and mi mixtur						30% to 75%		SILTY PEAT, SANDY PEAT							
HIGHLY ORGANIC SOILS (Organic	Content >30% by mass)	Predominar may contai mineral soil, t	in some					75% to 100%	PT	PEAT							
4 0 0 0 0 0 0	SILT ML (: 10 e grained h city. Fine-	See Note 1) 20 25 materials with	CI OR Lie Pl and LL t	SILTY CLAY CI CI CI CI CI CI CI CI CI CI CI CI CI	CLAY CH CLAYEY SI ORGANIC S	ацт он 70		a hyphen, For non-cc the soil h transitiona gravel. For cohes liquid limit of the plas Borderlin separated A borderlin has been transition b	for example, ohesive soils, as between I material b ive soils, the and plasticity ticity chart (s e Symbol — by a slash, f ne symbol sh identified as between similar	GP-GM, S the dual sy 5% and etween "c dual symb y index value e Plastici or example iould be us s having p lar materia	two symbols s SW-SC and Cl ymbols must b 12% fines (i.e lean" and "di pol must be us ues plot in the ty Chart at left ine symbol is e, CL/CI, GM/S sed to indicate properties that Is. In addition a range of simi	ML. e used when e. to identify rty" sand or ed when the CL-ML area t). two symbols SM, CL/ML. that the soil t are on the , a borderline					

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICI E SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)
BOULDERS	Not Applicable	>300	>12
COBBLES	Not Applicable	75 to 300	3 to 12
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)
SILT/CLAY	Classified by plasticity	<0.075	< (200)

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL)
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable
> 5 to 12	some
≤ 5	trace

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (qi), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd: The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

NON-COHESIVE (COHESIONLESS) SOILS						
Compactness ²						
Term	SPT 'N' (blows/0.3m) ¹					
Very Loose	0 to 4					
Loose	4 to 10					
Compact	10 to 30					
Dense	30 to 50					
Very Dense	>50					

1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.

Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' 2. value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
то	Thin-walled, open - note size (Shelby tube)
TP	Thin-walled, piston – note size (Shelby tube)
WS	Wash sample

SOIL TESTS

SUIL 12515											
w	water content										
PL, w _p	plastic limit										
LL, wL	liquid limit										
С	consolidation (oedometer) test										
СНЕМ	chemical analysis (refer to text)										
CID	consolidated isotropically drained triaxial test ¹										
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹										
D _R	relative density (specific gravity, Gs)										
DS	direct shear test										
GS	specific gravity										
М	sieve analysis for particle size										
МН	combined sieve and hydrometer (H) analysis										
MPC	Modified Proctor compaction test										
SPC	Standard Proctor compaction test										
OC	organic content test										
SO ₄	concentration of water-soluble sulphates										
UC	unconfined compression test										
UU	unconsolidated undrained triaxial test										
V (FV)	field vane (LV-laboratory vane test)										
γ	unit weight										

Tests anisotropically consolidated prior to shear are shown as CAD, CAU. 1.

	Consistency											
Consistency												
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)										
Very Soft	<12	0 to 2										
Soft	12 to 25	2 to 4										
Firm	25 to 50	4 to 8										
Stiff	50 to 100	8 to 15										
Very Stiff	100 to 200	15 to 30										
Hard	>200	>30										

1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct 2 measurement of undrained shear strength or other manual observations.

Water Content												
Term	Description											
w < PL	Material is estimated to be drier than the Plastic Limit.											
w ~ PL	Material is estimated to be close to the Plastic Limit.											
w > PL	Material is estimated to be wetter than the Plastic Limit.											

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a) w	Index Properties (continued) water content
π In x	3.1416 natural logarithm of x	w _l or LL w _p or PL	liquid limit plastic limit
log₁₀ g	x or log x, logarithm of x to base 10 acceleration due to gravity	l₀ or PI NP	plasticity index = (w _l – w _p) non-plastic
t	time	Ws	shrinkage limit
		l∟ Ic	liquidity index = $(w - w_p) / I_p$ consistency index = $(w_l - w) / I_p$
		emax	void ratio in loosest state
		e _{min} I _D	void ratio in densest state density index = $(e_{max} - e) / (e_{max} - e_{min})$
II.	STRESS AND STRAIN	U	(formerly relative density)
γ	shear strain	(b)	Hydraulic Properties
Δ	change in, e.g. in stress: $\Delta \sigma$	h	hydraulic head or potential
3	linear strain volumetric strain	q v	rate of flow velocity of flow
ε _v η	coefficient of viscosity	i	hydraulic gradient
υ.	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	j 🖌	seepage force per unit volume
σ'_{vo}	initial effective overburden stress		
σ1, σ2, σ3	principal stress (major, intermediate, minor)	(c)	Consolidation (one-dimensional)
		C _c	compression index
σoct	mean stress or octahedral stress		(normally consolidated range)
	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	recompression index
τ	shear stress		(over-consolidated range)
u E	porewater pressure modulus of deformation	Cs Ca	swelling index secondary compression index
G	shear modulus of deformation	my	coefficient of volume change
K	bulk modulus of compressibility	Cv	coefficient of consolidation (vertical direction)
		Ch	coefficient of consolidation (horizontal direction)
		Tv	time factor (vertical direction)
III.	SOIL PROPERTIES	U œ′=	degree of consolidation pre-consolidation stress
(a)	Index Properties	σ′ρ OCR	over-consolidation ratio = σ'_p / σ'_{vo}
ρ(γ)	bulk density (bulk unit weight)*		
ρα(γα)	dry density (dry unit weight)	(d)	Shear Strength
ρω(γω)	density (unit weight) of water	τρ, τr	peak and residual shear strength
ρs(γs)	density (unit weight) of solid particles	φ΄ δ	effective angle of internal friction
γ'	unit weight of submerged soil $(y' - y_1 - y_2)$		angle of interface friction coefficient of friction = tan δ
D _R	$(\gamma' = \gamma - \gamma_w)$ relative density (specific gravity) of solid	μ c′	effective cohesion
	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
е	void ratio	р	mean total stress $(\sigma_1 + \sigma_3)/2$
n	porosity	p'	mean effective stress ($\sigma'_1 + \sigma'_3$)/2
S	degree of saturation	q	$(\sigma_1 - \sigma_3)/2$ or $(\sigma'_1 - \sigma'_3)/2$
		q _u St	compressive strength (σ_1 - σ_3) sensitivity
* Densi	ty symbol is ρ. Unit weight symbol is γ I	Notes: 1	$\tau = c' + \sigma' \tan \phi'$
where	$\gamma = \rho g$ (i.e. mass density multiplied by eration due to gravity)	2	shear strength = (compressive strength)/2

			F: 20139990 N: N 4861508.34; E 651114.73		REC	;OF			OF BOREHOLE: ING DATE: May 20, 2020		SHEET 1 OF 1 DATUM: Geodetic			
SI	PT/I	DCP	T HAMMER: MASS, 64kg; DROP, 762mm								HAMM	/IER T	PE: AUTOMATIC	
щ		0	SOIL PROFILE			SAN	/IPL	ES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	T	o.		
DEPTH SCALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + 0 Cu, kPa rem V. ⊕ U	Q - ● WATER CONTENT PERC U - O Wp I - O ^W		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION	
— o	, _	,	GROUND SURFACE		183.79								_	
	CME 55 Track Mounted Rig	200 mm Hollow Stem Augers				1 2 3 4 5	ss ss ss ss	a 4 18 45 61 50// 0.13			40	MH		
		TH S	CALE						GOLDER			LC	- DGGED: JK	
1191	: 50)										CH	ECKED: SEMP	

PROJECT: 20139990

RECORD OF BOREHOLE: LOCATION: N 4861625.72; E 651171.06

BORING DATE: May 20, 2020

BH20-2

SHEET 1 OF 2

DATUM: Geodetic

ц Д	ДОН.	SOIL PROFILE	F	1	SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	T T	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + Q. ● Cu, kPa 00 00 00 00	WATER CONTENT PERC		OR STANDPIPE INSTALLATION
0		GROUND SURFACE	0	185.40			_	20 40 60 80	10 20 30	40	
1		TOPSOIL (SM) SILTY SAND, some gravel to gravelly, brown; non-cohesive, moist, dense to very dense		0.00 184.71 0.69	1	SS SS			0		50 mm PVC Monitoring Well
2		- Gravelly between 1.5 m to 2.4 m			3	SS SS	85/ 0.28 50/ 0.13		0		
3		- No sample recovered at 3.1 m			5	SS	57				∇
4	CME 55 Track Mounted Rig 100 mm O.D. HWT Steel Casing	(CL-ML) sandy SILTY CLAY to CLAYEY SILT, trace to some gravel; brown to grey, oxidation staining to 6.1 m (TILL), cohesive, w~PL, hard - Sand pocket at 4.6 m		181.36 4.04	6	SS	118		0		⊻ June 5/20 Bentonite
6					7	SS	122		0		
8		- Grey at a depth of 7.6 m			8	SS	90/ 0.25		0		
9					_9_	<u>_SS</u>				+	
		SCALE		I				GOLDER			LOGGED: JK

			T: 20139990	REC	O	RD	C	OF BOREHOLE:	BH20-2		SHEET 2 OF 2			
	LOC	CATIO	N: N 4861625.72; E 651171.06			BC	DRI	ING DATE: May 20, 2020	DATUM: Geodetic					
	SPI	I/DCP	T HAMMER: MASS, 64kg; DROP, 762mm							HAMME	R TY	PE: AUTOMATIC		
ЧE		ПОН.	SOIL PROFILE		SAN	/PLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	T	ŊŊ	PIEZOMETER		
DEPTH SCALE	METRES	BORING METHOD		STRATA PLOT (m) (m) (m)	NUMBER	TYPE	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH nat V. + C rem V. ⊕ 1 20 40 60 80 1 1 1 1	Q - • WATER CONTENT PERC	10 ⁻³	LAB. TESTING	OR STANDPIPE INSTALLATION		
	10 -	CME 55 Track Mounted Rig 100 mm O.D. HWT Steel Casing	CONTINUED FROM PREVIOUS PAGE (CL-ML) sandy SILTY CLAY to CLAYEY SILT, trace to some gravel; brown to grey, oxidation staining to 6.1 m (TILL), cohesive, w~PL, hard				50/ 1.13		• • • • • •		s	Sand		
	12 13 14 15 16		 END OF BOREHOLE NOTES: 1. Water was used to advance borehole. 2. 63.5 mm split spoon was used for SPT sampling below 4.6 m 3. Water was not encountered during drilling. 4. Groundwater level was measured in monitoring well at 3.9 mbgs (EI. 181.5 m) on June 5, 2020. 	173.11	11	<u>55</u>	50/		0					
LIENTS/LEBOVIC_ONTARIO/PICKERIN	18 19 20													
GTA-BHS 001	DEF 1:5		CALE			 Į		GOLDER				GGED: JK :CKED: SEMP		

PROJECT: 20139990 LOCATION: N 4861774.72; E 651232.09

RECORD OF BOREHOLE: BH20-3

SHEET 1 OF 2 DATUM: Geodetic

BORING DATE: May 21, 2020

HAMMER TYPE: AUTOMATIC

	ПОН	SOIL PROFILE	1.		SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	
METRES	BORING METHOD		STRATA PLOT	ELEV/	н		0.3m	20 40 60 80		PIEZOMETER OR STANDPIPE INSTALLATION
ME	RING	DESCRIPTION	ATA F	ELEV. DEPTH (m)	UMBL	TYPE	BLOWS/0.3m	SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O	WATER CONTENT PERCENT	INSTALLATION
	BOI		STR.	(m)	Ž		BLC	20 40 60 80	Wp H O ^W I WI 10 20 30 40	
0		GROUND SURFACE		186.19						
J		TOPSOIL		0.00 185.89	1A	[0	
		FILL/REWORKED NATIVE - (ML) sandy	K	0.30	1B	SS	2		0	
		CLAYEY SILT, trace gravel; brown; trace rootlets; organic inclusion, cohesive,		185.50						
		w>PL, soft (CL-ML) SILTY CLAY to CLAYEY SILT		0.69	-					
1		(CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace to some gravel; brown to grey; oxidation staining to 3.5 m,			2	SS	51		0	
		containing rock fragments (TILL); cohesive, w <pl, hard<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>								
		,								
					3	SS	73		0	
2										
					4	SS	65		0	
					Ľ					
3										
					5	SS	98		0	
4										
	d Rig gers									
	CME 55 Track Mounted Rig 00 mm Hollow Stem Augers	- Grey at a depth of 4.6 m			6	SS	50/ 0.1			мн
5	ov St						_			
	CME 55 Track 200 mm Hollow									
	200 m									
6										
-					7	SS	50/ 0.1		0	
							0.1			
7										
					8	SS	50/ 0.13		0	
8										
				1						
9										
_							50/			
					9	SS	0.13		0	
10				1	 -	╞╶┥		+	+ +	
		l	-	I	I			\sim		
DE	PTH S	SCALE						GOLDER		LOGGED: JK

PR	PROJECT: 20139990 RECORD OF BOREHOLE: BH20-3														SHEET 2 OF 2			
LO	CAT	ATION: N 4861774.72; E 651232.09				BC	ORI	NG DATE: Ma	ay 21, 20	20							DA	ATUM: Geodetic
SP	PT/D	DCPT HAMMER: MASS, 64kg; DROP, 762mr	n													HAM	MER T	YPE: AUTOMATIC
ΤЕ	ЦОН	SOIL PROFILE	-		SAM	PLE	s	DYNAMIC PEN RESISTANCE,	ETRATIO BLOWS	DN /0.3m	~	HYDRA	ULIC Co k, cm/s	ONDUCT	IVITY,	T	ĞF	PIEZOMETER
DEPTH SCALE METRES	BORING MET	O SOIL PROFILE U DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	I YPE	BLOWS/0.3m	SHEAR STREI Cu, kPa	IGTH r r	i0 80 LatV.+ emV.⊕	Q - ● U - O		ATER C		PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 10		CONTINUED FROM PREVIOUS PAGE		,							,							
- - - - - - - - - - - - - - - - - - -	:ME 55 Track Mounted Rig	(CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace to some gravel; brown to grey; oxidation staining to 3.5 m, containing rock fragments (TILL); cohesive, w <pl, hard<="" td=""><td></td><td></td><td>10 5</td><td>ss 0</td><td>81/).28</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>			10 5	ss 0	81/).28					0						
- - - - - - -	1 1	- Auger grinding at a depth of 12.2 m	A LA LA LA	173.57 12.62	11 5	ss 0	98/).13					0						-
- - 13 - - - - -		NOTES: 1. Water was used to advance borehole. 2. Groundwater was not encountered during drilling.																-
- - 14 - - - - -																		-
- - - - - - - - - - - -																		-
- 16 - 16 																		-
- - - - - -																		
- 18 - 18 																		
16 17 17 18 18 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10																		
DE 1 :	EPTH 50	TH SCALE		<u> </u>		ļ		GC) E R	2							DGGED: JK ECKED: SEMP

PROJECT:	20139990
LOCATION:	N 4861677.98; E 651055.06

RECORD OF BOREHOLE: BH20-4

SHEET 1 OF 1 DATUM: Geodetic

BORING DATE: May 20, 2020

HAMMER TYPE: AUTOMATIC

	_	_	T HAMMER: MASS, 64kg; DROP, 762mm SOIL PROFILE		1	C ^ !	MPLES	DYNAMI	C PENE	TRATIC	N		HYDR	AULIC	ONDUC	CTIVITY,		1	
DEPTH SCALE METRES	BODING METHOD			PLOT	ELEV.			RESIST	40	6) 80 I		1	k, cm/: 0 ⁻⁶	6 10 ⁻⁵	10-4	10 ⁻³	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE
ME			DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	TYPE BLOWS/0.3m	SHEAR S Cu, kPa		re	em V. ⊕	U- O	w	⊳—	ONTEN 		ENT I WI 40	ADDI LAB. 1	INSTALLATION
0			GROUND SURFACE	L	188.22			Ĩ											
1			TOPSOIL FILL/REWORKED NATIVE - (CL) SILTY CLAY, trace sand; brown; organic inclusion, trace rootlets; cohesive, w>PL, soft to stiff (ML) sandy SILT_slightly plastic: brown;		0.00 187.92 0.30 187.08 1.14	1A 1B 2A 2B	SS 3 SS 1:							0	0 0 0				50 mm Dia. Monitoring Well
2			(ML) sandy SILT, slightly plastic; brown; non-cohesive, moist to wet, dense to very dense				SS 4							0				мн	Bentonite June 5/20
3	CME 55 Track Mounted Rig	mm Hollow Stem Augers	- Wet at a depth of 3.0 m				SS 8								0				
4	CM	200	(CL-ML) sandy SILTY CLAY to CLAYEY SILT, some gravel; grey (TILL); cohesive, w <pl, hard<="" td=""><td></td><td>184.18 4.04</td><td>6</td><td>SS 50</td><td>Ý</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>Sand</td></pl,>		184.18 4.04	6	SS 50	Ý					0						Sand
5						7	SS 7	8	₽				0						Screen and Sand
7			END OF BOREHOLE NOTES: 1. Water encountered at a depth of 3.1 mbgs during drilling. 2. Groundwater was measured in monitoring well at 2.3 m (El. 185.9 m) on June 5, 2020.		<u>181.67</u> 6.55														
8			,																
9 10																			
DE 1:		нs	CALE	<u> </u>					 ; 0	L D	EF	2			1				DGGED: JK ECKED: SEMP

PROJECT: 20139990 RECORD OF BOREHOLE: BH20-5 LOCATION: N 4861685.33; E 650933.13 BORING DATE: May 19, 2020														5			HEET 1 OF 1 ATUM: Geodetic	
	0	эт/г						E	SORI	NG DATE: M	ay 19, 20	120						YPE: AUTOMATIC
┢		-		T HAMMER: MASS, 64kg; DROP, 762mm SOIL PROFILE			SAI	MPL	FS	DYNAMIC PEN	IETRATIO	ON	١	HYDRA				TPE. AUTOMATIC
	METRES		BURING METHUD	DESCRIPTION		ELEV. DEPTH (m)	r l		BLOWS/0.3m	SHEAR STRE Cu, kPa	40 6 J NGTH r r	60 80 LatV. + emV.⊕	Q - ● U - O	Wp	ATER CO	- WI	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	0			GROUND SURFACE		187.36												
S:/CLIENTS/LEBOVIC_ONTARIO/PICKERING_WHITEVALE/02_DATA/GINT/20139990.GPJ_GAL-MIS.GDT_6/30/20		CME 65 Track Mounted Rg				DEPTH (m)	1 2 3 4 5	SS SS SS	5 22 57 50/ 0.13 50/	Cu, kPa	r		U- O					INSTALLATION
	9																	
GTA-BHS 001		EPT : 50	ΉS	CALE						GC		EF	2					DGGED: JK ECKED: SEMP

PROJECT: 20139990 LOCATION: N 4861778.66; E 650929.90

RECORD OF BOREHOLE: BH20-6

SHEET 1 OF 1 DATUM: Geodetic

BORING DATE: May 19, 2020

HAMMER TYPE: AUTOMATIC

		물	SOIL PROFILE	-		SA	MPL		DYNAMIC PENETR RESISTANCE, BLC	WS/0.3m	۲,	HYDRAULIC (k, cm/	s s	i ivi i Y,	T	او بـ	PIEZOMETER
METRES		BORING METHOD		STRATA PLOT		۲.		BLOWS/0.3m	20 40		80		10 ⁻⁵ 1	0-4	10 ⁻³	ADDITIONAL LAB. TESTING	OR
MET		Ű Z	DESCRIPTION	TAF	ELEV. DEPTH (m)	MBE	ТҮРЕ	NS/0	SHEAR STRENGTI Cu, kPa	H nat V. H	- Q - O	WATER (ONTEN	F PERCE		B. TO	INSTALLATION
		BOR		TRA	(m)	R		BLO				vvp			WI	LAA	
			GROUND SURFACE	0)				_	20 40	60	80	10	20 :	30	40		
0			TOPSOIL	EEE	190.16 0.00												
					189.86	1A	SS	8						0			
			FILL/REWORKED NATIVE - (CL) sandy		0.30	1B	33	°				b					
			SILTY CLAY, trace gravel; brown; oxidation staining; organic inclusions,		189.47												
			trace rootlets; cohesive, w>PL, firm (CL-ML) SILTY CLAY to CLAYEY SILT		0.69												
1			and SAND, trace to some gravel; brown, oxidation staining, containing rock			2	SS	53				0					
			fragments (TILL); cohesive, w <pl td="" to<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl>														
			w~PL, hard														
						3	ss	50/ 0.13				0					
								0.15									
2																	
			- Auger grinding at a depth of 2.3 m			4	SS	50/ 0.05				0					
	ß	s s															
	nted F	Stern Augers			1												
3	CME 55 Track Mounted Rig	Stem	- Auger grinding at a depth of 3.1 m		1												
	Track	Nolic	- Auger grinning at a deptil OFS. I III			5	SS	50/ 0.13				0					
	55 -	mm Hollow															
	CME	200 n															
4																	
			- Auger grinding at a depth of 4.6 m			6	SS	50/				0					
								0.05									
5																	
6																	
					183.81	7	SS	50/ 0.1				0					
			END OF BOREHOLE		6.35												
			NOTE														
_			1. Water was not encountered during														
7			drilling.														
8																	
υ																	
9																	
2																	
10																	
	L				I		I	لب م			1	I I	1	1	1	1	
DE	PT	ΉS	CALE						GOL	DF	P					LC	GGED: JK
											• •					CHE	

PROJECT: 20139990

RECORD OF BOREHOLE: BH20-7

SHEET 1 OF 1 DATUM: Geodetic

BORING DATE: May 19, 2020

HAMMER TYPE: AUTOMATIC

SPT/DCPT HAMMER: MASS, 64kg; DROP, 762mm

LOCATION: N 4861751.05; E 650760.78

Ц	5	Ē	SOIL PROFILE			SAI	MPLES	S F	DYNAMIC PENET RESISTANCE, BL	OWS/0.3n		HYDRA	k, cm/s	ONDUC [®]	IIVII ¥,	T	μÿ	PIEZOMETER
DEP IN SUALE METRES		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE		20 40 HEAR STRENG Cu, kPa	60 TH nat V rem \	80 . + Q - ● /. ⊕ U - O	w	ATER C	0 ⁻⁵ 1 ONTENT	PERCE	10 ⁻³ ⊥ ΞNT	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
נ	6	8		STF	(m)	2	ā		20 40	60	80					40	<u> </u>	
0		+	GROUND SURFACE TOPSOIL	222	190.12 0.00	1A		_						0				
			FILL/REWORKED NATIVE - (CL) sandy SILTY CLAY, trace gravel; brown, trace rootlets, organic inclusions; cohesive, w>PL, firm		0.15	1B	ss e	6					0					50 mm Dia. Monitoring Well
1			(CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace to some gravel, brown to grey, oxidation staining to 3.3 m (TILL); cohesive, w <pl, hard<="" stiff,="" td="" very=""><td></td><td>0.69</td><td>2</td><td>SS 1</td><td>15</td><td></td><td></td><td></td><td>с</td><td></td><td></td><td></td><td></td><td></td><td></td></pl,>		0.69	2	SS 1	15				с						
	6	s	- Auger grinding at a depth of 1.5 m			3	SS 4	17				0						Bentonite
2	Inted Ri	n Auger	- Auger grinding at a depth of 2.3 m															June 5/20
	CME 55 Track Mounted Rig	mm Hollow Stem	- Grey at a depth of 2.3 m			4	ss 0.	i0/ .13				0						
3	CME	200 m	- Auger grinding at a depth of 3.1 m			5	SS 0.	i0/ .13				0						Sand
4																		Screen and Sand
			- Auger grinding at a depth of 4.6 m		185.27	6	SS 0.	i0/ .13				0						
5			END OF BOREHOLE NOTES:		4.85		4											
			1. Water was not encountered during															
			drilling.				N											
6			2. Groundwater was measured in monitoring well at 1.9 mbgs (El. 188.2 m) on June 5, 2020.															
7																		
8																		
9																		
10																		
DE	PT	ΉS	CALE						GOI		- P							DGGED: JK

		CT: 20139990	I	REC	OF	D	OF E	BOR	EHO	LE:	Bł	H20-	8				SH	IEET 1 OF 1
LC	DCATI	ON: N 4861827.37; E 650676.37				BOF	ring da	TE: Ma	ay 21, 20	20							DA	ATUM: Geodetic
SI		PT HAMMER: MASS, 64kg; DROP, 762mm					DVNA	MIC PEN	ETDATIC		<u> </u>					HAM	MER T	PE: AUTOMATIC
CALE	ЕТНОВ	SOIL PROFILE	5		SAM		RESIS	STANCE,	BLOWS/	0.3m	, , ,	100	k, cm/s		D ⁻⁴ 1	0 ⁻³	NAL STING	PIEZOMETER OR
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	BLOWS/0.3m	SHEA Cu, kF	I R STREN Pa	IGTH n r	atV. + emV.⊕ 0 80	Q - ● U - O		ATER CO		PERCE	NT	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
— o		GROUND SURFACE	5251	194.44							,			0 0				
	CME 55 Track Mounted Rg	TOPSOIL FILL/REWORKED NATIVE - (CL) sandy SILTY CLAY, trace gravel; brown; trace rootlets; cohesive, w>PL, firm (CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; brown to grey, oxidation staining to 3.3 m (TILL); cohesive, w <pl, hard<="" td=""><td></td><td>194.44 0.00</td><td>1 S 2A 2B S 3 S</td><td>S 63</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>мн</td><td></td></pl,>		194.44 0.00	1 S 2A 2B S 3 S	S 63	4										мн	
	EPTH : 50	SCALE					\$	GO) E F	2				<u> </u>			OGGED: JK ECKED: SEMP

PROJECT:	20139990
LOCATION:	N 4861936.66; E 650855.28

RECORD OF BOREHOLE: BH20-9

SHEET 1 OF 2 DATUM: Geodetic

BORING DATE: May 15, 2020

	ПO	SOIL PROFILE			SA	MPLES	DYNAMIC PE RESISTANCE		0.3m	\	HYDRAULIC k, cr	CONDUC	TIVITY,	Т	. (1)	
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0 3m		40 6	0 80		10 ⁻⁶			NT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
-	ĕ		ST	(,		ā	20	40 6	0 80		10		30 4	0		
0		GROUND SURFACE TOPSOIL	ESS	196.31 0.00		+							+			
1		(SM) SILTY SAND, gravelly to trace gravel; brown; non-cohesive, wet, dense to very dense		<u>195.62</u> 0.69		SS 6 SS 4					Q	0				
2		(CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace to some gravel; brown to grey (TILL); cohesive, w <pl, hard<="" td=""><td></td><td><u>194.40</u> 1.91</td><td></td><td>SS 0.2 SS 0.2</td><td></td><td></td><td></td><td></td><td>c</td><td>0</td><td></td><td></td><td></td><td></td></pl,>		<u>194.40</u> 1.91		SS 0.2 SS 0.2					c	0				
3					5	ss 0.2					0					
5	CME 55 Track Mounted Rig 200 mm Hollow Stem Augers				6	SS 50	3				Φ					
6		- Grey at a depth of 6.1 m			7	ss 50	3									
8		- Auger grinding at a depth of 7.6 m			8	ss ⁵⁰	3									
9		END OF BOREHOLE NOTES: 1. Water encountered in borehole at 0.8 mbgs during drilling. CONTINUED NEXT PAGE		187.06 9.25	9	<u>ss</u> 50 0.										
DEI	PTH S	SCALE	<u> </u>				G G G	<u>ן</u> אור)						OGGED: JK

		T: 20139990	RECORD OF BOREHOLE: BH20-9	SHEET 2 OF 2
LU	UCATIC	DN: N 4861936.66; E 650855.28	BORING DATE: May 15, 2020	DATUM: Geodetic
		PT HAMMER: MASS, 64kg; DROP, 762mm		HAMMER TYPE: AUTOMATIC
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	SAMPLES DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s ELEV. W E 20 40 60 80 10 ⁶ 10 ⁵ 10 ⁴ 10 ³ SHEAR STRENGTH (m) N N V WATER CONTENT PERCENT Cu, kPa WATER CONTENT PERCENT Wp OW V V V V V	
10 		CONTINUED FROM PREVIOUS PAGE 2. Water was used to advance borehole at 7.6 mbgs.		
- 11 - 11 				
- 12 - - - - - - - - - - - - - - - - - - -				
- - - - - - - - - - - - - - - - - - -				
16 16 17 17 17 17 17 18 19 19 19 19 19 19 19 19 19 19				
DE	EPTH S	I SCALE	GOLDER	LOGGED: JK CHECKED: SEMP

PROJECT: 20139990 LOCATION: N 4862027.24; E 650942.33

RECORD OF BOREHOLE: BH20-10

SHEET 1 OF 2 DATUM: Geodetic

BORING DATE: May 13, 2020

u V V	THOD	SOIL PROFILE	⊢		SA	MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ING ING	PIEZOMETER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH Cu, kPa nat V. + Q - ● rem V. ⊕ U - O 20 40 60 80	10° 10° <th>ADDITIONAL LAB. TESTING</th> <th>OR STANDPIPE INSTALLATION</th>	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0	_	GROUND SURFACE TOPSOIL	222	199.21							
		(SM) SILTY SAND, trace gravel to gravelly; brown; trace rootlets from 0.3 m to 0.6 m; non-cohesive, moist, dense		198.91 0.30	1A 1B	SS	7		0		50 mm Dia. Monitoring Well
1		- Gravelly at a depth 0.8 m		197.76	2	SS	30		0		
2		(SM) SILTY SAND, trace gravel; brown, oxidation staining (TILL); non-cohesive, moist, dense to very dense	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.45	3	SS	36		0		
		- Sand seam and pockets between 2.3 m	<u> </u>		4	SS	44		0	мн	
3		and 2.7 m	<u> </u>		5	ss	59		0		Penterite
4	Mounted Rig Stern Augers	(SM) SILTY SAND, brown; non-cohesive, wet, dense	A A A	195.17 4.04							Bentonite June 5/20
5	CME 55 Track Mounted Rig 200 mm Hollow Stem Augers				6	SS	31		o		
6		(CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); cohesive, w~PL, hard		193.65 5.56							
					7	ss 0	50/ 0.13		0		
7					8	ss 0	50/).13		0		Sand Sand
8											Screen and Sand
9		- Auger grinding between depths of 9.1 m and 9.3 m END OF BOREHOLE		189.91 9.30	9	ss (50/).13		0		
		NOTES:									
10		1. Water was used to advance borehole									
10		CONTINUED NEXT PAGE		[-1	_ _ __		Γ-	

PF	ROJEC	T: 20139990	REC	ORI) C)F BC	OREHO	DLE:	BH	20-10			SI	HEET 2 OF 2
LC	CATIC	DN: N 4862027.24; E 650942.33			BOR	ING DATI	E: May 13,	2020					D	ATUM: Geodetic
SF	PT/DCF	PT HAMMER: MASS, 64kg; DROP, 762mm											MMER T	YPE: AUTOMATIC
Ш Л	DOH.	SOIL PROFILE		SAMP		DYNAMI RESIST	C PENETRA ANCE, BLOW	TION /S/0.3m	2	HYDRAULIC (k, cm/s		VITY,	Zg₽	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT ETEA (m)	NUMBER	BLOWS/0.3m	20 SHEAR Cu, kPa 20	STRENGTH	60 8 nat V. + rem V. ⊕ 60 8	Q - ●		10 ⁻⁵ 10 CONTENT I <u>OW</u> 20 30		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 10		CONTINUED FROM PREVIOUS PAGE at 7.6 mbgs.												
- - - - - - - - - -		 Groundwater level was measured in monitoring well at 3.6 mbgs (El. 195.6 m) on June 5, 2020. 												
- - - - - - - - - - - - -														-
- - - - - - - - - - - - - - - - - - -														-
- - - - - - - - - - - - - - -								K						-
														-
														-
- - - - - - - - - - - - - - - - - - -														-
- - - - - - -														-
														-
	EPTH S	GCALE					GOL		 २				LC	DGGED: JK
1:	50							•	-				CH	ECKED: SEMP

PROJECT: 20139990 LOCATION: N 4861917.21; E 650976.55

RECORD OF BOREHOLE: BH20-11

SHEET 1 OF 2 DATUM: Geodetic

BORING DATE: May 15, 2020

HAMMER TYPE: AUTOMATIC

DEPTH SCALE METRES	ЛЕТНОВ	SOIL PROFILE	<u>_</u> OT					YNAMIC PEN ESISTANCE, 20 4	60 8	``	10	k, cm/s		10 ⁻³ I	ONAL	PIEZOMETER OR
METR	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE		HEAR STREN J, kPa 20 4	nat V. + rem V. ⊕ 60 8		WA WP 10			ENT WI 40	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
0		GROUND SURFACE	1	197.24	1											
0		TOPSOIL FILL/REWORKED NATIVE - (CL) SILTY CLAY, some sand; brown; trace rootlets; organic inclusions; cohesive, w>PL, firm		0.00 196.94 0.30 196.55	1A 1B	ss	9						0 0			50 mm Dia. Monitoring Well
1		(SM) SILTY SAND, trace gravel; brown; oxidation staining at 3.1 m; non-cohesive, moist to wet, compact to very dense		0.69	2	SS 1	7					0				
2		- Wet at a depth of 1.5 m			3	ss 2	21					0				∑ June 5/20
2					4	SS 2	26			\langle		0				
3					5A							0				
		(SP-SM) gravelly SAND, some fines; black; non-cohesive, moist, very dense		193.89 3.35	5B	ss e	58				0					Bentonite
4	Mounted Kig Stem Augers	(SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense	474474 474474	193.20 4.04												
5	200 mm Hollow 5	- Auger grinding at a depth of 4.6 m	A & A & A & A & A & A & A & A & A & A &		6	SS 0.	0/ 08				0					
6			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4													
		- Auger grinding at a depth of 6.1 m	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		7	ss 0	0/ 13				C)				
7			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4													ka الأ
8			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		8	ss 0	0/ 08				¢	D				Sand
			2 7 4 2 4 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4													Screen and Sand
9		END OF BOREHOLE	4 4 4 4 4 4 7 4 2 7 4 2 4 2	188.02 9.22	9	SS 0	0/ 08				0					
10		NOTE: 1. Water was encountered at a depth of 1.5 m during drilling.		 					 					 		
		CONTINUED NEXT PAGE														

PI	ROJEC	CT: 20139990	RECO	ORE) C	F BORE	HOLE:	BH20-1	1	Sŀ	HEET 2 OF 2
LC	CATIO	DN: N 4861917.21; E 650976.55		I	BOR	ING DATE: Ma	y 15, 2020			DA	ATUM: Geodetic
SI	PT/DCI	PT HAMMER: MASS, 64kg; DROP, 762mm								MMER T	YPE: AUTOMATIC
ШЛ	ПОР	SOIL PROFILE		SAMPL	-	DYNAMIC PEN RESISTANCE,	ETRATION BLOWS/0.3m	HYDRA	ULIC CONDUCTIVITY, k, cm/s	T _J Ş	PIEZOMETER
DEPTH SCALE METRES	G MET	DECODICTION		RER 2	s/0.3m	20 4 SHEAR STREN			0 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ I I I ATER CONTENT PERCENT	ADDITIONAL LAB. TESTING	OR STANDPIPE
DEP	BORING METHOD	DESCRIPTION	ELEV. (m)	NUMBER	BLOWS/0.3m	Cu, kPa	rem V. 🕀	vvp	→ → → W → WI	ADC LAB.	INSTALLATION
- 10		CONTINUED FROM PREVIOUS PAGE	0			20 4	0 60 8	0 10	0 20 30 40		
-		2. Groundwater level was measured in monitoring well at 1.6 mbgs (El. 195.6 m) on June 5, 2020.									-
E		on dune 0, 2020.									-
E											-
11 - -											
E											-
Ē											-
- - 12 -	2										-
Ē											-
Ē											-
- - - 13	5										-
Ē											-
-											-
- - - 14	L										-
È											-
											-
											-
15 - - -	5										
											-
											-
- 16	5										
											-
17	,										-
											-
											-
2 – 18	5										-
											-
											-
											-
											-
											-
2 — 20 0											-
	ЕРТН	SCALE								I	DGGED: JK
	: 50				k	SGO	LDEF	·			ECKED: SEMP

PROJECT:	20139990
LOCATION:	N 4861905.89; E 651095.59

RECORD OF BOREHOLE: BH20-12

SHEET 1 OF 1 DATUM: Geodetic

BORING DATE: May 14, 2020

y I	ДОН		SOIL PROFILE			SAN	/IPLES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	ŚĹ	PIEZOMETER
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE BLOWS/0.3m	20 40 60 80 SHEAR STRENGTH Cu, kPa nat V. + Q. ● rem V. ⊕ U - O 20 40 60 80	10 ⁶ 10 ⁵ 10 ⁴ 10 ³ ⊥ WATER CONTENT PERCENT Wp	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0	_		GROUND SURFACE		194.09						
1	IE 55 Tracl		TOPSOIL FILL/REWORKED NATIVE - (CL) SILTY CLAY, some sand; grey; trace rootlets; cohesive, w>PL, very soft (SM) SILTY SAND, trace gravel; brown; non-cohesive, moist, compact (SP) SAND, trace fines; some gravel; brown; non-cohesive, moist, dense (SM) SILTY SAND, some gravel to gravelly; brown (TILL); non-cohesive, moist, dense to very dense - gravelly at a depth of 2.3 m		193.63 0.46 193.40 0.69 193.02 1.07 1.07 1.83	1B 2A 2B 3A 3B 4A 4B	SS 3 SS 16 SS 41 SS 37 SS 92/ 0.25				50 mm Dia. Monitoring Well June 5/20 Bentonite
4 5			(CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); cohesive, w <pl, hard<br="">END OF BOREHOLE</pl,>		<u>188.63</u> 5.46 <u>187.87</u> 6.22		SS 50/ 0.1 SS 50/		0		Sand
7			NOTES: 1. Water was not encountered during drilling. 2. Water was used to advance borehole at a depth of 3.1 m. 3. Groundwater level was measured in monitoring well at 1.4 mbgs (El. 192.7 m) on June 5, 2020.								
8											
10											
DEF	PTH	- so	CALE					GOLDER			DGGED: JK ECKED: SEMP

RECORD OF BOREHOLE: BH20-13

10⁻⁶

10⁻⁵

10-4

10⁻³

SHEET 1 OF 2 DATUM: Geodetic

PIEZOMETER

OR

HAMMER TYPE: AUTOMATIC

PROJECT: 20139990 LOCATION: N 4862047.32; E 651089.81 BORING DATE: May 14, 2020 SPT/DCPT HAMMER: MASS, 64kg; DROP, 762mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SAMPLES SOIL PROFILE BORING METHOD DEPTH SCALE METRES STRATA PLOT 60 80 BLOWS/0.3m 20 40 NUMBER ELEV. TYPE SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O DESCRIPTION DEPTH (m) 40 60 80 GROUND SURFACE 196.69 C TOPSOIL 0.00 SS 6 1 196.00 0.69 (SM) SILTY SAND, trace to some gravel; brown, oxidation staining, sand pockets (TILL); non-cohesive, moist, 2 SS 20 compact to very dense 3 SS 46 2 SS 4 88 3 - Auger grinding at a depth 3.1 m SS 5 80 192.66 (SM) SILTY SAND, trace gravel; brown; non-cohesive, wet, very dense 4.03 CME 55 Track Mounted Rig 192.02 4.67 6A Hollow S (SM) SILTY SAND, trace to some 4 4 92/ 0.25 6B SS gravel; brown, oxidation staining (TILL); non-cohesive, moist, very dense 191.71 5 4.98 (CL-ML) SILTY CLAY to CLAYEY SILT and SAND, some gravel; grey; containing rock fragment (TILL); cohesive, w~PL, hard 00 R.

ADDITIONAL LAB. TESTING STANDPIPE WATER CONTENT PERCENT INSTALLATION -0^W WpH - WI 10 20 30 40 C 0 мн 0 0 0 SICLIENTSILEBOVIC ONTARIO/PICKERING_WHITEVALE/02_DATAIGINT/20139990.GPJ_GAL-MIS.GDT_6/30/20 0 6 SS 50/ 7 0 7 8 SS 50/ 0.13 8 9 SS 50/ 9 187.27 END OF BOREHOLE 9.42 NOTES: 10 CONTINUED NEXT PAGE GTA-BHS 001 \Diamond DEPTH SCALE GOLDER LOGGED: JK 1:50 CHECKED: SEMP

PR	OJEC	T: 20139990	RECORD OF BOREHOLE:	BH20-13	SHEET 2 OF 2
LO	CATIC	DN: N 4862047.32; E 651089.81	BORING DATE: May 14, 2020		DATUM: Geodetic
SP	T/DCP	PT HAMMER: MASS, 64kg; DROP, 762mm		НА	MMER TYPE: AUTOMATIC
Ш	ЧОР	SOIL PROFILE	SAMPLES DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	ELEV. DEPTH (m) N M M M L M K M 20 N M 40 N 60 S SHEAR STRENGTH Cu, kPa 81 N Cu, kPa 20 40 60 81 N	Q - WATER CONTENT PERCENT U - O Wp - OW WI	PIEZOMETER OR OR STANDPIPE INSTALLATION
- 10		CONTINUED FROM PREVIOUS PAGE 1. Water was used to advance borehole			
- - - - - - - - - - - - - - -		at 6.1 mbgs. 2. Water was encountered at 4.6 mbgs during drilling.			-
- - - - - - - - - - - - - -					
- - - - - - - - - - - -					
- - - - - - - - - -					
- 15 - 15 					
- - - - - - - - - - - - - - - - - - -					
- - - - - - - - - - -					
- - - - - - - - - - - - - - - - - - -					
		SCALE	GOLDEF	2	LOGGED: JK CHECKED: SEMP

PROJECT: 20139990 LOCATION: N 4861999.61; E 651187.68

RECORD OF BOREHOLE: BH20-14

SHEET 1 OF 2 DATUM: Geodetic

BORING DATE: May 14, 2020

HAMMER TYPE: AUTOMATIC

SPT/DCPT HAMMER: MASS, 64kg; DROP, 762mm

	DESCRIPTION GROUND SURFACE TOPSOIL	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	/0.3m	20 40 60	80	``	10	D-e	10 ⁻⁵	10-4	10 ⁻³	TION	PIEZOMETER OR
		ίο Ο		z	2	BLOWS/0.3m	Cu, kPa rei	nt V. + m V. ⊕	U- O	Wp			1	WI	ADDITIONAL LAB. TESTING	STANDPIPE INSTALLATION
			191.41		+	ш	20 40 60	80)	1	0	20	30	40		
	(CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; brown, oxidation staining (TILL); cohesive, w>PL, hard		0.00 191.11 0.30	1A 1B	ss	4				0		0				
-	oxidation staining, containing rock fragment (TILL); non-cohesive, moist,		<u>189.96</u> 1.45		SS	44										
	(SM) SILTY SAND, trace gravel; brown; non-cohesive, wet, dense		189.20 2.21							c	Þ					
	(GP) GRAVEL, trace fines; grey; non-cohesive, moist, very dense - Auger grinding at a depth of 3.1 m		2.95	5	SS	50/ 0.1				0						
200 mm Hollow Stem Augers	(CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); cohesive, w~PL, hard		3.86	6	ss o	50/ 0.13					–– 1				МН	
				7	SS	50/ 0.1										
	(SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense	A 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	<u>184.50</u> 6.91	8	ss (50/ 0.13										
	- No sample recovered between 9.1 m and 9.2 m END OF BOREHOLE NOTES:	<u> </u>	<u>182.19</u> 9.22	9	ss (50/).08										
_	1. Water was encountered at 2.1 m during drilling					_						+		+		
		 Inon-cohesive, wet, dense (GP) GRAVEL, trace fines; grey; non-cohesive, moist, very dense Auger grinding at a depth of 3.1 m (CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); cohesive, w~PL, hard (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense No sample recovered between 9.1 m and 9.2 m END OF BOREHOLE NOTES: Water was encountered at 2.1 m during drilling. 	inon-cohesive, wet, dense (GP) GRAVEL, trace fines; grey; non-cohesive, moist, very dense - Auger grinding at a depth of 3.1 m (CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); cohesive, w~PL, hard (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense - No sample recovered between 9.1 m and 9.2 m END OF BOREHOLE NOTES: 1. Water was encountered at 2.1 m during drilling. CONTINUED NEXT PAGE	(SM) SILTY SAND, trace gravel; brown; non-cohesive, wet, dense 2.21 (GP) GRAVEL, trace fines; grey; non-cohesive, moist, very dense 2.95 - Auger grinding at a depth of 3.1 m 187.55 (CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); cohesive, w~PL, hard 3.86 (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 6.91 (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 6.91 - No sample recovered between 9.1 m and 9.2 m 182.19 END OF BOREHOLE 9.22 NOTES: 1. Water was encountered at 2.1 m during drilling. 9.22	(SM) SILTY SAND, trace gravel; brown; non-cohesive, wet, dense 2.21 (GP) GRAVEL, trace fines; grey; non-cohesive, moist, very dense 2.95 - Auger grinding at a depth of 3.1 m 188.46 (CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); cohesive, w-PL, hard 187.55 (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 6 (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 6.91 (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 8 - No sample recovered between 9.1 m and 9.2 m 8 - No test 9.22 NOTES: 9.22 1. Water was encountered at 2.1 m during drilling. 9.22	(SM) SILTY SAND, trace gravel; brown; non-cohesive, wet, dense 2.21 4 SS (GP) GRAVEL, trace fines; grey; non-cohesive, moist, very dense 2.95 5 SS - Auger grinding at a depth of 3.1 m 187.65 5 SS (CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); cohesive, w~PL, hard 187.65 6 SS (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 6.91 7 SS (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 6.91 8 SS - No sample recovered between 9.1 m and 9.2 m 8 SS SS - No term is the secont se	(SM) SILTY SAND, trace gravel; brown; non-cohesive, wet, dense 13 2.21 4 SS 35 (GP) GRAVEL, trace fines; grey; non-cohesive, moist, very dense 2.95 5 SS 50/ - Auger grinding at a depth of 3.1 m 187.95 3.86 5 50/ (CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); cohesive, w-PL, hard 187.95 3.86 50/ (SM) SILTY SAND, trace gravel; grey (TILL); 6 5S 50/ 5 55 (SM) SILTY SAND, trace gravel; grey (TILL); 6 55 55/ 50/ 50/ (SM) SILTY SAND, trace gravel; grey (TILL); 6 55/ 6.91 6 55/ (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 6 55/ 6.91 6 55/ - No sample recovered between 9.1 m and 9.2 m 182.19 5 50/ 50/ IND OF BOREHOLE 9.22 55 50/ 50/ 50/ 1. Water was encountered at 2.1 m 9.22 55 50/ 50/ 1. Water was encountered at 2.1 m 1 1 1 1 2. ONTINUED NEXT PAGE	(SM) SILTY SAND, trace gravel; brown; 221 4 ss 35 (GP) GRAVEL, trace fines; grey; 226 5 ss 50 on-cohesive, wet, dense 188.46 5 50 50 - Auger grinding at a depth of 3.1 m 197.55 5 50 50 (CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); 3.86 6 ss 50/03 (SM) SILTY SAND, trace gravel; grey (TILL); 6 ss 50/03 6.91 6 (SM) SILTY SAND, trace gravel; grey (TILL); 6 6.91 6 55 50/03 - No sample recovered between 9.1 m and 9.2 m 9 55 50/03 50/03 50/03 - No sample recovered between 9.1 m and 9.2 m 9.22 55 50/03 50/03 50/03 - No sample recovered between 9.1 m 9.22 55 50/03 50/03 50/03 - No transple recovered between 9.1 m 9.22 55 50/03 50/03 50/03 - No transple recovered between 9.1 m 9.22 55 50/03 50/03 50/03 - No tresi 9.22 9	(SM) SILTY SAND, trace gravel; grey; (CI-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey; (CI-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey; (CI-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey; (TILL); one-cohesive, moist, very dense (SM) SILTY SAND, trace gravel; grey; (TILL); non-cohesive, moist, very dense (SM) SILTY SAND, trace gravel; grey; (TILL); non-cohesive, moist, very dense (SM) SILTY SAND, trace gravel; grey; (TILL); non-cohesive, moist, very dense (SM) SILTY SAND, trace gravel; grey; (TILL); non-cohesive, moist, very dense (SM) SILTY SAND, trace gravel; grey; (TILL); non-cohesive, moist, very dense (SM) SILTY SAND, trace gravel; grey; (TILL); non-cohesive, moist, very dense (SM) SILTY SAND, trace gravel; grey; (TILL); non-cohesive, moist, very dense (SM) SILTY SAND, trace gravel; grey; (TILL); non-cohesive, moist, very dense (SM) SILTY SAND, trace gravel; grey; (TILL); (SM) SILTY SAND, trace gravel; grey; (TIL); (SM) SILTY SAND, trace gravel; grey; (SM) SILTY SAND, t	(SM) SILTY SAND, trace gravel; brown; non-cohesive, wet, dense 221 4 4 55 35 (GP) GRAVEL, trace fines; grey; non-cohesive, most, very dense 295 5 55 601 - Auger grinding at a depth of 3.1 m 197.55 5 55 601 (CL-ML) SILTY CLAY to CLAYEY SILT 3.96 5 601 (GLM) SILTY SAND, trace gravel; grey (TILL); cohesive, w-PL, hard 184.50 6 55 601 (SM) SILTY SAND, trace gravel; grey (TILL); cohesive, moist, very dense 6 55 601 6 - No sample recovered between 9.1 m and 9.2 m 6 55 50 50 50 - No sample recovered between 9.1 m and 9.2 m 6.1 9.22 55 50 50 100 OF BOREHOLE NOTES: 9.22 55 50 50 50 50 1. Water was encountered at 2.1 m 0.22 55 50 50 50 50 0.0TES: 1. Water was encountered at 2.1 m 0.22 55 50 50 50 0.0TES: 0.0TINUED NEXT PAGE 0.22 0.22 0.20 0.20 0.20 <td>(SM) SILTY SAND, trace gravel; brown; non-cohesive, wet, dense 221 4 4 55 35 (GP) GRAVEL, trace fines; grey; non-cohesive, moist, very dense 2.85 5 50 0 (CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); cohesive, w-PL, hard 187.65 5 50 0 (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 7 55 50 0.13 (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 8 55 50 0.13 (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 9.97 55 50 0.13 • No sample recovered between 9.1 m and 9.2 m 9.22 55 50 0.13 • No tes: 9.22 55 50 0.13 • No tes: 9.22 55 50 0.13 • No tes: 9.22 55 0.05 0.13 • No tes: 0.07 9.22 0.07 0.07 • No tes: 0.07 9.22 0.07 0.07 • No tes: 0.07 9.22 0.07 0.07 • No tes: 0.07<td>[SM] SILTY SAND, trace gravel; brown; non-cohesive, weit, dense 221 4 88 35 (GP) GRAVEL, trace fines; grey; non-cohesive, moist, very dense 2.65 5 50 0 - Auger grinding at a depth of 3.1 m 187.85 3.60 0.1 0 (G-MU) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); 3.60 6 388 80 (G-MU) SILTY SAND, trace gravel; grey (TILL); 3.60 6 388 80 (SM) SILTY SAND, trace gravel; grey (TILL); 3.60 6 38 80 (SM) SILTY SAND, trace gravel; grey (TILL); 0.91 6 38 60 (SM) SILTY SAND, trace gravel; grey (TILL); 0.91 0.91 0.91 0.91 (SM) SILTY SAND, trace gravel; grey (TILL); 0.91 0.91 0.91 0.91 (SM) SILTY SAND, trace gravel; grey (TILL); 0.91 0.91 0.91 0.91 (TILL); non-cohesive, moist, very dense 9.20 8 600 0.91 (TILL); non-cohesive, moist, very dense 9.20 8 600 0.91 (TILL); non-cohesive, moist, very dense 9.20 8 600 0.91<td>(SM) SILTY SAND, trace gravel: brown: </td><td>(SM) SILTY SAND, trace gravel; provint 221 (GP) GRAVEL, trace fines; grey; 195.46 - Auger grinding at a depth of 3.1 m 195.45 (CL-ML) SILTY CLAY to CLAYEY SILT 3.55 and SAND, trace gravel; grey; 3.56 (SM) SILTY SAND, trace gravel; grey; 197.55 (SM) SILTY SAND, trace gravel; grey; 3.56 (SM) SILTY SAND, trace gravel; grey; 117.55 (SM) SILTY SAND, trace gravel; grey; 116.50 (SM) SILTY SAND, trace gravel; grey; 114.50 (SM) SILTY SAND, trace gravel; grey; 114.50 (SM) SILTY SAND, trace gravel; grey; 114.50 (SM) SILTY SAND, trace gravel; grey; 0.51 (TIL); non-ochesive, moist, very dense 0.51 (SM) SILTY SAND, trace gravel; grey; 0.51 (TIL); non-ochesive, moist, very dense 0.51 (TIL); non-ochesive, moist, very dense 0.51 (Ming driling, control at 2.1 m 0.52 (Control LE NOTES: 0.52 1. Water was encountered at 2.1 m 0.52 (Control LE NEXT PAGE 0.52</td><td>(SM) SILTY SAND, trace gravel; brown: 1 221 4 58 35 (CP) GRAVEL, trace fines; grey; 108.46 256 58 00 - Auger grinding at a depth of 3.1 m 107.25 58 01 (CL-ML) SILTY CLAY to CLAYEY SILT 107.25 3.86 01 (CL-ML) SILTY CLAY to CLAYEY SILT 107.25 3.86 01 (SM) SILTY SAND, trace gravel; grey (TIL); 0 58 50 (SM) SILTY SAND, trace gravel; grey 194.00 6.91 58 01 (SM) SILTY SAND, trace gravel; grey 194.00 6.91 6.91 6.91 6.91 - No sample recovered between 9.1 m 194.00 6.91 6.91 6.91 6.91 6.91 - NO TES: 1.22.10 m 2.22 5.90 6.91 6.91 6.91 - NOTES: 1.10 2.22 5.90 6.91 6.91 6.91 6.91 6.91 - NOTES: - 0.22 5.90 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91</td><td>[SM] SLTY SAND, trace gravel; brown: 4 88 35 (CP) GRAVEL, trace fines; grey; 198.66 5 55 - Auger grinding at a depth of 3.1 m 197.75 55 50 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (SM) SILTY SAND, trace gravel; grey 194.00 6 68 60 (SM) SILTY SAND, trace gravel; grey 194.00 6.71 88 60 (SM) SILTY SAND, trace gravel; grey 194.00 6.81 60 6.73 (TLL); non-cohesive, most, very dense 194.00 6.71 85 671 (TL); non-cohesive, most, very dense 1 192.05 70 9.75 9.70 IN degram 192.00 193.00 193.00 193.00 193.00 193.00 IN degram 100.00 100.00 100.00 100.00 100.00 100.00 IN degram 100.00<!--</td--></td></td></td>	(SM) SILTY SAND, trace gravel; brown; non-cohesive, wet, dense 221 4 4 55 35 (GP) GRAVEL, trace fines; grey; non-cohesive, moist, very dense 2.85 5 50 0 (CL-ML) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); cohesive, w-PL, hard 187.65 5 50 0 (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 7 55 50 0.13 (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 8 55 50 0.13 (SM) SILTY SAND, trace gravel; grey (TILL); non-cohesive, moist, very dense 9.97 55 50 0.13 • No sample recovered between 9.1 m and 9.2 m 9.22 55 50 0.13 • No tes: 9.22 55 50 0.13 • No tes: 9.22 55 50 0.13 • No tes: 9.22 55 0.05 0.13 • No tes: 0.07 9.22 0.07 0.07 • No tes: 0.07 9.22 0.07 0.07 • No tes: 0.07 9.22 0.07 0.07 • No tes: 0.07 <td>[SM] SILTY SAND, trace gravel; brown; non-cohesive, weit, dense 221 4 88 35 (GP) GRAVEL, trace fines; grey; non-cohesive, moist, very dense 2.65 5 50 0 - Auger grinding at a depth of 3.1 m 187.85 3.60 0.1 0 (G-MU) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); 3.60 6 388 80 (G-MU) SILTY SAND, trace gravel; grey (TILL); 3.60 6 388 80 (SM) SILTY SAND, trace gravel; grey (TILL); 3.60 6 38 80 (SM) SILTY SAND, trace gravel; grey (TILL); 0.91 6 38 60 (SM) SILTY SAND, trace gravel; grey (TILL); 0.91 0.91 0.91 0.91 (SM) SILTY SAND, trace gravel; grey (TILL); 0.91 0.91 0.91 0.91 (SM) SILTY SAND, trace gravel; grey (TILL); 0.91 0.91 0.91 0.91 (TILL); non-cohesive, moist, very dense 9.20 8 600 0.91 (TILL); non-cohesive, moist, very dense 9.20 8 600 0.91 (TILL); non-cohesive, moist, very dense 9.20 8 600 0.91<td>(SM) SILTY SAND, trace gravel: brown: </td><td>(SM) SILTY SAND, trace gravel; provint 221 (GP) GRAVEL, trace fines; grey; 195.46 - Auger grinding at a depth of 3.1 m 195.45 (CL-ML) SILTY CLAY to CLAYEY SILT 3.55 and SAND, trace gravel; grey; 3.56 (SM) SILTY SAND, trace gravel; grey; 197.55 (SM) SILTY SAND, trace gravel; grey; 3.56 (SM) SILTY SAND, trace gravel; grey; 117.55 (SM) SILTY SAND, trace gravel; grey; 116.50 (SM) SILTY SAND, trace gravel; grey; 114.50 (SM) SILTY SAND, trace gravel; grey; 114.50 (SM) SILTY SAND, trace gravel; grey; 114.50 (SM) SILTY SAND, trace gravel; grey; 0.51 (TIL); non-ochesive, moist, very dense 0.51 (SM) SILTY SAND, trace gravel; grey; 0.51 (TIL); non-ochesive, moist, very dense 0.51 (TIL); non-ochesive, moist, very dense 0.51 (Ming driling, control at 2.1 m 0.52 (Control LE NOTES: 0.52 1. Water was encountered at 2.1 m 0.52 (Control LE NEXT PAGE 0.52</td><td>(SM) SILTY SAND, trace gravel; brown: 1 221 4 58 35 (CP) GRAVEL, trace fines; grey; 108.46 256 58 00 - Auger grinding at a depth of 3.1 m 107.25 58 01 (CL-ML) SILTY CLAY to CLAYEY SILT 107.25 3.86 01 (CL-ML) SILTY CLAY to CLAYEY SILT 107.25 3.86 01 (SM) SILTY SAND, trace gravel; grey (TIL); 0 58 50 (SM) SILTY SAND, trace gravel; grey 194.00 6.91 58 01 (SM) SILTY SAND, trace gravel; grey 194.00 6.91 6.91 6.91 6.91 - No sample recovered between 9.1 m 194.00 6.91 6.91 6.91 6.91 6.91 - NO TES: 1.22.10 m 2.22 5.90 6.91 6.91 6.91 - NOTES: 1.10 2.22 5.90 6.91 6.91 6.91 6.91 6.91 - NOTES: - 0.22 5.90 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91</td><td>[SM] SLTY SAND, trace gravel; brown: 4 88 35 (CP) GRAVEL, trace fines; grey; 198.66 5 55 - Auger grinding at a depth of 3.1 m 197.75 55 50 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (SM) SILTY SAND, trace gravel; grey 194.00 6 68 60 (SM) SILTY SAND, trace gravel; grey 194.00 6.71 88 60 (SM) SILTY SAND, trace gravel; grey 194.00 6.81 60 6.73 (TLL); non-cohesive, most, very dense 194.00 6.71 85 671 (TL); non-cohesive, most, very dense 1 192.05 70 9.75 9.70 IN degram 192.00 193.00 193.00 193.00 193.00 193.00 IN degram 100.00 100.00 100.00 100.00 100.00 100.00 IN degram 100.00<!--</td--></td></td>	[SM] SILTY SAND, trace gravel; brown; non-cohesive, weit, dense 221 4 88 35 (GP) GRAVEL, trace fines; grey; non-cohesive, moist, very dense 2.65 5 50 0 - Auger grinding at a depth of 3.1 m 187.85 3.60 0.1 0 (G-MU) SILTY CLAY to CLAYEY SILT and SAND, trace gravel; grey (TILL); 3.60 6 388 80 (G-MU) SILTY SAND, trace gravel; grey (TILL); 3.60 6 388 80 (SM) SILTY SAND, trace gravel; grey (TILL); 3.60 6 38 80 (SM) SILTY SAND, trace gravel; grey (TILL); 0.91 6 38 60 (SM) SILTY SAND, trace gravel; grey (TILL); 0.91 0.91 0.91 0.91 (SM) SILTY SAND, trace gravel; grey (TILL); 0.91 0.91 0.91 0.91 (SM) SILTY SAND, trace gravel; grey (TILL); 0.91 0.91 0.91 0.91 (TILL); non-cohesive, moist, very dense 9.20 8 600 0.91 (TILL); non-cohesive, moist, very dense 9.20 8 600 0.91 (TILL); non-cohesive, moist, very dense 9.20 8 600 0.91 <td>(SM) SILTY SAND, trace gravel: brown: </td> <td>(SM) SILTY SAND, trace gravel; provint 221 (GP) GRAVEL, trace fines; grey; 195.46 - Auger grinding at a depth of 3.1 m 195.45 (CL-ML) SILTY CLAY to CLAYEY SILT 3.55 and SAND, trace gravel; grey; 3.56 (SM) SILTY SAND, trace gravel; grey; 197.55 (SM) SILTY SAND, trace gravel; grey; 3.56 (SM) SILTY SAND, trace gravel; grey; 117.55 (SM) SILTY SAND, trace gravel; grey; 116.50 (SM) SILTY SAND, trace gravel; grey; 114.50 (SM) SILTY SAND, trace gravel; grey; 114.50 (SM) SILTY SAND, trace gravel; grey; 114.50 (SM) SILTY SAND, trace gravel; grey; 0.51 (TIL); non-ochesive, moist, very dense 0.51 (SM) SILTY SAND, trace gravel; grey; 0.51 (TIL); non-ochesive, moist, very dense 0.51 (TIL); non-ochesive, moist, very dense 0.51 (Ming driling, control at 2.1 m 0.52 (Control LE NOTES: 0.52 1. Water was encountered at 2.1 m 0.52 (Control LE NEXT PAGE 0.52</td> <td>(SM) SILTY SAND, trace gravel; brown: 1 221 4 58 35 (CP) GRAVEL, trace fines; grey; 108.46 256 58 00 - Auger grinding at a depth of 3.1 m 107.25 58 01 (CL-ML) SILTY CLAY to CLAYEY SILT 107.25 3.86 01 (CL-ML) SILTY CLAY to CLAYEY SILT 107.25 3.86 01 (SM) SILTY SAND, trace gravel; grey (TIL); 0 58 50 (SM) SILTY SAND, trace gravel; grey 194.00 6.91 58 01 (SM) SILTY SAND, trace gravel; grey 194.00 6.91 6.91 6.91 6.91 - No sample recovered between 9.1 m 194.00 6.91 6.91 6.91 6.91 6.91 - NO TES: 1.22.10 m 2.22 5.90 6.91 6.91 6.91 - NOTES: 1.10 2.22 5.90 6.91 6.91 6.91 6.91 6.91 - NOTES: - 0.22 5.90 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91</td> <td>[SM] SLTY SAND, trace gravel; brown: 4 88 35 (CP) GRAVEL, trace fines; grey; 198.66 5 55 - Auger grinding at a depth of 3.1 m 197.75 55 50 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (SM) SILTY SAND, trace gravel; grey 194.00 6 68 60 (SM) SILTY SAND, trace gravel; grey 194.00 6.71 88 60 (SM) SILTY SAND, trace gravel; grey 194.00 6.81 60 6.73 (TLL); non-cohesive, most, very dense 194.00 6.71 85 671 (TL); non-cohesive, most, very dense 1 192.05 70 9.75 9.70 IN degram 192.00 193.00 193.00 193.00 193.00 193.00 IN degram 100.00 100.00 100.00 100.00 100.00 100.00 IN degram 100.00<!--</td--></td>	(SM) SILTY SAND, trace gravel: brown: 	(SM) SILTY SAND, trace gravel; provint 221 (GP) GRAVEL, trace fines; grey; 195.46 - Auger grinding at a depth of 3.1 m 195.45 (CL-ML) SILTY CLAY to CLAYEY SILT 3.55 and SAND, trace gravel; grey; 3.56 (SM) SILTY SAND, trace gravel; grey; 197.55 (SM) SILTY SAND, trace gravel; grey; 3.56 (SM) SILTY SAND, trace gravel; grey; 117.55 (SM) SILTY SAND, trace gravel; grey; 116.50 (SM) SILTY SAND, trace gravel; grey; 114.50 (SM) SILTY SAND, trace gravel; grey; 114.50 (SM) SILTY SAND, trace gravel; grey; 114.50 (SM) SILTY SAND, trace gravel; grey; 0.51 (TIL); non-ochesive, moist, very dense 0.51 (SM) SILTY SAND, trace gravel; grey; 0.51 (TIL); non-ochesive, moist, very dense 0.51 (TIL); non-ochesive, moist, very dense 0.51 (Ming driling, control at 2.1 m 0.52 (Control LE NOTES: 0.52 1. Water was encountered at 2.1 m 0.52 (Control LE NEXT PAGE 0.52	(SM) SILTY SAND, trace gravel; brown: 1 221 4 58 35 (CP) GRAVEL, trace fines; grey; 108.46 256 58 00 - Auger grinding at a depth of 3.1 m 107.25 58 01 (CL-ML) SILTY CLAY to CLAYEY SILT 107.25 3.86 01 (CL-ML) SILTY CLAY to CLAYEY SILT 107.25 3.86 01 (SM) SILTY SAND, trace gravel; grey (TIL); 0 58 50 (SM) SILTY SAND, trace gravel; grey 194.00 6.91 58 01 (SM) SILTY SAND, trace gravel; grey 194.00 6.91 6.91 6.91 6.91 - No sample recovered between 9.1 m 194.00 6.91 6.91 6.91 6.91 6.91 - NO TES: 1.22.10 m 2.22 5.90 6.91 6.91 6.91 - NOTES: 1.10 2.22 5.90 6.91 6.91 6.91 6.91 6.91 - NOTES: - 0.22 5.90 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91	[SM] SLTY SAND, trace gravel; brown: 4 88 35 (CP) GRAVEL, trace fines; grey; 198.66 5 55 - Auger grinding at a depth of 3.1 m 197.75 55 50 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (CL-ML) SILTY CLAY to CLAVEY SILT 3.86 60 0 (SM) SILTY SAND, trace gravel; grey 194.00 6 68 60 (SM) SILTY SAND, trace gravel; grey 194.00 6.71 88 60 (SM) SILTY SAND, trace gravel; grey 194.00 6.81 60 6.73 (TLL); non-cohesive, most, very dense 194.00 6.71 85 671 (TL); non-cohesive, most, very dense 1 192.05 70 9.75 9.70 IN degram 192.00 193.00 193.00 193.00 193.00 193.00 IN degram 100.00 100.00 100.00 100.00 100.00 100.00 IN degram 100.00 </td

PF	ROJEC	T: 20139990		REC	OR	D	OF	BORE	EHO	LE:	BH	 20-1 /	4				SH	HEET 2 OF 2
LC	CATIC	DN: N 4861999.61; E 651187.68				BC	RING	DATE: Ma	ay 14, 20	20							DA	ATUM: Geodetic
SF	PT/DCF	PT HAMMER: MASS, 64kg; DROP, 762mm														HAM		YPE: AUTOMATIC
ъ	ГНОВ	SOIL PROFILE	F	I	SAM		RE	NAMIC PEN SISTANCE,	BLOWS/	0.3m	$\langle \rangle$		k, cm/s			T	NG NG	PIEZOMETER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	I YPE	SH Cu	EAR STREN , kPa		at V. + em V. ⊕	Q - ● U - O	Wp	TER CO		PERCE	NT WI	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
- 10		CONTINUED FROM PREVIOUS PAGE	0					20 4	10 6	0 80)	10	20) 3	0 4	0		
		 Water was to advance borehole at 4.6 mbgs. 																-
- - - 11 - -																		
- - - - - - - - - - -																		_
- - - - - 13																		-
													Ť					
																		-
16 17 17 18 18 19 19 10 10 11																		
- - - - - - -																		-
- 19 - 19 																		-
- - - 20																		-
DE	EPTH S 50	SCALE				Į	\$	GO		ER	2							DGGED: JK ECKED: SEMP

		CT: 20139990 ON: N 4861923.72; E 651264.91	I	REC	OF			OF BOREHOLE:	BH20-15		SHEET 1 OF 1 DATUM: Geodetic
SE		PT HAMMER: MASS, 64kg; DROP, 762mm				E	BOR	RING DATE: May 14, 2020			TYPE: AUTOMATIC
	-	SOIL PROFILE			SA	MPL	ES	DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m	HYDRAULIC CONDUCTIVITY, k, cm/s	_	
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m		0 10 ⁸ 10 ⁵ 10 ⁴ 0 Q - ● WATER CONTENT PERCE U - O Wp - O ^W 1	ADDITIONAL ADDITIONAL ADDITIONAL ADDITIONAL ADDITIONAL	PIEZOMETER OR STANDPIPE INSTALLATION
0 - - - - - - - - - - - 1 -		GROUND SURFACE FILL/REWORKED NATIVE - (CL) sandy SILTY CLAY, trace gravel; brown; trace rootlets; cohesive, moist, firm (CL-ML) sandy SILTY CLAY to CLAYEY SILT, trace to some gravel; brown, oxidation staining, containing rock fragments (TILL); cohesive, w <pl to<br="">w~PL, very stiff to hard</pl>		184.69 0.00 184.00 0.69	1	ss			o		
- - - - - - - - - - - - - - - - - - -					3	ss			0		
- - - - - - - -	CME 55 Track Mounted Rig 200 mm Hollow Stem Augers	(SM) SILTY SAND, trace gravel; brown; oxidation staining; non-cohesive, moist, very dense		181.72 2.97		ss	77		0	мн	
		(CL-ML) sandy SILTY CLAY to CLAYEY SILT, trace gravel; grey (TILL); cohesive, w <pl hard<br="" to="" w~pl,="">- Grey at a depth of 4.6 m</pl>		180.58	6		0.20		0		
		END OF BOREHOLE NOTE: 1. Water was encountered at 3.1 mbgs during drilling.		6.50							
ł	EPTH	SCALE	_					SOLDER	2		.ogged: JK Hecked: Semp

C	s	tantec	B	OF	REF N: 4	IOI 860 2	E 14 I	RE (E: 651	C OR 867	D					B	H 1	L		S	heet 1 of 2
	LIENT _														PRC DAT	JEC TUM).		22450165 Geodetic
		ORING October 19, 2015				WAT	TER I	LEVEL							TPC	ELE	VAT	ION		
			F				SAI	MPLES	;	ι	INDF		ED S		AR S	TRE				
)EPTH (m)	LEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)					ATTE	00 			₩ _P	0	0 WL H REMARKS
	Ц		ST	M		≿	NUN	OVE (%)	N-V-N N-V-N N-N-N-N-N-N-N-N-N-N-N-N-N-N-						ATION N TES				3m ▼	GRAIN SIZE
	150.5	Gravel Shoulder						TCF	_0										90 100	GR SA SI C
0 -		FILL: brown, gravel and sand, some silt - moist			0 1 -	ss	1	$\frac{200}{610}$	12		•									
1 -		- moist to wet			2 - 3 -	ss	2	$\frac{250}{380}$	50/ 76											_
					4 - 5 - 6 -	ss	3	$\frac{280}{280}$	50/ 130	0	H.									58 31 5 6
2	148.5	hard, brown, sandy silty CLAY (CL-ML), TILL			7 - 8 -	ss	4	<u>250</u> 280	50/ 130	0										-
3 -		- trace to some gravel - moist	-7		9 - 10-															
		- grey	15		10 11 - 12 -	∦ss	5	$\frac{280}{280}$	50/ 130	0									>>>•	_
4					12 13- 14-	ss	6	<u>330</u> 380	50/ 76	•										_
-			· A		15- 16-	ss	7	<u>360</u> 380	50/ 76	0									- >>●	_
5 -					17 - 18 -															_
6			-3- -5-		19 - 20 -															_
			· * •		21 - 22 -	∦ ss	8	$\frac{\underline{280}}{\underline{360}}$	50/ 51	0									>>• -	2 42 24 3
7 -			No.		22 23 - 24 -															_
				•	24 25- 26-	ss	9	$\frac{250}{280}$	50/ 130	0									>>●	-
8 -			-X		20 27 - 28 -															
- 9 -			- 15 		28 - 29 - 30 -															-
	140.8		12 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		30- 31- - <u>32</u> -	ss	10	<u>360</u> 610	96	o									•	
10-		END OF BOREHOLE at			52														-	
		Continued Next Page									Rei	moul	ded V	'est, k /ane ' rome	Test,		D-			

C	s	tantec	B	OR	REH N: 43	[O] 860 2	L E 14 b	RE(E: 651	C OR 867	D					Bl	H 1	-			Sheet 2 of 2
	LIENT _	North Pickering Community	Ma	nage	emen	t Inc									PRO DAT		Г No.		1	<u>122450165</u> Geodetic
		ORING October 19, 2015				WAT	FER I	LEVEL									VAT	ION		
(m)	NO		LOT	EVEL	(ft)		SAN	MPLES		l	INDF	RAIN 50	ED S		AR ST	TRE	NGTH	H (kl		00
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	VAMIC	CON	IE PEI	NETRA		TEST,	TS BLOW WS/0.3		-0	WL REMARKS & GRAIN SIZE DISTRIBUTION
10-	140.5							TCF	-0										90 1	00 GR SA SI CL
10		approximately 9.8 m below grade. Groundwater observed at			33- 34-															
11-		approximately 8.8 m below grade in open borehole upon completion of			35- 36-															
		drilling.			37- 38-															
12					39- 40-															-
-					41 - 42 -															
13-					43- 44-															
14					45- 46-															
-			K		47 - 48 -															
15-					49 - 50 -															
1					51 - 52 -															
16-					53- 54-															
17					55 - 56 -															
					57 - 58 -															
18					59 - 60 -															
- 					61 - 62 -															-
					63- 64-															
20-					65-						Fie	ld Va	ane T	est, k	Pa					
											Rer	noul	ded V	/ane '	Fest, l ter Te		Pa			

C	s	tantec	B	OF	REF N: 4	IOI 860 4	LE 09 I	RE(E: 651	C OR 800	D					В	Н2	2		S	heet 1 of 2
	LIENT _ DCATIO	North Pickering Community N Pickering, Ontario	<u>Ma</u>	nage	emen	t Inc.										DJEC TUM				22450165 Geodetic
D	ATES: E	ORING October 19, 2015				WAT	TER I	LEVEL							TPC	CELE	EVAT	ION		
			Ц				SAI	MPLES		ι	JND					TRE				
DEPTH (m)	ELEVATION (m)		PLO	LEVEL	(Ħ)			(m)				50			100		150		20	0
РТН	LAV (m)	STRATA DESCRIPTION	ATA	EBL	DEPTH (ft)		E E	ΣCR.	UE)(%)	WA	TER	CONT	ENT	& ATTE	RBER	G LIM	ITS	₩ _P	W O	WL
DE	ELE		STRATA PLOT	WATER I	B	TYPE	NUMBER	VER ()/S	N-VALUE OR RQD(%)	DY	NAMI		NE PE	NETR	ATION	TEST	, BLO\	VS/0.3	m 🔻	REMARKS &
				-		'	ž	RECOVERY (mm) TCR(%) / SCR(%)	ЧЧ							T, BLC			•	GRAIN SIZE
0 -	150.0	Rough Grass FILL, brown, silty sand, trace gravel			0] ::::	0	20	30	40	50	60 ′	70 8	30 9	0 10	⁰ GR SA SI CL
-		- moist		<	1 -	ss	1	$\frac{300}{610}$	6	•										
-					2 -	η		010												-
1 -	149.1	Firm to hard, brown, sandy silty		< •	3 -	ss	2	530	6	•	ю									1 31 37 31
-		CLAY (CL-ML), TILL			4 -	133		610	0											1 51 57 51
-		- moist	1		5 -	1														-
2 -					6 -	ss	3	$\frac{510}{610}$	21											
			6		7 -															
-			×,		8 -	ss	4	$\frac{460}{610}$	43					•						_
-					9 -	ή		610												
3 -				-	10-			160												
	146.4				11-	ss	5	<u>460</u> 610	64							•				_
	140.4	Compact to very dense, grey, silty	16		12-															
4 -		SAND (SM), TILL - some clay, some gravel			13-	ss	6	<u>560</u> 610	20	C	н	•								14 40 24 22
-		- moist			14-			010												
-					15-		_	360	10											
5 -						ss	7	610	19											_
-					17- 18-															
-					10 ⁻															
6 -					19 20-									<u> </u>						_
-					20 21 -	ss	8	<u>360</u> 610	20											
				1	21	Λ^{55}		610	20											_
7 -					23 -															_
-					24 -															
-					25-															_
8 -					26-	ss	9	<u>360</u> 610	65							•				
0					27-	η		610												
-					28-															_
-				1	29-															
9 -					30-			260	501											-
	140.5				31-	ss	10	$\frac{360}{410}$	50/ 100										>>●	
		END OF BOREHOLE at approximately 9.5 m below grade.			32-	$\left \right $														
10-		Continued Next Page		1	I						Fie	ld V	ane '	Fest, l	cPa	:1::::		1::::		1
		-									Re	mou	lded	Vane	Test,					
										Δ	Ро	cket	Pene	trome	ter To	est, kl	Pa			

$\left(\right)$) s	tantec	B	OR	REF N: 4	IO 860 4	LE 109 B	RE(E: 651	COR 800	D					B	H 2	2			Sheet 2 of 2
	LIENT _ OCATIO	North Pickering Community N Pickering, Ontario	y Ma	nage	emen	t Inc	•								PRO DAT		Г No.			122450165 Geodetic
		BORING October 19, 2015				WA	FER I	LEVEL									VAT	ION		
(m)	NO		LOT	EVEL	(ft)		SAI	MPLES ିତ୍ତି		l	INDF	RAIN 50	ED \$		AR S ⁻ 00	TREI	NGTI 150			200
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)								TS BLOW	W _P ⊢	-0	
			S	5			R	ECOV CR(%	N-N OR F								WS/0.3			GRAIN SIZE DISTRIBUTION
10-	140.0				33-									+0 2						00 GR SA SI CL
-	-	Borehole dry and open upon completion of drilling.			34 - 35 -															
11-	- - - - - - -				36 - 37 -	-														
12-					38 - 39 - 40 -															
-	-				41 - 42 -	-														
13-	- - - - - - -				43- 44-															
14-	- - - - -				45 - 46 - 47 -															
15-	-				48 - 49 -															
-					50 - 51 -															
16-	-				52 - 53 -															
- 17-	-				54 - 55 - 56 -															
-					57 - 58 -	-														
18-	-				59 - 60 -	-														- - -
- 19-					61 - 62 -															
-					63- 64-															
20-	-				65-	<u> </u>					Rei	noul	ded V	est, k 7ane 7	Fest , 1					F

C	s	tantec	B	OR	REF N: 4	IOI 860 1	LE 72 I	RE E: 651	C OR 615	D					В	H.	3			S	heet 1 of 1
	IENT _	North Pickering Community														OJEC TUM		0.	_		22450165 Geodetic
		ORING October 20, 2015				WAT	TER I	LEVEL										тю	N _		
e l	Z		-OT	/EL	t)		SAI	MPLES		l	JNDI	RAIN 50		SHE/ 1	AR 5 .00	STRE	NGT		(kPa	.) 20	0
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIO		ENT 8	ATTE NETRA	H RBEF	I TEST	r, BLC)ws/	0.3m	W O V	WL I REMARKS & GRAIN SIZE DISTRIBUTIO
0 -	159.3	Rough Grass			0			TCF	0	1	0	20	30	40	50	60	70	80	90	10	0 GR SA SI C
		100 mm TOPSOIL: sandy silt with organics			1 -	ss	1	$\frac{250}{610}$	5	•											
1		FILL: brown, silty sand with gravel - moist to wet			2 - 3 -	ss	2	$\frac{430}{590}$	15		0										
	157.7	Very stiff to hard, brown, sandy			4 - 5 -																
2		silty CLAY (CL-ML), TILL - trace gravel		1	6 - 7 -	ss	3	<u>430</u> 610	23	0											
		- moist	.7		8 - 9 -	ss	4	<u>280</u> 430	50/ 130	0										>>●	
3 -		- grey			10 - 11 -	ss	5	$\frac{410}{610}$	104	0										>>●	
4 -			· A - D		12- 13-																- - -
			A.		14- 15-	ss	6	<u>460</u> 610	57	0											
5 -	154.1				16- 17	ss	7	<u>460</u> 610	53	0					•						
		END OF BOREHOLE at approximately 5.2 m below grade.			18- 19-																
5-		Borehole dry and open upon completion of drilling.			20 - 21 -																
 - - - 7					22 - 23 -																-
					23 24 - 25 -																
3 -					26-																
					27 - 28 -																_
- - - -					29 - 30 -																
					31 - 32 -																-
0-					•	• '	•				Re	moul	ded V	Test, k Vane	Test,		De	<u> </u>			

C	s	tantec	B	OR	N: 4	IOI 860 3	E 08 I	RE E: 651	C OR 578	D					В	H	4			S	Sheet	1 of 1
	IENT _	North Pickering Community														OJEC TUM	CTN	0.	_	1		50165 odetic
		ORING October 20, 2015				WAT	ER I	LEVEL							TPO	CEL	EVA	TIO	N _			
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	SAI	RECOVERY (mm) A TCR(%) / SCR(%) B		WA	TER		ENT 8				15 	0 V	V _P	20 W		EMARKS
			ST	W		₽	MUN	ECOVE CR(%)	N-VALUE OR RQD(%)	ST	ANDA	rd Pe	ENETF	NETR RATIO	N TES	ST, BL	OWS/	0.3m		•	GI DIS	& RAIN SIZE TRIBUTIC
0 +	158.5	Rough Grass TOPSOIL: brown, sandy silt with	<u></u>		0			H H H H H H H H H H H H H H H H H H H		1	0	20	30	40	50	60	70	80	90	10	⁰⁰ GR	(%) <u>SA SI (</u>
	157.9	organics, moist			1 - 2 -	ss	1	<u>250</u> 610	3	•											-	
1 -		CLAY (CL-ML), TILL - trace gravel			3 - 4 -	ss	2	$\frac{480}{610}$	16		•										-	
		- moist	- - - 		5 - 6 -	ss	3	$\frac{460}{610}$	21			•									-	
2 -				•	7 - 8 -																-	
3			• *		9 - 10-	ss	4	<u>460</u> 610	20			•									-	
-		- grey	×.		11 - 12 -	ss	5	<u>460</u> 610	32				•								-	
4					13- 14-	ss	6	<u>530</u> 610	38				•	•							-	
5	150.0		.7		15- 16-	ss	7	<u>360</u> 610	43					•								
- - - - -	153.3	END OF BOREHOLE at approximately 5.2 m below grade.			17 18- 19-																	
6		Borehole dry and open upon completion of drilling.			20- 21-																-	
 - - 7 -					21 - 22 - 23 -																-	
' - -					23 - 24 - 25 -	-															-	
8 -					25 - 26 - 27 -																	
					27- 28- 29-																-	
9 - - - - -					29 - 30 - 31 -																	
- - - - - 0-					31- 32-																- - - -	
-											Re	moul	ded V	Fest, l Vane trome	Test,		Pa					

C	s	tantec	B	OR	REF N: 4	IOI 860 3	LE 93 I	RE (E: 651	C OR 552	D					B	H 5	5		S	heet 1 of 1
	LIENT _ DCATIO	North Pickering Community														JEC.	Г No	•		22450165 Geodetic
		ORING October 21, 2015				WAT	ER I	LEVEL										ION		
(u	Z		OT	VEL	(1)		SAI		;	ι	INDF	RAIN	ED S	SHEA 1	AR S	TRE	NGT 150		Pa) 20	0
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC	CONTE CON	IE PEN		RBER	TEST,	BLOV		0	WL H REMARKS & GRAIN SIZE DISTRIBUTIOI
0 -	155.7	Rough Grass	·		0			ЧЩ		1	0 2	20 3	30 4	40 :	50 (50 7	70 8	30	90 10	0 GR SA SI C
	155.1	TOPSOIL: brown, sandy silt with rootlets, moist	<u>, , , , , , , , , , , , , , , , , , , </u>		1 - 2 -	ss	1	<u>300</u> 610	4	•										
1 -		Stiff to hard, sandy silty CLAY (CL-ML), TILL - trace gravel		•	2 3 - 4 -	ss	2	<u>360</u> 510	8	•										_
		 moist inferred cobbles or boulder based on auger grinding at 1.2 m 	.7		5 -	ss	3	380	25			•								-
2		on augor grinning at 1.2 III	· ~	•	7 - 8 -			610												-
3 -					9 - 10-	ss	4	<u>530</u> 610	18	c	> ⊢●									5 40 26 2
			× ×			ss	5	<u>560</u> 610	29											_
4 -					13- 14-	ss	6	<u>530</u> 610	28			•								
			1		15-	ss	7	<u>530</u> 610	50											
5 -	150.6	END OF BOREHOLE at			17 17 18-			610												-
6 -		approximately 5.2 m below grade. Borehole dry and open upon			10 19- 20-															
		completion of drilling.			21 -															
7 -					22 - 23 -															
					24 - 25 -															
8 -					26 - 27 -															
- - - -					28- 29-															
					30 - 31 -															
0-					32-	1								est, k						
														/ane ' rome			Pa			

C	S	tantec	B	OR	REF N: 4	IOI 860 5	LE 37 I	RE E: 651	C OR 511	D					В	H	6			Sł	neet 1 of 1
LC		North Pickering Community				t Inc.										ojec tum		o.			2450165 Geodetic
DA	ATES: B	ORING <u>October 21, 2015</u>				WAT	TER I	LEVEL							TPC	CELI	EVA	TIOI	N		
(u)	NOI		PLOT	EVEL	(Ħ)		SAI	MPLES		l	JND	RAIN 50			AR S 100	STRE	ENG 15		kPa)	200)
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	'NAM	C COI	NE PE	NETR	ERBEF ATION	I TEST	r, Blo	H SWS/0		w ⊖ ▼	WL H REMARKS & GRAIN SIZ DISTRIBUTI
0 -	159.5	Rough Grass			0			TCF	0		10	20	30	40	50	60	70	80	90	100	GR SA SI
	159.3	150 mm TOPSOIL: brown, sandy silt			1 -	ss	1	$\frac{410}{610}$	12		•										
1 -		Stiff to hard, sandy silty CLAY (CL-ML), TILL	, in the second		2 - 3 -			580	(1												-
		- trace gravel - moist	1		4 - 5 -	ss	2	<u>580</u> 610	61												_
2					6 -	ss	3	<u>510</u> 610	76												-
				•	8 - 9 -	ss	4	$\frac{480}{610}$	62							•					-
3 -					10-																-
					11 - 12 -	SS	5	<u>480</u> 610	76												-
4 -			×		13- 14-	X SS	6	$\frac{480}{280}$	50/ 130											>>●	-
-	154.5				15- 16-	ss	7	$\frac{250}{380}$	50/ 76											>>•	-
5 -		END OF BOREHOLE at approximately 5.0 m below grade.			17- 18-																
6 -		Borehole caved at 4.3 m below grade upon completion of drilling.			19-																
• -		Borehole dry upon completion of			20 - 21 -																_
7 -		drilling.			22 - 23 -																-
-					24 - 25 -																-
8 -					26 - 27 -																-
-					28-																-
9 - - -					29 - 30 -																-
					31 - 32 -																-
0-				<u> </u>	<u> </u>	1	<u> </u>							Fest, l Vane	kPa Test,	k Pa	:1:::	<u>: ::</u>		<u>::</u> †	<u> </u>
															Test, eter T		Pa				

C	S	tantec	B	OR	REF N: 4	IOI 861 0	CE 00 I	RE E: 651	C OR 530	D						F	BH	[7	Ά			S	heet 1 o	f 1
LC		North Pickering Community <u>Pickering, Ontario</u> ORING <u>November 13, 2015</u>				t Inc.										D	ATU	JM	F No -		_		224501 Geode	
	ATES: B	ORING INOVERIDER 13, 2013				WAI									SHE/									
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	WAT				INT &			ERG I	LIMI EST,	150) W H WS/(/ P	20 W	0 W _L REMA & GRAIN DISTRIB	
0 -	159.3				0			LCI TCI TCI TCI		1	0	20	3	0 4	40	50	60	7	0	80	90	10	⁰ GR SA	,) SI (
	158.7		<u>, 17</u>		1 - 2 -	ss	1	<u>300</u> 610	4	•													_	
1-		Hard, sandy silty CLAY (CL-ML), TILL - trace gravel			3 - 4 -	ss	2	<u>510</u> 610	54							•	<u>.</u>						_	
2 -		- moist	.7		5 - 6 -	ss	3	$\frac{460}{610}$	72										•				_	
			A A A		7 - 8 - 9 -	ss	4	<u>280</u> 410	50/ 100													>>●		
3 -					9 - 10 - 11 -	ss	5	$\frac{250}{280}$	50/ 130													~	_	
4		- grey			12- 13-	ss	6	$\frac{380}{610}$	63														_	
			· 7 /5		14- 15-																		_	
5 -	154.1	END OF BOREHOLE at	· * .		16- 17 18-	ss	7	<u>460</u> 610	54							•							_	
6		approximately 5.2 m below grade. Borehole dry and open upon			10 19- 20-																		_	
		completion of drilling.			21 - 22 -	-																	_	
7 -					23- 24-																		_	
8 -					25 - 26 - 27 -																		_	
					27 - 28 - 29 -																		_	
9 -					30- 31-																		-	
10-					32-						F	ield	Va	ne To	est, k	Pa		· · · ·						
											R	emc	ould	led V	ane '	Tes			Pa					

C	S	tantec	B	OF	REF N: 4	IOI 861 3	.E 19 I	RE(E: 651	C OR 578	D					В	Н	3			Sh	neet 1 of 2
	LIENT _ DCATIO	North Pickering Community														DJEC TUM).			2450165 Geodetic
		ORING October 19 and 20, 201	5			WAT	TER I	LEVEL							TPC	CELE	EVAT	ION	N		
(u)	NO		гот	EVEL	(ft)		SAI	MPLES ହିଛି		l	JND	RAIN				TRE	NGT 150		kPa)	200)
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMI		NE PE	NETR	ATION	RG LIM I TEST T, BLC	, BLO	H WS/0	/P W C	v ′ ▼	W _L I REMARKS & GRAIN SIZE DISTRIBUTIO
_	159.9	Rough Grass					2	TCR	20										90	100	DISTRIBUTIO (%) GR SA SI C
0	159.7	200 mm TOPSOIL: brown, sandy silt with organics, moist	<u> </u>		- 0 - 1 -	ss	1	<u>330</u> 610	12		•										
1 -		Stiff to hard, sandy silty CLAY (CL-ML), TILL			2 - 3 -	ss	2	480	30											-	
		- trace gravel - moist	.7		4 - 5 -			<u>480</u> 610													
2					6 - 7 -	ss	3	<u>530</u> 610	37	c											
					8 - 9 -	ss	4	$\frac{430}{610}$	42	0				•							
3 -					10 - 11 -	ss	5	<u>530</u> 610	31		0		•								
- - - - 4 -					12- 13-																
• - -			.×		14- 15-	SS	6	<u>380</u> 610	25		0	•									_
5 -						ss	7	<u>560</u> 610	23		0	•									
			A		17 - 18 - 19 -																
5 - - -				•	20-		0	510	(7												
- - - -			·7	•	21 - 22 -	ss	8	<u>510</u> 610	67	C											
7 - - - -				*	23 - 24 -																
- - - - -			. *		25 - 26 -	ss	9	$\frac{280}{300}$	100	С)									•	
			× A		27 - 28 -																
- - - -					29 - 30 -	N oo	10	410	50/												
			×.		31 - 32 -	1 22	10	<u>410</u> 410	50/ 100	C									>	>•	0 46 28
0-		Continued Next Page	<u>[•≯</u>	<u>»</u>	I	1	<u>I</u>	1	I					Fest, l Vane		kPa					L

C) s	tantec	B	OR	REF N: 4	IOI 861 3	LE 19 F	RE(E: 651	C OR 578	D					В	Ηð	3		S	Sheet 2 of 2
	IENT _ CATIOI	North Pickering Community														DJEC TUM).	1	22450165 Geodetic
		ORING October 19 and 20, 2015				WAT	TER I	LEVEL							TPC	CELE	EVAT	ſION		
ي 1	Z		OT	VEL	f)		SAI	MPLES		ι	JND	RAII 50			AR S 100	TRE	NGT 15(TH (kl)	Pa) 20	00
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMIO	co	NE PE	NETR	ERBER ATION N TES	TEST	, BLO	W _P ⊢ WS/0.3	0	WL REMARKS & GRAIN SIZ DISTRIBUTIO
10-	149.9				33-	<u> </u>		щС		1	10 2	20	30	40	50	60	70	80	90 10	0 GR SA SI
		Very dense, brown, silty SAND (SM), TILL - some clay			33 34- 35-			280	50/											-
11-] 	148.8	- moist to wet END OF BOREHOLE at			<u>36-</u> 37-	∦ ss	11	<u>380</u> 410	50/ 100		0								>>)
2-		approximately 11.1 m below grade. Borehole open upon completion of			38- 39-															-
12 		drilling. Groundwater observed at 10.6 m			40 - 41 -															-
3-		below grade upon completion of drilling.			42 - 43 -															- - - -
-					44 - 45 -															-
4-					46 - 47 -															-
- - - -					48-															-
5-					50- 51-															-
6					51 52- 53-															-
					54-															-
7-					55 - 56 -															- - - - -
					57 - 58 -															-
8-					59 - 60 -															-
- - - 9-					61 - 62 -															-
					63- 64-															-
0-					65-						Fie	ld V	ane 7	Fest, 1	(Pa					-
											Re	mou	lded	Vane	Test, eter Te		Pa			

C) s	tantec	B	OR	REF N: 4	IOI 861 3	СЕ 63 в	RE E: 651	C OR 570	RD							E	BF	19	B			Sł	neet 1 of 4
	LIENT _ DCATIO	North Pickering Communit	y Ma	nage	emen	t Inc.													EC] UM	ΓNo).			2450165 Geodetic
		ORING November 12 and 13, 2	015			WAT	TER I	LEVEL	Janua	ary	7	, 2	016	5						VAT	TION	「		
(۲	Z		OT	VEL	(t)		SAI		5		U	ND			ED S		AR 100	ST	REI	NGT 150	`		200)
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	[ΟYΝ	IAM		I NTE ONE		ATTI IETR	ERBE ATIO	N T	EST,	TS BLO WS/0				W _L H REMARKS & GRAIN SIZE
_	158.3	Rough Grass					2	TCR	28													90	100	GRAIN SIZE DISTRIBUTIO (%) GR SA SI C
0 -	157.7	TOPSOIL, brown, silty sand with organics and rootlets, moist	<u>17. 71</u>	4	0 - 1 -	ss	1	<u>150</u> 610	28					•										
1	137.7	Stiff to hard, brown, sandy silty CLAY (CL-ML), TILL	·\\'/.		2 - 3 -	ss	2	$\frac{180}{610}$	35			. (S		. •									-
		 trace gravel moist inferred cobbles and possible			4 - 5 -																			-
2		boulders based on auger grinding between 0.8 m and 1.5 m			6 - 7 -	ss	3	<u>530</u> 610	12			•					· · · · · · · · · · · · · · · · · · ·							-
					8 - 9 -	ss	4	<u>530</u> 610	24			0												-
3 - - - -			A		10- 11-	ss	5	$\frac{510}{610}$	11			•0												-
4		- brown and grey layers			12- 13-	ss	6	<u>510</u> 610	13			۲					· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·							-
		- moist to wet	· ×	Ţ	14- 15-																			-
5	153.0	Versileer here its CAND			17-	ss	7	$\frac{100}{610}$	22			C) •											-
- - - 6 -		Very dense, brown, silty SAND (SM) - trace gravel, trace clay			18- 19-																			
• • • •		- moist to wet			20 - 21 -	ss	8	$\frac{460}{560}$	86			0									•			Non Plastic 1 50 41
7 -					22 - 23 -	-																		-
					24 - 25 -	∦ ss	9	$\frac{200}{280}$	50/ 130			o										>	ו	-
8 - 1					26 - 27 - 28 -																			
- - 9 - -					28 - 29 - 30 -																			-
					30- 31- 32-	∦ ss	10	$\frac{150}{230}$	50/ 76			C											>ē - -	-
0		Continued Next Page		1	54							F '				:::: 	-						Ē	
		Commueu Next rage										R	emo	uld	ne T led V eneti	ane	Test			Da				

 North Pickering Communition	•	-	(II) HLd30 33- 34- 35- 36- 37- 38- 39- 40-	WA'	SAI SAI		Janua N-VALUE OR ROD(%) 100	ury 7 U WA DYI STA	7, 20 INDF TER C	RAIN 50 + CONTE CON	ED S		DAT TPC R S 00 RBER TION	TREN 	VAT NGTH 150 TS BLOW	ION H (kF Wp I VS/0.3	20 20 ₩ ₩ ₩	22450165 Geodetic 00 WL GRAIN SIZE DISTRIBUTION 00 GR SA SI CI
BORING November 12 and 13, STRATA DESCRIPTION 3.3 Very dense, brown, silty SAND (SM) - trace gravel, trace clay			(II) HLd30 33- 34- 35- 36- 37- 38- 39- 40-	TYPE	NUMBER	RECOVERY (mm) A TCR(%) / SCR(%) G	N-VALUE OR RQD(%)	WA DYI STA		RAIN 50 + CONTE CON RD PE	ED S	HEA 10 ATTER ETRA		ELE TREN 	NGTH 150 TS BLOW WS/0.3	H (kF W _P I VS/0.3 3m	°a) 20 ₩ ₩ ₩	0 WL REMARKS GRAIN SIZE DISTRIBUTIOI
E STRATA DESCRIPTION 3.3 Very dense, brown, silty SAND (SM) - trace gravel, trace clay			(II) HLd30 33- 34- 35- 36- 37- 38- 39- 40-	TYPE	NUMBER	RECOVERY (mm) A TCR(%) / SCR(%) G	N-VALUE OR RQD(%)	WA DYI STA		RAIN 50 + CONTE CON RD PE	ED S	HEA 10 ATTER ETRA		TREN 	NGTH 150 TS BLOW WS/0.3	H (kF W _P I VS/0.3 3m	°a) 20 ₩ ₩ ₩	0 W _L REMARKS & GRAIN SIZE DISTRIBUTIO
J.3 Very dense, brown, silty SAND (SM) - trace gravel, trace clay	STRATA PLO	WATER LEVE	HLdHG 33- 34- 35- 36- 37- 38- 39- 40-	× SS	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	WA DYI STA	TER C NAMIC ANDAF 0 2	50 ONTE	ENT & A E PEN	1 ATTER ETRA ATION	00 RBERG TION	G LIMI ⁻ TEST, T, BLO	150 TS BLOW WS/0.3	W _P I /S/0.3i 3m	20 W m V	WL I REMARKS & GRAIN SIZE DISTRIBUTIO
J.3 Very dense, brown, silty SAND (SM) - trace gravel, trace clay	STRATA	WATERL	33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 -	× SS				DYN STA	NAMIC ANDAF 0 2	CON RD PE	E PEN NETR/	ETRA ATION	TION TEST	TEST, T, BLOV	BLOW WS/0.3	۔ √S/0.3i 3m		REMARKS & GRAIN SIZE DISTRIBUTIO
J.3 Very dense, brown, silty SAND (SM) - trace gravel, trace clay	STR.	WAT	33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 -	× SS				DYN STA	NAMIC ANDAF 0 2	CON RD PE	E PEN NETR/	ETRA ATION	TION TEST	TEST, T, BLOV	BLOW WS/0.3	3m	•	& GRAIN SIZE DISTRIBUTIO
Very dense, brown, silty SAND (SM) - trace gravel, trace clay			34 - 35 - 36 - 37 - 38 - 39 - 40 -	× SS					0 2								• 0 10	GRAIN SIZE DISTRIBUTIO (%) GR SA SI C
Very dense, brown, silty SAND (SM) - trace gravel, trace clay			34 - 35 - 36 - 37 - 38 - 39 - 40 -	- X SS -	11		100	1		.0 3	0 4	0 5	0 6	50 7	08	09	0 10	10 <mark>gr sá si c</mark> :
(SM) - trace gravel, trace clay			35 - 36 - 37 - 38 - 39 - 40 -		11	<u>130</u> 150	100		0									-
- trace gravel, trace clay			36 - 37 - 38 - 39 - 40 -		_11	<u>130</u> 150	100		0							1		
- moist to wet			37 - 38 - 39 - 40 -			150								1	1::::			0 59 38
			38 - 39 - 40 -															Non Plastic
			39- 40-															-
		•	40-															-
		•																-
				M ee	12	130	100		0									-
		-	41 - 42 -	133		<u>130</u> 610	100											-
		:	43-															-
			44 -															-
			45	Mee	13	$\frac{180}{230}$	50/ 76			0							>>	-
			46-			-230-	76											-
.8			47-															-
Very dense, grey, sandy SILT (MI - trace clay	L)		48-	1														-
- wet			49-															-
			50-		14	100	100											-
				133	14	610	100											-
			53-	$\left \right $														
			54-	$\left \right $														-
			55-	$\left \right $														-
			56-	$\left \right $														-
			57-															-
				1														-
				1														-
				X ss	15	$\frac{200}{200}$	50/ 51		c								>>	-
																		-
			63-	1														-
			64	$\left \right $														-
			65-	$\left \right $														-
Continued Next Page	<u> ·</u> _ ·	11	1		1	1			Fie	ld Va	ne Te	est, k	Pa	1		1	il	
	Continued Next Page	Continued Next Page	Continued Next Page	54 55 56 57 58 59 60 61 61 62 63 63 64 65	52 53 54 54 55 55 56 57 57 58 59 60 59 60 59 60 59 60 59 60 59 60 59 61 62 63 64 64 65	$ \begin{array}{c} 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \\ \hline \times SS 15 \\ 61 \\ 62 \\ 63 \\ 64 \\ 65 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52 53 53 53 54 55 56 57 58 59 60 SS 15 200 51 61 62 63 63 64 65 5	52 53 53 53 54 55 56 57 58 59 60 SS 15 200 51 61 62 63 63 64 65 65 61 65	52 53 53 54 54 55 56 56 57 58 59 60 60 SS 15 200 50/ 61 62 63 64 65 64 63 64 65 65 65 65 65 Continued Next Page	52 53 53 53 54 55 55 56 57 58 59 60 60 SS 15 200 61 200 51 62 63 64 63 64 65 65 65 65	52 53 53 54 54 55 56 56 57 58 59 60 00 SS 15 200 61 62 63 64 64 65 64 65 64 65 64 65 64 65	52 53 53 54 55 56 56 57 58 59 60 SS 15 200 50/ 61 62 61 62 63 63 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64 65 64	52 53 53 54 54 55 56 56 57 58 59 60 60 SS 15 200 61 62 63 63 64 65 63 64 65 65 65 Field Vare Test, kPa	52 53 53 54 55 56 56 57 58 59 60 SS 15 200 61 200 51 62 63 64 63 64 65 64 65 61 65 61 63 63 64 65	52 53 53 53 54 55 56 56 57 58 59 60 60 SS 15 200 61 62 63 64 64 65 65 63 64 64 65 63 64 65 63 64 64 65 64 65	52 53 53 54 54 55 56 57 58 59 60 SS 15 200 50' 61 200 51 6 6 63 64 6 6 6 8 64 65 6 6 6 8 Continued Next Page C Field Vane Test, kPa Remoulded Vane Test, kPa

C	S	tantec	B	OF	REF N: 4	IOI 861 3	LE 63 F	RE(E: 651	C OR 570	D					B	НŞ	B		S	heet 3 of 4
LC		N <u>Pickering, Ontario</u>														DJECT FUM	Г No _			22450165 Geodetic
D	ATES: B	ORING November 12 and 13, 20)15			WAT	FER I	LEVEL	Janua	ary 7	7, 20	16			TPC	CELE	VAT	ION		
(m)	NO		LOT	EVEL	(ft)		SAN	MPLES ଚିହିଡ଼ି		ι	INDF	RAIN	ED S		AR S	TRE	NGT 150	H (kF	°a) 	0
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC	CON	E PEN	IETRA	ATION	G LIMI TEST, T, BLO	BLOV		W O m ▼	W _L
20-	138.3							H H H H H H H H H H H H H H H H H H H	0	1	0 2	0	30 4	0	50	60 7	0 8	80 9	0 10	0 (%) GR SA SI
2		Very dense, grey, sandy SILT (ML)			66 - 67 -															
1		- trace to some clay - wet			68-															
1-					69 -															-
					70 - 71 -	<u> ss</u>	16	$\frac{150}{200}$	50/ 51		0								>> •	_
2-					72-															
					73-															
					74 - 75 -															
3					76-															-
					77 -															_
4-					78 - 79 -															_
1 1 1		- wet			80 -	X SS	17	$\frac{130}{200}$	50/ 51			0							>>●	_
5-					81 - 82 -			200	01											
					83-															
1					84 -															-
6-					85 - 86 -															
					87 -															_
7-					88 - 89 -															_
					89- 90-	Mee	18	200	50/											_
					91 -	N 22	18	$\frac{200}{230}$	50/ 76										>> Q	
8-					92 - 93 -															1
					93- 94-															-
9-	129.3	Very dense, grey, sandy SILT		l	95 -															-
		(ML) TILL - trace clay, trace gravel	4		96 - 97 -															-
0-		- moist			98-															
U -		Continued Next Page											ine To			k De				
													ded V Peneti			kPa est, kł	Pa			

C	S	tantec	B	OF	REF N: 4	IOI 861 3	LE 63 I	RE(E: 651	C OR 570	D							Bł	<u> </u>)B			Sł	neet 4 of 4
	LIENT _ CATIO	North Pickering Community		Ū		t Inc.												JEC UM	ΓN	0.			2450165 Geodetic
DA	ATES: B	ORING November 12 and 13, 20	15			WAT	TER I	LEVEL	<u>Janua</u>	ary 7	7,2	201	16			Т	PC	ELE	VA	ΓION	1		
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	SAI	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	WA	TEF	RCC	50 + DNTI	ENT 8	L ATT) ERG	+	150 	`	+ > W C	200 V	
	100.0			-			ž	ECO CR(%	Ч Ч Ч					ENETE							00	•	GRAIN SIZE DISTRIBUTION (%)
30-	128.3	Very dense, grey, sandy SILT (ML) TILL	· À · À · ·		99- 100-					1	0	20)	30	40	50	6	0	70	80	90		(%) GR SA SI CI
31	127.2	 trace clay, trace gravel moist END OF BOREHOLE at 			101- 102	Λ	19	<u>510</u> 610	58			0					•						
32-		approximately 31.1 m below grade. Groundwater monitoring well			103- 104- 105-																		
34 - - - - - -		installed to a depth of approximately 16.8 m below grade upon completion of drilling.			105 106 107-																		
33-		Groundwater level measured at 4.75 m below grade on January 7,			108- 109-																	-	
34-		2016. Groundwater level measured at			110- 111- 112-																		
- - - - -		8.1 m below grade on January 27, 2016.			112 113- 114																		
35-					115 116																		
36-					117- 118- 119-																	-	
					120- 121-																		
					122- 123-																		
38-					124- 125- 126-																		
39					120 ⁻ 127- 128-																		
					129- 130-																		
40-			<u> </u>		131-	1	<u> </u>				R	lem	oul	ane 7 ded 7 Pener	Van	e Te	st, k		Pa	: :::			

CU		tantec	D		N: 4	IOI 861 4	_Е 67 в	RE(E: 651	C OR 531	D BH10B Sheet 1 of 2
LO		North Pickering Community	Ma	nage	emen					PROJECT No. 122450165 DATUM Geodetic
DA	TES: B	ORING <u>October 26, 2015</u>				WAT	FER I	LEVEL		TPC ELEVATION
UEPIH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	SAN	RECOVERY (mm) A TCR(%) / SCR(%) B	N-VALUE OR RQD(%)	UNDRAINED SHEAR STRENGTH (kPa) 50 100 150 200 + + + + + + + + + + + + + + + + + + +
0 +	158.5	Rough Grass			0			LCF R	0	10 20 30 40 50 60 70 80 90 100 (%) GR SA SI
	157.9	TOPSOIL: brown, ssandy silt with organics, moist Firm to very stiff, brown, sandy silty	<u>11</u>		0 1 - 2 -	ss	1	<u>360</u> 610	5	• •
1-		CLAY (CL-ML), TILL - trace gravel - moist			3 - 4 -	ss	2	<u>560</u> 610	9	• 0
2					5 - 6 - 7 -	ss	3	<u>480</u> 610	11	
			- A - A		8 - 9 -	ss	4	$\frac{410}{610}$	17	O •
3 - - - - - -		- wet			10- 11- 12-	ss	5	<u>530</u> 610	11	
4 - - - -	154.2	Compact to very dense, grey,			13- 14-	ss	6	<u>530</u> 610	18	<u>−</u> •
5		SAND with silt (SP-SM) - wet			15- 16- 17-	ss	7	$\frac{410}{610}$	11	••
					18- 19-	-				
					20 - 21 - 22 -	ss	8	<u>460</u> 460	102	• 1 91 7
					22 23- 24-					
	150.9	Very dense, grey, sandy SILT (SM), TILL - some clay		•	25 - 26 - 27 -	X ss	9	$\frac{200}{250}$	50/ 100	0
		- moist		•	27 - 28 - 29 -					
			<u>4. V. A.</u>		30- 31-	ss	10	$\frac{250}{610}$	100	0
0+		Continued Next Page			32-					 Field Vane Test, kPa Remoulded Vane Test, kPa

Q) s [.]	tantec	B	OF	REF N: 4	IO 861 4	LE 67 I	RE (E: 651	C OR 531	D					B	H1	0B		S	Sheet 2 of 2
	IENT _	North Pickering Community													PRC DAT).	12	22450165 Geodetic
		ORING <u>October 26, 2015</u>				WAT	FER I	LEVEL										TION		
			F				SA	MPLES	;	ι	JND		IED S			TRE				
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY ST.	NAMI(ANDA	C CON RD PE	ENT & NE PEI		ATION N TEST	TEST F, BLC	, BLO DWS/0	₩ _P ⊢ WS/0.3	→ Im ▼	W _L I REMARKS & GRAIN SIZ DISTRIBUTIO
10+	148.5				33-	<u> </u>		ЩЧ		1	10 2	20	30	40	50 (50 7	70	80	90 10	00 GR SA SI
: - - - 1 - 1 -		Very dense, grey, sandy SILT (SM), TILL - some clay - moist	A. V. A. V.		33 34- 35- 36-	X ss	11	$\frac{180}{230}$	50/ 76		0								>>	-
-			$\nabla = \Phi - \nabla$		37 - 38 - 39 -	-														-
12-	146.1		₽		40-	<u> </u>	12	$\frac{200}{200}$	50/		0								>>	-
13	110.1	END OF BOREHOLE at approximately 12.4 m below grade. Groundwater level was not	¥L		41 - 42 - 43 -			200	-31											
- - - - 14- -		measured due to use of drilling mud.			44 - 45 - 46 -	-														-
15-					47 - 48 - 49 -															- - - - - - - -
16					50 - 51 - 52 -	-														-
- - - - - - - - - - - - -					53 - 54 - 55 -	-														-
					56 - 57 - 58 -	4 														-
.8 - - - - - - -					59 - 60 - 61 -	-														
.9 					62 - 63 - 64 -															- - - - - - -
20 -					65-	<u> </u>					Re	moul	ane T Ided V Penet	/ane '	Test,		Da			-

C	S	tantec	B		REF N: 4	IOI 861 4	E 44 I	RE(E: 651	C OR 551	D								ł	Зł	H1	1A	ł			Sł	neet 1 of 3
	LIENT _	North Pickering Community	Ma	nage	emen	t Inc.														JEC UM	ΤN	o.				2450165 Geodetic
DA	ATES: B	ORING November 10 and 11, 20	15			WAT	TER I	LEVEL	Janua	ary	7	, 2	20	16				TI	PC	ELE	EVA	TIC	ON			
я)	N		LOT	VEL	ft)		SAI	MPLES			U	N	DR	AIN 50		DS		AR 100		ΓRE	NG 15		(kF		200)
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	D	YN	IAN	1IC	COI	NE	PEN	IETR/	ATIC	DN 1		ITS , BLC)WS/0	ows		_C		W _L I REMARKS & GRAIN SIZE DISTRIBUTION
0 -	156.6	Rough Grass			0			TCF	0		1(0	20)	30	4	0	50	6	0	70	80	9	0	100	GR SA SI CI
	156.0	TOPSOIL, brown, sandy silt with organics, moist	<u>, , , ,</u>	1	1 -	ss	1	$\frac{280}{610}$	7		•															_
1		Compact to dense, brown, silty clayey SAND (SC-SM) with gravel, TILL	Δ. <i>\</i>		2 - 3 -	ss	2	$\frac{280}{610}$	34	-						•										-
 	154.8	 moist cobbles inferred based on rock 	À À.	•	4 - 5 -			<u>360</u>																		
2	134.0	very stiff, grey, sandy silty			6 - 7 -	ss	3	<u> </u>	18			F	•													9 27 39 25
	152 (CLAY (CL-ML), TILL - trace gravel - moist to wet	.7		8 - 9 -	ss	4	<u>460</u> 610	13			•														-
3 -	153.6	Dense to very dense, grey, silty SAND (SM)			10- 11-	ss	5	$\frac{480}{610}$	46			· · · · · · · · · · · · · · · · · · ·					•								-	
4		trace clay, trace gravelmoist to wet			12- 13-	ss 🕅	6	<u>360</u> 430	50/ 130	-		· · · · · · · · · · · · · · · · · · ·												>	>•	-
					14- 15-			<u>300</u>				· · · · · · · · · · · · · · · · · · ·														Non Plastic
5					16- 17-	ss	7	410	50/ 100	· · · · · · · · · · · · · · · · · · ·		0												>	>•	1 71 24 4
	151.0	Very dense, grey, sandy SILT (ML)			18- 19-							· · · · · · · · · · · · · · · · · · ·														-
6 -		TILL - trace to some clay, trace gravel - moist	. ∧		20 - 21 -	ss	8	<u>530</u> 610	72	· · ·		· · · · · · · · · · · · · · · · · · ·									•				-	
- - 7 -			A V		22 - 23 -			010																		-
-			A V ·		24 - 25 -							· · · · · · · · · · · · · · · · · · ·														-
8 -					26 - 27 -	ss	9	<u>510</u> 610	88			· · · · · · · · · · · · · · · · · · ·											•			-
				!	27 28- 29-							· · · · · · · · · · · · · · · · · · ·														-
9					30-	X SS	10	<u>200</u> 200	105			· · ·												>	>●	
10-					31 - 32 -																					
10-		Continued Next Page		_			_										est, k									
																	ane			cPa st, kl	De					

C	S	tantec	B	OR	EH N: 4	IOI 861 4	E 44 1	RE(E: 651	C OR 551	D					BI	H1	1A		5	Sheet 2 of 3
LC		North Pickering Community				t Inc.									PRO DAT		Г No		1	22450165 Geodetic
DA	ATES: B	ORING November 10 and 11, 20	15			WAT	TER I	LEVEL	Janua	ary 7	7, 20	16			TPC	ELE	EVAT	ION		
÷	z		Б	Ē			SA	MPLES		U	NDF	RAIN 50	ED S		AR ST 00	TRE	NGT 150		Pa) 20	00
۳) H	ATIO	STRATA DESCRIPTION	APL	E E	LH (H			mm) R(%)	(%		-	+	+	-	-	+		Wn	w	WL
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	/ SCI	ALUE 2D(%						RBERG				–ŏ–	
	ш		ST	Ň		∣≿	NUN	:0VE	N-VALUE OR RQD(%)						TION TEST				m •	GRAIN SIZE DISTRIBUTION
10-	146.6							RECOVERY (mm) TCR(%) / SCR(%)	0	1	0 2	0	30 4	40 5	50 6	0	70 8	0 9	0 10	00 GR SA SI CL
10		Very dense, grey, sandy SILT (ML)	Þ		33- 34-	1														-
-		TILL - trace to some clay, trace gravel			~-			100	- 50/											-
11-		- moist			36-	× ss	11	150	- <u>50/</u> - 51										>>0	-
					37-															-
-			A		38-															-
12			P A		39-															-
-			Þ		40-	ss	12	$\frac{150}{230}$	50/ 76										>>	
			A		41-			250												-
13-	143.5				42- 43-															-
-		Very dense, grey, sandy SILT (ML) - trace clay			44-															-
-		- moist			45-	Maa		250		· · · · ·										-
14-					46-	∦ ss	13	$\frac{\underline{250}}{\underline{300}}$	100											-
-	142.0				47 -															-
-	142.0	Very dense, grey, SAND with silt			48-															-
15-		(SP-SM) - wet			49 -															-
-		- wet			50- 51-	X ss	14	$\frac{200}{250}$	50/ 100										>>	
-					51 52-															-
16-					53-															-
-					54-															-
-	139.9	Very dense, grey, sandy SILT (ML)			55 -															-
17-		- trace clay			56-															-
-		- moist			57 -															-
					58-															-
18-					59 - 60 -															-
	138.1	END OF BOREHOLE at		_	61-	SS	15	$\frac{150}{230}$	50/ 76										>>	-
19-		approximately 18.5 m below grade.			62-															-
- 41		Groundwater monitoring well			63-															
		installed to a depth of			64 -															-
20-		approximately 16.8 m below grade.			65-															-
		Continued Next Page											ane T		Ра Гest, l	Do				
															er Te		Pa			

C	S	tantec	B	OF	REF N: 4	IO 861 4	LE 44 B	RE(E: 651	C OR 551	D						В	H	11	A		S	Sheet 3 of 3
	LIENT _															PR(DA	OJE(TUN		No.			22450165 Geodetic
		ORING November 10 and 11, 20)15			WA	FER I	LEVEL	Janua	ary 7	7, 2	010	6						'ATI	ON		
(n	NC		LOT	VEL	ft)		SAI	MPLES		L	JND		VINI 50	ED		AR S	STR		GTH 150	H (kF	Pa) 20	00
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAM	COI IC C		E PEI	ATTI	ERBEF ATION	I TES	σT, B	LOW		W O m V	WL REMARKS & GRAIN SIZ DISTRIBUTIO
20-	136.6]		TCF TCF	0	1	0	20	3	0	40	50	60	70	8	0 9	0 10	0 GR SA SI
		Groundwater level measured at 3.3 m below grade on January 7, 2016.			66 - 67 -																	- - - -
21		Groundwater level measured at			68 - 69 -																	- -
		4.3 m below grade on January 27, 2016.			70 - 71 -																	- - - -
22					72- 73-																	- - - - -
- - - -					74- 75-																	-
3-					76 - 77 -																	-
24					78 - 79 -																	- - - -
					80 - 81 -																	
25					82- 83-							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·									· -
					84 - 85 -																	
6-					86-																	-
27-					87 - 88 -								· · · · · · · · · · · · · · · · · · ·									- -
					89 - 90 -																	- - - -
28-					91 - 92 -																	- - - -
					93- 94-																	- - - -
9-					95- 96-																	- - - -
- - - - - 0-					97 - 98 -																	
- v -															'est, 1 /ane	cPa Test,	, kPa					

C	S	tantec	B	OF	REF N: 4	IOI 861 4	LE 39 1	RE E: 651	C OR 531	D					B	H1:	2A		S	heet 1 of 3
	LIENT _ DCATIO	North Pickering Community														DJEC TUM	Г No	•		22450165 Geodetic
DA	ATES: B	ORING Novrmber 9 and 10, 201	5			WAT	TER I	LEVEL	<u>Janua</u>	ary '	7, 20)16			TPC	ELE	VAT	ION		
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	SAI	RECOVERY (mm) TO TCR(%) / SCR(%) TO TCR	N-VALUE OR RQD(%)	WA DY			ENT &	1 ATTE IETRA	00 	G LIMI TEST,		₩ _P ↓ VS/0.3	20	W _L —I REMARKS &
	157.1	Rough Grass					2	LCB CB CB CB CB CB CB CB CB CB CB CB CB C	29										0 10	GRAIN SIZE DISTRIBUTIC (%) GR SA SI C
0 -	156.5	TOPSOIL, brown, sandy silt with organics, moist	<u>, , , , , , , , , , , , , , , , , , , </u>	4	0 1 - 2 -	ss	1	<u>280</u> 610	6	•										<u>GR SA SI C</u>
1 -		Stiff to very stiff, brown, sandy silty CLAY (CL-ML), TILL - trace gravel - moist			- 3 - 4 -	ss	2	$\frac{510}{610}$	11		•									_
2			-7 -7 -7		5 - 6 - 7 -	ss	3	$\frac{150}{610}$	13		•									-
3 -		- grey		₹ ¥	8 - 9 -	ss	4	<u>510</u> 610	21			•								-
	153.3		i Ai I- I-		10 - 11 - 12 -	ss	5	<u>480</u> 610	13		•									_
4	100.0	Compact to very dense, grey, sandy SILT (ML), - moist to wet			13- 14-	ss	6	<u>300</u> 610	23			•								-
5 -					15- 16- 17-	ss	7	<u>300</u> 460	102										>>●	_
6 -					18- 19-															
• - - - -					20 - 21 - 22 -	ss	8	<u>330</u> 410	50/ 100										>> •	_
7 -	150.0	Very dense, grey to light grey SAND with silt (SP-SM)			23 - 24 -															_
- - 8 - -	1407	- moist		•	25 - 26 - 27 -	X SS	9	<u>180</u> 200	- 50/ - 51										>>●	_
- - - - 9 -	148.7	Very dense, grey, sandy SILT (ML) TILL - trace to some clay			28 - 29 -															
		- moist	$\nabla \cdot \not > \nabla$		30 - 31 - 32 -	ss	10	$\frac{200}{230}$	50/ 76										>>●	_
10-		Continued Next Page		<u> </u>									ine Te			 				
													ded V Penetr			kPa est, kl	Pa			

C	s	tantec	B	OR	REF N: 4	IOI 861 4	LE 39 I	RE(E: 651	C OR 531	D					B	H1	2A			She	et 2 of 3
	LIENT _	North Pickering Community	Ma	nage	emen	t Inc.											Г No		1		<u>450165</u> eodetic
		ORING Novrmber 9 and 10, 201	5			WAT	TER I	LEVEL	Janua	arv 7	7.20)16			DAT TPC		- VAT	ION			
								MPLES		. <u> </u>				SHE/			NGT				
EPTH (m)	ELEVATION (m)		STRATA PLOT	WATER LEVEL	(#) H							50		1	00		150	+	2	200	
EPTI	EVA_	STRATA DESCRIPTION	ATAF	TER	DEPTH (ft)	Щ	BER	RY (r SCF	LUE 2D(%						RBER			W _P ⊢	W 0		
D	Ш		STI	MA		ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)								, BLOV)WS/0.:		m T		REMARKS & GRAIN SIZE DISTRIBUTION
10-	147.1							H H H	0	1	0 2	20 3	30	40 :	50 6	50 7	70 8	so 9	0 1		(%) R SA SI CL
-		Very dense, grey, sandy SILT (ML) TILL			33- 34-]															
-		- trace to some clay			35-	Maa		230	50/											Ē	Non Plastic 0 41 40 19
11-		- moist	A		36-	X SS	11	$\frac{\underline{230}}{\underline{280}}$	50/ 130		P								>>) 41 40 19
-				1	37-	-														Ē	
-					38- 39-																
12-			A		40-	x ss	12	230	50/ 100										>>		
-					41-	<u> </u>	12	$\frac{\underline{230}}{\underline{250}}$	_100										>>		
13-	144.0				42-															-	
-		Very dense, grey, sandy SILT (SM) - trace gravel			43 - 44 -																
-		- moist to wet			45-	× ss	13	$\frac{150}{150}$	100											Ē	
14-					46-			150												-	
-	142.5				47 - 48 -																
15-		Very dense, grey, silty SAND (SM) - trace gravel			48- 49-]														-	
13		- moist to wet			50-	x ss	14	$\frac{180}{200}$	50/ 51										>>		
-					51-			200	-91											-	
16				1	52- 53-															-	
					54-	-															
-			 .		55 -																
17-					56-	-														-	
-					57 - 58 -	Ì															
18-					59 -	-														-	
-	138.6				60 -	x ss	15	$\frac{250}{280}$	50/ 130										>>		
	130.0	END OF BOREHOLE at			61-			280	1.50	· · · · ·											
19-		approximately 18.6 m below grade.			62 - 63 -]															
		Groundwater monitoring well installed to a depth of			64 -																
20-		approximately 16.8 m below grade.			65-																
20		Continued Next Page												est, k		1-D-					
															Fest, ter Te		Pa				

C	s	tantec	B	OF	REF N: 4	IO 861 4	LE 139 B	RE(E: 651	C OR 531	D							B	H1	2 <i>A</i>	١		Sh	eet 3 of 3
CI	LIENT _	North Pickering Community														_	PRC	JEC	ΤN	0.		122	2450165
		N Pickering, Ontario															DAT	ГUМ				(Geodetic
D	ATES: B	ORING Novrmber 9 and 10, 201	5			WA'	ΓER Ι	LEVEL	Janua	· ·													
(ר	z		6	Ē	Ð		SAN	MPLES		ι	JN	DR	AIN 50		SF		AR S [°] 00	TRE	NG 15		kPa)	200	
DEPTH (m)	EVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)		E.	(mm) CR(%	JЕ (%)			R C			<u>ا</u>				-+		+ /P W		WL
DEF	ELE		STRA	WATE	DE	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NA	MIC	CON	NE PE	ENE	TRA		TEST	, BLC).3m	. [REMARKS & GRAIN SIZ DISTRIBUTIO
	137.1						2	TCR	28												90	100	DISTRIBUTIO (%) GR SA SI (
20-	157.1	Groundwater level measured at 2.89			66-																	-	GR SA SI
		m below grade on January 7, 2016.			67 -											· · · · · · · · · · · · · · · · · · ·							
-		Groundwater level measured at 3.4			68 -																		
21-		m below grade on January 27, 2016.			69 -																		
					70 - 71 -]																-	
22-					72-											· · · ·							
					73-																	-	
					74-	$\left \right $																	
23-					75-																	-	
					76-																		
					77 - 78 -																	-	
24					78- 79-																	-	
		•			80 -																		
					81 -																	-	
25-					82-																		
					83-																		
					84-																	 	
26-					85 - 86 -	1																-	
					87 -																		
					88-	$\left \right $																	
27-					89 -																	-	
					90 -	$\left \right $																	
28-					91 -																		
20-					92- 93-	1										· · · ·							
					93-																		
29-					95-																	-	
					96-																		
					97 -																		
30-					98-																	: -	
-														ane ' ded			Pa Fest,	k₽≏					
																	er Te		Pa				

C	S	tantec	B	OR	N: 4	IOI 861 4	.E 99 F	RE (E: 651	C OR 524	D					В	H	13	3			S	heet 1 of	2
	IENT _	North Pickering Community													PR DA			' No				245016 Geodeti	
DA	TES: B	ORING October 23 and 26, 2015	i			WAT	ER I	LEVEL							TP	C EI	LEV	VAT	ION	1			
Ê	N		LOT	VEL	ft)		SA	MPLES	5	ι	JNDI	RAIN 50			AR \$	STR		IGT 150			200)	
DEPIH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMI		ENT 8	ATTE	ERBEI ATION	N TES	ST, I	BLOV			√ v > •	WL H REMARI & GRAIN S DISTRIBU	
0 -	160.7	Rough Grass			-0-			TCI]	0	20	30	40	50	60	7(0 8	30	90	100	0 GR SA S	<u>si (</u>
	160.1	TOPSOIL: brown, sandy silt, moist with organics, moist	<u></u>		0 1 - 2 -	ss	1	$\frac{250}{610}$	4	•													
1-1		Firm to Hard, brown, sandy silty CLAY (CL-ML), TILL - trace gravel			2 - 3 - 4 -	ss	2	<u>530</u> 610	6	•													
		- moist	.7		5 -		3		.11													-	
2					6 - 7 -	ss /	3	<u>510</u> 610														-	
- - - - 3					8 - 9 -	ss	4	<u>560</u> 610	31				•										
' - - - -			· A·		10- 11-	ss	5	<u>560</u> 610	33				•									-	
 					12- 13-	ss	6	<u>580</u> 610	39					•								_	
		- moist to wet	×.		14- 15-	ss	7		21														
5 -					10- 17- 18-	55	/	<u>560</u> 610	21													-	
			1 A C		19-																	-	
	154.3	Very dense to loose, grey, SAND			20- 21-	ss	8	<u>560</u> 610	95														
7 -		(SP) - trace silt, trace gravel - wet			22- 23-																	-	
		- 1.2 m blowback in hollow stem			24- 25- 26-		9	560	9													-	
		augers at 7.6 m loosening the soil and affecting N-values			27 -	SS	9	<u>560</u> 610	9														
					28- 29-																		
					30- 31-	ss	10	<u>580</u> 610	21		0											4 92 3	3
) =					32-																		
		Continued Next Page									Re	moul		Vane	kPa Test eter T								

C) s	tantec	B	OR	N: 4	IO 861 4	LE 199 H	RE(E: 651	C OR 524	D					B	H1	3		5	Sheet 2 of 2
LO		North Pickering Community <u>Pickering, Ontario</u> ORING <u>October 23 and 26, 2015</u>	Ma			t Inc	•								DAT	DJECT FUM	_			22450165 Geodetic
	TES: B	ORING <u>OCTODET 25 and 20, 2015</u>						MPLES						SHEA				TION		
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	WA DY			ENT 8		00 + RBER	G LIMI TEST,	150 	W _P I	20 W	00 WL REMARKS GRAIN SIZI DISTRIBUTIO
10	150.7 150.5	Very dense, grey, sandy SILT (ML), TILL - trace to sme clay, trace gravel - moist	<u> </u>	· · · · · · · · · · · · · · · · · · ·	33 - 34 - 35 - 36 - 37 - 38 - 39 -		11	430 610	103		0	20	30	40	50 6	50 7	70	80 9	90 10	(%) GR SA SI (
12	148.1	END OF BOREHOLE at	V.A.V	· ·	40 - 41 -	ss	12	<u>360</u> 410	50/ 100										~	
13		approximately 12.6 m below grade. Sand blowback observed at 7.6 m during drilling.			42 - 43 - 44 - 45 -															-
14		Groundwater level was not measured due to use of drilling mud to control sand blowback.			46 - 47 - 48 -	-														-
15					49 - 50 - 51 -	-							· ·							-
16					52 - 53 - 54 - 55 -	-														- - - - - - -
17 - - - - - -					55 56- 57- 58-	+														-
18 - - - - - - - -					59 - 60 - 61 -	-														
19 - - - - - -					62 - 63 - 64 -	+														-
20					65-	1					Re	mou	lded `	'est, k Vane ' rome	Test,		Pa			-

Q	S	tantec	B	OR	N: 4	IOI 861 6	.Е 12 в	RE(E: 651	C OR 523	D]	BF	H14	4			SI	neet 1 of 2
LC		North Pickering Community		nage	emen	t Inc.											JECT UM	ΓN).			2450165 Geodetic
DA	TES: B	ORING October 22 and 23, 2015	i			WAT	ER I	LEVEL							Т	PC	ELE	VA	TION	I		
	_		Ц				SA	MPLES	;	ι	JND			SH			RE					2
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY		C C OI	'ENT NE PE	ENET	RATIO	ERG ON T	TEST,	BLO	Wj ⊢ WS/0.	+ > V - C	200 	WL H REMARKS & GRAIN SIZE DISTRIBUTIC
0 +	162.2	Rough Grass			0			TCI	0		10	20	30	40	50	60	0 7	70	80	90	100	GR SA SI C
		150 mm TOPSOIL: brown, sandy silt with organics, moist Loose, brown, silty sand, moist			1 - 2 -	ss	1	<u>330</u> 610	8		0											-
1 -	161.4	Hard, brown, sandy silty CLAY (CL-ML), TILL			2 3 - 4 -	ss	2	<u>510</u> 610	30	C			•									-
		trace gravelmoistinferred cobbles and possible	.7		5 -	ss	3	<u>330</u> 380	50/ 76	0										^		-
2 -		boulders based on auger griding between 1.5 m and 2.3 m			7 - 8 -	M																
3 -					9 -	∦ SS × SS	4	<u>250</u> 610 <u>_76</u>	101 50/ 76	0											>>• - - -	-
					11 - 12 -			76	76													-
4 -					13- 14-	ss	6	<u>250</u> 380	50/ 76	0										~	>>• - -	-
		- grey	× ×		15- 16-	ss	7	$\frac{250}{280}$	50/ 130	0										^	>• •	
5					17- 18-																	-
6		- moist to wet			19 - 20 -	x ss	8	$\frac{250}{250}$	50/ 100		0									>	- - - -	-
- - - - -				•	21 -			230														-
7 -					23 - 24 -																	-
3 - -				•	25 - 26 - 27 -	X SS	9	$\frac{250}{250}$	50/ 100		0										»•	-
	153.5	Very dense, grey, sandy SILT (SM)			27- 28- 29-																	-
- - - - -		 trace clay wet 			29 - 30 - 31 -	∦ss	10	$\frac{430}{430}$	50/ 130		0										- - - -	-
- - - - 0-					31-32-			430	150													
		Continued Next Page									Re	eld V mou cket	lded	Van	e Te	st, k		Da				

C) s [.]	tantec	B	OF	REF N: 4	IOI 861 6	LE 12 I	RE (E: 651	C OR 523	D					В	H1	4			S	Sheet 2 of 2
LO		NPickering, Ontario				t Inc.)JEC TUN		lo.		1	22450165 Geodetic
DA	TES: B	ORING October 22 and 23, 2015				WAT	TER I	LEVEL		i					TPO	CEL	EVA	TIC)N		
_	z		Б	ΈL	÷		SAI	MPLES		ι	INDF	RAIN 50		SHE		STRE	ENG 15		(kP	a) 20)0
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC		ENT (+ & ATTE ENETR RATIO	ATION	I TES	/ITS T, BLC	v Sws	/0.3r	W ⊖ n ▼	WL I REMARKS & GRAIN SIZE DISTRIBUTION
10	152.2				33-	 -				1	0 2	20	30	40	50	60	70	80	9	0 10	00 GR SA SI CI
		Very dense, grey, sandy SILT (SM) - trace clay - wet			34- 35-																- - - -
11-					36-	ss	11	$\frac{460}{610}$	105		0										
					37 - 38 -																- - - -
12					39 - 40 -			520													
-					41 - 42 -	SS	12	<u>530</u> 530	103		0									>>	0 50 41 9
13					43 - 44 -																
14-					45 - 46 -	ss	13	$\frac{51}{410}$	50/ 100		0									~	- - - •
		4			47 - 48 -																- - - -
15					49 - 50 -			120													- - - -
	146.7	END OF BOREHOLE at approximately 15.4 m below grade.			50 51- 52-	∦ ss	14	<u>130</u> 200	50/ 51		0									>>	<u>}</u>
16		Borehole caved at 9.1 m below			53-									· · · · · · · · · · · · · · · · · · ·							- - - -
17-		grade upon completion of drilling. Borehole dry upon completion of			54 - 55 -																
- '- - - -		drilling.			56 - 57 -																-
18					58 - 59 -																- - -
					60 - 61 -																- - - -
19					62 - 63 -																-
					64 - 65 -																
20-	1		<u> </u>		<u> </u>	<u> </u>					Rei	mou	lded	Fest, l Vane trome	Test,			<u> </u>			

C	s	tantec	B	OR	REF N: 4	IOI 861 8	СЕ 49 в	RE (E: 651	C OR 412	D					B	H1:	5A		SI	neet 1 of 2
	LIENT _ DCATIO	North Pickering Community	/ Ma	nage	emen	t Inc.)JEC1 FUM		•		2450165 Geodetic
		ORING <u>October 22, 2015</u>				WAT	TER I	LEVEL							TPC	ELE	VAT	ION		
	_		Ц				SA	MPLES		ι	IND		ED S			TRE		H (kF		
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ш	BER	RECOVERY (mm) TCR(%) / SCR(%)	LUE ND(%)	WA	TER C	50 	ENT &		00 	G LIMI	150 	W _P	200 	
			STF	MA		ТҮРЕ	NUMBER	ECOVEI CR(%) /	N-VALUE OR RQD(%)	ST.	ANDAI	RD PE	NETR	ATION	I TES	T, BLO	WS/0.	3m	m ▼ ●	REMARKS & GRAIN SIZE DISTRIBUTION (%)
0 -	175.2	Rough Grass TOPSOIL: brown, sandy silt with	<u></u>	-	0	1						20 2	50 4	+0 5		50 7	/0 8	so 9		GR SA SI CL
	174.6	organics, moist - trace rootlets		4	1 - 2 -	ss	1	<u>280</u> 610	9											-
1-		Hard, brown, sandy silty CLAY (CL-ML), TILL - trace gravel			3 - 4 -	ss	2	$\frac{460}{590}$	74								•			-
		- moist	• • •		5 - 6 -	ss	3	<u>530</u> 610	44					•						-
2 -			1		7 -	η		010											=	-
			·A ·A		8 - 9 -	ss	4	<u>530</u> 610	63							•				-
3 -		- occasional wet silty sand seams and layers			10- 11-	ss	5	$\frac{380}{430}$	50/ 130										>>ē	-
4 -					12- 13-	ss	6	$\frac{280}{410}$	50/ 100											
			-7-		14- 15-			410	100											-
5 -			•			ss	7	<u>510</u> 590	82	0	 1							•		7 39 27 27
-			× ×		18- 19-															-
6 -			i A		20-				_											-
-					21 -	ss	8	$\frac{510}{530}$	85									•		
7 -					22 - 23 -			550												
			1		23 24 -															
-	167.6	Very dense, grey, sandy SILT		-	25-	Maa		510												-
8 -		(ML), TILL - some clay, trace gravel	4		26-	ss	9	$\frac{510}{530}$	83									•		-
		- moist to wet	. ↓ 	•	27 - 28 -															-
9 -					29 - 30 -	× ss	10	<u>150</u> 150	- <u>50/</u> 										-	-
			A . 9		31 - 32 -			150	-25											
10-		Continued Next Page	11	•							 Fic	ld Ve	ine Te	et V	:::: Pa		1::::		<u> ::::</u> +	<u> </u>
													ded V			kPa				
										Δ	Poo	ket F	Penetr	omet	er Te	est, kł	Pa			

C	S	tantec	B	OR	REF N: 4	IOJ 861 8	LE 49 B	RE E: 651	C OR 412	D					B	H1	5A		S	Sheet 2 of 2
	LIENT _	North Pickering Community	Ma	nage	emen	t Inc	•									JEC1	Г No			22450165 Geodetic
		ORING October 22, 2015				WAT	FER I	LEVEL										ION		
			F				SAI	MPLES	;	ι	JND	RAIN	ED S	SHE/	AR S		NGT	H (kF	Pa)	
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMIO		E PEN	ATTE IETRA	TION	TEST,	BLOV	₩ _P ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	20 ₩ • •	
	165.2						Z	LCR(29			RD PE							•	GRAIN SIZE DISTRIBUTIO (%) GR SA SI C
10-	105.2	Very dense, grey, sandy SILT (ML), TILL			33- 34-							20 .								<u>GR SA SI (</u> - - -
11-		some clay, trace gravelmoist to wet	. ↓ . ↓		35 - 36 -	×ss	11	<u>100</u> 130	- 50/ -130										>>	- • •
					37 - 38 -															-
2-			V.A.V		39 - 40 -	<u> </u>		150												- - - - -
	162.5	END OF BOREHOLE at			41 - 42 -	()	12	<u>150</u> 480	82									•		-
3-		approximately 12.7 m below grade. Groundwater seepage observed			43 - 44 -															
- 4 -		from wet silty sand seams at 3.0 m below grade during drilling.			45 - 46 -															- - - -
					47 - 48 -															-
15-					49 - 50 -	-														-
					51 - 52 -															
					53- 54-															-
7 -					55 - 56 -															- - - - -
					57 - 58 -															
.8-					59 - 60 -															
9-					61 - 62 - 63 -															-
					63 - 64 - 65 -															- - - - -
20-			<u> </u>			<u> </u>		<u> </u>			Re	ld Va moule cket F	ded V	'ane '	Fest,		<u> </u>	<u> ::::</u>	<u> :::</u>	-

C	S	tantec	B	OF	REF N: 4	IOI 862 0	LE 34 I	RE E: 651	C OR 349	D					B	H1	6			SI	heet 1 of 2
	LIENT _ DCATIO	North Pickering Communit)JEC TUM		0.			2450165 Geodetic
		ORING October 21, 2015				WAT	TER I	LEVEL										ΓΙΟΙ	N		
							SA	MPLES						SHEA							
Ê	NO		LO	EVE	(ŧ				, 		_	50			00		15			200)
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)					ATTE NETRA				H	-	w ⊖ ▼	W _L I REMARKS &
			0	>			P	CO R(%)	2-Z					ATION						٠	GRAIN SIZE
0 -	179.0	Rough Grass			0	,		ЩО ЦЩ		1	0 2	20	30 4	40 5	50	60	70	80	90	100	GR SA SI C
- - - -	178.4	TOPSOIL: brown, sandy silt with organics, moist - trace rootlets	<u>, , , , , , , , , , , , , , , , , , , </u>		1 - 2 -	ss	1	<u>300</u> 610	7	•											_
1-		Hard, brown, sandy silty CLAY (CL-ML), TILL			2 3 - 4 -	ss	2	$\frac{410}{610}$	35	0			•								-
		- trace gravel - moist	.7		5 -	× ss	3	<u>180</u> 180	50/ 25	c										>>•	_
2 -					6 - 7 -																-
		- moist to damp			8 - 9 -	SS	4	<u>280</u> 380	50/ 76	0	⊢ −t									>>●	9 38 27
3 -					10 - 11 -	X SS	5	$\frac{150}{200}$	50/ 51	0										>> •	
4 -		- grey			12- 13-	ss 🛛	6	$\frac{200}{230}$	50/ 76	0										- - >>●	_
		 occasional silty sand seams and layers moist 	- 2		14- 15-																_
5 -		- moist			16- 17-	ss	7	<u>360</u> 610	69	0							•				-
			A A		18- 19-																-
5 -				•	20 - 21 -	ss	8	<u>250</u> 610	86	0										-	-
 - - 7					22 - 23 -			610													-
' - - -					24 -	-															_
3			D D X		25 - 26 -	∦ ss	9	$\frac{150}{230}$	50/ 76	0										>>•	-
					27 - 28 -																-
- - - -					29 - 30 -	× SS	10	<u>150</u> 130	- <u>50/</u>	0										>>•	-
			· ×		31 - 32 -																-
0-		Continued Next Page	<u>_/ /</u>	I	I		I	1	1		Fie	ld Va	ane T	est, k	Pa		:1:::	:1::			1
		-									Re	moul	ded V	/ane /	Гest,		₽a				

C) s [.]	tantec	B	OR	REF N: 4	IOI 862 0	LE 34 H	RE(E: 651	C OR 349	D					B	H1	6			S	heet 2 of 2
	IENT _ CATION	North Pickering Community	Ma	nage	emen	t Inc.									PRC DA		TN	0.	_		22450165 Geodetic
DA	TES: B	ORING <u>October 21, 2015</u>				WAT	TER I	LEVEL							TPC	ELI	EVA	ΓΙΟΙ	N		
_	7		d	Ц			SAI	MPLES	;	ι	JNDF	RAIN 50	ED		AR S 100	TRE	NG 15		kPa) 20	n
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMIO		IE PE		ERBER ATION	TEST	IITS I, BLC	W F WS/0		₩ ₩ ♥	W _L
10-	169.0							TCI RE		1	10 2	20 3	30	40	50	60	70	80	90	10	⁰ GR SA SI
		Hard, grey, sandy silty CLAY (CL-ML), TILL - trace gravel			33 - 34 - 35 -			150	50/												_
1 1- 		- moist			36- 37-	∦ ss	11	$\frac{150}{350}$	50/ 51	С)									>>• - -	_
2				•	38- 39- 40			1.50													
	166.7	END OF BOREHOLE at approximately 12.4 m below grade.			40 - 41 - 42 -	X SS	12	<u>150</u> 180	50/ -25	C	>									>>●	-
3-		Borehole open to 11.3 m below grade and dry upon completion of drilling.			43 - 44 - 45 -																-
4-					46 - 47 -																_
5-					48 - 49 - 50 -																-
6- 6-					50 51 - 52 -														· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·		_
• • • •					53- 54-																_
7-					55 - 56 - 57 -																-
					58- 59-																-
					60 - 61 - 62 -																_
9					62 - 63 - 64 -																-
0-					65-						Fie	ld Va	ane T	ſest, l	cPa						
											Re	moul	ded V	Vane	Test, ter Te		Pa				

C	S	tantec	B	OF	N: 4	IOI 862 2	LE 37 F	RE(E: 651	COR 288	D						B	H1	7A			SI	neet 1 of 2
	LIENT _	North Pickering Community	<u>Ma</u>	nage	emen	t Inc.										PRC DAT		T No).			2450165 Geodetic
		ORING October 27, 2015				WAT	ER I	LEVEL											ION	I		
			F				SAI	MPLES		1	JND	RAI	NE	DS				NGT				
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	'NAM		TEN DNE	PEN	ATTEI ETRA		TEST	150 ITS , BLOV	₩ _/ ⊢ NS/0.		200 → ₩ ⇒ •	W _L H REMARKS & GRAIN SIZE
	181.2	Rough Grass			•			TCF	-0											90	100	DISTRIBUTIO (%) GR SA SI
0 -		TOPSOIL: brown, sandy silt with organics, moist trace rootlets		1	0 1 - 2 -	ss	1	<u>300</u> 610	9		•											-
1 -		Compact to very dense, brown, silty clayey SAND (SC-SM), TILL - trace to some gravel	0 8 V	•	3 - 4 -	ss	2	<u>380</u> 610	23			•										-
2		- moist	1 A A A		5 - 6 - 7	ss	3	$\frac{410}{610}$	47						•							-
			P. A. P. A		7 - 8 - 9 -	ss	4	<u>480</u> 610	27				•									-
3 -			V. A. V.		10- 11- 12-	ss	5	<u>430</u> 610	22			•										-
4 -			A V A		13- 14-	ss	6	<u>530</u> 610	69	c) 							•				12 39 24
5		- grey	A F A			ss	7	$\frac{430}{610}$	102												***	-
			V.A.		17- 18- 19-										· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·							-
5 -		- occasional wet silty sand seams and layers	A V A	•	20- 21-	ss	8	$\frac{410}{410}$	50/ 100													-
7 -		- inferred cobbles and possible boulder based on auger grinding at 6.4 m	A A A A		22 - 23 -																	-
			4		24- 25-		9	480	84													-
3			A P.A	•	26 - 27 - 28 -	∦ ss	7	<u>480</u> 590	04													-
- - - -	172.0	Very dense, brown, silty SAND	⊽ A		29 - 30 -	Vec	10	250	50/													-
		(SM), TILL - trace to some clay, trace to some gravel			31 - 32 -	∦ ss	10	<u>250</u> 350	50/ 51												>>• 	_
0-		Continued Next Page		-							R	emoi	ılde	d V		Pa Fest, er Te						

C	s	tantec	B	OR	N: 4	IO 862 2	LE 37 1	RE (E: 651	COR 288	D						B	H1	7 <i>A</i>	ł		S	heet 2 of 2
	LIENT _	North Pickering Community)JEC FUM		ю.	_		22450165 Geodetic
		ORING October 27, 2015				WAT	TER I	LEVEL											TIO	N_		
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	SAI	RECOVERY (mm) A TCR(%) / SCR(%) B	N-VALUE OR RQD(%)	WA		RAIN 50 CONT C COP	ENT		1(ITEF	DO H RBER TION	G LIN TEST	15 	0 V DWS/	N _P I	20 W	0 W _L REMARKS GRAIN SIZE DISTRIBUTIO
10-	171.2				33-			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	10	20	30	40	5	0 (60	70	80	90) 10	0 GR SA SI (
11-		 moist Very dense, brown, silty SAND (SM), TILL trace to some clay, trace to some gravel moist 		•	34 - 35 - 36 - 37 -	ss	11	<u>510</u> 590	65													
12			<u> </u>		38 - 39 - 40 - 41 -	ss	12	<u>360</u> 430	50/ 130												>>	
13-	167.9	Very dense, grey, SAND with silt (SP-SM) - moist to wet		-	42 - 43 - 44 - 45 -		12	380	50/													
14 14 15					46 - 47 - 48 - 49 -	X ss	13	<u>380</u> 380	50/ 76												>>	
	165.6	END OF BOREHOLE at approximately 15.5 m below grade.			50- 51 52-	x ss	14	$\frac{\underline{280}}{\underline{300}}$	100													
16-		Borehole caved at 11.0 m below grade upon completion of drilling.			53 - 54 - 55 -							• •										
17 - - - - -		Groundwater level measured at 6.1 m below grade upon completion of drilling.			56 - 57 -																	
18 - - - - - -					58 - 59 - 60 - 61 -																	
19 					62 - 63 - 64 -																	
20-					65-						Re	eld V emou cket	lded	l Va	ne 7	ſest,		Pa				

\mathcal{C}	s	tantec	B	OR	REH N: 43	IOI 860 3	LE 13 I	RE(E: 651	C OR 832	D					Bl	H1	01		SI	heet 1 of 2
	LIENT _ DCATIO	North Pickering Community	Ma	nage	emen	t Inc.									PRO DAT		ΓNα).		2450165 Geodetic
		ORING June 6, 2018				WAT	ER I	LEVEL	June	20,	201	8					VAT	TON		
	_		Ц				SAI	MPLES	;	U	INDF		ED S	SHEA		TRE				
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYN STA	NAMIC	CON RD PE	E PEI	ATTEI NETRA	TION ⁻	TEST, , BLO	BLO\ WS/0	Wp F WS/0.3 .3m	•	W _L -I REMARKS & GRAIN SIZE DISTRIBUTION
0 -	153.0	Grass covered road shoulder Loose, brown SILTY SAND	·		0-			R F		1	0 2	0 3	30 -	40 5	60 6	50 7	70	80 9	0 10	0 (%) GR SA SI CL
	152.4	- trace organics and rootlets			1 - 2 -	ss	1	<u>560</u> 610	9	•	0									_
1-		Stiff to hard, brown SANDY CLAY (CL), TILL - moist to wet			3 - 4 -	ss	2	$\frac{510}{610}$	10		0									
2					5 - 6 -	ss	3	<u>580</u> 610	16		0.0					<u> </u>				
					7 -															
3				V	8 - 9 -	SS	4	<u>460</u> 610	50	C	>								>>A	
3		- inferred cobbles and boulders due to auger grinding from 3.0 m to 17.2	· / /		10- 11-	ss	5	$\frac{460}{460}$	98	0									>	_
4 -		m				ss	6	$\frac{300}{300}$	50/ 150	0										-
	148.4	- grey			14- 15-	x ss	7	<u>300</u> 300	50/ 150										>> •	-
5					16- 17-				100	0										-
6 -					18- 19-															
					20 - 21 -	∦ss	8	$\frac{300}{300}$	50/ 150	0										
7 -					22 - 23 -															
			/		24 - 25 -	x ss	9		50/ 150											
8 -			//. //.		26- 27-				150	0										-
					28- 29-															
9 -			[/		30- 31-	ss	10	$\frac{300}{300}$	50/ 150	с									>> •	
10			 . .]	32 -															
10-		Continued Next Page		•	-									est, k				• • • • •	1	
														/ane]			Da			
										Δ	100	ket I	enet	romet	er 1e	st, Kł	a			

	S	tantec	B	OF	N: 4	IO 860 3	LE 13 I	RE(E: 651	C OR 832	D							F	Зŀ	H1	01			S	heet 2 of 2
CI	LIENT _	North Pickering Community															PF	ROJ	IEC'	ΓN	0.		12	22450165
LC	OCATIO	N <u>Pickering</u> , Ontario															D	AT	UM					Geodetic
D	ATES: B	ORING June 6, 2018				WA	ΓER I	LEVEL	June	20,	2	01	8				TI	PC 1	ELE	VA	TIC	DN .		
			T				SA	MPLES			U١	NDF			DS	SHE		ST	RE			(kP		
	NOL		PLO	ШЩ.	H (H			(m)				I	-5()		1	100		+	15	0		20	0
	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)		<u>K</u>	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	w	ΑΤΙ	FRO	:ON	TEN	лт &	ATTE	RBF	=RG	; I IM	ITS	1	W _P	W	WL
2			TR/	VATI	B	ТҮРЕ	NUMBER	/ER/)/S	ALI							IETR					ws	/0.3n	n 🔻	REMARK
			0	>			Z	CO %)%)	2 P							ATIO							•	& GRAIN SI DISTRIBUT
0-	143.0							ЩЦ Ц Ц Ц			10	2	20	30	4	0	50	60	0 ′	70	80		0 10	0 _{GR SA SI}
		Hard, grey SANDY CLAY (CL),	/	1	33 -													:::						. .
-		TILL - moist		1	34-	1																		-
-		- moist	.,		35-	0	11		94									:::						
1-				1	36-	μ			74	lc	×													-
-			/ ·/		37-	1																		
]			/	1	38-	1																		•
2					39-	1																		. _
-				1	40 -	M																		•
-]	41 -	ss	12		57		D	1						•					>>4	9 24 39
3-			./	1	42 -													· · · · · ·						
'					43-																			
-			/	1	44 -																			
-					45-	Mag	10	380	50/															
1-					46-	188	13	$\frac{380}{380}$	50/ 76	e													· >>	<u>.</u>
-					47-													:::						
-					48 -																			-
5-					49-	$\left \right $																	<u></u>	
-				1	50-	h																		
-			/		51 -	ss	14	<u>530</u> 530	76	::::) S							:::					>>4	:-
					52 -	<u> </u>	-																	
6-			/ .	}	53 -	$\left \right $																		
-			/.		54-	$\left \right $																		
-			1]	55 -	\square																		
7-	135.8				56-	∦ss	15	$\frac{460}{460}$	75	:::O														-
-	155.0	End of Borehole at 17.2 m below	·	1	57-																			
		grade.			58-	$\left \right $																		
3-		Groundwater monitoring well			59 -																			
-		installed with a screen from 9.1 m			60 -																			•
-		to 12.2 m below grade.			61 -																			-
		Static groundwater level measured			62 -																			
)-		in monitoring well at 3.03 m below			63 -																			
-		grade on June 20, 2018.			64 -	ļ																		
-					65-																			
0-							1			:::	:1: 1	 F				::: 	-D	::			:1:	:::	::::	
																est, k 'ane		t, k	Pa					
															enetr					20				

C	S	tantec	B		REH N: 48	IOI 860 4	СЕ 52 н	RE(E: 651	C OR 788	RD)						В	Η	10)2			SI	heet '	1 of 2
-	LIENT _ CATIO	North Pickering Community	v Ma	nage	ement	t Inc.											PR(DA			No).				<u>0165</u> detic
DA	ATES: B	ORING <u>June 7, 2018</u>				WAT	TER I	LEVEL								_	TPC	C EI	EV	/AT	ION	1_			
(۲	N		-OT	VEL	ft)		SAI				U	NDF	RAII 5() Sł		AR S 00	STR		IGT 150		кРа) 20	0	
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)		DYN STAI	amic Ndai	CONT CO CO RD P	TENT NE P ENE	ene Tra	TTEI TRA TION	TION	I TES ST, BI	ST, E Lov	BLO\ VS/0	₩S/0 .3m	.3m	W O V	GR	EMARKS & AIN SIZE RIBUTIO
0 -	148.3	Grass			0-	,		<u>ш</u> р			10) 2	20	30	40) 5	50 1:::	60	70	0	80	90	10	OGR :	(%) SA SI C
	147.7	Loose, brown sandy TOPSOIL - trace gravel		•	1 - 2 -	ss	1	<u>580</u> 610	6		•	0												_	
1 -		Loose to dense, brown SILTY CLAYEY SAND with GRAVEL (SC-SM), TILL			3 - 4 -	ss	2	<u>560</u> 610	5			0				· · · · · · · · · · · · · · · · · · ·								-	
		- moist			5 - 6 -	ss	3	<u>510</u> 610	12		0												7		
2 -		- inferred cobbles and boulders due to auger grinding from 2.4 m to 12.2		Σ	7 - 8 -	ss	4	<u>510</u> <u>610</u>	40		0				•								>>.4	_	
3	145.3	m			9 - 10-	\wedge	_	610																	
		- grey - compact to very dense - moist to wet				ss	5	<u>480</u> 610	39		0				•								>>4	_	
4			0		13- 14-	ss	6	<u>460</u> 610	22		0		•										>>4	-	
5					15- 16-	ss	7	<u>360</u> 610	19		c)									4				
					17- 18-																			_	
6			XQ		19 - 20 - 21 -	ss	8	360	69		0													16	42 25 1
7					21 22 - 23 -	<u> </u>	0	<u>360</u> 610	09																42 23 1
-					24 - 25 -																			_	
8 -					26 - 27 -	ss	9	<u>480</u> 610	10	· · · · · · · · · · · · · · · · · · ·	•	<u>.</u>			· · · · · · · · · · · · · · · · · · ·									-	
- - - - 9 -					28- 29-																				
/ - - - - - -			X		30- 31-	ss	10	<u>360</u> 460	82		o										•		>>4	_	
10-		Continued Next Page			32-							Fie	ld V	'ane	Tes	st, kl	 Pa								
										1		Re	mou	lded	Va	ne T	ſest, er To			a					

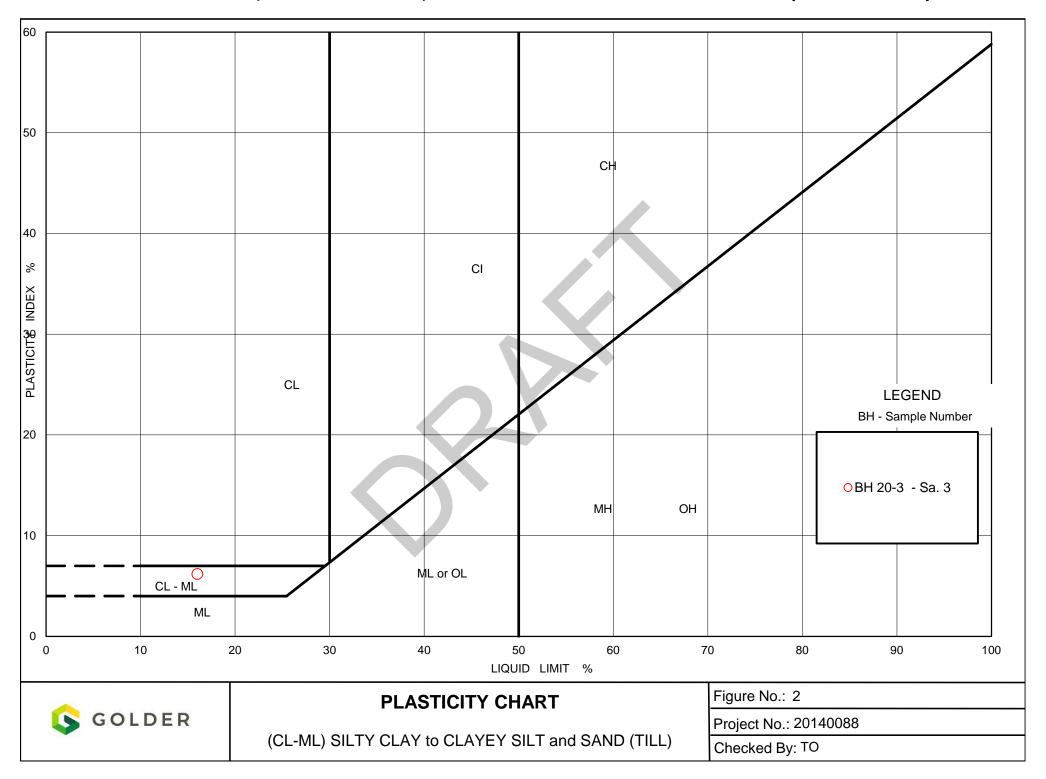
Q	S	tantec	B	OR	REF N: 4	IOI 860 4	LE 52 I	RE(E: 651	C OR 788	D					B	H1	02			Sh	eet 2 of 2
	IENT _	North Pickering Community	<u>v Ma</u>	nage	emen	t Inc									PRC DAT		T No).			2450165 Geodetic
DA	TES: B	ORING June 7, 2018				WAT	ER I	LEVEL							ТРС	ELE	EVAT	ION			
Ê	NO		LOT	EVEL	(ft)		SAI	MPLES ା ନିତି		ι	JNDF	RAIN	IED S	SHEA 1	AR S	TRE	NGT 150			200	
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY ST/	NAMIC ANDAI	CON	IE PEN	ATTE NETRA	TION	TEST I, BLC	, BLO\ DWS/0	.3m	G 3m	▼ [●	W _L -I REMARKS & GRAIN SIZE DISTRIBUTIO
10+	138.3		M1		33 -	 		щр		1	0 2	20 3	30 4	40 5	50 e	50	70	80	90	100	(%) GR SA SI C
		Very dense, grey SILTY CLAYEY SAND with GRAVEL (SC-SM), TILL			33 - 34 - 35 -																
11-		- moist				ss	11	$\frac{510}{610}$	68	0									>	×4 ×4	
12-			K X K		38- 39-																
"" - - - -	136.1	Dense, brown to grey SAND - moist to wet				ss	12	<u>430</u> 610	34		o		•								
3-	135.5	End of Borehole at 12.8 m below grade.		-	42 43 -															·	
- - - - - - -		Borehole open to 5.8 m below grade.			44 - 45 -																
- - - -		Groundwater level measured in open borehole at approximately 2.1			46 - 47 - 48 -																
5-		m below grade upon completion of borehole.			49 - 50 -															· · · · · · · · · · · · · · · · · · ·	
6-					51 - 52 -																
· · ·					53 - 54 -	+															
- - - -					55 - 56 -															· · · ·	
- - - - - 8-					57 - 58 - 59 -																
0 - - - -					60 - 61 -																
9-					62 - 63 -																
- - - - - -					64 - 65 -																
											Re	moul	ded V	est, k 7ane 7 romet	Fest , 1		Pa				

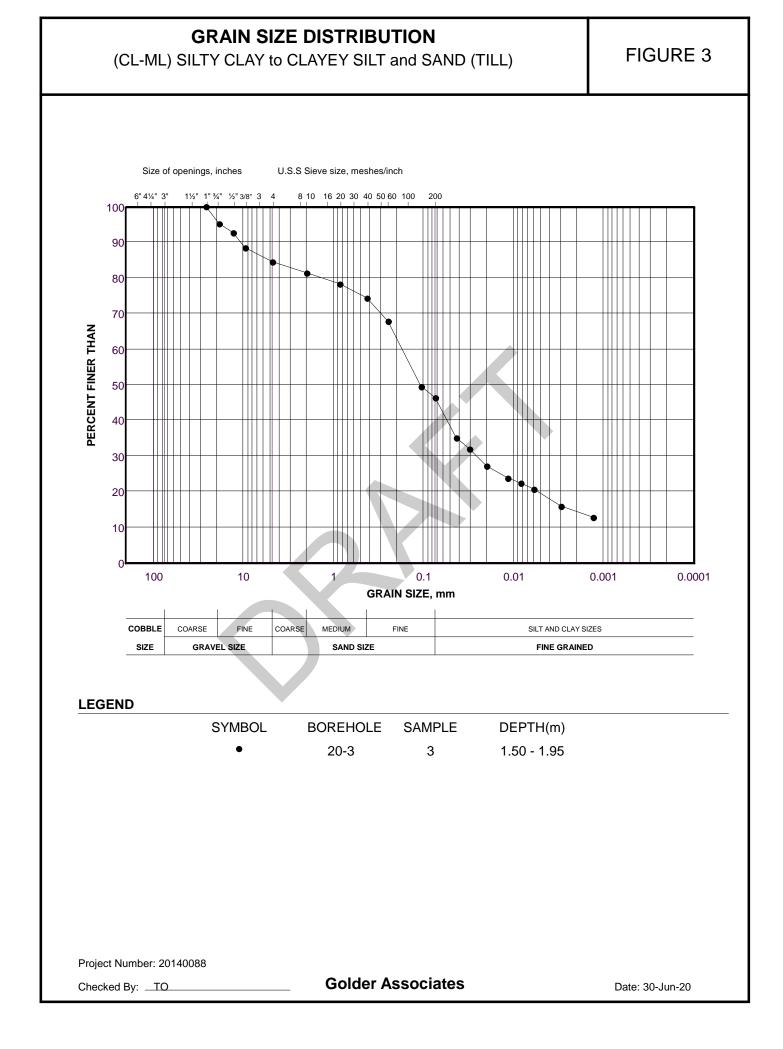
C	S	tantec	B		N: 4	IOI 860 8	LE 69 I	RE (E: 651	C OR 657	D BH103 Sheet 1 of 2
	LIENT _ DCATIO	North Pickering Community	y Mai	nage	emen	t Inc.				PROJECT No 122450165
		ORING June 7, 2018				WAT	TER I	LEVEL		TPC ELEVATION
(u)	NO		PLOT	EVEL	(ft)		SAI	MPLES		UNDRAINED SHEAR STRENGTH (kPa)
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	WATER CONTENT & ATTERBERG LIMITS DYNAMIC CONE PENETRATION TEST, BLOWS/0.3m STANDARD PENETRATION TEST, BLOWS/0.3m GRAIN SIZ DISTRIBUTION
0 -	151.2	Grass			-0-			ЧЧ ЧЧ С	0	10 20 30 40 50 60 70 80 90 100 GR SA SI
-	150.6	Compact, brown SAND and GRAVEL 1- trace organics and rootlets			1 - 2 -	ss	1	<u>460</u> 610	12	O •
1 -		- moist Loose to very dense, brown SILTY CLAYEY SAND (SC-SM), TILL			3 - 4 -	ss	2	<u>530</u> 610	7	• • • • • • • • • • • • • • • • • • •
2 -		- moist	A V			ss	3	<u>560</u> 610	24	0. • >> <u>×</u>
-			A A R	Ţ	7 - 8 - 9 -	ss	4	<u>560</u> 610	40	.c. ●
3 -		- inferred cobbles and boulders due to auger grinding from 3.0 m to 11.0			10-	ss	5	<u>510</u> 610	50	о • »б
4		m	R R A		12 - 13 -	ss	6	<u>530</u> 610	39	
-			A A		14- 15-					
5 -					16- 17- 18-	ss	7	$\frac{510}{610}$	38	Ó
6 -			A		10 19- 20-					
		- wet to moist			21 - 22 -	ss	8	<u>510</u> 610	80	•• <u>•</u> <u>-</u> <u>3</u> 67 17
7 -			A V		23 - 24 -					
8 -			A V A	•	25- 26-	X ss	9	$\frac{280}{300}$	50/ 150	0.
					27 - 28 - 29 -					
9					20	×ss	10	<u>150</u> 150	<u>50/</u> 150-	o
10-		Continued Next Page			32 -					□ Field Vane Test, kPa
		-								 Remoulded Vane Test, kPa △ Pocket Penetrometer Test, kPa

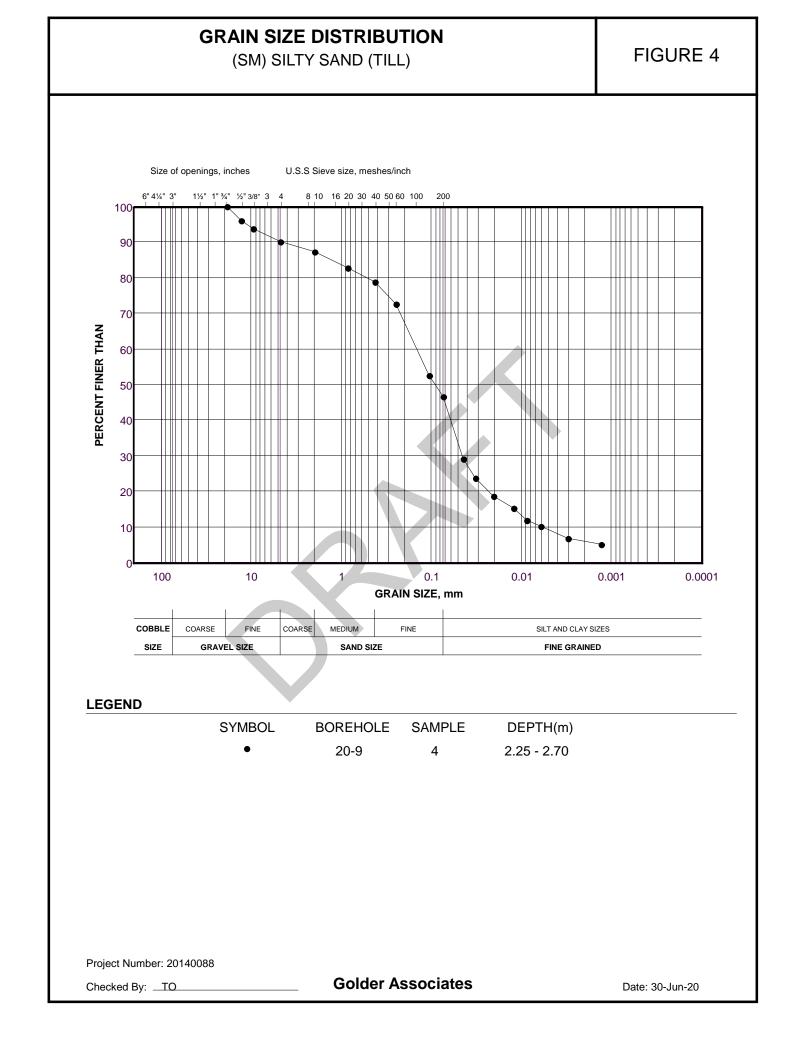
C	S	tantec	B	OR I	REH N: 48	IOI 860 8	ГЕ 69 в	RE(E: 651	C OR 657	D					B	H1	03		8	Sheet 2 of 2
	LIENT _ DCATIO	North Pickering Community	y Ma	nage	emen	t Inc.									PRC DAT		TN I	Э.	12	22450165 Geodetic
D	ATES: B	ORING June 7, 2018				WAT	TER I	EVEL							TPC	ELE	EVA	FION		
1 (m)	LION		PLOT	-EVEL	H (ft)		SAI	MPLES		L	JNDF	80 50	IED \$		AR S 00	TRE	NG1 150	⁻ H (kl) +	Pa) 2(00
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYI	NAMIC	CON	IE PEI	ATTE NETRA ATION	TION	TEST	, BLO	₩ <u>P</u>	W → m ▼	WL REMARKS & GRAIN SIZE DISTRIBUTION
10-	141.2				22			REC TCI	0	1	0 2	20	30	40 5	50 6	50	70	80 9	0 10	00 GR SA SI CL
	140.6	Very dense, brown SILTY CLAYEY SAND (SC-SM), TILL - wet	A . Ø	•	33 - 34 - 35 -			150	50/											-
11-	<u> 140.4 </u>	L- 150 mm silt layer Compact, grey SILTY CLAYEY		•	36-	XSS	_11	<u>150</u> 150	<u>50/</u> 150-		0									2 - - -
-		SAND (SC-SM), TILL - wet		•	37 - 38 -															-
12-				•	39 - 40 -			120												-
	138.4			-	41 - - 42	SS	12	<u>430</u> 610	13											
13-		End of Borehole at 12.8 m below grade.			42 -															
-		Borehole open to 3.6 m below			44 -															-
14-		grade.			45- 46-				~											-
-		Groundwater level measured in open borehole at approximately 2.4	\langle		47-															-
15-		m below grade upon completion of borehole.			48- 49-															-
-					50- 51-															-
16					52 - 53 -															-
-					53 - 54 -															-
17-					55-															- - - -
					56- 57-															-
-					58-															-
18-					59 - 60 -															
					61 - 62 -															
19-					63 -															
					64 - 65 -															-
20-			1	I	1		1							est, k		1				
														/ane [romet			Pa			

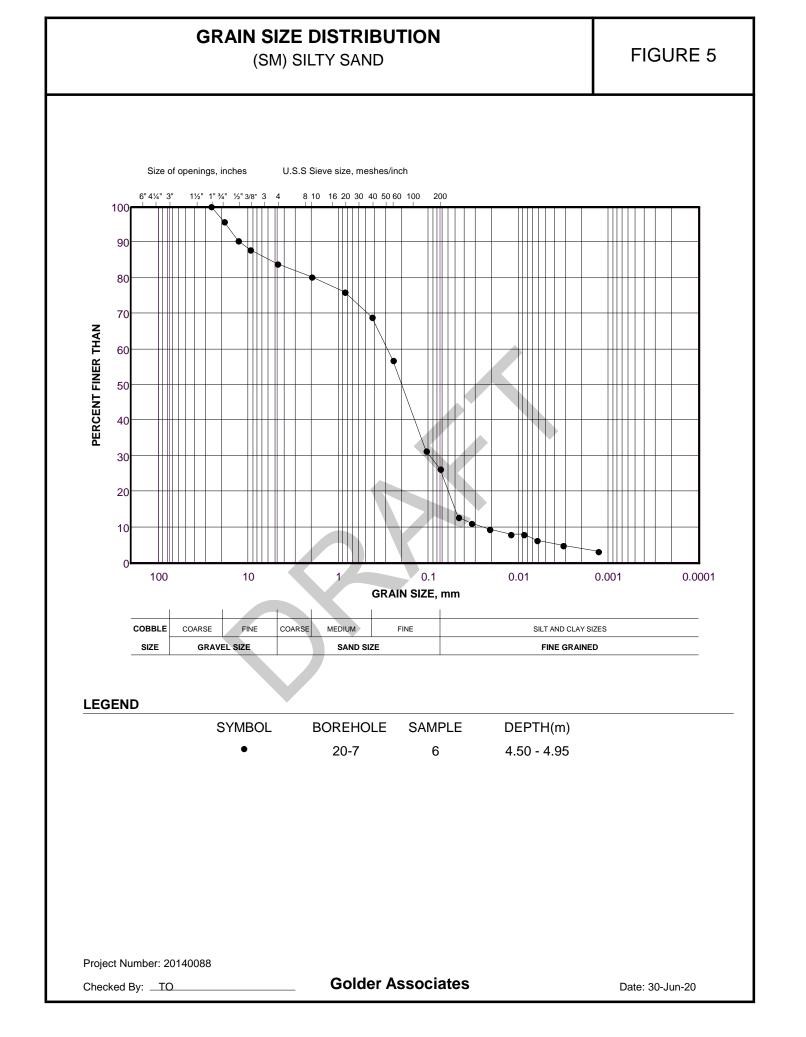
C	S	tantec	B		REF N: 4	IOI 861 1	LE 01 I	RE(E: 651	C OR 612	RD							B	H1	04	ŀ		S	heet 1 of 2
	LIENT _			nage	emen	t Inc.			_)JEC		lo.			22450165
		N <u>Pickering, Ontario</u>					EB I	EVEI	June	20	2	019	2					ΓUΜ					Geodetic
D.	ATES: B	ORING <u>June 8, 2018</u>			<u> </u>	WAI																	
Ē	NOI		PLOT	-EVEL	H (ft)		SAI	MPLES									00 	TRE	15		(KP	20	0
UEPIH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	וס	ΥNA	MIC	CO	NE PI	ENE	TRA	TION	G LIN TEST T, BLC	, BLC	ows		W ⊖ n ▼	WL REMARKS & GRAIN SIZ DISTRIBUTI
0 -	160.5				0			REC	0		10	2	0	30	40	5	50 (60	70	80	9	0 10	0 GR SA SI
-	159.9	Loose, brown SAND - organics			1 -	ss	1	<u>530</u> 610	10		•	0											-
- 1-		- trace rootlets - moist Very dense, brown CLAYEY		•	2 - 3 -		2	$\frac{510}{530}$	58	-													- - - -
		SAND with GRAVEL (SC), TILL - moist	A R		4 - 5 -			530															-
- - -		informed applying and benefiting 1	\neg		6 - 7 -	ss	3	<u>560</u> 610	50		0						•					>>2	-
-		- inferred cobbles and boulders due to auger grinding from 2.2 m to 16.0 m	A N		8 - 9 -	ss	4	<u>510</u> 610	47		0					•						>>4	- - - -
			 ↓ ↓		10-			530															-
-			4		11 - 12 -	ss	5	<u>530</u> 610	51													>>4	2 - -
			A F		13 - 14 -	ss	6	<u>580</u> 610	55)) 						•					>>2	20 33 25
	156.0	- grey			15- 16-	ss	7	<u>530</u>	50		0						•					>>4	
			A	Ţ	17- 18-			610															-
					19 - 20 -																		-
		· · · · · · · · · · · · · · · · · · ·	A V A	•	21 -	ss	8	$\frac{410}{460}$	80	-	Э Э									•		>>2	-
			A P		22 - 23 -																		-
-			A A	•	24 - 25 -																		-
			D		26 - 27 -	ss	9	<u>560</u> 610	38		0				•							>>4	- - -
			A A	1	28 - 29 -																		- - - -
			A V		30-	ss	10	_510	65													>>4	- - - -
			A A	1	31 - 32 -			$\frac{510}{530}$	05		o											4	• - - -
0-		Continued Next Page	<u> 12' 0 ' </u>	•				1						ane			Pa Fest,	kP2				l	•
																		кРа st, k	Pa				

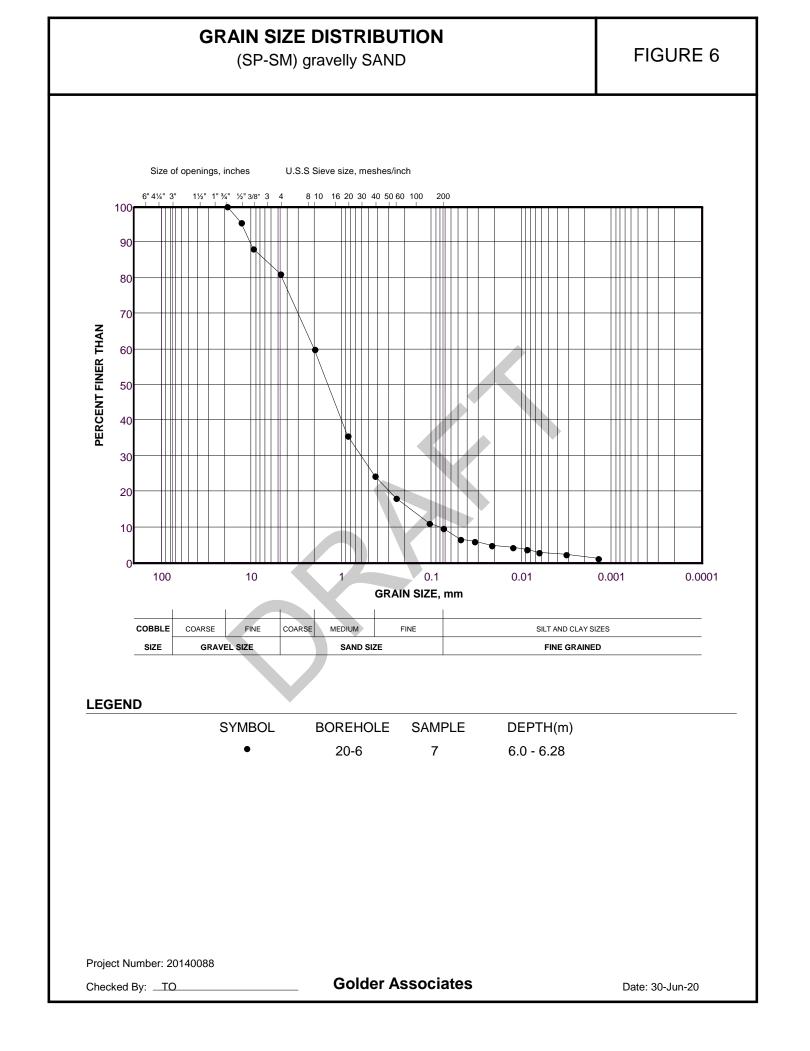
C	s	tantec	B		REH N: 43	IO 861 1	LE 01 I	RE (E: 651	C OR 612	D						B	H1	04		S	heet 2 of 2
CI	LIENT _	North Pickering Community	/ Ma	nage	emen	t Inc	•									PRC	JEC	T No).	12	22450165
		,,,														DAT	ГUM	-			Geodetic
D	ATES: B	ORING June 8, 2018				WAT	ΓER Ι	LEVEL	June	20,	20	18				TPC	ELE	EVAT	ION		
(7		5				SAI	MPLES		ι ι	JNE			ED S			TRE		H (k	,	0
m) H			PLO	Ы	H (Ħ			(mr (%)					50		1	00		150	, I	20	0
ОЕРІН (m)	EVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)		۲ ۲	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	WA	TEF	R CO	NTE	NT &	ATTE	RBER	G LIM	ITS	W _P	W	$W_{\rm L}$
Ц	ELE		STR/	VAT	Ш	ТҮРЕ	NUMBER	/ER/	RQL	DYI	NAN		ONE	E PEN	IETR/		TEST	BLO	NS/0.3	Bm 🔻	REMARK
				>			Z	00%) 10%)	ъ́чЯ									WS/0		٠	& GRAIN SIZ DISTRIBUT
0-	150.5							R E D		1	0	20	3	0 4	0	50 6	50	70	80	90 10	0 _{GR SA SI}
-		Very dense, grey CLAYEY SAND	⊳		33-																-
1		with GRAVEL (SC), TILL - moist	4		34-	†															·
		- moist		1	35-	M		510													- -
1-				1	36-	Λ	11	$\frac{510}{610}$	61	C											-
1			1		37-		1														
				1	38-																-
2-			1		39-																.
			Þ	1	40 -	X SS	12	<u>150</u> 150	50/ 1300				N							>>	}
1.1			R		41-			100			р :										-
3-			Þ		42-																
5					43-																
	146.0		\triangleright	1	44 -																
-	146.8	Hard, grey SANDY SILTY CLAY	ή.		45-	×ss	13	<u>51</u> 61												>>	ł
4-		(CL-ML), TILL			46-			01		e	H										4 36 41
1		- moist			47-	•															
					48 -																-
5-					49-								<u></u>								
1 1					50-	×ss	14	<u>_76</u> 76	<u> </u>											>>•	5
. .					51 -			/0	1500			D.									_
					52 -																
6-					53-																
					54-	$\left \right $															
-	143.6				55-	XSC	15	<u>150</u> 150	- <u>50/</u> -1300-											>>	
7-	113.0	End of Borehole at 16.9 m below			56-			150	1300		: 0	<u>;;;</u>									
-		grade.			57-																
		Groundwater monitoring well			58-																
8-		installed with a screen from 6.1 m			59 -																
 		to 9.1 m below grade.			60 -																
1		Static groundwater level measured			61 -																-
		in monitoring well at 5.41 m below			62 -																-
9-		grade on June 20, 2018.			63 -																-
-					64 -																
-					65-																-
0-					05-											:::: -					
														ne Te led V		Pa Γest,∶	۶. LP				
																er Te		Pa			
	1											Jen	** 1		2110		, n				


C	S	tantec	B	OF	REH N: 43	IOI 861 1	E 86 B	RE(E: 651	C OR 603	D					B	H1	05		S	heet 1 of 2
	LIENT _ DCATIO	North Pickering Community	Ma	nage	emen	t Inc.										DJECT	Г No		12	22450165 Geodetic
		ORING June 7 and 8, 2018				WAT	TER I	LEVEL							ТРС	ELE	VAT	ION		
Ê	NO		LOT	EVEL	(ft)		SAI	MPLES ିତ୍ତି		U	NDF	RAIN 50	IED S		AR S	TRE	NGT 150		Pa) 20	0
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DYN	AMIC	CON	ENT & NE PEN ENETR	IETRA	TION	TEST,	BLOV		0	W _L REMARKS & GRAIN SIZ DISTRIBUTI
0 -	161.3	Hay Field	 . .		0			ЧЦ ЦЦ ЦЦ		10) 2	20	30 4	10 5	50 6	50 7	70 8	30	90 10	0 _{GR SA SI}
- - - -		Loose, brown SILTY SAND - organics - moist			1 - 2 -	ss	1	<u>580</u> 610	10	•	0									- - - -
1 -		-inferred cobbles and boulders due to auger grinding from 1.0 m to 9.0			2 3 - 4 -	×ss	2	<u>_25</u> 100	<u>50/</u> 100		0								~	
-	159.8	m Loose to dense, brown to grey SILTY CLAYEY SAND (SC-SM),		•	5 -	ss	3	<u>580</u> 610	10		0								Δ.	-
2 -		TILL - moist			7 - 8 -															- - - -
3 -			Z A Z		9 - 10-	ss	4	<u>610</u> 610	34	0			•						>>2	-
-					10 11 - 12 -	ss	5	<u>560</u> 610	38	0			e						>>2	
4 -			A F		13- 14-	ss	6	<u>560</u> 610	32	C):		•						>>2	-
5 -					15- 16-	ss	7	<u>560</u> 610	33	•).		•						>>2	- - - -
			A A		17- 18-			010												- - - - -
- - - -			A A		19- 20-															-
-			A V A		21 - 22 -	ss	8	<u>580</u> 610	42	o				•					>>2	-
- 1					23 - 24 -	-														-
3 -			A R		25 - 26 -	ss	9	<u>580</u> 610	41	- c)			•					>>2	- - - -
-			7 8 7		27 - 28 -															- - - - -
- - -	152.1	Dense to very dense, brown SILTY			29 - 30 -	X SS	10	<u>0.0</u> 150	- 50/										~	- - -
		SAND (SM) - moist to wet		:	31 - 32 -			100	-											- - - -
0-		Continued Next Page	<u></u>			<u> </u>							ane To ded V			kPa		1		
													Peneti				Pa			


J	S	tantec	B		REF N: 4	IOI 861 1	E 86 B	RE(E: 651	C OR 603	D					B	H1	05		S	heet 2 of 2
-	IENT _	· · ·	y Ma	nage	emen	t Inc									PRC	JEC	Г No			2450165
		<u>Pickering, Ontario</u>														ΓUM				Geodetic
DA	TES: B	ORING June 7 and 8, 2018			<u> </u>	WA	ERI	LEVEL												
_	z		01	Ē			SA	MPLES		U	INDF		ED S			TRE			Pa) 20€)
	EVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)		۲ ۲	(mm) CR(%)	Е (%)		+	50			00		150	Wp		W _L
	ELEV		STRA	WATE	DEF	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	DY	NAMIC	CON	E PEN	IETRA	TION	G LIMI TEST, F, BLO	BLOV		im ▼	REMARKS
_	151.3					1		TCF	0	1	0 2	20 3	30 4	40 5	50 6	50 7	70 8	30	90 100	DISTRIBUTIO (%) GR SA SI
0+		Very dense, brown SILTY SAND			33 -															
-		(SM)			34-	1														_
-		- wet			35-	X SS	11	$\frac{150}{150}$	- <u>50/</u> -150-										>> •	
					36-			100			0									-
-					37-														E	
-					38-	1														
:-]					39 -	1														_
-						XSS	12	<u>150</u> 150	- <u>50/</u> -150-											
-					41 -	1					: : O :									-
-					42 -															_
					43 -															
-			· · ·		44 -	†														_
. 1					45-	M		160												
1-		- dense				ss	13	$\frac{460}{610}$	32		0		•							-
-					47-															_
					48 -	†														
5-					49-	1														_
-					50 -	M		410												
-		- very dense			51 -	ss	14	$\frac{410}{610}$	53		0				•				F	0 80 15
5-					52 -	f l														_
					53 -	†													ŀ	
-					54 -	1													E	-
7-					55-	1		360											::::E	
	143.9	- dense			56-	\mathbb{N}^{SS}	15	$\frac{360}{610}$	46		0									
4	,	End of Borehole at 17.4 m below		-	57-															1
		grade.			58-	1														
3-		Borehole open to 9.1 m below grade			59 -	1														1
		upon completion.			60-	1													:::: 	4
-					61-]														
					62-]														-
-					63-]														
					64-]													F	
)]					65-	I				 	:::: 	: : : : : : : : : : :							<u> ::::</u> F	
														est, k 7ane]		₽₽∘				
																кРа st, kF				


LO	IENT _			I	N: 4	861 3	18 F	KE E: 651	C OR 580	D BH106 Sheet 1 of 2
	CATIO	Bistaning Outanis		•						PROJECT No122450165
		ORING June 11, 2018					TER I	LEVEL	June	DATUM Geodetic 20, 2018 TPC ELEVATION
			F				SA	MPLES	;	UNDRAINED SHEAR STRENGTH (kPa)
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	NUMBER	RECOVERY (mm) TCR(%) / SCR(%)	N-VALUE OR RQD(%)	50 100 150 200 WATER CONTENT & ATTERBERG LIMITS Wp WL DYNAMIC CONE PENETRATION TEST, BLOWS/0.3m ▼ REMARKS STANDARD PENETRATION TEST, BLOWS/0.3m ● GRAIN SIZ
0 -	159.9						-	TCR	-0	DISTRIBUTI 10 20 30 40 50 60 70 80 90 100 (%) GR SA SI
	159.6	Loose, dark brown TOPSOIL - moist Very stiff to hard, brown SANDY			0 1 - 2 -	ss	1	<u>380</u> 610	7	• 0
1-		CLAY (CL), TILL - moist			2 3 - 4 -	ss	2	<u>580</u> 610	20	<u>م</u> حد: •••
		- inferred cobbles and boulders due			5 - 6 -	ss	3	<u>580</u> 610	38	c •
2 -		to auger grinding from 1.8 m to 10.5 m			7 - 8 -	ss	4	<u>530</u> 610	36	0.
3					9 - 10-		+		30	
					11 - 12 -		5	<u>530</u> 610	30	6
4					13- 14-	IN SS	6	<u>530</u> 610	16	Ó.•
5					15- 16- 17-	ss	7	$\frac{560}{610}$	22	101 ● 6 31 40
-					17 18- 19-					
6					20 - 21 -	ss	8	<u>560</u> 610	72	c A
7 -				•	22 - 23 -			010		
					24 - 25 -	X SS	_9	<u>150</u> 150	<u>50/</u>	<u>-</u>
8 -					26 - 27 -					: 0
9					28 - 29 - 30 -					
				Ţ	30 - 31 - 32 -	∦ss	10	$\frac{200}{300}$	50/ 150	о С
10-		Continued Next Page	<u></u>]	1	<u> </u>	<u> </u>		<u> </u>	 Field Vane Test, kPa Remoulded Vane Test, kPa


C	S	tantec	B	OF	REF N: 4	IOI 861 3	E 18 I	RE (E: 651	C OR 580	D BH106 Sheet 2 of 2
LC		North Pickering Community <u>Pickering, Ontario</u> ORING June 11, 2018	' Mai	nage	emen					PROJECT No. 122450165 DATUM Geodetic 20, 2018 TPC ELEVATION
DEPTH (m)	ELEVATION (m)	STRATA DESCRIPTION	STRATA PLOT	WATER LEVEL	DEPTH (ft)	ТҮРЕ	SAI	RECOVERY (mm) A TCR(%) / SCR(%) A TCR	N-VALUE OR RQD(%)	UNDRAINED SHEAR STRENGTH (kPa) 50 100 150 200 WP W WL WATER CONTENT & ATTERBERG LIMITS OF CONTENT & ATTERBERG LIMITS GRAMKS STANDARD PENETRATION TEST, BLOWS/0.3m CRAMS SIZE DISTRIBUTION DISTRIBUTION
10-	149.8							TCF	0	10 20 30 40 50 60 70 80 90 100 (%) GR SA SI 0
11-	149.2	Hard, brown SANDY CLAY (CL), TILL Very dense to loose, brown to grey SILTY SAND (SM) - moist to wet			33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 - 41 -			<u>280</u> 300 560 610	50/ 150 8	• 0.
13	145.5				42 - 43 - 44 - 45 - 46 - 46 -	AS	13			
15-		End of Borehole at 13.7 m below grade. Groundwater monitoring well installed with a screen from 7.3 m to 10.4 m below grade.			48 - 49 - 50 - 51 - 52 -	-				
16 		Static groundwater level measured in monitoring well at 9.65 m below grade on June 20, 2018.			53 - 53 - 54 - 55 - 56 - 57 -	-				
8 					58 - 59 - 60 - 61 -	-				
19 					62 - 63 - 64 - 65 -					
20-					·					 □ Field Vane Test, kPa □ Remoulded Vane Test, kPa △ Pocket Penetrometer Test, kPa

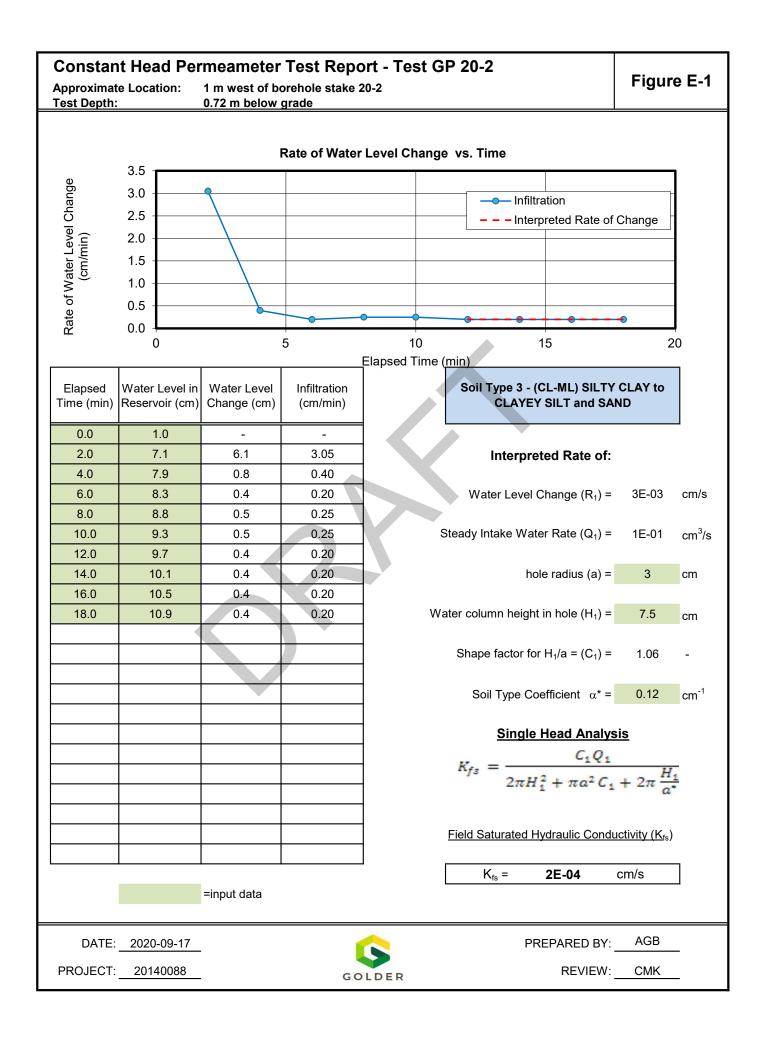

LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY INDEX OF SOILS (ASTM D4318)

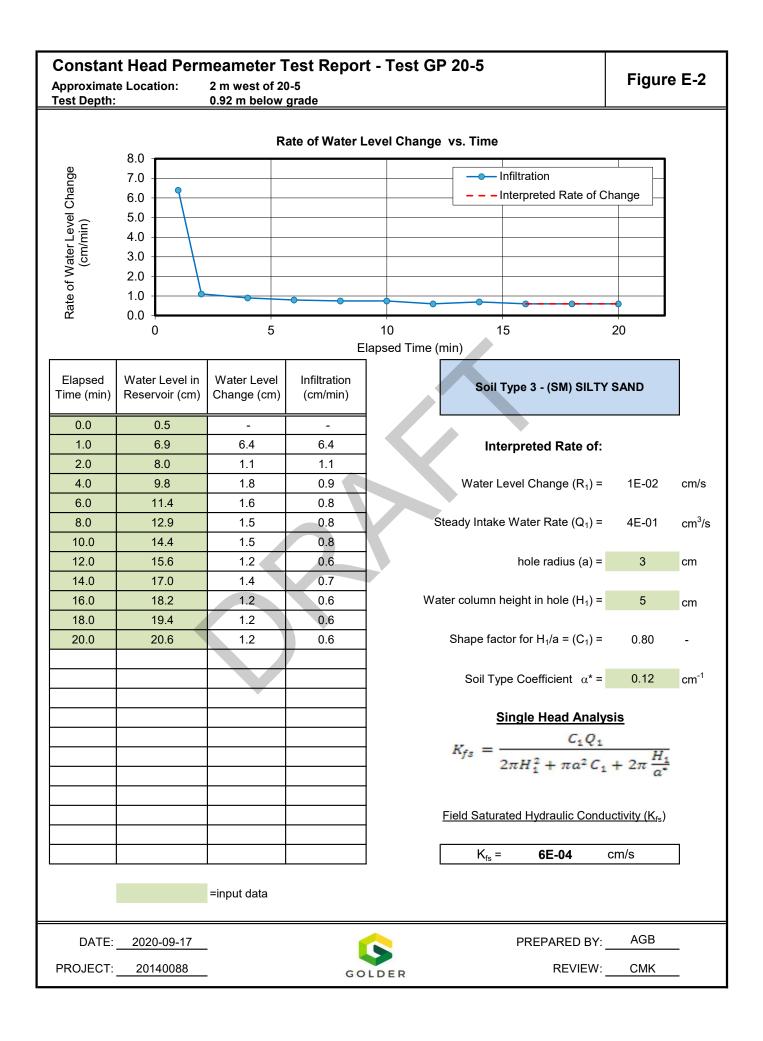
APPENDIX E

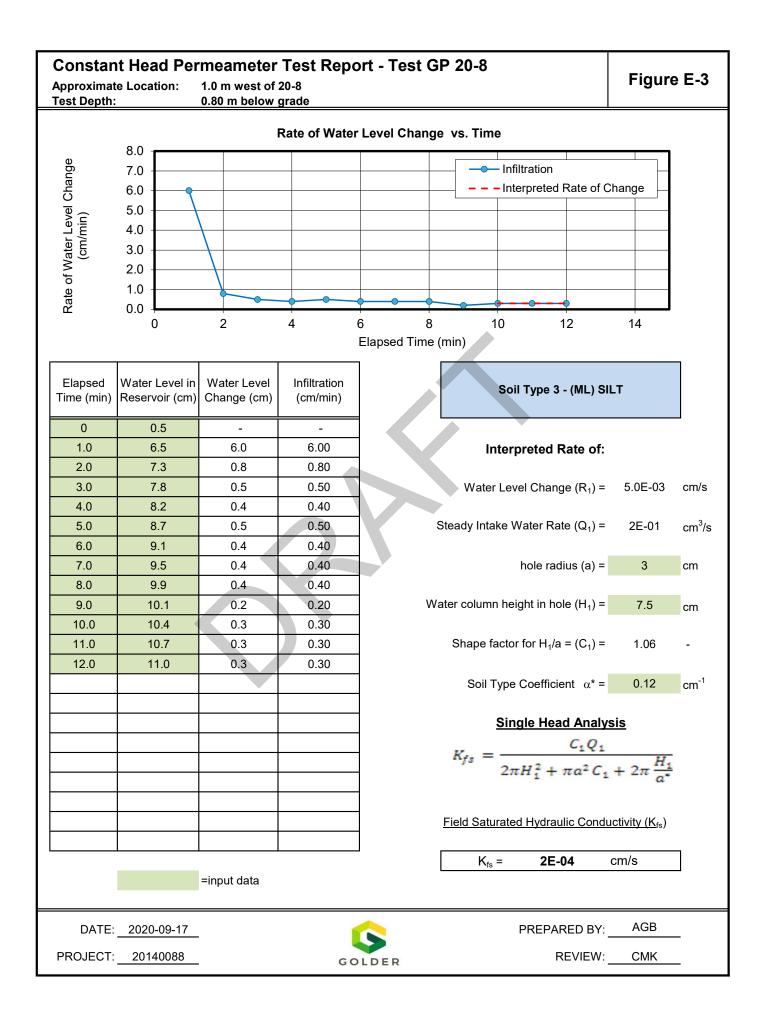
Water Level Measurements and Hydraulic Conductivity Testing

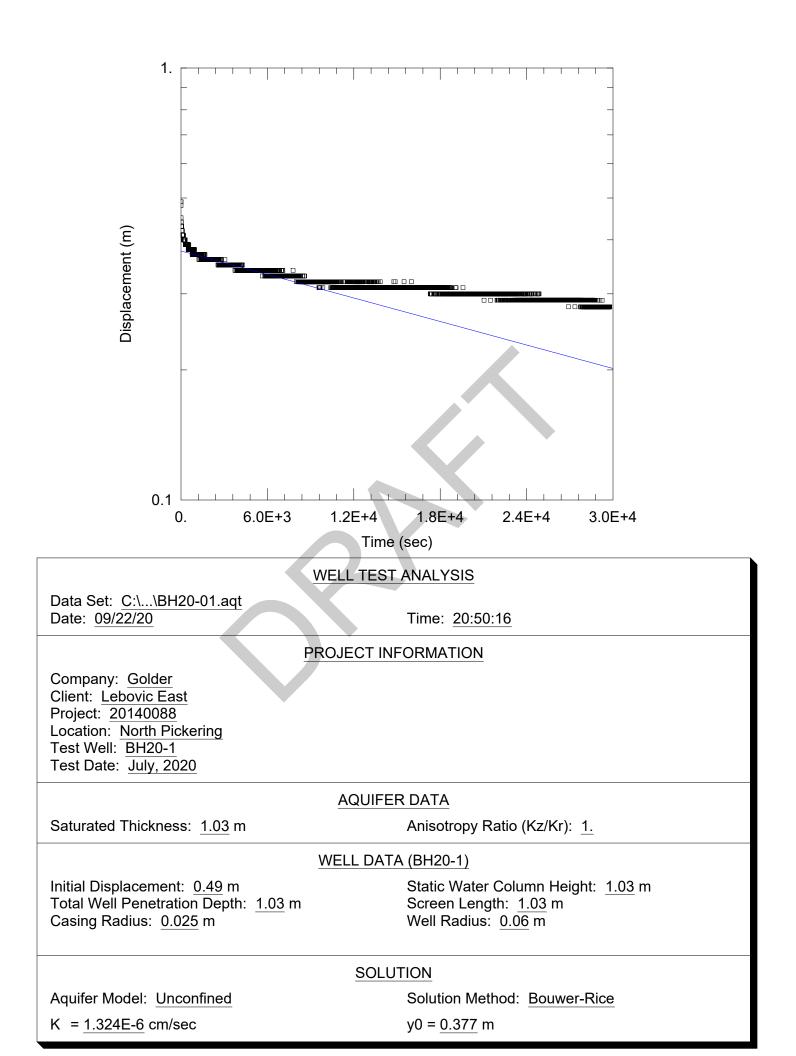
ら GOLDER

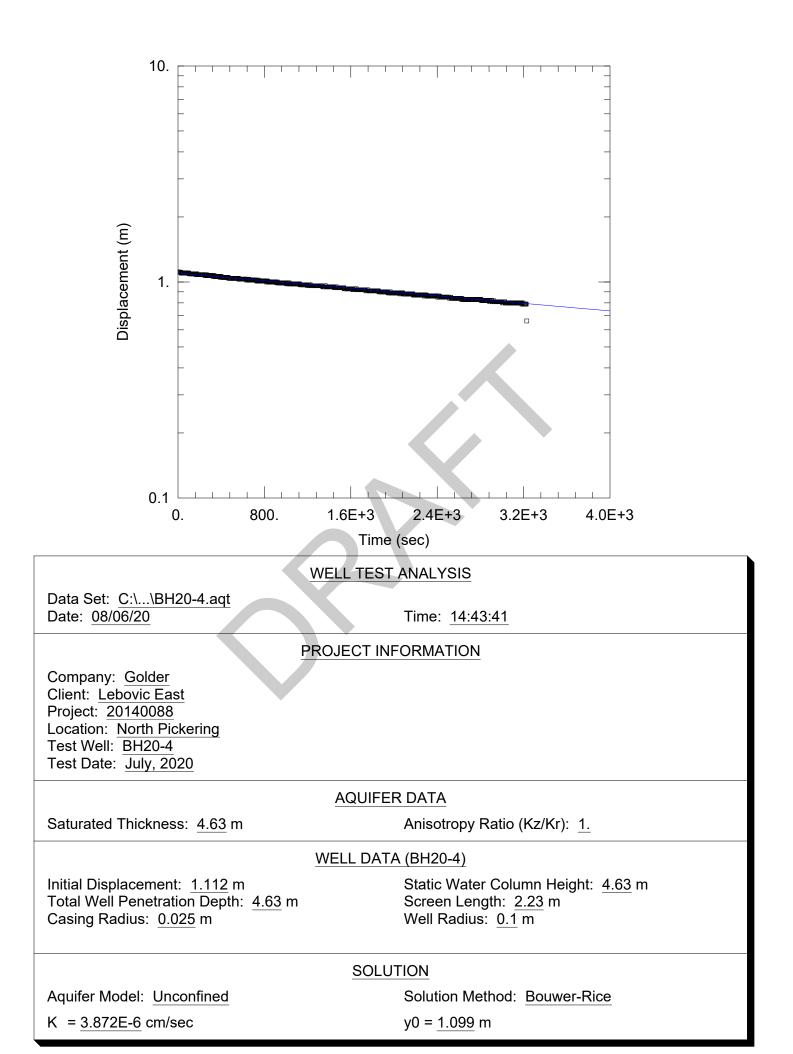
Table E-1 - Groundwater Depths and Elevations Lebovic - Seaton Whitevale East Development, Pickering, Ontario


		Elevation	Stick-up	05-Ju	ın-20	25-J	ul-20	05-A	ug-20
Borehole	Unit Screened	(masl)	(m)	(mbgs)	(masl)	(mbgs)	(masl)	(mbgs)	(masl)
BH 20-1	(CL-ML) SILTY CLAY to CLAYEY SILT and SAND (TILL)	179.13	0.86	1.14	177.99	2.48	176.65	2.76	176.37
BH 20-4	(CL-ML) sandy SILTY CLAY to CLAYEY SILT (TILL)	169.20	0.83	1.07	168.13	1.90	167.30	2.11	167.10
BH 20-5	(SM) SILTY SAND (TILL) and (CL-ML) sandy SILTY CLAY to CLAYEY SILT (TILL)	168.42	0.67	1.93	166.49	3.31	165.11	3.52	164.90
BH 20-6	(CL-ML) SILTY CLAY to CLAYEY SILT and SAND (TILL) and (SP-SM) gravelly SAND	163.90	0.60	5.50	158.40	6.26	157.64	6.29	157.61
BH 20-7	(SM) SILTY SAND	160.63	0.70	3.40	157.23	4.20	156.43	4.30	156.34
BH 20-8	(SM) SILTY SAND (TILL) and (SP) SAND	159.26	0.70	4.80	154.46	5.44	153.82	5.47	153.79


Notes


mbgs - metres below ground surface masl - metres above sea level


> 17 28


21.817



APPENDIX F

Water Balance Results

October

November

December

AVE TTL

9.2

3.2

-2.6

7.8

BUTTONVILLE A WATER BUDGET MEANS FOR THE PERIOD 1986-2017 DC20492

April6.77571734340450124453May13.48080080800150110534June18.79090011611608076622July21.382820136118-180040705August20.37777012087-334027777September16838308068-127035855October9.2737304038-2706373November3.27468513130200103148			Water Holding Capacity	125	mm							
A 1.122 1986 2017 Date Range Climate ID (Station #): D2C0492 2017 Date Remperature Precipitation Rain Meth Ran Potential Range Meth Station Actual Evaporation Defici Evaporation Surplus Surplus Surplus Surplus Surplus Accumulated Precipitation Ianuary -5.8 60 26 19 2 2 0 38 27 124 272 Ianuary -5.6 51 20 24 1 1 0 42 33 125 323 April -0.4 55 36 49 100 100 0 75 4 125 378 April 6.7 75 71 7 34 34 0 45 00 124 453 March 18.7 90 90 0 116 116 0 8 0 76 622 May 18.7 90 <			Heat Index	39.55								
Date Range Climate ID (Station #):1986 DC204922017DateTemperaturePrecipitationRainMeltPotential tayorationActual texportanspirationDeficitSurplusSurplusSurplusSurplusAccumulated recipitationImmuny-5.86026192203827124272February-5.65120241104233125323March-0.4553649101000754125378April6.7757173434045536493106116080124453April6.775717343404501244534534415378April6.775717341160801010056622May13.48080011611608062622May21.382820136118-1800754175August20.377770120877-334027777September16838308068-127035855October9.2737373 <th></th> <th></th> <th>Lower Zone</th> <th>75</th> <th>mm</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			Lower Zone	75	mm							
Limate ID (Station #): DC20492 Date Temperature Precipitation Rain Met Potential Evaporation Actual Evaporation Deficit Surple Surple Soil Accumulated Precipitation Ianuary -5.8 60 26 19 2 0 38 27 12 22 33 125 323 Ianuary -5.6 51 20 24 1 0 42 33 125 323 March -0.4 55 36 49 10 0 45 0 124 453 April 6.7 75 71 7 34 34 0 45 0 10 534 45 453 44 453 March 13.4 80 80 0 116 116 0 8 0 40 75 May 13.4 82 82 0 136 118 -18 0			Α	1.122								
Date Temperature Precipitation Rain Meth Potential Evaporation Actual Evaporation Deficit Evaporation Surplus Snow Soil Accumulated Precipitation 1anuary -5.8 60 26 19 2 2 0 38 27 124 272 Petruary -5.6 51 20 24 1 1 0 42 33 125 323 March -0.4 55 36 49 10 10 0 75 4 125 378 April 6.7 75 71 7 34 34 0 45 0 124 453 May 13.4 80 80 0 80 80 0 15 0 110 534 Uale 18.7 90 90 0 116 116 0 8 0 76 622 Ualy 21.3 82 82			Date Range	1986	2017							
Date Temperature Precipitation Rain Melt twaporation Evaporation Deficit Surplus Snow Soil Precipitation Ianuary -5.8 60 26 19 2 2 0 38 27 124 272 February -5.6 51 20 24 1 1 0 42 33 125 323 March -0.4 55 36 49 10 10 0 75 4 125 378 April 6.7 75 71 7 34 34 0 455 0 124 453 May 13.4 80 80 0 80 80 0 16 116 0 8 0 76 622 July 21.3 82 82 0 136 118 -18 0 0 27 777 September 16 83			Climate ID (Station #):	DC20492								
Hanuary -5.8 60 26 19 2 2 0 38 27 124 272 February -5.6 51 20 24 1 1 0 42 33 125 323 March -0.4 55 36 49 10 10 0 75 4 125 378 April 6.7 75 71 7 34 34 0 45 0 124 453 May 13.4 80 80 0 80 80 0 16 116 0 8 0 76 622 Jule 18.7 90 90 0 116 116 0 8 0 76 622 July 21.3 82 82 0 136 118 -18 0 0 40 75 August 20.3 77 77 0 120 87 -33 4 0 27 777 September 16 83 </th <th>Date</th> <th>Temperature</th> <th>Precipitation</th> <th>Rain</th> <th>Melt</th> <th></th> <th></th> <th>Deficit</th> <th>Surplus</th> <th>Snow</th> <th>Soil</th> <th></th>	Date	Temperature	Precipitation	Rain	Melt			Deficit	Surplus	Snow	Soil	
February-5.65120241104233125323March-0.455364910100754125378April6.77571734340450124453May13.48080080800150110534June18.79090011611608040705August20.37777012087-334027777September16838308068-127035855October9.2737304038-2706373November3.27468513130200103148December-2.66437153303212119211AVE7.8		(oC)	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
March -0.4 55364910100754125378April 6.7 7571734340450124453May13.48080080800150110534June18.79090011611608076622July21.382820136118-180040705August20.37777012087-334027777September16838308068-127035855October9.2737304038-2706373November3.27468513130200103148December-2.66437153303212119211AVE7.87.87.87.87.87.87.87.87.87.87.87.8	lanuary	-5.8	60	26	19	2	2	0	38	27	124	272
April6.77571734340450124453May13.48080080800150110534June18.79090011611608076622July21.382820136118-180040705August20.37777012087-334027777September16838308068-127035855October9.2737304038-2706373November3.27468513130200103148December-2.66437153303212119211AVE7.8	ebruary	-5.6	51	20	24	1	1	0	42	33	125	323
May 13.4 80 80 0 80 80 0 15 0 110 534 June 18.7 90 90 0 116 116 0 8 0 76 622 July 21.3 82 82 0 136 118 -18 0 0 40 705 August 20.3 77 77 0 120 87 -33 4 0 27 777 September 16 83 83 0 80 68 -12 7 0 35 855 October 9.2 73 73 0 40 38 -2 7 0 63 73 November 3.2 74 68 5 13 13 0 20 0 103 148 December -2.6 64 37 15 3 3 0 32 12 119 211 AVE 7.8 7.8 7.8 7.8 7.	March	-0.4	55	36	49	10	10	0	75	4	125	378
June 18.7 90 90 0 116 116 0 8 0 76 622 July 21.3 82 82 0 136 118 -18 0 0 40 705 August 20.3 77 77 0 120 87 -33 4 0 27 777 September 16 83 83 0 80 68 -12 7 0 35 855 October 9.2 73 73 0 40 38 -2 7 0 63 73 November 3.2 74 68 5 13 13 0 20 0 103 148 December -2.6 64 37 15 3 3 0 32 12 119 211 AVE 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.	April	6.7	75	71	7	34	34	0	45	0	124	453
Vuly 21.3 82 82 0 136 118 -18 0 0 40 705 August 20.3 77 77 0 120 87 -33 4 0 27 777 September 16 83 83 0 80 68 -12 7 0 35 855 October 9.2 73 73 0 40 38 -2 7 0 63 73 November 3.2 74 68 5 13 13 0 20 0 103 148 December -2.6 64 37 15 3 3 0 32 12 119 211 AVE 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.7	May	13.4	80	80	0	80	80	0	15	0	110	534
August20.37777012087-334027777September16838308068-127035855October9.2737304038-2706373November3.27468513130200103148December-2.66437153303212119211AVE7.8	June	18.7	90	90	0	116	116	0	8	0	76	622
September 16 83 83 0 80 68 -12 7 0 35 855 October 9.2 73 73 0 40 38 -2 7 0 63 73 November 3.2 74 68 5 13 13 0 20 0 103 148 December -2.6 64 37 15 3 3 0 32 12 119 211 AVE 7.8	July	21.3	82	82	0	136	118	-18	0	0	40	705
Decomposition of the second	August	20.3	77	77	0	120	87	-33	4	0	27	777
November 3.2 74 68 5 13 13 0 20 0 103 148 December -2.6 64 37 15 3 3 0 32 12 119 211 AVE 7.8 Volume	September	16	83	83	0	80	68	-12	7	0	35	855
December -2.6 64 37 15 3 3 0 32 12 119 211 AVE 7.8 7.9	October	9.2	73	73	0	40	38	-2	7	0	63	73
AVE 7.8	November	3.2	74	68	5	13	13	0	20	0	103	148
	December	-2.6	64	37	15	3	3	0	32	12	119	211
TTL 863 743 119 635 570 -65 293	AVI	7.8										
	TT	L	863	743	119	635	570	-65	293			

		Water Holding Capacity	200	mm							
		Heat Index	39.55								
		Lower Zone	120	mm							
		Α	1.122								
		Date Range	1986	2017							
		Climate ID (Station #):	DC20492								
Date	Temperature	Precipitation	Rain	Melt	Potential Evaporation	Actual Evapotranspiration	Deficit	Surplus	Snow	Soil	Accumulated Precipiation
	(oC)	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
lanuary	-5.8	60	26	19	2	2	0	26	27	192	272
ebruary	-5.6	51	20	24	1	1	0	38	33	197	323
March	-0.4	55	36	49	10	10	0	72	4	200	378
April	6.7	75	71	7	34	34	0	45	0	199	453
Иау	13.4	80	80	0	80	80	0	15	0	185	534
une	18.7	90	90	0	116	116	0	8	0	151	622
uly	21.3	82	82	0	136	132	-5	0	0	101	705
August	20.3	77	77	0	120	102	-18	4	0	73	777
September	16	83	83	0	80	71	-9	7	0	78	855

-2

-34

		Water Holding Capacity	400	mm							
		Heat Index	39.55								
		Lower Zone	240	mm							
		Α	1.122								
		Date Range	1986	2017							
		Climate ID (Station #):	DC20492								
Date	Temperature	Precipitation	Rain	Melt	Potential Evaporation	Actual Evapotranspiration	Deficit	Surplus	Snow	Soil	Accumulated Precipiation
	(oC)	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
anuary	-5.8	60	26	19	2	2	0	21	27	371	272
ebruary	-5.6	51	20	24	1	1	0	28	33	385	323
March	-0.4	55	36	49	10	10	0	62	4	398	378
April	6.7	75	71	7	34	34	0	44	0	399	453
May	13.4	80	80	0	80	80	0	15	0	384	534
une	18.7	90	90	0	116	116	0	8	0	350	622
uly	21.3	82	82	0	136	136	0	0	0	296	705
August	20.3	77	77	0	120	118	-2	3	0	252	777
September	16	83	83	0	80	77	-3	7	0	251	855
October	9.2	73	73	0	40	39	-1	6	0	279	73
November	3.2	74	68	5	13	13	0	10	0	328	148
December	-2.6	64	37	15	3	3	0	24	12	353	211
AVE	7.8										
TTL		863	743	119	635	629	-6	228			

Cell

	Land Use			Infiltratio	on Factor		WHC (mm)	Precip (mm)	Evap (mm)	Surplus (mm)	Runoff (mm)	Infiltration (mm)
Land Use Type	Soil Type	Description	Торо	Soils	Cover	Total				-		
Agricultural	Silt Loam	Moderately Rooted Crops	0.1	0.3	0.1	0.5	200	863	602	260	130	130
Woodlot	Silt Loam	Mature Forest	0.1	0.3	0.2	0.6	400	863	629	228	91	137
Storm Water Facility	Water	Water	-	-	-	0	P-PET	863	635	228	228	0
Lawn, Park	Silt Loam	Urban Lawn	0.1	0.3	0.1	0.5	125	863	570	293	147	147
Buildings, Roads, Sidewalks, Driveways	Impervious	Impermeable Surfaces	0	0	0	0	0	863	86	777	777	0
Buildings to Bioretention	Mitigation	Impermeable Surfaces	-	-	-	0.71	0	863	86	777	225	551

Table 1: Pre-Development Water Balance Results

Catchment	Area	Precipi	itation	Potential ET		Actual ET		Surplus		Infiltration		Runoff	
	(m²)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)
Cultivated Land	51,870	863	44,760	635	32,940	602	31,270	260	13,490	130	6,740	130	6,750
Woodlot	3,730	863	3,220	635	2,370	635	2,370	228	850	137	510	91	340
Total	55,600	863	47,980	635	35,310	605	33,640	258	14,340	130	7,250	128	7,090
Table 2: Unmitigated	Post-Devel	opment Wate	er Balance R	esults									

Catchment	Area	Precipi	itation	Potential ET		Actual ET		Surplus		Infiltration		Runoff	
	(m²)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)
Buildings	16,800	863	14,500	635	10,670	86	1,430	778	13,070	0	0	778	13,070
Pavement	17,696	863	15,270	635	11,240	86	1,510	778	13,760	0	0	778	13,760
Lawns	18,704	863	16,140	635	11,880	570	10,660	293	5,480	147	2,740	147	2,740
Storm Water Facility	2,400	863	2,070	635	1,520	635	1,520	229	550	0	0	229	550
Total	55,600	863	47,980	635	35,310	272	15,120	591	32,860	49	2,740	542	30,120

Catchment	Area	Precipitation		Potential ET		Actu	Actual ET		Surplus		ation	Runoff	
	(m²)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)	(mm/yr)	(m³/yr)
Buildings to Bioretention	16,800	863	14,500	635	10,670	86	1,430	778	13,070	552	9,280	226	3,790
Pavement	17,696	863	15,270	635	11,240	86	1,510	778	13,760	0	0	778	13,760
Lawns	18,704	863	16,140	635	11,880	570	10,660	293	5,480	147	2,740	147	2,740
Storm Water Facility	2,400	863	2,070	635	1,520	635	1,520	229	550	0	0	229	550
Total	55,600	863	47,980	635	35,310	272	15,120	591	32,860	216	12,020	375	20,840

Table 3: Mitigated Post-Development Water Balance Results

Page 2 of 2

golder.com