

HYDROGEOLOGICAL INVESTIGATION 603-643, 645-699 KINGSTON ROAD PICKERING, ON L1V 3N7

REPORT NO.: 4986-19-HD REPORT DATE: April 20, 2020

REVISION NO.: 02

PREPARED FOR: DIRECTOR INDUSTRIAL HOLDINGS LIMITED 3700 STEELES AVENUE WEST, SUITE 800 VAUGHAN, ONTARIO L4L 8M9

110 KONRAD CRESCENT, UNIT 16, MARKHAM, ONTARIO L3R 9X2 TEL.: 905-940-8509 FAX: 905-940-8192

Executive Summary

Toronto Inspection Ltd. (TIL) was retained by Director Industrial Holdings Limited (the Client) to conduct a hydrogeological investigation for the proposed development property encompassing the municipal addresses of 603-643 and 645-699 Kingston Road in Pickering, ON (the Site). It is our understanding that the Client is proposing a mixed-use residential/commercial development for the Site consisting of six (6) high-rise towers, (2) mid-rise towers, and four (4) blocks of 4storey stacked, back- to-back townhouses. It is also understood that the Site will include four (4) underground parking facilities. Each building complex will have two (2) levels of underground parking, with the exception of Podium 1, which will have one (1) level of underground parking. Since the project is currently at a planning stage for the development, each parking level was assumed to be 3 m high. This Hydrogeological Report provides estimates for the short-term (construction) and long- term dewatering rates for the parking facilities only as a Site Servicing Plan was not available for review. Therefore, the requirements for groundwater control during the construction of services at the Site will need to be evaluated prior to construction and the submission of applications for dewatering and/or discharge permits, as the case may be. Further, at that stage in the design process, it is anticipated that finalized building elevations and a Site Grading Plan will be available for review to refine all groundwater control requirements on the project.

The Site is located within the Petticoat Creek watershed, under the jurisdiction of the Toronto and Region Conservation Authority (TRCA); however, it is not located within TRCA regulated areas. Furthermore, no environmental features were identified within or slightly beyond the Site boundary. The Site is located within the Toronto and Region Source Protection Area (TRSPA) within the CTC Source Protection Region; however, it is not shown to be subject to the policies of the CTC Source Protection Plan (SPP).

The local scale geological and hydrogeological characteristics of the Site were assessed using the observations from sixteen (16) boreholes that were drilled by TIL in February and March of 2019. The boreholes investigated to depths ranging from 4.87 m below ground surface (bgs) to 20.88 mbgs. The findings from the field investigation showed that the subsurface geology at the Site consists mainly of a layer of fill underlain by a laterally extensive sandy silt unit to the terminal depths of the investigation. However, an isolated sand and gravel deposit was identified at one point of investigation along the southern Site boundary with a thickness of 12.9 m, and smaller sand units were observed in surrounding boreholes as well.

Of the 16 boreholes, nine (9) were instrumented as monitoring wells to be used as part of this investigation. Additionally, three (3) monitoring wells were installed to improve the understanding of the groundwater system at the Site. All monitoring wells were installed with 51 mm riser pipe and 10-slot, 10-foot screens. Monitoring wells were used to measure static water levels, to perform in-situ hydraulic conductivity tests, and to collect representative groundwater quality samples. Once it is determined that monitoring wells are no longer required, they should be decommissioned by a licensed well contractor according to the provisions of Regulation 903 (Reg. 903).

Groundwater elevations for the water table at the Site were recorded as part of a long-term monitoring program in the period of March to June of 2019. The groundwater elevations over this time ranged from a low of 96.53 masl (8.89 mbgs) in the northeast corner of the Site in late March, to a high of 103.57 masl (1.4 mbgs) in the southwest corner of the Site in late March. The variability in groundwater elevations over the long-term monitoring period was on average, approximately

0.39 m across the Site excluding wells that demonstrated uncharacteristic variability, which were located in the northeast corner of the Site. It is expected that there will be some seasonal variability in groundwater elevations resulting from periods of regional groundwater recharge and more frequent storm events. Groundwater levels are typically highest in the Spring and lowest in the Fall to early Winter.

In-situ hydraulic conductivity testing in the form of single well response testing was undertaken within the sandy silt at select monitoring wells in March of 2019. The estimated hydraulic conductivity for the sandy silt ranged between 1.6×10^{-8} m/s and 1.8×10^{-7} m/s, with a geometric mean of 6.0×10^{-8} m/s. The results of grain-size analysis from samples collected with the sand and gravel deposit suggest a relatively conductive material with a hydraulic conductivity on the order of 10^{-6} m/s. Overall, the estimates of hydraulic conductivity for subsurface materials are within the literature range of hydraulic conductivity for those materials.

A non-filtered groundwater quality sample was collected on March 12, 2019, and analyzed for the *Regional Municipality of Durham Sewer Use By-Law No. 55-2013* (By-Law 55-2013). With the exception of Total Suspended Solids (TSS), all parameters were found to be within acceptable limits of the *Table 2 – Limits for Storm Sewer Discharge*. Additionally, all parameters, including TSS, were found to meet the limits of the *Table 1 – Limits for Sanitary Sewer Discharge*.

An analysis of potential short-term and long-term dewatering rates was undertaken for each development block on-Site. Based on the current conceptual hydrogeological model for the Site and the anticipated depths of the foundations for all underground structures, the estimated total dewatering rates for each block were calculated to be:

		1 T		
Block	Groundwater (L/day)	Stormwater (L/day)	Total (L/day)	Long-Term (L/day)
Podium 1	28,771	59,500	88,271	9,590
Podium 4	569,298	43,050	612,348	189,766
Block 1, Block 2, Tower 4	27,408	90,000	117,408	9,136
Block 3, Block 4, Tower 5, Tower 8	43,416	140,300	183,716	14,472
Total	668,893	332,850	1,001,743	222,964

The anticipated total dewatering rate for the development, assuming dewatering will be required simultaneously for all development blocks, is approximately 1,001,743 L/day. Since the cumulative dewatering rate in this scenario is greater than 400,000 L/day, it will be necessary to obtain a Category 3 Permit to Take Water (PTTW) from the Ministry of the Environment, Conservation, and Parks (MECP) to facilitate construction dewatering. Since the dewatering rates between all blocks are variable, consideration of the approach to construction phasing in the context of potential dewatering permitting requirements is warranted to determine the maximum dewatering rate that should be requested in the PTTW application. Since the estimated dewatering rate for Podium 4 exceeds 400,000 L/day, the amalgamated rate requested in the PTTW application should consider the dewatering rate from Podium 4 as the minimum and that any additional dewatering requirements for other blocks be added to calculate the total permitting rate.

Construction dewatering activities remove groundwater from the soil and can increase the effective stress of those soils whose pore spaces were once occupied by water. The increase in effective stress can lead to differential soil settlement and damage local infrastructure at the surface. The potential risks associated with dewatering settlement should be reviewed by a geotechnical engineer prior to construction such that any necessary controls for stabilization can be implemented.

For the post-construction phase, the foundations for all buildings are anticipated to extend below the water table. As a result, it will be necessary for each foundation to either control groundwater using a foundation drainage network or by waterproofing those foundations. If a Private Water Drainage System (PWDS) is proposed to collect and discharge groundwater over the long-term, the cumulative dewatering rate for the Site will likely be $1/3^{rd}$ the rates calculated for short-term groundwater dewatering, equating to approximately 222,964 L/day. Since the estimated long-term dewatering rates are cumulatively greater than 50,000 L/day, a PTTW from the MECP will be required if long-term takings are proposed.

If excess groundwater/stormwater encountered during construction or collected in a dedicated PWDS over the long-term is proposed to be discharged to a municipal sewer, approval from Durham Region will be required. All private water discharge to a municipal sewer must satisfy the relevant water quality criteria of By-Law 55-2013 for that sewer. Consultation with Durham Region is recommended to determine the requirements for a discharge approval during construction as well as permanent sewer connections and discharge agreements for groundwater over the long-term.

Separate applications for PTTWs will be needed to satisfy both the short-term and the long-term permitting requirements on the project. The PTTW application will require preparation of a hydrogeological report to support the application that includes the dewatering rate required, identification of potential unacceptable impacts of the water taking, monitoring requirements, and a contingency plan to mitigate unacceptable impacts in the event they were to occur. It is recommended that a minimum of six (6) months lead time be provided for the MECP PTTW application review and approval process if PTTWs will be pursued.

A search of the MECP Water Well Information System (WWIS) for well records within a 1 km radius of the Site returned 73 records and no active PTTWs. The primary well usage within the search radius is for monitoring/observation/test well (36%) purposes. Considering that the Site and surrounding area have municipal servicing and there are no sensitive ecological receptors near the Site, short-term and long-term impacts to the groundwater system, other groundwater users, and the surface water system are not expected. However, it is recommended to implement a Spill Prevention and Response Plan as well as an Erosion and Sediment Control (ESC) Plan during construction to limit potential impacts to the groundwater system and the off-Site release of sediment. Considering the size of the Site, a Salt Management Plan is recommended over the long-term.

Table of Contents

1	Intro	oductio	n	1
	1.1	Projec	ct Background	1
	1.2	Site D	Description	1
	1.3	Objec	ctives of the Hydrogeological Investigation	1
	1.4	Scope	e of Work	
		1.4.1	Conceptual Understanding	
		1.4.2	Field Investigation	
2	Pole	1.4.3	Data Analysisegulations and Policies	
3			Seological and Hydrogeological Understanding	
J	3.1		graphy and Drainage	
	3.1			
	3.2 3.3		ographyonal Geology and Hydrogeology	
	3.3	3.3.1	Regional Groundwater Flow	
4			ogy and Hydrogeology	
	4.1		ourden	
	4.2		ernary Geology	
	4.3 4.4		ock Geologydwater Conditions	
	4.4	4.4.1	On-Site Monitoring Well Network	
		4.4.2	Groundwater Levels	
		4.4.3	Hydraulic Conductivity	10
		4.4.4	Groundwater Flow	
		4.4.5	Groundwater Quality	
5	Calc	ulation	n of Dewatering Rates and Estimation of Zone of Influence	14
	5.1	Aquife	er Characteristics	14
	5.2	Requi	ired Drawdown	14
	5.3		s of Influence	
	- 4	5.3.1	Unconfined Aquifers	
	5.4		tering Rate Calculations	
	5.5	Optioi 5.5.1	ns for Dewatering Discharge and Permitting Dewatering Permit Requirements	
			Disposal Options for Discharge Water	
6	Pote	ential R	eceptors	20
	6.1	MECF	P Water Well Record Search	20
	6.2	Permi	itted Water Users	20
	6.3	Ecolo	gical Receptors	20
7	Pote	ential Ir	npacts and Proposed Mitigation	21
	7.1	Identi	fication and Mitigation of Short-Term Impacts	21
		7.1.1	Potential Short-Term Impacts to the Groundwater System	
		7.1.2	Potential Short-Term Impacts to the Surface Water System	21

8	Sumr	nary		23
		7.2.4	Mitigation of Long-Term Impacts	22
		7.2.3	Potential Long-Term Impacts to Other Groundwater Users	
		7.2.2	Potential Long-Term Impacts to the Surface Water System	22
		7.2.1	Potential Long-Term Impacts to the Groundwater System	2′
	7.2	Identi	fication and Mitigation of Long-Term Impacts	21
		7.1.5	Mitigation of Short-Term Impacts	21
		7.1.4	Potential Short-Term Impacts to Land Stability	2
		7.1.3	Potential Short-Term Impacts to Other Groundwater Users	21
				TOTOTILO INSPECTION EL

9

10

LIST OF TABLES

Table 4-1	Summary of Monitoring Well Details	8
Table 4-2	Water Level Depths – mbgs	
Table 4-3	Water Level Measurements – masl	
Table 4-4	Summary of Hydraulic Conductivity Tests	
Table 4-5	Groundwater Quality Results	
Table 5-1	Summary of Dewatering Requirements	
Table 5-2	ROI Estimate	
Table 5-3	Dewatering Rate Summary	17
Table 6-1	MECP Well Records within 1 km Radius	

LIST OF FIGURES

Figure 1	Site Location
Figure 2	Topography
Figure 3	Physiography
Figure 4	Regional Cross Section
Figure 5	Quaternary Geology
Figure 6	Bedrock Geology
Figure 7	Borehole/Monitoring Well Locations
Figure 8	Local Cross-Section A-A'
Figure 9	Long-term Water Level Monitoring Hydrograph
Figure 10	MECP Well Records & Permit to Take Water

APPENDICES

Appendix A	Conceptual Site Plan
Appendix B	Borehole Logs
Appendix C	Hydraulic Conductivity Analysis
Appendix D	Laboratory Certificate of Analysis
Appendix E	Dewatering Analysis
Appendix F	MECP Water Well Records

1 Introduction

1.1 Project Background

Toronto Inspection Ltd. (TIL) was retained by Director Industrial Holdings Limited (the Client) to conduct a hydrogeological investigation for the proposed development property encompassing the municipal addresses of 603-643 and 645-699 Kingston Road in Pickering, ON (the Site). It is our understanding that the Client is proposing a mixed-use residential/commercial development for the Site consisting of six (6) high-rise towers, (2) mid-rise towers, and four (4) blocks of 4-storey stacked, back- to-back townhouses. It is also understood that the Site will include four (4) underground parking facilities. Each building complex will have two (2) levels of underground parking, with the exception of Podium 1, which will have one (1) level of underground parking. Since the project is currently at a planning stage for the development, each parking level was assumed to be 3 m high.

This Hydrogeological Report provides estimates for the short-term (construction) and long-term dewatering rates for the parking facilities only as a Site Servicing Plan was not available for review. Therefore, the requirements for groundwater control during the construction of services at the Site will need to be evaluated prior to construction and the submission of applications for dewatering and/or discharge permits, as the case may be. Further, at that stage in the design process, it is anticipated that finalized building elevations and a Site Grading Plan will be available for review in order to refine all groundwater control requirements for the development.

The location of the Site is shown in **Figure 1.** A Site Plan and Architectural Drawings for the proposed development are provided in **Appendix A**.

1.2 Site Description

The Site is located on the southwest corner of the intersection between Whites Road and Kingston Road and is approximately rectangular in shape and 4.85 hectares (ha) in area. The Site was most recently used for commercial purposes and is occupied by three (3) commercial buildings including a strip mall having several occupants. The area immediately surrounding the Site is primarily occupied for residential, commercial, and transportation uses. The Site is bounded by Kingston Road to the north, Whites Road to the east, the Highway 401 corridor to the south, and an automobile dealership to the west.

1.3 Objectives of the Hydrogeological Investigation

The report herein identifies regulations which may be relevant to the development of the Site from a groundwater and environmental perspective and develops a conceptual understanding of the Site setting by characterizing the existing geological and hydrogeological conditions at the Site; including groundwater elevations, groundwater flow direction, and hydraulic properties of soils. Based on the conceptual understanding of the Site and proposed development, an evaluation is made of potential dewatering requirements for the during-construction phase and long-term operation of the Site.

1.4 Scope of Work

1.4.1 Conceptual Understanding

A conceptual understanding of the regional and local geological and hydrogeological system was developed through the review of existing reports and available geological information. This included:

- Mapping and reports by Toronto and Region Conservation Authority (TRCA);
- Geological and Hydrogeological Information from Ontario Geological Survey (OGS);
- Geological and Hydrogeological Information from Ontario Ministry of Natural Resources and Forestry (MNRF); and
- Ministry of the Environment, Conservation, and Parks (MECP) Well Records Database
- Toronto Inspection Ltd. Preliminary Geotechnical Report 603 to 699 Kingston Road, Pickering, Ontario

1.4.2 Field Investigation

The local scale geological and hydrogeological conditions at the Site were characterized using the observations from sixteen (16) boreholes drilled by TIL in February and March of 2019. The boreholes ranged in depth from 4.87 meters below ground surface (mbgs) to 20.88 mbgs.

Of the 16 boreholes, nine (9) were instrumented as monitoring wells to be used in this investigation. Additionally, three (3) extra monitoring wells were installed to improve the understanding of the underlying hydrogeology of the Site. All monitoring wells were installed with 51 mm riser pipe and 10-slot, 10-foot screens. Monitoring wells were used to measure static groundwater levels, to conduct in-situ hydraulic conductivity testing, and to collect representative groundwater quality samples. Monitoring wells were installed according to the relevant provisions of Regulation 903 (Reg. 903) by a specialized drilling contractor under the supervision of TIL field staff. Once it is determined that the monitoring wells installed within the Site are no longer required, they should be decommissioned by a licensed well contractor as per Reg. 903.

1.4.3 Data Analysis

The data analysis component of this study will include the following items:

- Determination of soil stratigraphy and hydrostratigraphy;
- Determination of groundwater elevations and seasonal variability:
- Determination of the hydraulic conductivity of screened soils;
- Evaluation of potential dewatering requirements;
- Identification of groundwater usage in the area and surrounding sensitive receptors; and
- Options for short-term and long-term mitigation of potential impacts to natural features, sensitive receptors, and vulnerable areas.

2 Relevant Regulations and Policies

Environmental regulations and policies which may be relevant to the development of the Site and this hydrogeological investigation are listed below and discussed briefly:

- Regional Municipality of Durham Official Plan (2017)
- Regional Municipality of Durham Sewer Use By-Law No. 55-2013
- Toronto and Region Conservation Authority (TRCA) Policies and Regulations (O.Reg. 166/06):
- Permit to Take Water, Section 34 of the Ontario Water Resource Act (1990); and
- The Clean Water Act (2006).

Region Municipality of Durham Official Plan

The Regional Municipality of Durham (Durham Region) Official Plan identifies development and land-use objectives for Durham Region. Based on a review of Official Plan maps, the Site is located within "Living Areas". The Site is outside of the Durham Region's designated "Greenlands System".

City of Pickering Official Plan

The City of Pickering (City) Official Plan identifies development and land-use objectives within the City and uses Durham Region's Official Plan as an overall framework. Based on a review of the City's Official Plan, the Site is located along the "Kingston Road Corridor" and is therefore subject to the urban design objectives and land development guidelines of the "Kingston Road Corridor Land Development Guidelines". The Kingston Road Land Development Guidelines should be reviewed during the preparation of land development proposals for the Site.

Regional Municipality of Durham Sewer Use By-Law No. 55-2013

Durham Region's sewer use by-law controls discharges to their sanitary and storm sewers including the establishment of sewer discharge criteria. If any private water on the Site will require discharge to the sewer system during or following construction, written approval from Durham Region will be required as authorization and mutual agreement to the terms and limitations of the discharge.

TRCA Policies and Regulations (O.Reg. 166/06)

Under Section 28 of the Conservation Authorities Act, the local conservation authorities are mandated to protect the health and integrity of the regional greenspace system and to maintain or improve the hydrological and ecological functions performed by valley and stream corridors. The TRCA, through its regulatory mandate, is responsible for issuing permits under Ontario Regulation (O.Reg.) 166/06, Development, Interference with Wetlands and Alterations to Shorelines and Watercourses for development proposals or site alteration works within regulated areas.

A preliminary review indicates that the Site is not within a TRCA regulated area. As such, a permit under O.Reg. 166/06 is not required for the proposed development.

Permit to Take Water

A PTTW under Section 34 of the Ontario Water Resource Act (OWRA) is required from the MECP for any water taking that is greater than 50,000 L/day. For water takings related to construction site dewatering, water takings of more than 50,000 L/day but less than 400,000 L/day may be

registered on the Environmental Activity and Sector Registry (EASR), while water takings of more than 400,000 L/day will require a PTTW issued by the MECP.

The Clean Water Act, 2006

The MECP mandates the protection of existing and future sources of drinking water under the CWA. Initiatives undertaken under the CWA include the delineation vulnerable areas including: Wellhead Protection Areas (WHPAs); Significant Groundwater Recharge Areas (SGRAs); Intake Protection Zones (IPZs); and Highly Vulnerable Aquifer areas (HVAs). Other initiatives include the assessment of drinking water quantity threats (WHPA Q1 & Q2 and IPZ-Q) within Source Protection Regions. Source Protection Plans are developed under the CWA which include the restriction and prohibition of certain types of activities and land uses within WHPAs.

Based on a review of the MECP Source Water Protection Information Atlas, the Site falls within the Toronto and Region Source Protection Area (TRSPA) within the CTC Source Protection Region. Upon review of CTC Source Protection Plan mapping, the Site is not shown to be located within the boundary of areas affected by its policies.

3 Regional Geological and Hydrogeological Understanding

3.1 Topography and Drainage

The Site is located at the eastern extent of the Petticoat Creek watershed which is under the jurisdiction of the TRCA. This watershed is approximately 49 km in length and drains an approximate area of 27 km². The headwaters of the Petticoat Creek watershed originate south of the Oak Ridges Moraine and empty to Lake Ontario from the mouth of Petticoat Creek in the Petticoat Creek Conservation Area, which is west of the Site. The nearest water feature to the Site is the Petticoat Creek at approximately 800 m to the southwest. The Petticoat Creek watershed is highly urbanized in its southern reaches where the Site is located.

The regional topography slopes southward towards Lake Ontario. As the Site is currently developed, the local Site topography is relatively flat. There is slight grading from the outer boundaries of the Site towards the inside and to the south. The average ground elevation measured across the Site is approximately 105 meters above sea level (masl).

A topographic map of the Site and the surrounding area is presented in **Figure 2**.

3.2 Physiography

The Site is situated within the Iroquois Plain physiographic region. The Iroquois Plain is the low land that borders Lake Ontario and which was inundated by the historic Iroquois Lake in the late Pleistocene following the last glacial retreat. Iroquois Lake was a proglacial lake that existed 13,000 years ago and was a body of water slightly larger than present-day Lake Ontario. The Iroquois Plain stretches from the Niagara River to the Trent River, a distance of 300 km. Shoreline cliffs, sand bars, and beaches extend about 3 km inland and mark the inland extent of Iroquois Lake. Typically, the Iroquois Plan is characterized by layers of fine silty sand that were characteristic of the former lake bed and shoreline beaches of Iroquois Lake (Chapman and Putnam, 1984).

A physiographic map of the Site and the surrounding area is presented in Figure 3.

3.3 Regional Geology and Hydrogeology

The current understanding of the geological and hydrogeological environment was based on scientific work conducted by and information available from York, Peel, Durham, Toronto and The Conservation Authorities Moraine Coalition (YPDT-CAMC).

Based on regional hydrogeological mapping presented by YPDT-CAMC, the following units overlie the bedrock (from youngest to oldest):

- A. Recent Deposits
- B. Halton Till (Aguitard)
- C. Oak Ridges Moraine (Aquifer)
- D. Newmarket Till (Aguitard)
- E. Thorncliffe Formation (Aquifer)
- F. Sunnybrook Drift (Aguitard)
- G. Scarborough Formation (Aquifer)

The following provides a description of the underlying hydrostratigraphic units in the area and their relevance to the Site based on the conceptual understanding of regional hydrostratigraphy offered by review of YPDT-CAMC mapping:

- **Recent Deposits** The uppermost surficial geologic unit consists of glaciolacustrine deposits consisting of mainly silt and silty clay materials.
- Halton Till The Halton Till was deposited approximately 13,000 years before present (B.P.) during the last glacial advance in the area. Based on the hydrostratigraphic crosssection presented by the YPDT-CAMC, the Halton Till is not present in the area.
- Oak Ridges Moraine The Oak Ridges Moraine (ORM) was deposited approximately 12,000 to 13,000 years B.P. Regionally, the ORM is approximately 160 km long and 5 to 20 km wide. Based on the hydrostratigraphic cross-section presented by the YPDT-CAMC, the ORM is not present in the area.
- Newmarket Till The Newmarket Till was deposited by the Laurentide ice sheet approximately 18,000 to 20,000 years B.P. It consists of mainly sandy silt to silty sand. The Newmarket Till can reach up to 60 m in thickness. Based on the hydrostratigraphic cross-section presented by the YPDT-CAMC, the Newmarket Till is present in the area.
- Thorncliffe Formation The Thorncliffe Formation was deposited approximately 45,000 years B.P. and consists of glaciofluvial deposits containing silt, sand, and clay. Regionally, it acts as an aquifer with variable grain size and thickness. Based on the hydrostratigraphic cross-section by the YPDT-CAMC, the Thorncliffe Formation is present in the area.
- Sunnybrook Drift The Sunnybrook Drift was deposited approximately 45,000 years B.P. It is interpreted to be a silt and clay formation with a thickness of 10 m to 20 m regionally. Based on the hydrostratigraphic cross-section presented by the YPDT-CAMC, the Sunnybrook Drift may be present as a thin layer in the area separating the overlying Thorncliffe aquitard from the underlying Scarborough aquifer.
- Scarborough Formation The Scarborough Formation was deposited during the
 Wisconsin glaciation approximately 70,000 years to 90,000 years B.P. It is interpreted as
 a fluvial-deltaic system consisting of sand, silt, and clay deposits. Based on the geologic
 cross-section presented by the YPDT-CAMC, the Scarborough Formation is present in
 the area.
- Bedrock Underlying the overburden will be bedrock of the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member, and the Eastview Member. These rocks are approximately 438 to 505 million years in age from the Upper Ordovician period. The main materials of these rocks are shale and limestone.

3.3.1 Regional Groundwater Flow

At a regional scale, groundwater flows from the topographic highs associated with the Oak Ridges Moraine, north of the Site, to the topographic lows associated with Lake Ontario to the south.

4 Local Geology and Hydrogeology

The current understanding of the local geological and hydrogeological conditions at the Site is based on the observations from the geotechnical investigation conducted by TIL and the studies undertaken as part of this hydrogeological investigation.

4.1 Overburden

A total of 16 boreholes were drilled across the Site to depths ranging from 4.87 mbgs to 20.88 mbgs in February and March of 2019. In summary, the soil characterizations in the borehole logs indicate the overburden at the Site consists of a layer of fill underlain predominantly by a thick and laterally extensive deposit of sandy silt. Additionally, an isolated sand and gravel deposit with a thickness of approximately 12.9 m was encountered at BH-10. Sand units of limited thickness were observed interrupting the sandy silt at various locations surrounding BH-10. A detailed description of soil stratigraphy is provided in the borehole logs from TIL's geotechnical investigation, which are provided in **Appendix B**.

Mapping from the OGS, accessed through OGSEarth (2010), indicates that the regional surficial geology across the Site is composed of fine-textured, glaciolacustrine deposits of silt and clay with sand and gravel. This description is consistent with observations made on the Site.

4.2 Quaternary Geology

Mapping from the OGS, accessed through OGSEarth (2000), indicates that the regional quaternary geology across the Site is composed of undifferentiated, predominantly sandy silt to silt textured tills. This description is consistent with observations made at the Site.

The quaternary geology of the Site and the surrounding area is presented in **Figure 5**.

4.3 Bedrock Geology

Bedrock was not encountered at the maximum terminal depth (20.88 mbgs) of the borehole investigation for this study. In an attempt to determine the true depth of bedrock in the area, a search was conducted for borehole records and well records from the surrounding area which extended beyond the depth of investigation for this study. The results were inconclusive in that only one (1) record identified the potential for bedrock at a depth of approximately 29.6 mbgs (Well ID 4601908). Mapping from the OGS, accessed through OGS Earth, indicates that shale bedrock of the Georgian Bay Formation underlies the overburden soils in this area. The top of bedrock elevation is expected to be at approximately 50 masl based on the regional hydrostratigraphic cross-section presented by the YPDT-CAMC.

The bedrock geology of the Site and the surrounding area is presented in Figure 6.

4.4 Groundwater Conditions

4.4.1 On-Site Monitoring Well Network

A monitoring network consisting of 12 monitoring wells was established spanning the entirety of the Site and all wells were completed within the sandy silt unit. Monitoring well locations are illustrated together with static groundwater elevations from a monitoring event on May 7, 2019, in plan view in **Figure 7** and in a northeast-southwest oriented geological cross-section in **Figure 8**.

All monitoring wells were drilled with solid stem augers with the exception of BH-7 which was drilled using hollow stem augers. A summary of the monitoring well construction details is provided in **Table 4-1** below.

Table 4-1 Summary of Monitoring Well Details

Well ID	Ground Elevation (masl)	Depth to bottom of well (mbgs)	Well Diameter (m)	Screen Length (m)	Screened Unit
BH-1	105.35	9.20	0.051	3.048	Sandy Silt
BH-5	104.76	9.20	0.051	3.048	Sandy Silt
BH-6 S (MW-6)	104.97	4.60	0.051	3.048	Fill/ Sandy Silt
BH-6 D	104.97	9.20	0.051	3.048	Sandy Silt
BH-7	105.73	19.80	0.051	3.048	Sandy Silt
BH-9	104.89	9.20	0.051	3.048	Sandy Silt
BH-12 (MW-12)	105.01	5.18	0.051	3.048	Sandy Silt
BH-13	105.01	6.10	0.051	3.048	Sandy Silt
BH-14	105.32	4.60	0.051	3.048	Sandy Silt
BH-15S (MW-15)	105.42	6.10	0.051	3.048	Sandy Silt
BH-15 D	105.42	9.20	0.051	3.048	Sandy Silt
BH-16	105.00	19.80	0.051	3.048	Sandy Silt

4.4.2 Groundwater Levels

Static groundwater elevations were recorded in a long-term monitoring program spanning the period of March to June of 2019; manual measurements were taken approximately once every two weeks. Additionally, manual measurements were supplemented with continuous hourly recordings at two monitoring locations, BH-5 and BH-7, using pre-programmed dataloggers. The records from the monitoring program are presented in **Table 4-2** in meters below ground surface and in **Table 4-3** in meters above sea level. Groundwater depths are presented relative to the existing ground surface. A long-term water level monitoring hydrograph is presented in **Figure 9** to illustrate the spatial and seasonal variability of groundwater levels around the Site.

Groundwater elevations within the long-term monitoring period ranged in elevation from a low of 96.53 masl (8.89 mbgs) at BH-15S (MW-15) in northeast corner of the Site in late March, to a high of 103.57 masl (1.4 mbgs) at BH-6S (MW-6) in the southwest corner of the Site in late March. The variability in water levels over the long-term monitoring period was on average, approximately 0.39 m across the Site excluding wells that demonstrated uncharacteristic variability, which were located in the northeast corner of the Site. The range in groundwater elevations at each well over the monitoring period is presented in **Table 4-2** and in **Table 4-3**.

The shallow groundwater table will fluctuate with the change of seasons in response to periods of groundwater recharge resulting from frequent storm events and periods of snowmelt. In this regard, water levels at the Site are anticipated to be lowest in the Winter and highest in the Spring, while the Summer and Fall will have water levels that are intermediary between those extremes.

With that in mind, and based on the long-term monitoring results, the high groundwater table conditions for the Site are anticipated to occur in the month of May.

Table 4-2 Water Level Depths - mbgs

ID	15-Mar-19	29-Mar-19	24-Apr-19	07-May-19	15-May-19	31-May-19	06-Jun-19	Variability (m)
BH-1	3.11	NM	3.15	NM	3.11	2.79	2.78	0.37
BH-5	3.97	3.59	3.50	3.52	3.97	3.55	3.50	0.47
BH-6 S (MW-6)	2.09	1.40	1.41	1.51	2.09	1.64	1.79	0.69
BH-6D	NM	3.01	2.86	2.86	NM	2.90	2.92	0.15
BH-7	4	3.92	3.78	3.67	4.00	3.78	3.75	0.25
BH-9	3.12	3.06	3.10	3.06	3.12	2.99	2.97	0.15
BH-12 (MW-12)	NM	4.15	4.07	4.03	NM	3.78	3.72	0.43
BH-13	2.67	2.30	2.18	2.24	2.67	2.20	2.20	0.49
BH-14	4.52	4.54	4.29	4.10	4.52	4.00	4.00	0.54
BH-15S (MW-15)	dry	8.89	8.62	8.43	dry	3.17	2.92	2.56
BH-15 D	dry	dry	5.48	4.71	dry	8.05	7.94	0.95
BH-16	NM	8.25	4.38	4.42	NM	4.28	4.24	4.01

Notes:

- 1. NM denotes not monitored due to obstruction.
- 2. Water depths relative to existing ground surface.

Table 4-3 Water Level Measurements – masl

ID	15-Mar-19	29-Mar-19	24-Apr-19	07-May-19	15-May-19	31-May-19	06-Jun-19	Variability (m)
BH-1	102.24	NM	102.20	NM	102.24	102.56	102.57	0.37
BH-5	100.79	101.17	101.26	101.24	100.79	101.21	101.26	0.47
BH-6S (MW-6)	102.88	103.57	103.56	103.46	102.88	103.33	103.18	0.69
BH-6D	NM	101.96	102.11	102.11	NM	102.07	102.05	0.15
BH-7	101.73	101.81	101.95	102.06	101.73	101.95	101.98	0.25
BH-9	101.77	101.83	101.79	101.83	101.77	101.90	101.92	0.15
BH-12 (MW-12)	NM	100.86	100.94	100.98	NM	101.23	101.29	0.43
BH-13	102.22	102.59	102.71	102.65	102.22	102.69	102.69	0.49
BH-14	100.80	100.78	101.03	101.22	100.80	101.32	101.32	0.54
BH-15S (MW-15)	dry	96.53	96.80	96.99	dry	102.25	102.50	2.56
BH-15 D	dry	dry	99.94	100.71	dry	97.37	97.48	0.95
BH-16	NM	96.75	100.62	100.58	NM	100.72	100.76	4.01

Notes:

^{1.} NM denotes not monitored due to obstruction.

4.4.3 Hydraulic Conductivity

Single well hydraulic response testing in the form of rising-head tests was conducted in March of 2019 at select monitoring wells to measure the in-situ hydraulic conductivity (K) of the screened overburden materials. Prior to testing, each well was developed in order to mitigate potential influences from impacts to the native, near-well materials disturbed by drilling.

During the rising head test, a pseudo-instantaneous drop in the water level was achieved by extracting water from the well using a manual inertial pump. The water level recovery was measured by a datalogger taking readings at pre-programmed intervals and left in place to record recovery. For the purposes of the test, recovery was considered to be complete at or above approximately 85% of the pre-test water column.

The hydraulic conductivity was estimated using the Hvorslev (1951) method with the recovery data recorded by the dataloggers. Where available, hydraulic conductivity was also calculated using data from grainsize analyses using the Hazen (1911) method. The corresponding analyses are presented in **Appendix C**.

A summary of hydraulic conductivities obtained from the rising head tests and grainsize analyses is presented in **Table 4-4**.

Table 4-4 Summary of Hydraulic Conductivity Tests

Well ID	Screen Interval (masl) / Sample Depth (masl)	Material Tested	Hvorslev Method K (m/s)	Hazen Method K (m/s)
DU 1	96.15 – 99.20	Condy Cilt	5.5 x 10 ⁻⁸	ı
BH-1	96.25	Sandy Silt	5.5 X 10°	1.4 x 10 ⁻⁷
BH-5	96.15 – 99.20	Sandy Silt	8.7 x 10 ⁻⁸ – 1.0 x 10 ⁻⁷	-
BH-6 S /(MW-6)	100.85 – 103.90	Sandy Silt	2.7 x 10 ⁻⁸ – 7.3 x 10 ⁻⁸	-
BH-7	85.55 – 88.60	Sandy Silt	1.8 x 10 ⁻⁷	-
BH-9	96.15 – 99.20	Sandy Silt	1.0 x 10 ⁻⁷ – 1.4 x 10 ⁻⁷	-
BH-10	96.88	Sand and Gravel	-	7.7 x 10 ⁻⁵
BH-13	99.25 – 102.30	Sandy Silt	2.3 x 10 ⁻⁸ – 3.6 x 10 ⁻⁸	-
BH-16	85.55 – 88.60	Sandy Silt	1.6 x 10 ⁻⁸	-

Notes:

The hydraulic conductivity of the sandy silt ranged between 1.6×10^{-8} m/s and 1.8×10^{-7} m/s with a geometric mean of 6.0×10^{-8} m/s. The range in reported in-situ hydraulic conductivity values falls within the literature range for sandy silt materials. The observed variability in values reported is expected to be a result of the heterogeneous and anisotropic nature of the materials tested.

The sand and gravel deposit, with an estimated hydraulic conductivity of 7.7 x 10⁻⁵ m/s from grainsize analysis, represents the most conductive unit at the Site. It should be noted that measures of hydraulic conductivity obtained using the Hazen (1911) method are determined using a grab sample and are therefore considered representative only of the micro-scale area where the sample was collected. As a result, the estimated hydraulic conductivity may not be representative of the larger unit itself on a macro scale and typically provides overly conservative

 [–] indicates not applicable

estimates of hydraulic conductivity. For the purposes of the investigation, the sand and gravel unit is estimated to have a hydraulic conductivity equivalent to 5 x 10⁻⁶ m/s.

4.4.4 Groundwater Flow

Based on the groundwater elevations and trends observed over the long-term monitoring period, the local groundwater flow direction in the shallow water table system is a subdued reflection of the local topographic relief in that the groundwater flows towards the inside of the Site from the perimeter and to the south towards Lake Ontario.

4.4.5 Groundwater Quality

Unfiltered groundwater samples were collected from BH-7 on March 12, 2019. The collected samples were sent to SGS Environmental Services in Lakefield, ON. The samples were analyzed for the parameters and corresponding sewer discharge criteria of the *Regional Municipality of Durham Sewer Use By-Law No. 55-2013* (By-Law 55-2013).

Based on the laboratory analytical results, the results for all parameters, with the exception of Total Suspended Solids (TSS), were within the criteria outlined in *Table 2 – Limits for Storm Sewer Discharge* of By-Law 55-2013. Additionally, all parameters, including TSS, were found to have met the criteria for *Table 1 – Limits for Sanitary Sewer Discharge* of By-Law 55-2013. Use of the municipal sewers for disposal of groundwater is contingent on approval from Durham Region and the quality of the discharge relative to the criteria of the receiving sewer, among others, is satisfied.

The laboratory analytical results and Certificate of Analysis are included in **Appendix D** and a tabulated summary is provided in **Table 4-5** below.

Table 4-5 Groundwater Quality Results

Analysis	Units	Durham Sanitary By-law Limit	Durham Storm By-law Limit	RL	BH-7		
General Chemistry							
Total BOD	mg/L	300	15	2	< 4		
Total Kjeldahl Nitrogen (TKN)	mg/L	100	-	0.5	0.6		
рН	рН	6.0-11.5	6.0-9.5	0.05	8.15		
Phenols-4AAP	mg/L	1	0.008	0.002	< 0.002		
Total Suspended Solids (TSS)	mg/L	350	15	2	48		
Total Phosphorus (P)	mg/L	10	0.4	0.003	0.055		
Sulphate	mg/L	1500	-	2	15		
Oil and Grease							
Total Animal / Vegetable Oil and Grease	mg/L	150	-	4	< 4		
Total Oil & Grease Mineral / Synthetic	mg/L	15	-	4	< 4		
Nonylphenol and Ethoxylates							
Nonylphenol Ethoxylate (Total)	mg/L	0.2	0.01	0.01	< 0.01		
Nonylphenol (Total)	mg/L	0.02	0.001	0.001	< 0.001		
Metals and Inorganics							

Table 4-5 Groundwater Quality Results

Total Aluminum (Al)		·	Durham	Durham		
Total Aluminum (Al)	Analysis	Units	Sanitary	Storm	RL	BH-7
Total Antimony (Sb)				By-law Limit		
Total Arsenic (As)	, ,			-		
Total Cadmium (Cd)	Total Antimony (Sb)	mg/L	5	-	0.0009	< 0.0009
Total Chromium (Cr)	Total Arsenic (As)	mg/L	1	0.02	0.0002	0.00021
Total Cobalt (Co)	Total Cadmium (Cd)	mg/L	0.7	0.008	0.000003	0.00001
Total Copper (Cu)	Total Chromium (Cr)	mg/L	2	0.08	0.00008	0.00209
Total Cyanide (CN)	Total Cobalt (Co)	mg/L	5	-	0.000004	0.000312
Total Fluoride (F-)	Total Copper (Cu)	mg/L	3	0.05	0.0002	0.0061
Total Lead (Pb) mg/L 1 0.12 0.0001 0.00056 Total Manganese (Mn) mg/L 5 0.15 0.00001 0.0391 Total Mercury (Hg) mg/L 0.01 0.0004 0.00001 <0.00001	Total Cyanide (CN)	mg/L	2	0.02	0.01	< 0.01
Total Manganese (Mn) mg/L 5 0.15 0.00001 0.0391 Total Mercury (Hg) mg/L 0.01 0.0004 0.00001 < 0.00001	Total Fluoride (F-)	mg/L	10	-	0.06	0.39
Total Mercury (Hg)	Total Lead (Pb)	mg/L	1	0.12	0.00001	0.00056
Total Molybdenum (Mo) mg/L 5 - 0.00004 0.0261 Total Nickel (Ni) mg/L 2 0.08 0.0001 0.0009 Total Selenium (Se) mg/L 1 0.02 0.00004 0.00005 Total Silver (Ag) mg/L 5 0.12 0.00005 < 0.00005	Total Manganese (Mn)	mg/L	5	0.15	0.00001	0.0391
Total Nickel (Ni) mg/L 2 0.08 0.0001 0.0009 Total Selenium (Se) mg/L 1 0.02 0.00004 0.00005 Total Silver (Ag) mg/L 5 0.12 0.00005 < 0.00005	Total Mercury (Hg)	mg/L	0.01	0.0004	0.00001	< 0.00001
Total Selenium (Se) mg/L 1 0.02 0.00004 0.00005 Total Silver (Ag) mg/L 5 0.12 0.00005 < 0.00005	Total Molybdenum (Mo)	mg/L	5	-	0.00004	0.0261
Total Silver (Ag) mg/L 5 0.12 0.00005 < 0.00005 Total Tin (Sn) mg/L 5 - 0.00006 0.00056 Total Titanium (Ti) mg/L 5 - 0.00005 0.0121 Total Zinc (Zn) mg/L 2 0.04 0.002 0.003 Semivolatile Organics Di-N-butyl phthalate mg/L 0.08 0.015 0.002 < 0.002	Total Nickel (Ni)	mg/L	2	0.08	0.0001	0.0009
Total Tin (Sn) mg/L 5 - 0.00006 0.00056 Total Titanium (Ti) mg/L 5 - 0.00005 0.0121 Total Zinc (Zn) mg/L 2 0.04 0.002 0.003 Semivolatile Organics Di-N-butyl phthalate mg/L 0.08 0.015 0.002 < 0.002	Total Selenium (Se)	mg/L	1	0.02	0.00004	0.00005
Total Titanium (Ti) mg/L 5 - 0.00005 0.0121 Total Zinc (Zn) mg/L 2 0.04 0.002 0.003 Semivolatile Organics Di-N-butyl phthalate mg/L 0.08 0.015 0.002 < 0.002 Bis(2-ethylhexyl)phthalate mg/L 0.012 0.0088 0.002 < 0.002 Volatile Organics Volatile Organics Total Tital	Total Silver (Ag)	mg/L	5	0.12	0.00005	< 0.00005
Total Zinc (Zn) mg/L 2 0.04 0.002 0.003 Semivolatile Organics Di-N-butyl phthalate mg/L 0.08 0.015 0.002 < 0.002 Bis(2-ethylhexyl)phthalate mg/L 0.012 0.0088 0.002 < 0.002 Volatile Organics User Chloroform mg/L 0.04 0.002 0.0005 < 0.0005 1,2-Dichlorobenzene mg/L 0.05 0.0056 0.0005 < 0.0005 1,4-Dichlorobenzene mg/L 0.08 0.0068 0.0005 < 0.0005 1,4-Dichloroethylene mg/L 4 0.0056 0.0005 < 0.0005 1,2-Dichloroethylene mg/L 4 0.0056 0.0005 < 0.0005 trans-1,3-Dichloropropene mg/L 0.14 0.0056 0.0005 < 0.0005 Methylene Chloride mg/L 2 0.0052 0.0005 < 0.0005 1,1,2,2-Tetrachloroethylene mg/L 1 0.0044 0.0005 < 0.0005 Trichloroethylene <t< td=""><td>Total Tin (Sn)</td><td>mg/L</td><td>5</td><td>-</td><td>0.00006</td><td>0.00056</td></t<>	Total Tin (Sn)	mg/L	5	-	0.00006	0.00056
Semivolatile Organics Di-N-butyl phthalate mg/L 0.08 0.015 0.002 < 0.002	Total Titanium (Ti)	mg/L	5	-	0.00005	0.0121
Di-N-butyl phthalate mg/L 0.08 0.015 0.002 < 0.002 Bis(2-ethylhexyl)phthalate mg/L 0.012 0.0088 0.002 < 0.002	Total Zinc (Zn)	mg/L	2	0.04	0.002	0.003
Bis(2-ethylhexyl)phthalate mg/L 0.012 0.0088 0.002 < 0.002 Volatile Organics Use of the properties of the pro	Semivolatile Organics					
Volatile Organics mg/L 0.04 0.002 0.0005 < 0.0005 1,2-Dichlorobenzene mg/L 0.05 0.0056 0.0005 < 0.0005	Di-N-butyl phthalate	mg/L	0.08	0.015	0.002	< 0.002
Chloroform mg/L 0.04 0.002 0.0005 < 0.0005 1,2-Dichlorobenzene mg/L 0.05 0.0056 0.0005 < 0.0005	Bis(2-ethylhexyl)phthalate	mg/L	0.012	0.0088	0.002	< 0.002
1,2-Dichlorobenzene mg/L 0.05 0.0056 0.0005 < 0.0005 1,4-Dichlorobenzene mg/L 0.08 0.0068 0.0005 < 0.0005	Volatile Organics					
1,4-Dichlorobenzene mg/L 0.08 0.0068 0.0005 < 0.0005 cis-1,2-Dichloroethylene mg/L 4 0.0056 0.0005 < 0.0005	Chloroform	mg/L	0.04	0.002	0.0005	< 0.0005
cis-1,2-Dichloroethylene mg/L 4 0.0056 0.0005 < 0.0005 trans-1,3-Dichloropropene mg/L 0.14 0.0056 0.0005 < 0.0005	1,2-Dichlorobenzene	mg/L	0.05	0.0056	0.0005	< 0.0005
trans-1,3-Dichloropropene mg/L 0.14 0.0056 0.0005 < 0.0005 Methylene Chloride mg/L 2 0.0052 0.0005 < 0.0005	1,4-Dichlorobenzene	mg/L	0.08	0.0068	0.0005	< 0.0005
Methylene Chloride mg/L 2 0.0052 0.0005 < 0.0005 1,1,2,2-Tetrachloroethane mg/L 1.4 0.017 0.0005 < 0.0005	cis-1,2-Dichloroethylene	mg/L	4	0.0056	0.0005	< 0.0005
1,1,2,2-Tetrachloroethane mg/L 1.4 0.017 0.0005 < 0.0005 Tetrachloroethylene mg/L 1 0.0044 0.0005 < 0.0005	trans-1,3-Dichloropropene	mg/L	0.14	0.0056	0.0005	< 0.0005
Tetrachloroethylene mg/L 1 0.0044 0.0005 < 0.0005 Trichloroethylene mg/L 0.4 0.0076 0.0005 < 0.0005	Methylene Chloride	mg/L	2	0.0052	0.0005	< 0.0005
Trichloroethylene mg/L 0.4 0.0076 0.0005 < 0.0005 Methyl Ethyl Ketone mg/L 8 - 0.02 0.18 Styrene mg/L 0.2 - 0.0005 < 0.0005	1,1,2,2-Tetrachloroethane	mg/L	1.4	0.017	0.0005	< 0.0005
Methyl Ethyl Ketone mg/L 8 - 0.02 0.18 Styrene mg/L 0.2 - 0.0005 < 0.0005	Tetrachloroethylene	mg/L	1	0.0044	0.0005	< 0.0005
Styrene mg/L 0.2 - 0.0005 < 0.0005 Volatile Organics - BTEX Benzene mg/L 0.01 0.002 0.0005 < 0.0005	Trichloroethylene	mg/L	0.4	0.0076	0.0005	< 0.0005
Volatile Organics - BTEX Benzene mg/L 0.01 0.002 0.0005 < 0.0005	Methyl Ethyl Ketone	mg/L	8	-	0.02	0.18
Benzene mg/L 0.01 0.002 0.0005 < 0.0005 Ethylbenzene mg/L 0.16 0.002 0.0005 < 0.0005	Styrene	mg/L	0.2	-	0.0005	< 0.0005
Ethylbenzene mg/L 0.16 0.002 0.0005 < 0.0005	Volatile Organics - BTEX					
	Benzene	mg/L	0.01	0.002	0.0005	< 0.0005
Toluene mg/L 0.016 0.002 0.0005 < 0.0005	Ethylbenzene	mg/L	0.16	0.002	0.0005	< 0.0005
	Toluene	mg/L	0.016	0.002	0.0005	< 0.0005

Table 4-5 Groundwater Quality Results

Analysis	Units	Durham Sanitary By-law Limit	Durham Storm By-law Limit	RL	BH-7
Total Xylenes	mg/L	1.4	0.0044	0.0005	< 0.0005
PCBs					
Total PCB	mg/L	0.001	0.0004	0.0001	< 0.0001
Microbiological					
Escherichia coli (E.Coli)	CFU/100mL	-	200	•	< 2

Notes: Highlighted cells indicate an exceedance of Table 2 criteria.

5 Calculation of Dewatering Rates and Estimation of Zone of Influence

Dewatering rates were estimated based on TIL's interpretation of the hydrogeological conditions of the Site and the proposed development details outlined in the Site Plan which is included in **Appendix A**. At the time of preparation of this report, the proposed top-of-slab elevations for the underground parking levels in each parking facility were not known. For the purposes of the dewatering assessment, each 1-storey underground parking facility was assumed to have a top-of-slab depth of 3 mbgs. Similarly, each 2-storey underground parking facility was assumed to have a top-of-slab depth of 6 mbgs. If these assumptions are proven to be inaccurate, TIL should be contacted to re-evaluate the dewatering requirements for the proposed parking facilities in conjunction with potential groundwater control requirements for Site services prior to the submission of applications for dewatering and/or discharge permits, as the case may be.

Estimates are based on groundwater elevations observed during monitoring events and the hydraulic properties of the soils determined by in-situ hydraulic conductivity tests and grainsize analyses. This section does not provide a design of dewatering operations, instead, it provides an estimate of the expected dewatering rate required to obtain the desired drawdown. The most effective dewatering measures for the prevalent ground conditions and the design of the dewatering operations are the sole responsibility of the dewatering contractor on-Site.

5.1 Aquifer Characteristics

The underlying geology of the Site was determined to consist primarily of sandy silt with intermittent layers of sand. However, a significant sand and gravel deposit with an approximate thickness of 12.9 m was encountered at BH-10. This deposit should be expected to contribute increased flows in comparison to the poorly graded tills which have higher proportions of fine-grained material. However, as it is anticipated that this unit is not laterally extensive, it is expected to drain relatively quickly in comparison to the sandy silt materials.

Groundwater elevations within the overburden over the long-term monitoring program were observed to range between a low of 96.53 masl (8.89 mbgs) and a high of 103.57 masl (1.4 mbgs). Considering the distribution of proposed parking facilities at the Site, the groundwater elevation considered in the dewatering analysis of each facility corresponds to the groundwater level from the nearest monitoring well to the location of that facility.

Based on the estimates of hydraulic conductivity and anticipated depth of excavation required for each parking facility, the hydraulic conductivity of the sandy silt considered in the estimation of dewatering rates for facilities in this material was 6.0×10^{-8} m/s. Similarly, the dewatering rates for parking facilities that are anticipated to contact the sand and gravel unit were estimated using a hydraulic conductivity of 5.0×10^{-6} m/s.

5.2 Required Drawdown

Dewatering will be required to draw the water level down to below the depth of excavation required for the parking and building foundations or in the case of relatively impermeable material, to control groundwater seepage in the excavation. An additional 1 m of water will be added as a factor of safety since it is expected that the water levels may fluctuate seasonally.

For the purposes of the dewatering calculations, the rate of dewatering was calculated separately for each individual parking facility assuming each building would be constructed in a staged approach. If the underground levels will be constructed concurrently, there could be a reduction

in the dewatering rates as a whole according to the principle of superposition of drawdowns between dewatering systems where their respective areas of influence overlap.

The dewatering requirements for the Site are summarized in **Table 5-1** below.

Table 5-1 Summary of Dewatering Requirements

Parking Facility	Ground Surface (masl)	Depth of Excavation (mbgs/masl)	Width of Excavation (m)	Length of Excavation (m)	Water Level Elevation (masl)	Maximum Required Drawdown (m)	Drawdown Water Level (masl)
Podium 1	105.20	4 / 101.20	35	170	103.57	3.38	100.20
Podium 4	104.85	7 / 97.85	36	123	101.50	4.66	96.85
Block 1, Block 2, Tower 4	105.25	7 / 98.25	60	150	102.00	4.75	97.25
Block 3, Block 4, Tower 5, Tower 8	104.76	7 / 97.76	60	230	101.88	5.12	96.76

5.3 Radius of Influence

5.3.1 Unconfined Aquifers

An estimate of the Radius of Influence (ROI) for dewatering excavations in unconfined aquifers can be calculated using the following equation (Bear, 1979):

$$R_{01} = 2.45\sqrt{\frac{HK}{S_{\nu}}t}$$

where,

Ro1 = Radius of Influence, beyond which there is negligible drawdown (m)
 H = Distance from initial static water level to assumed bottom of saturated aquifer contributing flows (m)
 Sy = Specific Yield of the aquifer formation (based on Johnson (1967))
 t = Time, in seconds, required to draw the static groundwater level to the desired level (assumed to be equivalent to 14 days)
 K = Hydraulic Conductivity of aquifer formation (m/s)

A summary of the ROI of dewatering estimated for each parking facility is presented in **Table 5-2** below.

Table 5-2 ROI Estimate

Parking Facility	H (m)	S _y [-]	K (m/s)	t (s)	R ₀₁ (m)
Podium 1	12	0.20	6.0 x 10 ⁻⁸	1,209,600	6
Podium 4	14	0.25	5.0 x 10 ⁻⁶	1,209,600	45
Block 1, Block 2, Tower 4	9	0.20	6.0 x 10 ⁻⁸	1,209,600	5
Block 3, Block 4, Tower 5, Tower 8	9	0.20	6.0 x 10 ⁻⁸	1,209,600	5

5.4 Dewatering Rate Calculations

Dewatering calculations are based on equations of radial and planar flow where the system can be approximated as a well with equivalent radius. The dewatering equations referenced in the completion of this analysis are provided in *Construction Dewatering and Groundwater Control:* New Methods and Applications – Third Edition. New York, New York: John Wiley & Sons (Powers et. al., 2007).

The analytical assessment assumes steady-state flow into an open excavation; however, it should be recognized that a transient condition will exist at the start of dewatering and that during this time, flows can be expected to be higher but will dissipate over time to steady-state conditions as aquifer storage is depleted. The equations of radial flow have the following assumptions:

- Ideal aquifer conditions (homogeneous, isotropic, uniform thickness, and has infinite areal extent);
- Fully penetrating pumping well;
- Only horizontal flow to the pumping well; and
- Constant pumping rate with the flow to the pumping well corresponding to steady-state conditions.

The following equation was used for square excavations and is based on unconfined aquifer conditions (Powers et. al., 2007):

$$Q = \frac{\pi K (H^2 - h^2)}{\ln(R_{02}/r_s)}$$

In order to estimate dewatering rates for the excavations required for the construction of the underground parking garages for Podium 1, for Podium 4, and for Block 3, Block 4, Tower 5, and Tower 8, flow should be assumed to occur radially at both ends as well as planar along both sides. The following equation was used for rectangular excavations and is based on unconfined aquifer conditions (Powers et. al., 2007):

$$Q = \frac{\pi K(H^2 - h^2)}{\ln(R_{02}/r_s)} + 2\left[\frac{xK(H^2 - h^2)}{2L}\right]$$

where,

Q = Anticipated pumping rate (m^3/day)

K = Hydraulic conductivity (m/day)

H = Distance from the static water level to the bottom of the saturated aguifer (m)

H = Depth of water in the well while pumping (m)

 R_{02} = Radius of Influence (m) from excavation, beyond which there is negligible

drawdown. Equivalent to the sum of R₀₁ and r_s. (m)

 r_s = Equivalent well radius determined by equivalent perimeter approximation of a

rectangular excavation (m)

x = Length of excavation (m)

L = Distance from a line source to the long side of the excavation,

equivalent to R₀₂ (m)

Allowance for Precipitation

While the excavation remains open it is anticipated that it will be necessary to dewater incident stormwater from direct precipitation over the Site. Accounting for rainfall is considered to provide an estimate of the worst-case dewatering scenario for applying for dewatering discharge permits and approvals. To account for additional dewatering volumes from precipitation, a design storm with a 24-hour depth of accumulation of 10 mm was considered, which represents the 80th percentile of all rainfall volumes recorded at the Oshawa Climate Station (ID 6155875) in 2019.

A summary of the dewatering rates estimated for each parking facility is presented in **Table 5-3** below.

Table 5-3 Dewatering Rate Summary

Parking Facility	Н	h	К	rs	Radius of Influence R ₀₁ + r _s	Short-Term Pumping Rate Q			Long-Term Pumping Rate Q
	m	m	m/day	m	m	m³/day	L/day	L/s	L/day
Podium 1	12	9	5.2 x 10 ⁻³	66	72	28.771	28,771	0.33	9,590
(Tower 1					Precipitation	59.500	59,500	0.69	-
Tower 2 Tower 3)					Sub-Total	88.271	88,271	1.02	9,590
Podium 4	14	9	4.3 x 10 ⁻¹	51	96	569.298	569,298	6.59	189,766
(Tower 6 Tower 7)					Precipitation	43.050	43,050	0.50	-
					Sub-Total	612.348	612,348	7.09	189,766
Block 1	9	4	5.2 x 10 ⁻³	67	72	27.408	27,408	0.32	9,136
Block 2					Precipitation	90.000	90,000	1.04	-
Tower 4					Sub-Total	117.408	117,408	1.36	9,136
Block 3	9	4	5.2 x 10 ⁻³	64	69	43.416	43,416	0.50	14,472
Block 4					Precipitation	140.300	140,300	1.62	-
Tower 5 Tower 8					Sub-Total	183.716	183,716	2.13	14,472
				•	Summary	1,001.743	1,001,743	11.59	222,964

^{**} Pumping rates include a factor of safety of 2.

To account for uncertainties and the natural variability in the range of hydraulic conductivity that can be encountered during dewatering, the calculated groundwater pumping rates were multiplied by a factor of safety of 2. Incorporating the factor of safety in the dewatering calculations also provides flexibility to the dewatering contractor in meeting project schedules and helps to account for the initial pumping period under transient conditions when dewatering volumes are expected to be higher as groundwater storage is depleted. Following the initial transient period, dewatering rates are expected to stabilize. The complete dewatering analysis can be found in **Appendix E**.

As was mentioned previously, this dewatering analysis has been prepared for permitting requirements only. As such, the dewatering rates are not meant to be solely relied upon in the determination of the approach used in the design of the dewatering system. The dewatering contractor is ultimately responsible for ensuring project timelines with respect to dewatering are met and that the open excavations are safe from a groundwater seepage perspective.

5.5 Options for Dewatering Discharge and Permitting

5.5.1 Dewatering Permit Requirements

The estimated maximum cumulative groundwater dewatering rate required during construction to achieve the desired conditions within the excavations is 668,893 L/day. Additionally, it is recommended to account for incident precipitation when applying for potential dewatering and discharge approvals to ensure there is contingency available for maintaining a dry excavation during periods of rain. An accumulation of 10 mm over 24 hours within each excavation was considered in this investigation, which requires accounting for an additional 332,850 L/day above the estimated groundwater dewatering rates.

Considering both groundwater and stormwater control requirements, the cumulative rate of dewatering is then 1,001,743 L/day. Since this rate is greater than 400,000 L/day and may include combinations of groundwater and stormwater, a PTTW issued by the MECP will be required to facilitate construction dewatering if all excavations are to be opened at once. Since the dewatering rates between all blocks are variable, consideration of the approach to construction phasing in the context of potential dewatering permitting requirements is warranted to determine the maximum dewatering rate that should be requested in the PTTW application. Since the estimated dewatering rate for Podium 4 exceeds 400,000 L/day, the amalgamated rate requested in the PTTW application should consider the dewatering rate from Podium 4 as the minimum and that any additional dewatering requirements for other blocks be added to calculate the total permitting rate if they will be completed concurrently.

Since the foundations for all parking facilities will extend below the water table, it is anticipated that a method of groundwater control will be required over the long-term to manage hydrostatic pressure and groundwater seepage around the foundation floor and walls. If foundation drains and sumps are proposed for long-term groundwater control, the estimated rate of dewatering will be approximately 1/3rd the maximum cumulative rate of short-term groundwater dewatering, or approximately 222,964 L/day. Since the estimated rate of groundwater dewatering in the long-term is greater than 50,000 L/day, a Category 3 PTTW issued by the MECP will be required if long-term groundwater takings are proposed. It will be necessary to demonstrate in the permit application that no unacceptable impacts over the long-term are expected.

Separate applications for PTTWs will be needed to satisfy both the short-term and the long-term permitting requirements on the project. In each case, the PTTW application will require preparation of a hydrogeological report to support the application that includes the permitting rate required, identification of potential unacceptable impacts of the water taking, monitoring requirements, and a contingency plan to mitigate unacceptable impacts in the event they were to occur. It is recommended that a minimum of six (6) months lead time be provided for the MECP PTTW application review and approval process if PTTWs for construction dewatering and long-term operation of the Site will be pursued.

5.5.2 Disposal Options for Discharge Water

At this time, the groundwater quality, as it relates to By-Law 55-2013, does not meet the discharge criteria in the *Table 2 – Limits for Storm Sewer Discharge*; however, it does meet the *Table 1 – Limits for Sanitary Sewer Discharge*. With approval from Durham Region, excess groundwater can be directed to the municipal sanitary sewers without requiring additional treatment. Disposal options for excess groundwater should be considered prior to construction as a discharge agreement will be required from Durham Region to authorize the discharge of

dewatering effluent to municipal sewers. Consultation with Durham Region is recommended to determine the requirements for dewatering discharge agreements on this project.

If dewatering discharge during construction is directed to a Durham Region municipal sewer, By-Law 55-2013 provides that dewatering operations must comply with the *Construction Specifications for Control of Water from Dewatering Operations, OPSS 518, November 2006.* If disposal to a Durham Region municipal sewer is proposed during construction, the treatment of dewatering discharge is the responsibility of the dewatering contractor on-Site. It is incumbent upon them to ensure that the dewatering discharge effluent meets the discharge criteria in By-Law 55-2013 for the receiving sewer and is in accordance with any and all terms and/or conditions of their discharge approval.

If a Private Water Drainage System (PWDS) is required for managing groundwater seepage over the long-term, approval for the connection to municipal sewers will be required from Durham Region. Alternatively, waterproofing of the foundation can be undertaken as an alternative to a PWDS. The option of waterproofing versus installing a PWDS and connecting to a municipal sewer should be considered prior to construction as approval for the connection from Durham Region will be required and may include separate agreements for each building complex. Further consultation with Durham Region is recommended if the discharge of groundwater to a municipal sewer is proposed over the long-term.

6 Potential Receptors

As part of this program, potential groundwater receptors including domestic or permitted water supplies were identified. Additionally, the surrounding area was evaluated for potential ecological receptors to construction and dewatering.

An understanding of typical groundwater usage in the area was obtained by:

- Querying MECP water well records within a 1 km radius of the Site;
- Identifying permitted water takers within a 1 km radius of the Site.

6.1 MECP Water Well Record Search

A search of the MECP well records database was conducted within a 1 km radius of the study area. The search results showed a total of 73 drilled or dug wells within the search area. Water well usage details are summarized in **Table 6-1**. **Appendix F** provides the list of MECP well records returned by the search.

Table 6-1 MECP Well Records within 1 km Radius

Primary Well Use	Number of Wells within 1 km Buffer of Study Area	Percentage of Total
Dewatering - Commercial	3	4%
Water Supply - Domestic	14	19%
Test/Observation/Monitoring Well	26	36%
Abandoned/Unknown	30	41%
Total	73	

The primary well usage in this area (other than for abandoned/unknown) is for test/ observation/ monitoring well purposes (36%). Of the well records queried, 14 (19%) were shown to be used for domestic water supply. A review of these records shows that they were filed in the 1950s to 1970s. As the area surrounding the Site is developed and there no rural dwellings, in addition to the availability of municipal water, it is expected that the domestic water supplies are no longer in use. The locations of MECP well records within the 1 km search radius are shown in **Figure 11**.

6.2 Permitted Water Users

A search was conducted to identify the permitted groundwater users within 1 km of the study area. No active PTTWs were identified within the 1 km boundary as illustrated in **Figure 11**.

6.3 Ecological Receptors

Based on a review of MNRF's Natural Heritage Areas mapping portal, the Site is not located within 500 m of Provincially Significant Wetlands, woodlots, and major watercourses. Furthermore, the Site is not located within an Area of Natural Scientific Interest (ANSI).

Considering the anticipated radius of influence for dewatering activities on-Site and degree of urbanization in the area, there are no anticipated ecological receptors to construction or dewatering activities at the Site that cannot be managed by proper implementation of barrier controls to restrict off-Site releases of construction debris and/or sediment.

7 Potential Impacts and Proposed Mitigation

7.1 Identification and Mitigation of Short-Term Impacts

7.1.1 Potential Short-Term Impacts to the Groundwater System

Dewatering activities may cause the local water level to drop temporarily. The Site is not located within a WHPA, an SGRA, or an HVA area. As such, short-term impacts to the groundwater system will be limited to the temporary drawdown resulting from construction dewatering. Following construction dewatering, the water table is expected to recover to pre-construction conditions.

7.1.2 Potential Short-Term Impacts to the Surface Water System

Dewatering can result in a decline in the groundwater level in shallow unconfined aquifers and change how the groundwater and surface water systems interact. There are no surface water features within the anticipated ROI of dewatering and as such, dewatering activities are unlikely to have an impact on surrounding surface water features.

7.1.3 Potential Short-Term Impacts to Other Groundwater Users

Dewatering can result in a decline in the groundwater level in shallow unconfined aquifers, reducing the available groundwater for nearby groundwater takers. Based on the results of the water well records and PTTWs review, there are no active groundwater takers within the anticipated ROI of dewatering or the 1 km search radius for these receptors. Considering the availability of municipal servicing in the area, no short-term impacts to other groundwater users are anticipated.

7.1.4 Potential Short-Term Impacts to Land Stability

Dewatering activities remove groundwater from the soil thereby increasing the effective stress of those soils whose porespaces were once occupied by water. The increase in effective stress can naturally lead to settlement in subsurface materials which can manifest at the ground surface as and damage local infrastructure. Ground settlement related to construction dewatering should be reviewed by a geotechnical engineer prior to construction to evaluate and mitigate potential risks.

7.1.5 Mitigation of Short-Term Impacts

There are no sensitive receivers identified within the anticipated ROI for dewatering. Therefore, impacts to the groundwater system and other groundwater users are not expected and mitigative measures will therefore not be required except where mandated by dewatering permits or approvals.

A Spill Prevention and Response Plan, as well as an Erosion and Sediment Control (ESC) Plan, should be implemented during construction to limit the possibility of downward percolation of spilled contaminants to the groundwater table or to off-Site receptors during construction.

7.2 Identification and Mitigation of Long-Term Impacts

7.2.1 Potential Long-Term Impacts to the Groundwater System

The Site is not located within a WHPA, an SGRA, or an HVA. As such, unacceptable impacts to the groundwater system over the long-term are not expected.

When there exists a possibility that groundwater may be diverted and follow the path of new utilities or services, groundwater barriers may be used to prevent groundwater migration within utility or service networks. Should the groundwater and soil conditions require the need for clay seals, it should be discussed on a specific pipe location basis with the engineer responsible for the design. For details and additional design information, see OPSD 802.095 and OPSS 1205.

7.2.2 Potential Long-Term Impacts to the Surface Water System

The Site is not located within an IPZ nor near to any water bodies or watercourses and therefore no unacceptable long-term impacts to the surface water system are expected.

7.2.3 Potential Long-Term Impacts to Other Groundwater Users

Long-term dewatering can result in a decline in the groundwater level in shallow unconfined aquifers, reducing the available groundwater for nearby groundwater takers. However, based on the results of the water well records and PTTWs review, there are no active groundwater takers within 1 km of the Site. As a result, no long-term impacts to other groundwater users are expected.

7.2.4 Mitigation of Long-Term Impacts

Long-term impacts to the groundwater system, surface water system, and other groundwater users are not expected and therefore no mitigative measures are considered necessary at this time. Considering the size of the Site, a Salt Management Plan is recommended over the long-term.

8 Summary

A summary of the hydrogeological investigation is provided below:

- The Site is located within the Toronto and Region Source Protection Area and CTC Source Protection Region. A review of the CTC Source Protection Plan policy boundaries indicates that no specific CTC Source Water Protection Plan policies will apply to the development of the Site.
- The Site is located within the Petticoat Creek Watershed under the jurisdiction of the TRCA and it is not located within TRCA regulated areas. The nearest surface water feature to the Site is the Petticoat Creek at approximately 800 m to the southwest.
- The Site slopes to the south with an approximate average flat surface elevation of 105.19 masl.
- The Site is situated in the Iroquois Plain physiographic region.
- The subsurface geology consists mainly of fill underlain by a layer of sandy silt to a
 known depth of 22.88 mbgs. Intermixed within the sandy silt unit are thin units of sand,
 with a sand and gravel deposit approximately 12.9 m thick observed along the southcentral area of the Site's southern development boundary.
- Groundwater level elevations have been measured during the period of March to June of 2019. The groundwater levels over this time ranged in elevation from a low of 96.53 masl (8.89 mbgs) in the northeast corner of the Site in late March, to a high of 103.57 masl (1.4 mbgs) in the southwest corner of the Site in late March. It is expected that there will be some seasonal variability in groundwater levels resulting from periods of regional groundwater recharge and more frequent storm events. Groundwater levels are typically highest in the Spring and lowest in the Fall to early Winter. Based on the monitoring results, high water table conditions for the Site are anticipated to take place in the month of May.
- In-situ rising head tests were conducted in the sandy silt material at select monitoring wells in March of 2019 to determine in-situ hydraulic conductivities across the Site. The hydraulic conductivity of the sandy silt is estimated to range between 1.6 x 10⁻⁸ m/s and 1.8 x 10⁻⁷ m/s. The hydraulic conductivity of the sand and gravel unit is assumed to be 5 x 10⁻⁶ m/s. The range in reported in-situ hydraulic conductivity values falls within the literature ranges of the materials tested.
- A non-filtered groundwater quality sample was collected from BH-7 and analyzed for sewer discharge criteria in By-Law 55-2013. All parameters, with the exception of TSS, were found to be within the discharge criteria of the Table 2 – Limits for Storm Sewer Discharge of By-Law 55-2013. Additionally, all parameters, including TSS, were found to meet the Table 1 – Limits for Sanitary Sewer Discharge of By-Law 55-2013.
- Dewatering needs were assessed for each parking facility assuming the excavations required for each would be completed simultaneously. In this scenario, the maximum cumulative dewatering rate required to achieve the desired conditions within all excavations is approximately 1,001,743 L/day, which considers dewatering rates for groundwater and a stormwater accumulation of 10 mm. As the cumulative dewatering rate is greater than 400,000 L/day, a PTTW issued by the MECP will be required to facilitate dewatering activities during construction. Since the dewatering rates between all blocks are variable, consideration of the construction phasing approach in the context

- of potential dewatering permitting requirements is warranted to determine the maximum dewatering rate that should be requested in the PTTW application.
- Dewatering activities remove groundwater from the soil thereby increasing the effective stress which could lead to soil settlement. The potential risks associated with dewatering settlement should be reviewed by a geotechnical engineer prior to construction.
- As the foundations for all parking facilities will extend below the seasonal high groundwater table, it is anticipated that a method of long-term groundwater control will be required. If a PWDS system is proposed to collect and discharge groundwater, the maximum cumulative dewatering rate will likely be 1/3rd the rates calculated for the short-term, equating to approximately 222,964 L/day. Since the anticipated rate of dewatering in the long-term is greater than 50,000 L/day, a PTTW issued by the MECP will be required if water takings are proposed in the long-term.
- If excess groundwater/stormwater encountered during construction or collected in a
 dedicated foundation drainage system over the long-term is proposed to be discharged
 to a municipal sewer, approval from Durham Region will be required. Consultation with
 Durham Region is recommended to determine the requirements for the discharge
 approvals during construction and permanent sewer connections for groundwater
 discharge over the long-term.
- A search of the MECP well records for a 1 km radius of the Site returned 73 records and no active PTTWs. The primary well usage in the area was for test/observation/monitoring well purposes (36%).
- There are no anticipated short-term or long-term impacts to the groundwater system, other groundwater users, the surface water system or ecological receptors resulting from dewatering or construction activities. However, it is recommended to implement a Spill Prevention and Response Plan as well as an ESC Plan during construction to limit potential impacts to the groundwater system and the off-Site release of sediment. Considering the size of the Site, a Salt Management Plan is recommended over the long-term.

9 References

- Bear, J..1979. Hydraulics of Groundwater, McGraw-Hill, New York, New York.
- Chapman, L.J. and Putnam, D.F. 1984. The Physiography of Southern Ontario, Third Edition.
 Ontario Geological Survey, Ontario Ministry of Natural Resources.
- Graziani & Corazza Architect. March 16, 2020. Conceptual Plans for Whites Road & Hwy 401
- Graziani & Corazza Architect. April 6, 2020. Site Plan for Whites Road & Hwy 401 Ministry of
- the Environment, Conservation, and Parks (MECP). 2019. Permit to Take Water Database. January 1, 1960 to December 31, 2017.
- Ministry of the Environment, Conservation, and Parks (MECP). 2019. Source Protection Information Atlas
- Ministry of the Environment, Conservation, and Parks (MECP). 2019. Water Well Information System. 1889 to September 30, 2017. Last Updated March 7, 2019
- Ontario Geological Survey (OGS). 2010. (OGS, 2010). Surficial geology of Southern Ontario; Ontario Geological Survey. 1:50,000 Scale.
- Powers, J.P; A.B. Corwin; P.C. Schmall; W.E. Kaeck. (2007). Construction Dewatering and Groundwater Control: New Methods and Applications Third Edition. New York, New York: John Wiley & Sons
- Toronto Inspection Ltd. (April 2019). Preliminary Geotechnical Investigation 603 to 609 Kingston Road, Pickering, Ontario
- Toronto and Region Conservation Authority. (August 2012). Petticoat Creek Watershed Action Plan
- York, Peel, Durham, Toronto and The Conservation Authorities Moraine Coalition (YPDT-CAMC). 2006. Groundwater Modelling of the Oak Ridges Moraine Area. CAMC-YPDT Technical Report # 01-06. Prepared by Earthfx Inc.

10 General Statement of Limitations

The comments presented in this report are based on the soil and groundwater samples gathered from the borehole/monitoring well locations indicated on the plan of this report. There is no warranty expressed or implied or representations made by Toronto Inspection Ltd. that this program has discovered all potential environmental risks or liabilities associated with the subject site.

Although we consider this report to be representative of the subsurface conditions at the subject property in the areas investigated, any interpretation of factual data or unexpected soil conditions which exhibit noticeable discolouration, odour, etc. in areas not investigated in this report, should be discussed in consultation with us prior to any initiation of activity. Our responsibility is limited to an accurate assessment of the soil condition prevailing at the locations investigated at the time of the study.

To the fullest extent permitted by law, the clients maximum aggregate recovery against Toronto Inspection Ltd., its directors, employees, sub-contractors and representatives, for any and all claims by Director Industrial Holdings Limited for all causes including, but not limited to, claims of breach of contract, breach of warranty and/or negligence, shall be the amount of fees paid to Toronto Inspection Ltd. for its professional engineering services rendered with respect to the particular site which is the subject of the claim by the client.

Any use and/or interpretation of the data presented in this report, and any decisions made on it by the third party are responsibility of the third party. Toronto Inspection Ltd. accepts no responsibility for loss of time and damages, if any, suffered by the third party as a result of decisions or actions based on this report.

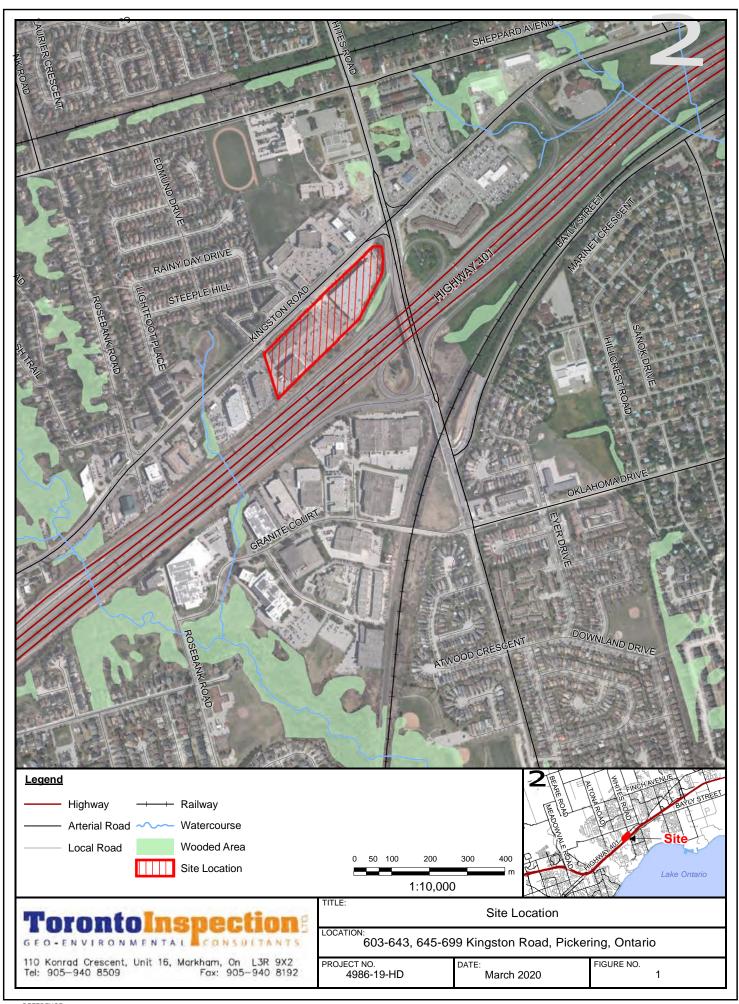
Any legal actions arising directly or indirectly from this work and/or Toronto Inspection Ltd.'s performance of the services shall be filed no longer than two years from the date of Toronto Inspection Ltd.'s substantial completion of the services. Toronto Inspection Ltd. shall not be responsible to the client for lost revenues, loss of profits, cost of content, claims of customers, or other special indirect, consequential, or punitive damages.

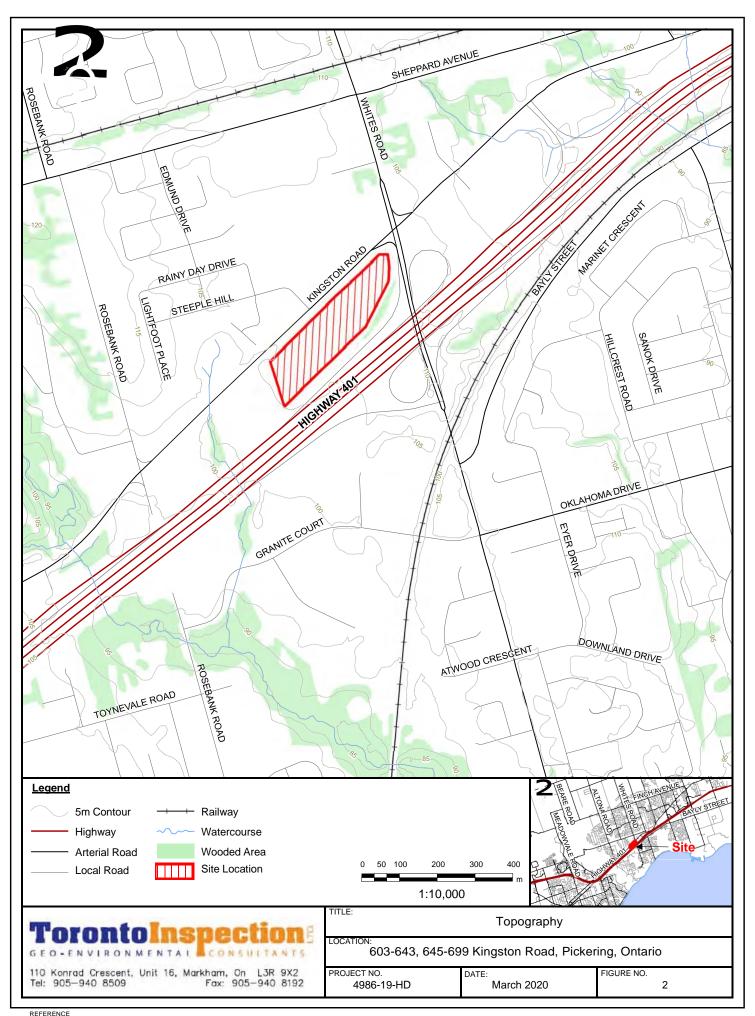
Yours truly,

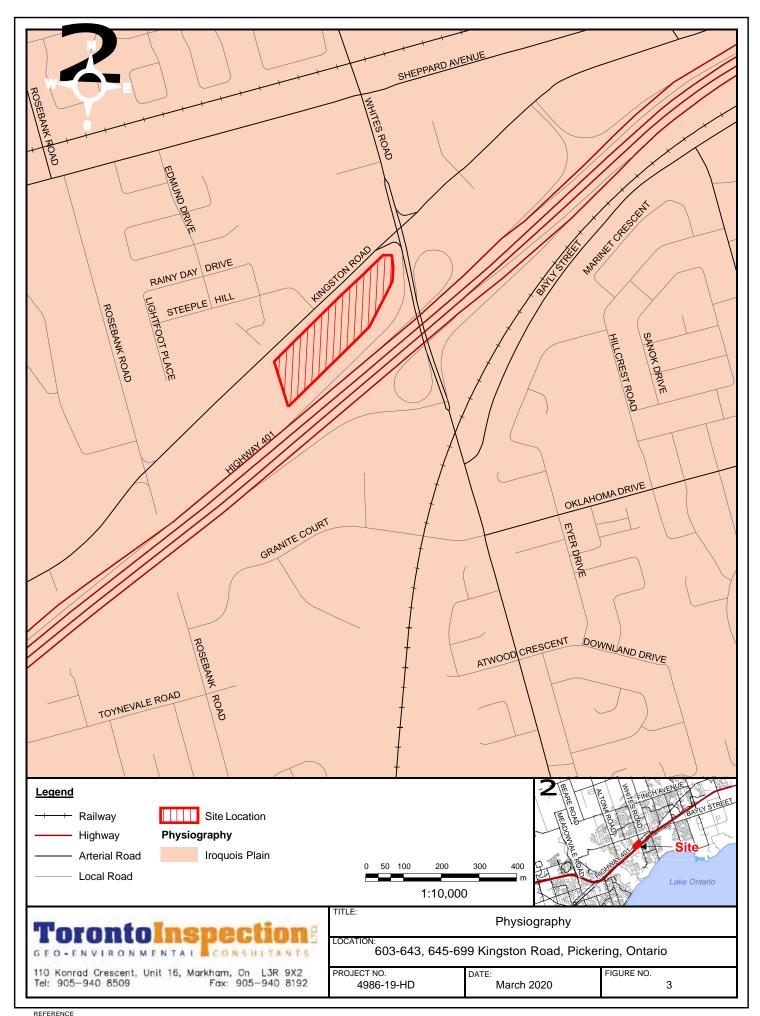
Toronto Inspection Ltd.

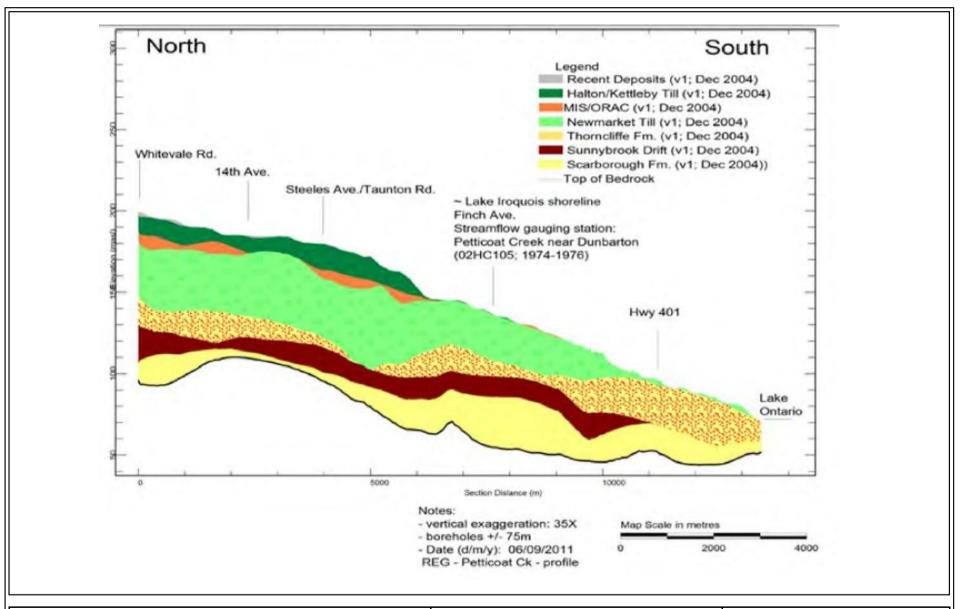
Sanjay Goel, B.E.S. Environmental Scientist

Vice-President

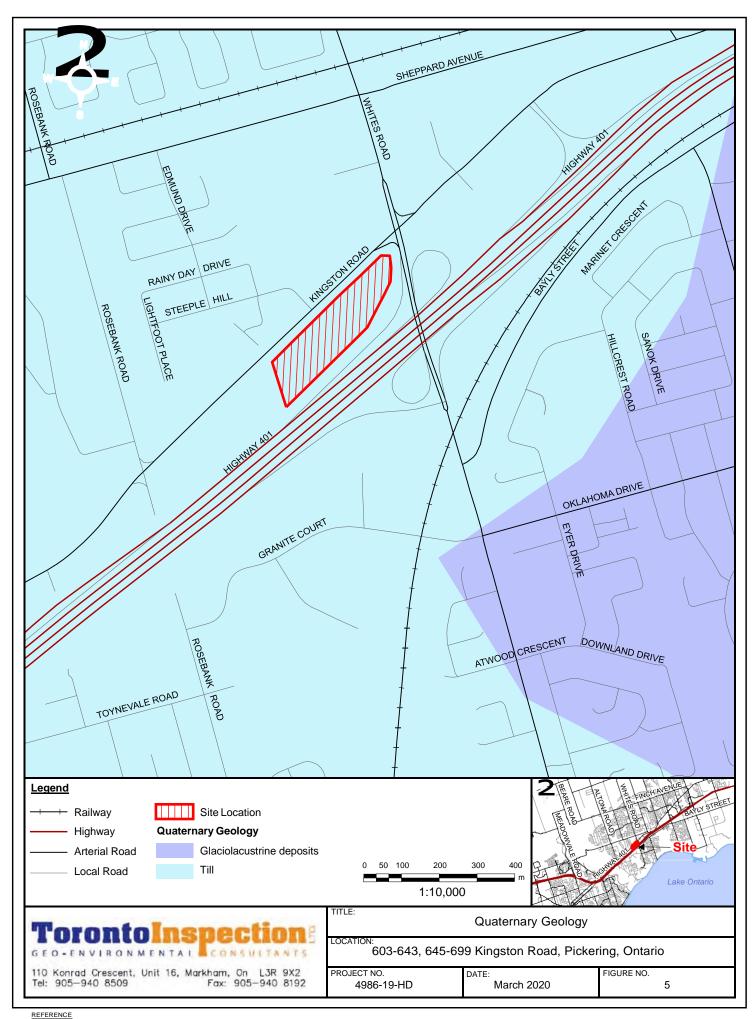

T. LEE 100042393

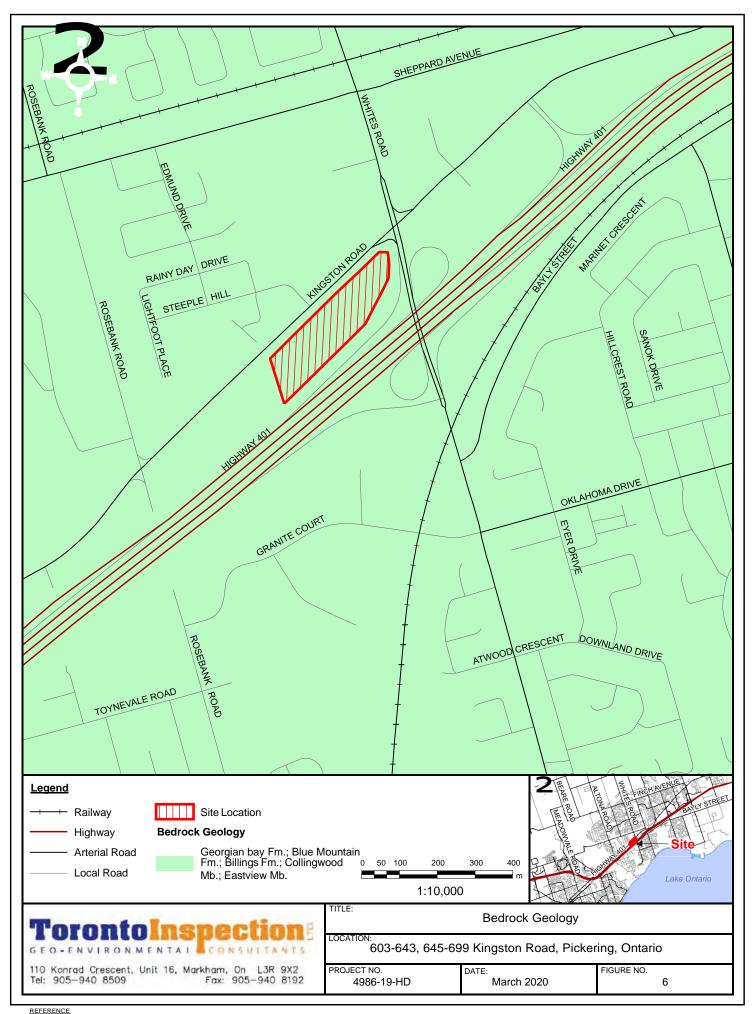

March 23,2020

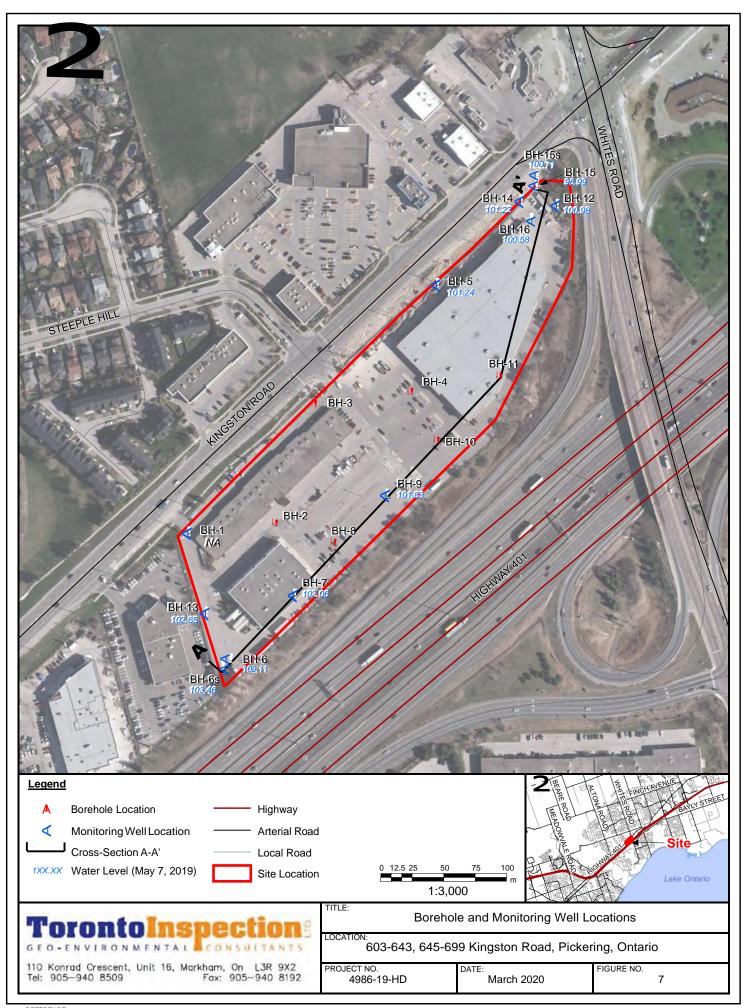

Tabitha Lee, M.A.Sc., P.Eng. Senior Hydrogeologist

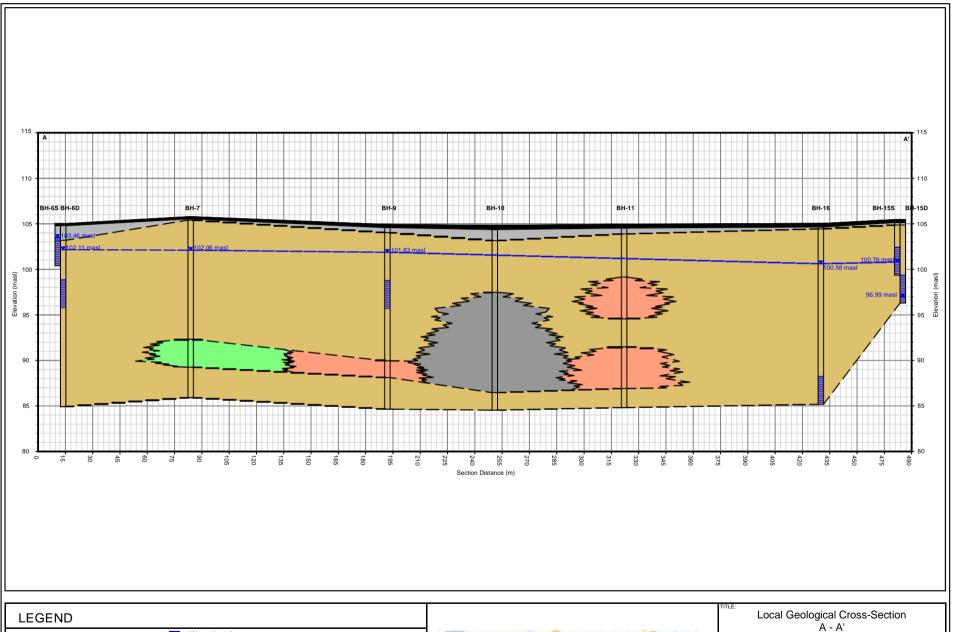


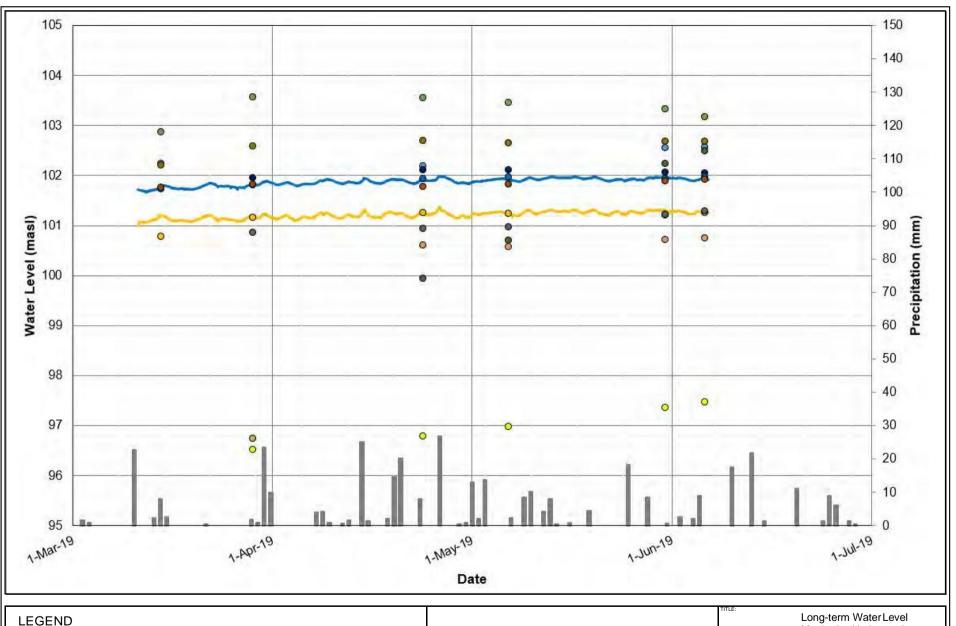
FIGURES

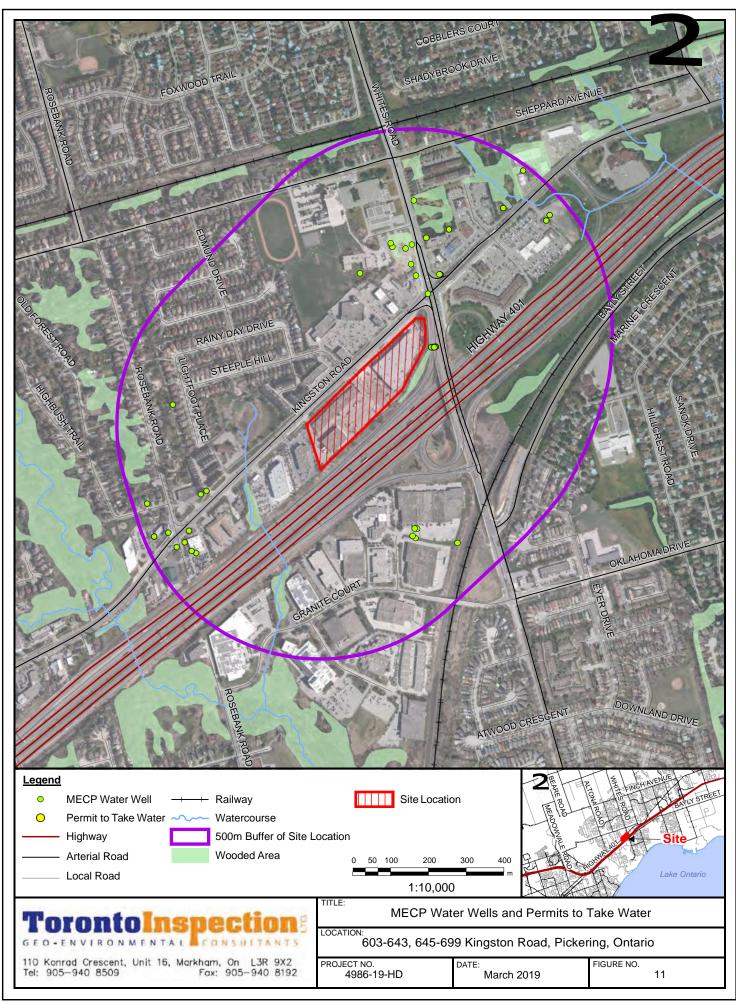


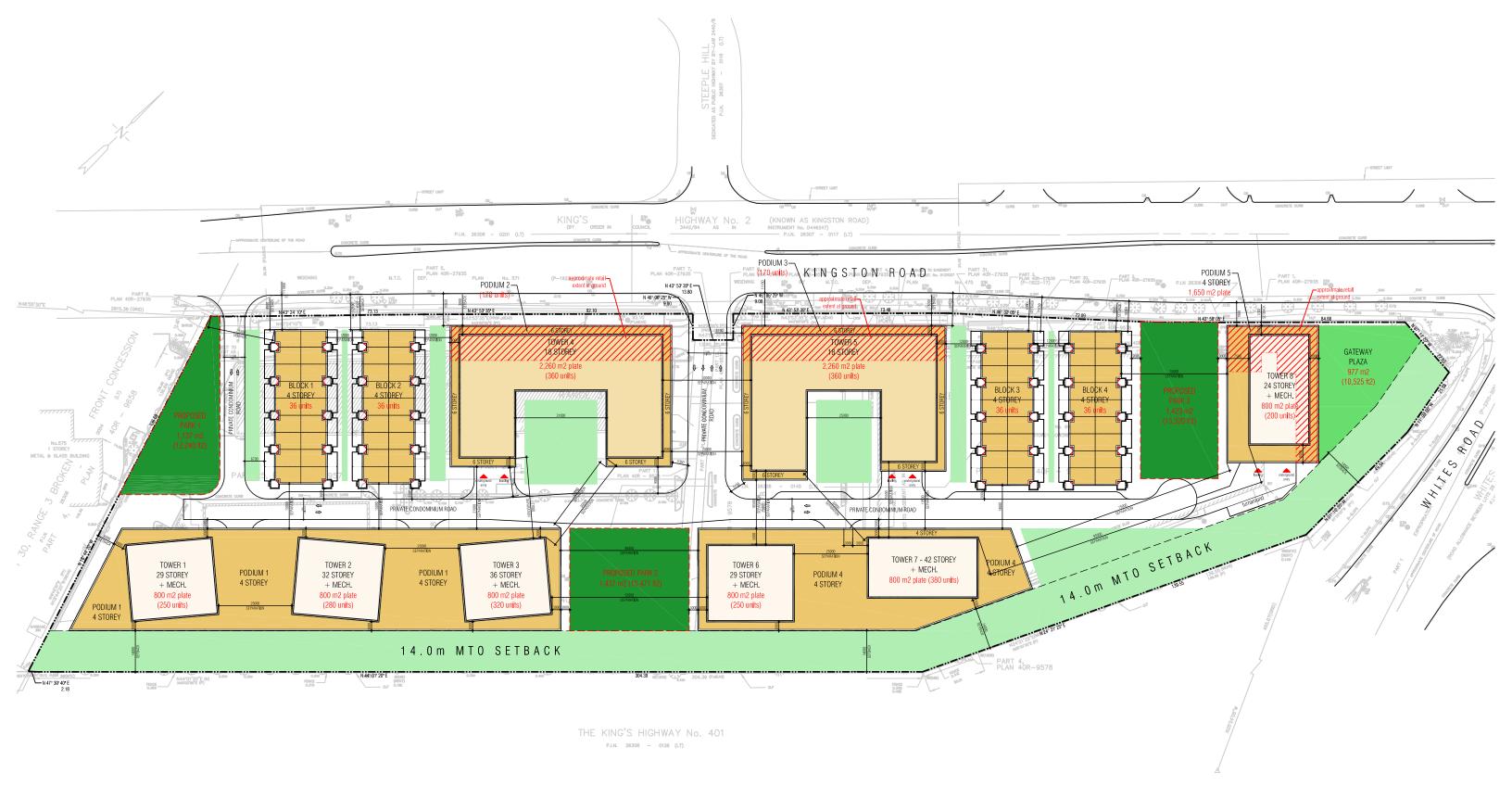


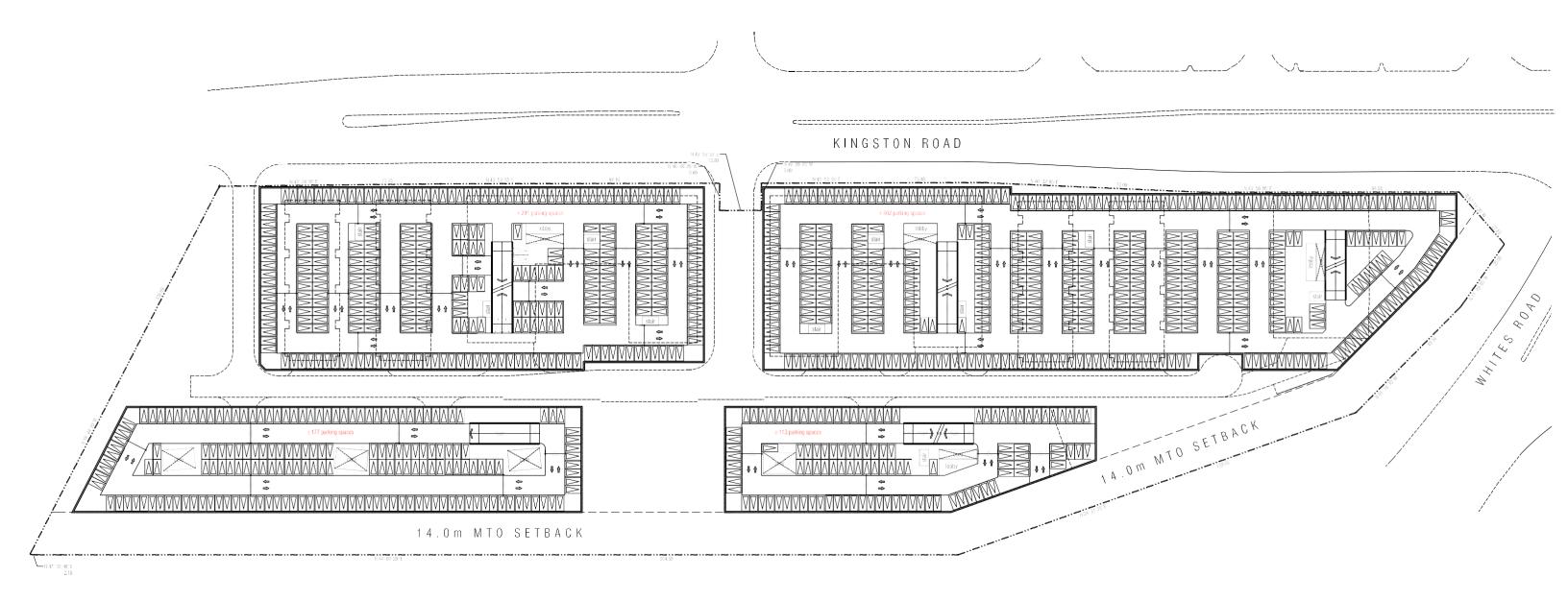












APPENDIX A

Conceptual Site Plan

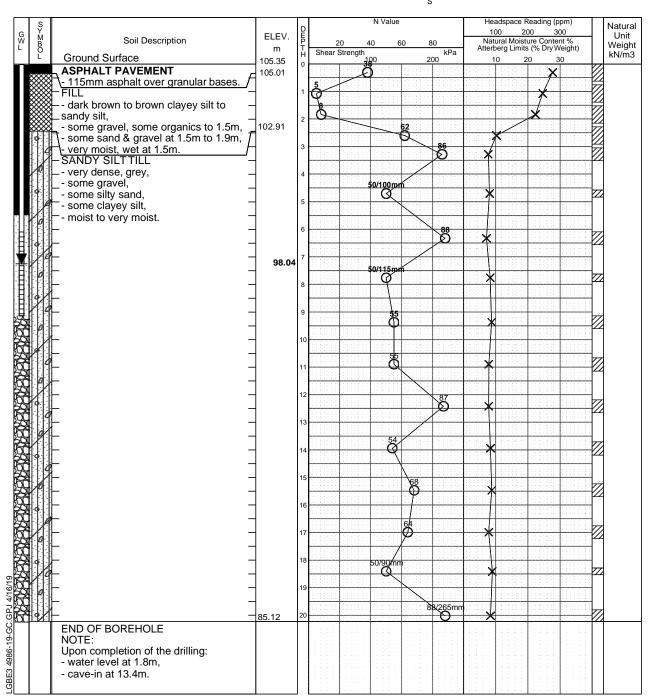
APPENDIX B

Borehole Logs

Geodetic

Datum:

Log of Borehole BH-1

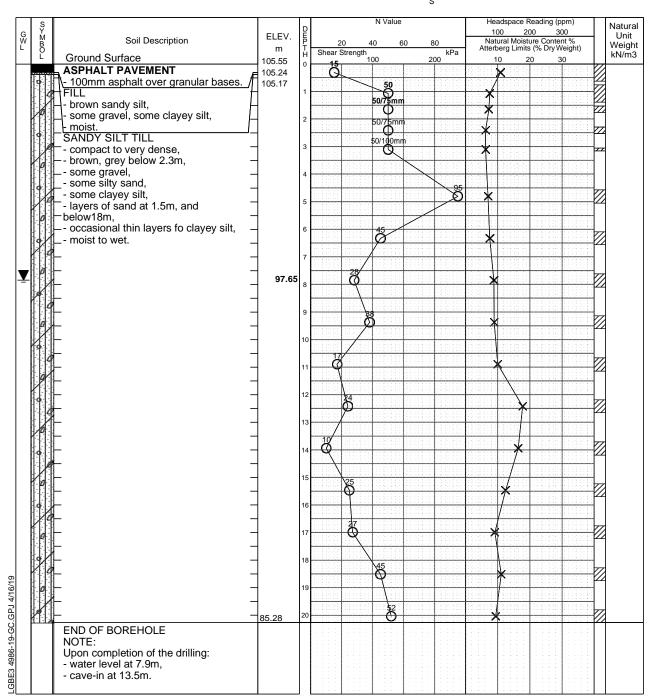

% Strain at Failure

Penetrometer

Dwg No. 2 Geotechnical investigation Sheet No. 1 of 1 Project: 603-699 Kingston Road, Pickering, Ontario Location: Headspace Reading (ppm) \times Auger Sample 2/11/19 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Truck Mount Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression

Shelby Tube

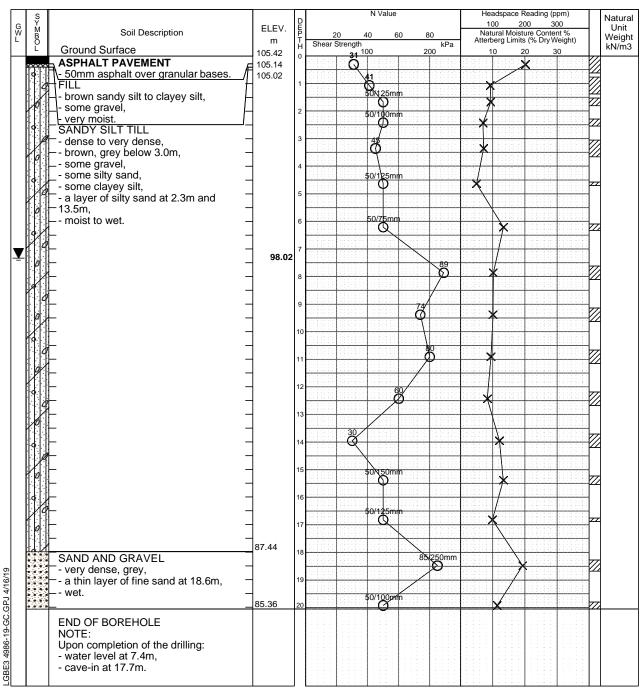
Field Vane Test


NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
March 7, 2019	3.11m	
March 11, 2019	7.31m	
March 26, 2019	Blocked	

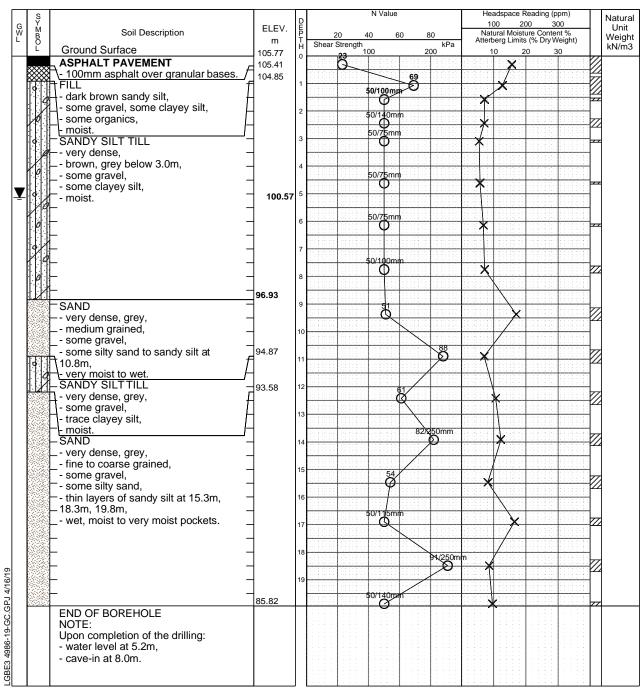
Dwg No. 3 Geotechnical investigation Sheet No. 1 of 1 Project: 603-699 Kingston Road, Pickering, Ontario Location: Headspace Reading (ppm) Auger Sample 2/8/19 Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Truck Mount Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum:

Field Vane Test


Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Water Level (m)	Depth to Cave (m)
	Water Level (m)


Dwg No. 4 Geotechnical investigation Sheet No. 1 of 1 Project: 603-699 Kingston Road, Pickering, Ontario Location: Headspace Reading (ppm) \times Auger Sample 2/12/19 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Truck Mount Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)

Dwg No. 5 Geotechnical investigation Project: Sheet No. 1 of 1 603-699 Kingston Road, Pickering, Ontario Location: Headspace Reading (ppm) Auger Sample 2/15/19 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Truck Mount Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)

Dwg No. 6

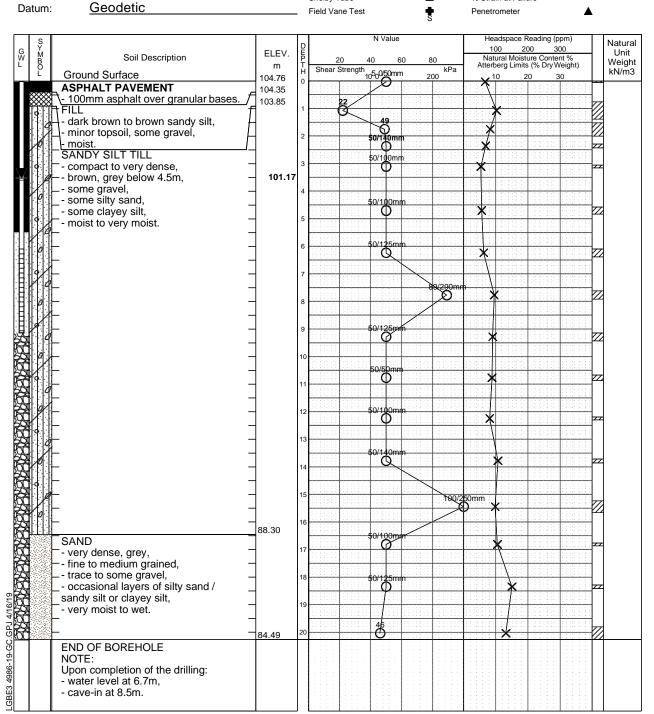
Geotechnical investigation Project:

Sheet No. 1 of 1

603-699 Kingston Road, Pickering, Ontario Location:

2/13/19 Date Drilled: Truck Mount Drill Rig Drill Type:

SPT (N) Value Dynamic Cone Test


Auger Sample

 $O \square$ Shelby Tube

 \times

Headspace Reading (ppm) Natural Moisture Plastic and Liquid Limit Unconfined Compression % Strain at Failure

×

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
March 7, 2019	3.62m	
March 11, 2019	4.37m	
March 26, 2019	3.59m	

Geodetic

Datum:

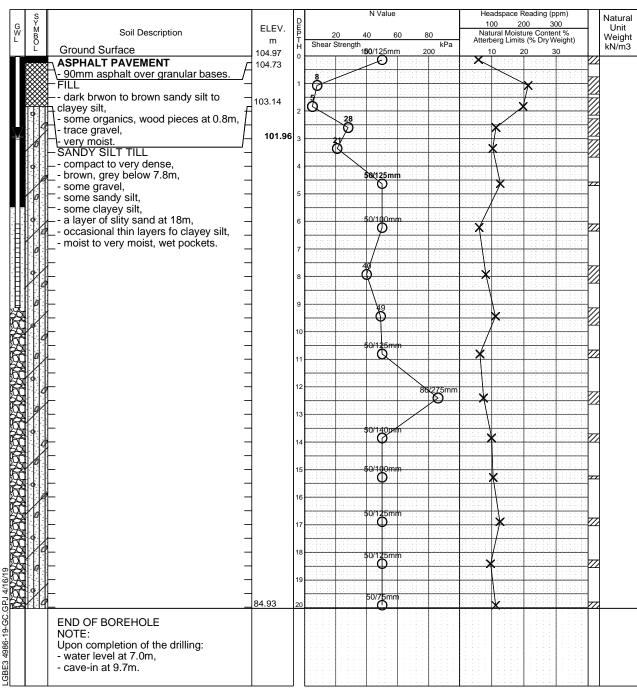
Log of Borehole MW-6

% Strain at Failure

Penetrometer

Dwg No. <u>18</u> Geotechnical investigation Sheet No. 1 of 1 Project: 603-699 Kingston Road, Pickering, Ontario Location: Headspace Reading (ppm) \times Auger Sample 2/4/19 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Truck Mount Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression**

Shelby Tube


Field Vane Test

è	SYMBOL	Soil Description	ELEV.	DHPH	Shear S	20 4 Strength	N Value	60 8	80 kPa	Na Atter	tural Moist berg Limits	ure Conte s (% Dry W	nt % /eight)	Natu Uni Weig kN/n
	_	Ground Surface	104.97	0		1	00	20	00		10 2	20 3	0	KIN/II
ı		_NO SAMPLING	_			101 211 21	10 200	155115						
÷		<u> </u>	_	1		10 10 10		10010						
		<u> </u>	103.57		10.110.00							15 21 15		
:		<u> </u>	_	2										
ł		_	_		500000		14 3 14 14	123113	14301101	14 34 314				
1		_	_	3										
1		_	_		8188	3333	3535	18818				3313		
ł		_		4										
1		_	100.40	ľ										
T		END OF BOREHOLE												
l		NOTE:												
l		Upon completion of the drilling:				1 1 1 1 1					1 : : : :			
l		- no free water.												
l								1 : : : :			1 : : : :			
l														
l														
l														
l														
l														
l														
l														
l														
l														
l														
l											1 : : : :			
l														
l														
l											1 : : : :			
l														
l														
l														
l														
l														
l														
l														
l														
l														
l														
l														
l														
١														
١														
١											1 : : : :			
١														
ı														

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
March 7, 2019	2.08m	
March 11, 2019	2.07m	
March 26, 2019	1.40m	

Dwg No. <u>7</u> Geotechnical investigation Sheet No. 1 of 1 Project: 603-699 Kingston Road, Pickering, Ontario Location: Headspace Reading (ppm) \times Auger Sample 2/4/19 Natural Moisture Date Drilled: $O \square$ SPT (N) Value Plastic and Liquid Limit Truck Mount Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
March 26, 2019	3.01m	

Dwg No. 8

×

Geotechnical investigation Project:

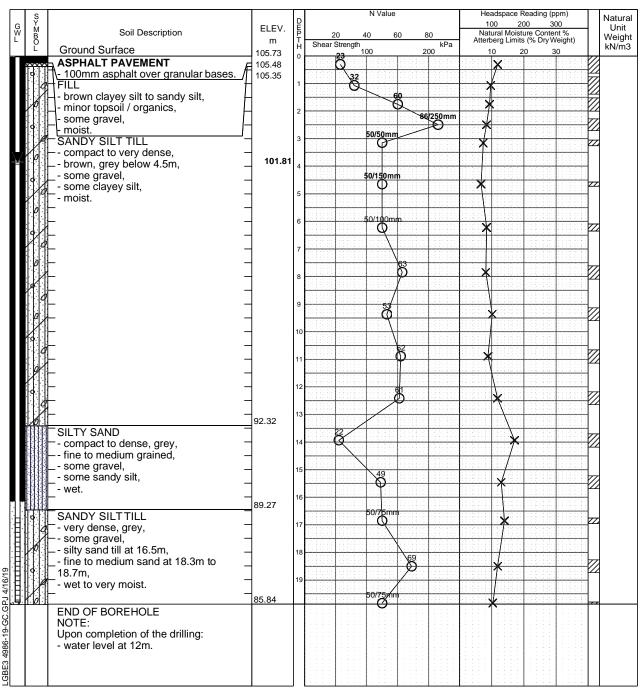
Sheet No. 1 of 1

603-699 Kingston Road, Pickering, Ontario Location:

2/5/19 Date Drilled: Truck Mount Drill Rig Drill Type:

Geodetic

Datum:


Auger Sample $O \square$ SPT (N) Value Dynamic Cone Test Shelby Tube

Field Vane Test

Natural Moisture Plastic and Liquid Limit **Unconfined Compression** % Strain at Failure

Headspace Reading (ppm)

Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

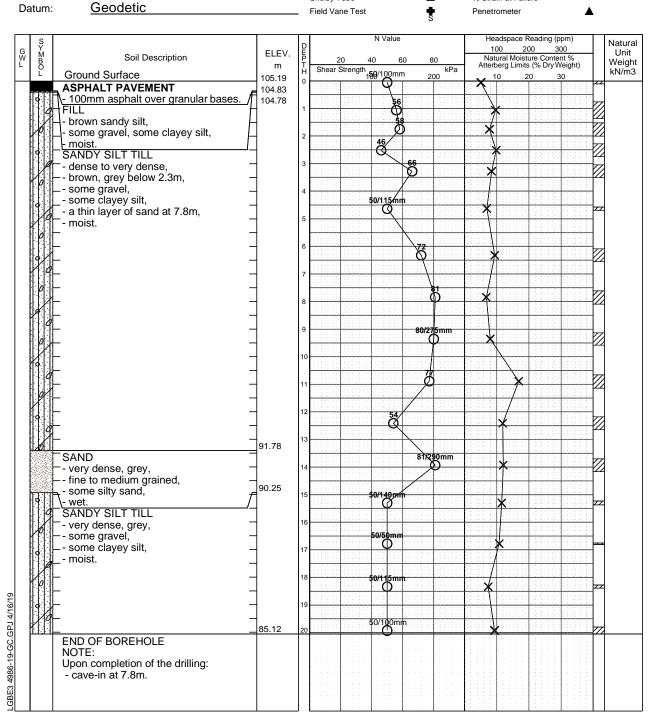
Time	Water Level (m)	Depth to Cave (m)
March 7, 2019	3.98m	
March 11, 2019	4.00m	
March 26, 2019	3.92m	

Dwg No. 9

Geotechnical investigation Project:

Sheet No. 1 of 1

603-699 Kingston Road, Pickering, Ontario Location:


2/7/19 Date Drilled: Truck Mount Drill Rig Drill Type:

Auger Sample SPT (N) Value Dynamic Cone Test

 $O \square$ Shelby Tube

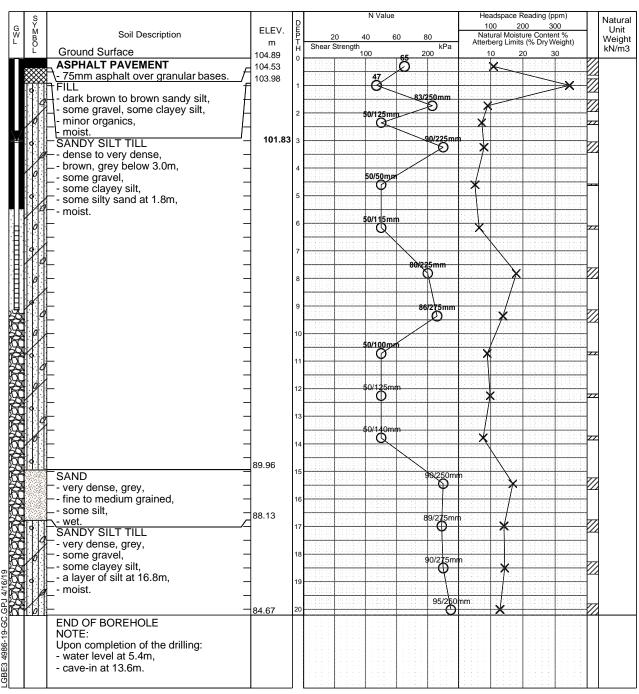
Headspace Reading (ppm) Natural Moisture Plastic and Liquid Limit **Unconfined Compression** % Strain at Failure

×

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)

Dwg No. 10


Project: Geotechnical investigation

Sheet No. 1 of 1

Location: 603-699 Kingston Road, Pickering, Ontario

Headspace Reading (ppm) \times Auger Sample 2/8/19 × Natural Moisture Date Drilled: $O \square$ SPT (N) Value Plastic and Liquid Limit Truck Mount Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure

Datum: Geodetic Shelby Tube Unconfined Compression Shelby Tube Strain at Failure Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
March 7, 2019	2.98m	
March 11, 2019	3.05m	
March 26, 2019	3.06m	

Drill Type:

Datum:

Log of Borehole BH-10

Dwg No. 11

×

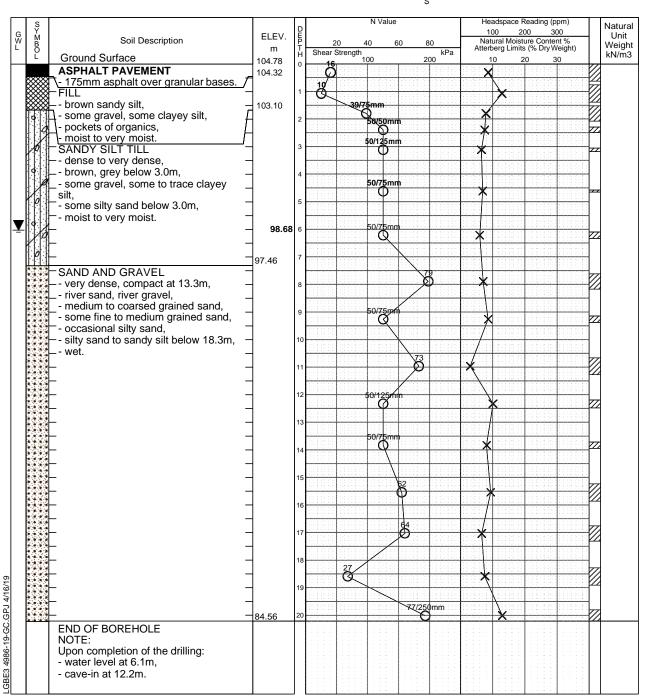
Geotechnical investigation Project:

Sheet No. 1 of 1

603-699 Kingston Road, Pickering, Ontario Location:

3/19/19 Date Drilled: Truck Mount Drill Rig

Geodetic


 \times Auger Sample SPT (N) Value Dynamic Cone Test

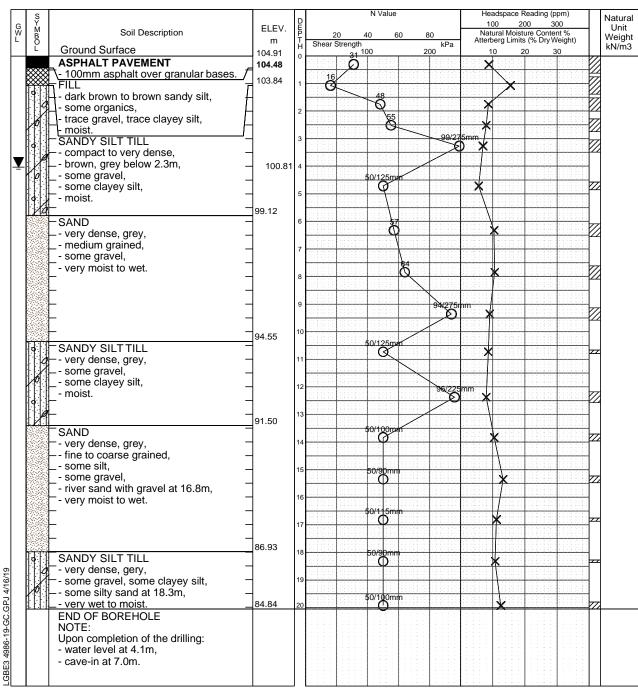
Field Vane Test

 $O \square$ Shelby Tube

Headspace Reading (ppm) Natural Moisture Plastic and Liquid Limit Unconfined Compression

% Strain at Failure Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS


Time	Water Level (m)	Depth to Cave (m)

Dwg No. 12

Project: Geotechnical investigation Sheet No. 1 of 1

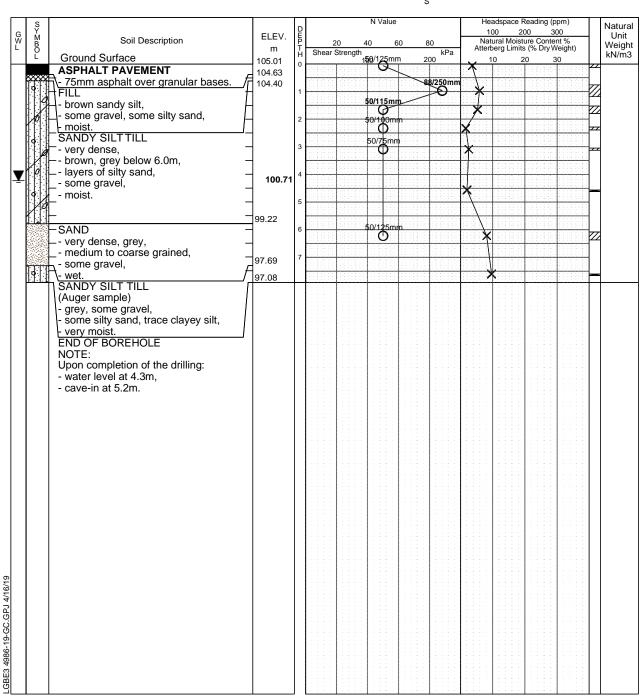
Location: 603-699 Kingston Road, Pickering, Ontario

Headspace Reading (ppm) \times Auger Sample 2/14/19 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Truck Mount Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)

Dwg No. 13


Penetrometer

Geotechnical investigation Project: Sheet No. 1 of 1

603-699 Kingston Road, Pickering, Ontario Location:

Headspace Reading (ppm) \times Auger Sample 2/20/19 X Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Truck Mount Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum:

Field Vane Test

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)

Project No. 4986-19-GC

Log of Borehole MW-12

 \times

0 🛭

Dwg No. 19

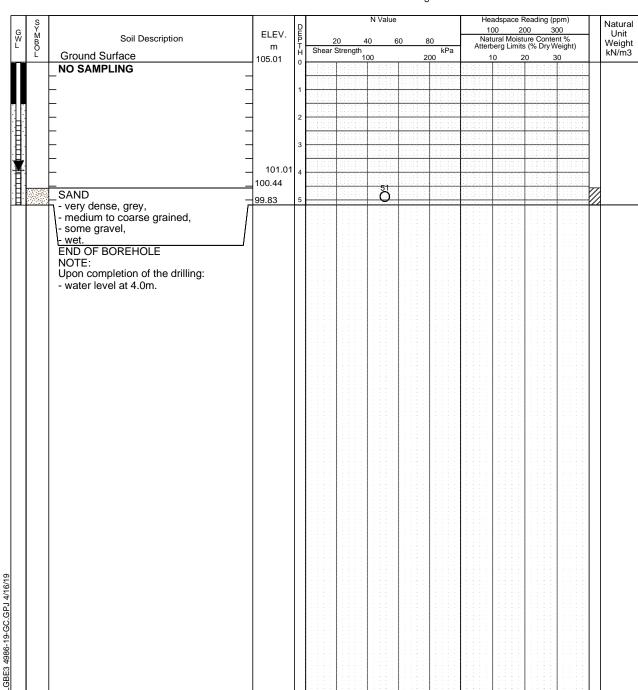
X

Geotechnical investigation Project:

Sheet No. 1 of 1

603-699 Kingston Road, Pickering, Ontario Location:

3/20/19 Date Drilled: Truck Mount Drill Rig Drill Type:


Geodetic

Datum:

Auger Sample SPT (N) Value Dynamic Cone Test

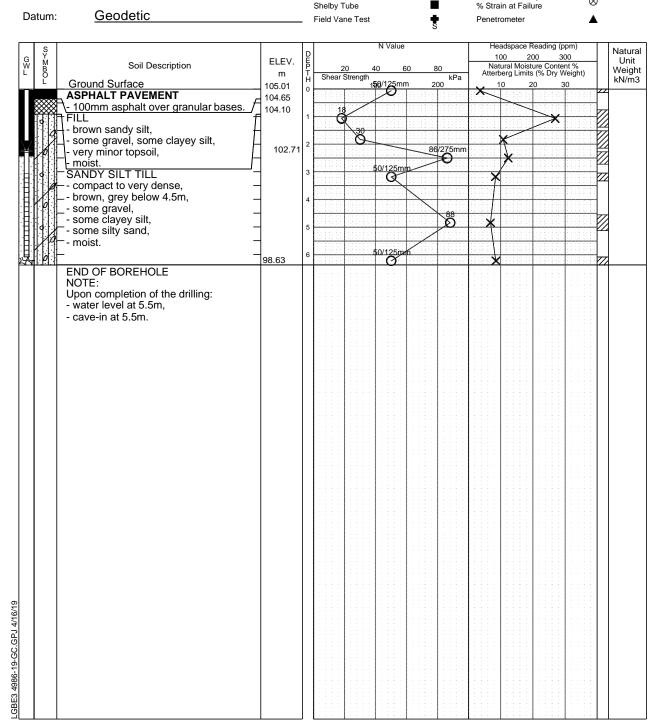
Shelby Tube Field Vane Test Headspace Reading (ppm) Natural Moisture Plastic and Liquid Limit **Unconfined Compression**

% Strain at Failure Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
March 25, 2019	4.16m	
March 26, 2019	4.15m	

Drill Type:


Truck Mount Drill Rig

Log of Borehole BH-13

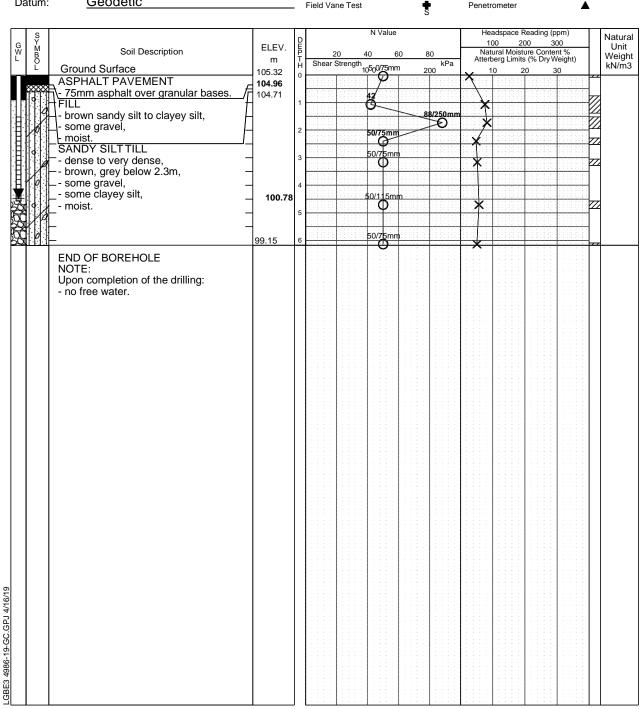
Unconfined Compression

Dwg No. 14 Geotechnical investigation Project: Sheet No. 1 of 1 603-699 Kingston Road, Pickering, Ontario Location: Headspace Reading (ppm) \times Auger Sample 2/4/19 X Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit

Dynamic Cone Test

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

112 002 21 01112110						
Time	Water Level (m)	Depth to Cave (m)				
March 7, 2019	2.58m					
March 11, 2019	2.53m					
March 26, 2019	2.30m					


Log of Borehole BH-14

Dwg No. 15

Project: Geotechnical investigation Sheet No. 1 of 1

Location: 603-699 Kingston Road, Pickering, Ontario

Headspace Reading (ppm) \times Auger Sample 2/19/19 X Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Truck Mount Drill Rig Drill Type: Dynamic Cone Test Unconfined Compression Shelby Tube % Strain at Failure Geodetic Datum:

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
March 7, 2019 March 11, 2019 March 26, 2019	4.31m 4.59m 4.54m	

Geodetic

Datum:

Log of Borehole MW-15

Penetrometer

Dwg No. 20 Geotechnical investigation Sheet No. 1 of 1 Project: 603-699 Kingston Road, Pickering, Ontario Location: Headspace Reading (ppm) \times Auger Sample 3/20/19 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Truck Mount Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure

Field Vane Test

G	S Y M		ELEV.	P			N Value	1		1	eadspace F	00 30	00	Natura Unit
G W L	SYMBOL	Soil Description	m	DEPTH	Shear S	0 Strength 1	40		80 kPa		Natural Moisture Content % Atterberg Limits (% Dry Weight)			Weigh kN/m3
	_	Ground Surface NO SAMPLING	105.42	0	101111111	1	00	2	00	1111111	10 2	20 3	0	10.071110
		- NO SAIM LING	-				13 11 11							
			-	1										
			7											
		Γ		2										
		Γ	7											
Ħ				3				18818						
月]				4										
Ħ:				*										
Ħ:				5			2000							
∄.				ľ			5888							
	L		99.33	6										_L
		END OF BOREHOLE												
		NOTE:												
		Upon completion of the drilling: - cave-in at 5.8m.												
		- cave-iii at 3.0iii.												
											1:::::			
							1 : : : :	1 : : : :			1 : : : :			
											1:::::			
											1 : : : :			
											1 : : : :			
											1 : : : :			
	l													
	l													
	l													
	l													
	l													
	l						1 : : : :				1:::::	1 : : : :		

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)					
March 25, 2019	Dry						
March 26, 2019	Dry						

Project No. 4986-19-GC

Log of Borehole BH-15

 \times

 $O \square$

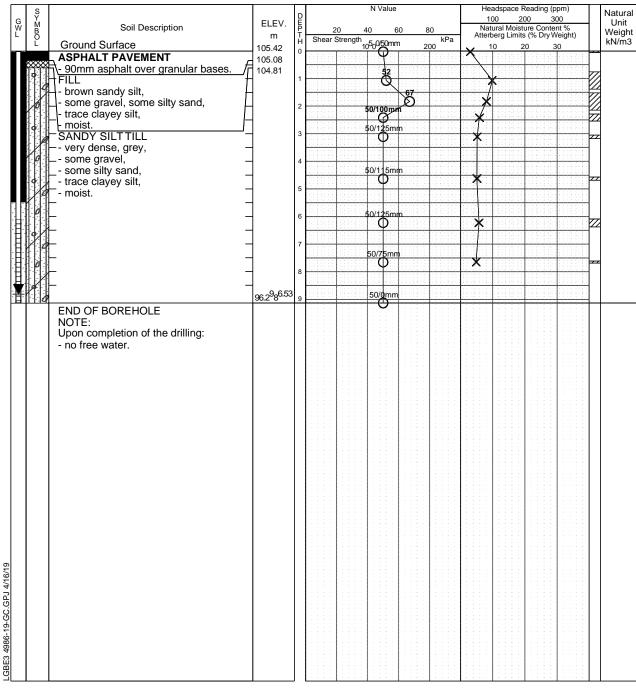
Dwg No. 16

Geotechnical investigation Project:

Sheet No. 1 of 1

603-699 Kingston Road, Pickering, Ontario Location:

2/20/19 Date Drilled: Truck Mount Drill Rig Drill Type:


Auger Sample SPT (N) Value Dynamic Cone Test

Shelby Tube

Headspace Reading (ppm) Natural Moisture Plastic and Liquid Limit Unconfined Compression

X

% Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Headspace Reading (ppm) 100 200 ELEV.

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Time	Water Level (m)	Depth to Cave (m)
March 7, 2019	Dry	
March 11, 2019	Dry	
March 25, 2019	8.48m	
March 26, 2019	8.89m	

Dwg No. 17

×

Geotechnical investigation Project:

Sheet No. 1 of 1

603-699 Kingston Road, Pickering, Ontario Location:

3/21/19 Date Drilled: Truck Mount Drill Rig Drill Type:

Geodetic

Datum:

 \times Auger Sample $O \square$ SPT (N) Value Dynamic Cone Test Shelby Tube

Field Vane Test

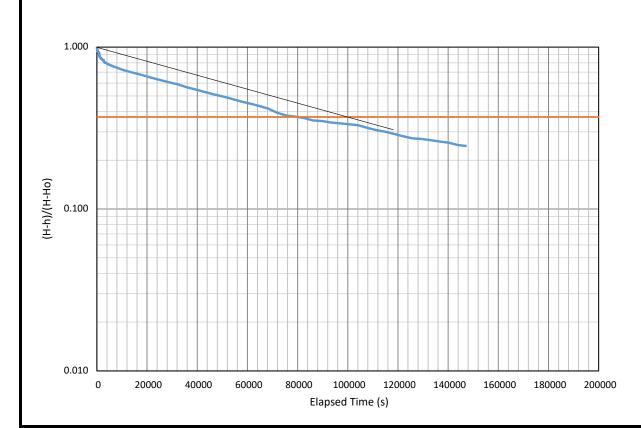
Natural Moisture Plastic and Liquid Limit Unconfined Compression % Strain at Failure

Headspace Reading (ppm)

Penetrometer

Headspace Reading (ppm) Natural 100 200 ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description 80 Weight Shear Strength **Ground Surface** kN/m3 105.00 **ASPHALT PAVEMENT** 104.60 100mm asphalt over granular bases 104.39 brown silty sand, some gravel, moist SANDY SILT TILL 0/125m - compact to very dense, - brown, grey below 1.8m, - some gravel, - some clayey silt, 125n - seam of fine sand, - some silty sand at 6.0m & 7.5m, - some clayey silt layers below 12.2m, -- moist, very moist pockets. 96.75 75 100/2 100/250mm .GBE3 4986-19-GC.GPJ 4/16/19 100/225mm END OF BOREHOLE NOTE: Upon completion of the drilling: - no free water.

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS


Time	Water Level (m)	Depth to Cave (m)
March 25, 2019 March 26, 2019	6.95m 8.25m	

APPENDIX C

Hydraulic Conductivity Analysis

In-Situ Hydraulic Conductivity Analyses: BH-1				
Company:	Toronto Inspection Ltd.			
Client:	Director Industrial Holdings Limited			
Project:	4986-19-HD			
Location:	603-699 Kingston Rd., Pickering, ON			
Test Well:	BH-1			
Test Date:	March 12, 2019			
Test Conducted By:	WG			

Well Depth (mbgs):	9.2		Screened Unit:	Sandy Silt Till
Initial Water Level (m	bgs): 7.13		Screen Length (Le):	3.048
Available Drawdown	(H): 2.07		Head at Time = 0 (H₀):	1.70
Borehole Radius (R _b)	: 0.0508		Monitoring Well Radius (R _c):	0.026
Solution Method:	Hvorslev (1951)	•	Recovery (%):	87%
Early K (m/s)	NA		Early To (s):	NA
Mid K (m/s)	5.5E-08		Mid To (s):	8000
Late K (m/s)	NA		Late To (s):	NA

Company: Toronto Inspection Ltd. Client: Director Industrial Holdings Limited Project: 4986-19-HD Location: 603-699 Kingston Rd., Pickering, ON Test Well: BH-1 Test Date: March 27, 2019 Test Conducted By: TIL U.S. SIEVE OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/4 3/4 5 8/10 14/16 20 30 40 50 70 100140 200 BO OPENING IN INCHES 1 3/4 1/2 3/4 3/4 5 8/4 1/2 3/4 3/4 5 8/4 1/2 3/4 3/4 5 8/4 1/2 3/4 3	lydraulic Conducti	ivity Grainsize Analyses: BH-1	Appendix (
Client: Director Industrial Holdings Limited Project: 4986-19-HD Location: 603-699 Kingston Rd., Pickering, ON Test Well: BH-1 Test Date: March 27, 2019 Test Conducted By: TIL U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER 8 4 3 2 1.5 1 3/4 1/2 3/8 3 4 5 8/10 14/16 20 30 40 50 70 100140 200 100 80 80 80 80 80 80 80 80 80 80 80 80 8	Company:	Toronto Inspection Ltd.	
Cocation: 603-699 Kingston Rd., Pickering, ON Test Well: BH-1 Test Date: March 27, 2019 Test Conducted By: TIL U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER HYDROMETER U.S. SIEVE NUMBERS U.S. SIEVE NUMBERS HYDROMETER U.S. SIEVE NUMBERS U.S. SI			-
Test Well: BH-1 Test Date: March 27, 2019 Test Conducted By: TIL U.S. SIEVE OPENING IN INCHES 1	Project:		-
Test Date: March 27, 2019 Test Conducted By: TIL U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER 8 4 3 2 1.5 1 3/4 1/2 3/8 3 4 6 8 10 1416 20 30 40 50 70 100140 200 90 90 90 90 90 90 90 90 90 90 90 90 90 9		· · · · · · · · · · · · · · · · · · ·	
Test Conducted By: TIL U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER 6 4 3 2 1.5 1 3/4 1/2 3/8 3 4 6 810 1416 20 30 40 50 70 100140 200 90 80 P R 70 C E N 60 F N 50			_
U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS HYDROMETER 100 1			-
80 80 80 80 80 80 80 80 80 80	est Conducted By:	TIL	
90 90 80 PER70 CENT60 FINESO			HYDROMETER
80 PER70 CENT 60 FINE 50			
80 PER70 EN 760 F N 850	90		
P E 70 C E N 60 F I N 50	80		
E 70 E 70 F 60 F 1 N 50			
C E N T 60 F N 50	P		
N	R / U		
F	N		
N SO			<u> </u>
E 50	i		
	50		+ \ \ \ \ \ \

Legend:		BH-1
regeno:	•	BH-1

100

, B , 40}-

√ E -G 30 H T

20

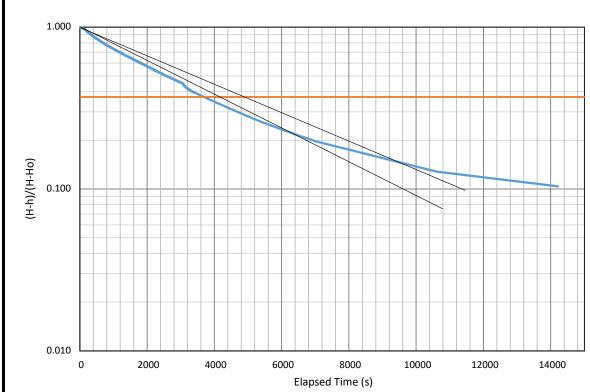
10

Sampled Unit:	Sandy Silt Till	Sampled Depth (mbgs):	9.1
% Gravel	6.7	D100:	13.200
% Sand	41.0	D60	0.1600
% Silt	39.1	D30:	0.0220
% Clay	13.1	D10:	0.0037
K (m/s)	1.4E-07	Temperature (°C):	7

1 GRAIN SIZE IN MILLIMETERS

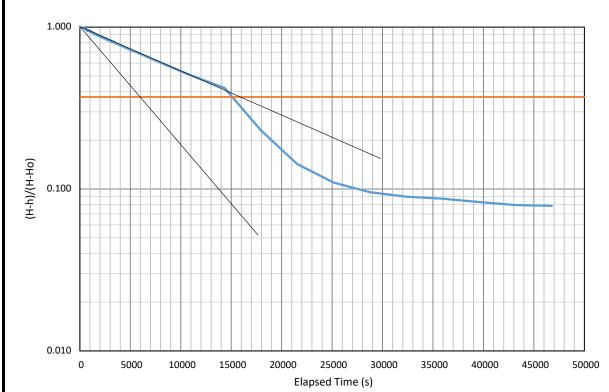
10

¥


X

0.01

0.001


In-Situ Hydraulic Cor	Appendix C	
Company:	Toronto Inspection Ltd.	
Client:	Director Industrial Holdings Limited	•
Project:	4986-19-HD	•
Location:	603-699 Kingston Rd., Pickering, ON	•
Test Well:	BH-5	•
Test Date:	March 8, 2019	•
Test Conducted By:	WG	•

Well Depth:	9.20		Screened Unit:	Sandy Silt Till
Initial Water Level:	3.97		Screen Length (Le):	3.048
Available Drawdown (H): 5.23		Head at Time = 0 (H₀):	5.61
Borehole Radius (Rb):	0.0508		Monitoring Well Radius (Rc):	0.026
Solution Method:	Hvorslev (1951)	•	Recovery (%):	93%
Early K (m/s)	1.0E-07		Early To (s):	4200
Mid K (m/s)	8.7E-08		Mid To (s):	5000
Late K (m/s)	NA		Late To (s):	NA

In-Situ Hydraulic Cor	Appendix C	
Company:	Toronto Inspection Ltd.	
Client:	Director Industrial Holdings Limited	1
Project:	4986-19-HD	•
Location:	603-699 Kingston Rd., Pickering, ON	•
Test Well:	MW-6	•
Test Date:	March 8, 2019	•
Test Conducted By:	WG	•

Well Depth:	4.60		Screened Unit:	Sandy Silt Till
Initial Water Level:	2.07		Screen Length (Le):	3.048
Available Drawdown ((H): 2.53		Head at Time = 0 (H₀):	1.95
Borehole Radius (R _b):	: 0.0508		Monitoring Well Radius (Rc):	0.026
Solution Method:	Hvorslev (1951)	•	Recovery (%):	100%
Early K (m/s)	2.7E-08		Early To (s):	16000
Mid K (m/s)	7.3E-08		Mid To (s):	6000
Late K (m/s)	NA		Late To (s):	NA

In-Situ Hydraulic Co	nductivity Anal	yses:	BH-7				Appendix
Company:	Toronto Ins	spection Ltd	d.				
Client:	Director Inc	dustrial Hol	dings Limit	ed			
Project:	4986-19-H						
_ocation:	603-699 Ki	ngston Rd.	, Pickering	, ON			
Test Well: Test Date:	BH-7 March 8, 2	010					
Test Conducted By:	WG	019					
1.000							
(o							
(OH-H)/(U-H)							
L H							
0.010	1000 20	00	3000	4000	5000	6000	7000
			Elapsed T	ime (s)			
Vell Depth:	19.80		Screened			ndy Silt Till	
nitial Water Level:	4.00			ength (L _e):	3.0		
Available Drawdown (Borehole Radius (R♭):	-			rime = 0 (H₀) ng Well Radi		69	
Solution Method:	Hvorslev (1951)	-	Recovery		100		
Early K (m/s)	NA		Early To		NA		
Mid K (m/s)	1.8E-07		Mid To (s	s):	220	00	
ate K (m/s)	NA		Late To (s):	NA		

-Situ Hydraulic Cond	uctivity Analyses:	BH-9	Appendi
ompany:	Toronto Inspection Ltd		
lient:	Director Industrial Hol	dings Limited	
roject:	4986-19-HD		•
ocation:	603-699 Kingston Rd	, Pickering, ON	
est Well:	BH-9		
est Date:	March 8, 2019		
est Conducted By:	WG		
1.000			
(OH-H)/(4-H)			
0.010 0 100	0 2000 3000	4000 5000 600 Elapsed Time (s)	00 7000 8000
ell Depth:	9.20	Screened Unit:	Sandy Silt Till
itial Water Level:	3.05	Screen Length (L _e):	3.048
vailable Drawdown (H):	6.15	Head at Time = 0 (H _o):	4.56
	0.0500	Monitoring Well Radius (Rc):	0.026
orehole Radius (R _b):	0.0508	worldoring well Radius (Rc).	0.020
(i) -	orslev (1951)	Recovery (%):	100%

Mid To (s):

Late To (s):

3200

4200

Mid K (m/s)

Late K (m/s)

1.4E-07

1.0E-07

In-Situ Hydraulic C	onductivity Analyses:	BH-10	Appendix
Company:	Toronto Inspecti	on Ltd.	
Client:		Il Holdings Limited	
Project:	4986-19-HD		
ocation:		n Rd., Pickering, ON	
est Well:	BH-10		
est Date:	March 27, 2019		<u> </u>
est Conducted By:	TIL		
U.S. SIEVE	OPENING IN INCHES	U.S. SIEVE NUMBERS	HYDROMETER
6	4 3 2 1.5 1 3/4 1/2 3/8 3	4 6 8 ¹⁰ 14 ¹⁶ 20 ³⁰ 40 ⁵⁰ 70 ¹⁰⁰ 140 ²⁰⁰	
100		▘ ▘▘	
90			+ + + + + + + + + + + + + + + + + + + +
		* • • • • • • • • • • • • • • • • • • •	
80			
80	X		
Р			
E 70			
C E			
[™] 60			
F 60			
N			
50			
R		<u> </u>	
^B 40			
N			\
Ē H			
G30			
H T			
20			
20			
 			
10			
o l			
	100 10	1 0.1 GRAIN SIZE IN MILLIMETERS	0.01 0.001
egend:	■ BH-10		
ampled Unit:	Sand and Grave		7.9
6 Gravel	35.0	D100:	26.5000

Legend:	™ BH-10			
Sampled Unit:	Sand and Gravel	Sampled Depth (mbgs):	7.9	
% Gravel	35.0	D100:	26.5000	
% Sand	56.7	D60	2.4500	
% Silt	8.4	D30:	0.2040	
% Clay	0.4	D10:	0.086	
K (m/s)	7.7E-05	Temperature (°C):	7	

n-Situ Hydraulic Condu	uctivity Analyses: BH-13	Appendi
company:	Toronto Inspection Ltd.	
lient:	Director Industrial Holdings Limited	
roject:	4986-19-HD	
ocation:	603-699 Kingston Rd., Pickering, ON	
est Well:	BH-13	
est Date:	March 8, 2019	
est Conducted By:	WG	
1.000		
(OHH)/(4H)		
0.010 0 5000	10000 15000 20000 25000 30000 35000 40000 45000 Elapsed Time (s)	50000

Well Depth:	6.10		Screened Unit:	Sandy Silt Till
Initial Water Level:	2.53		Screen Length (Le):	3.048
Available Drawdown	(H): 3.57		Head at Time = 0 (H₀):	3.16
Borehole Radius (Rb)): 0.0508		Monitoring Well Radius (R _c):	0.026
Solution Method:	Hvorslev (1951)	•	Recovery (%):	100%
Early K (m/s)	3.6E-08		Early To (s):	12000
Mid K (m/s)	2.3E-08		Mid To (s):	19000
Late K (m/s)	NA		Late To (s):	NA

n-Situ Hydraulic	Conductivity Analyses:	BH-16		Appendix
Company:	Toronto Inspection I	td.		
Client:	Director Industrial H			
Project:	4986-19-HD			
.ocation:	603-699 Kingston R	d., Pickering, ON		
est Well:	BH-16			
est Date:	April 4, 2019			
est Conducted By:	WG			
1.000				
(OH-H)/(H-H)				
0.010	10000 20000 3000	00 40000 50000 Elapsed Time (s)	60000 70000	80000
Vell Depth:	19.80	Screened Unit:	Sandy Silt Till	
nitial Water Level:		Screen Length (L _e):	3.048	
vailable Drawdow		Head at Time = 0 (H _o):	13.70	
Borehole Radius (F		Monitoring Well Radius		
Solution Method:	Hvorslev (1951)	1	93%	
arly K (m/s)	NA	Early To (s):	NA	
	1.6E-08		24000	
flid K (m/s)	1.0E-U0	Mid To (s):	24000	

Late To (s):

NA

NA

Late K (m/s)

APPENDIX D

Laboratory Certificate of Analysis

CA14255-MAR19 R1

4986

Prepared for

Toronto Inspection Ltd.

First Page

CLIENT DETAIL	s	LABORATORY DET	AILS
Client	Toronto Inspection Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	110 Konrad Crescent, Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Markham, ON		
	L3R 9X2, Canada		
Contact	Tabitha Lee	Telephone	705-652-2000
Telephone	416-996-3214	Facsimile	705-652-6365
Facsimile	905 940 8192	Email	
Email	lab@torontoinspection.com; tabitha@torontoinspection.com	SGS Reference	CA14255-MAR19
Project	4986	Received	03/11/2019
Order Number		Approved	03/18/2019
Samples	Ground Water (2)	Report Number	CA14255-MAR19 R1
		Date Reported	03/18/2019

COMMENTS

RL-SGS Reporting Limit

 $\textbf{N} on ylphenol \ \textbf{E} tho \textbf{x} y \textbf{l} a tes \ \textbf{is the sum of nonylphenol monoethox} y \textbf{l} a te \ \textbf{and nonylphenol diethox} y \textbf{l} a te. \\$

Total PAH is the sum of anthracene, benzo(a)pyrene, benzo(a)anthracene, benzo(e)pyrene, benzo(b,j)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, chrysene, dibenzo(a,h)anthracene, dibenzo(a,i)pyrene, dibenzo(a,j)acridine, 7H-dibenzo(c,g)carbazole, fluoranthene, indeno(1,2,3-c,d)pyrene, perylene, phenanthrene and pyrene..

Temperature of Sample upon Receipt: 5 degrees C
Cooling Agent Present: Yes
Custody Seal Present: No

Chain of Custody Number:007072

SIGNATORIES

Brad Moore Hon. B.Sc

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results.	3-8
Exceedance Summary.	9
QC Summary.	10-19
Legend	20
Approved	21 22

Client: Toronto Inspection Ltd.

Project: 4986

Project Manager: Tabitha Lee

			6	mala Number	
PACKAGE: SANSEW - General Chem	istry (WATER)		mple Number	
				Sample Name	
L1 = SANSEW/WATER/Durham Table 1 - Sanitary Sewer D	Discharge - BL_43_2004	4	S	iample Matrix	Ground Water
L2=SANSEW/WATER/Durham Table 2-Storm Sewer Dis	scharge-BL_43_2004	l	S	ample Date	08/03/2019
Parameter	Units	RL	L1	L2	Result
General Chemistry					
Biochemical Oxygen Demand (BOD5)	mg/L	2	300	15	< 4↑
Total Suspended Solids	mg/L	2	350	15	46
Total Kjeldahl Nitrogen	as N mg/L	0.5	100	1	0.6
PACKAGE: SANSEW - Metals and Inorga	anics		Sa	mple Number	8
WATER)					
,			s	Sample Name	19MW-7
.1 = SANSEW/WATER/Durham Table 1 - Sanitary Sewer D	Nischargo - RI 43 2004	4	s	ample Matrix	Ground Water
.2=SANSEW/WATER/DurhamTable 2-Storm Sewer Di	=			Sample Date	08/03/2019
Parameter	Units	RL	L1	L2	Result
	Oiits				Nesuit
Metals and Inorganics					
Sulphate	mg/L	2	1500		15
Cyanide (total)	mg/L	0.01	2	0.02	< 0.01
Fluoride	mg/L	0.06	10		0.39
Aluminum (total)	mg/L	0.001	50		0.335
Antimony (total)	mg/L	0.0009	5		< 0.0009
Arsenic (total)	mg/L	0.0002	1	0.02	0.0021
Cadmium (total)	mg/L	0.00000	0.7	0.008	0.000010
,	ŭ	3			
Chromium (total)	mg/L	0.00008	2	0.08	0.00209
Cobalt (total)	mg/L	0.00000	5		0.000312
	-	4			
Copper (total)	mg/L	0.0002	3	0.05	0.0061
Lead (total)	mg/L	0.00001	1	0.12	0.00056
Leau (total)	IIIg/L	J.00001		U. 12	0.0000

CA14255-MAR19 R1

Client: Toronto Inspection Ltd.

Project: 4986

Project Manager: Tabitha Lee

PACKAGE: SANSEW - Metals and	Inorganics		Sai	mple Numbe	r 8
(WATER)					
			s	ample Name	19MW-7
	y Sewer Discharge - BL_43_200	04	s	ample Matrix	Ground Water
.2=SANSEW/WATER/DurhamTable2-StormS	SewerDischarge-BL_43_200	4	s	ample Date	08/03/2019
Parameter	Units	RL	L1	L2	Result
Metals and Inorganics (continued)					
Manganese (total)	mg/L	0.00001	5	0.15	0.0391
Molybdenum (total)	mg/L	0.00004	5		0.0261
Nickel (total)	mg/L	0.0001	2	0.08	0.0009
Phosphorus (total)	mg/L	0.003	10	0.4	0.055
Selenium (total)	mg/L	0.00004	1	0.02	0.00005
Silver (total)	mg/L	0.00005	5	0.12	< 0.00005
Tin (total)	mg/L	0.00006	5		0.00056
Titanium (total)	mg/L	0.00005	5		0.0121
Zinc (total)	mg/L	0.002	2	0.04	0.003

CA14255-MAR19 R1

Client: Toronto Inspection Ltd.

Project: 4986

Project Manager: Tabitha Lee

PACKAGE: SANSEW - Microbiology	v (WATER)		S	ample Numbei	r 9
	, (,			Sample Name	19MW-7 Bacti
I 4 - CANCEW/WATED / Durbon Table 4 Conitant Course I	Discharge BL 42 2004			-	Ground Water
L1 = SANSEW/WATER/ Durham Table 1 - Sanitary Sewer I				Sample Date	
L2=SANSEW/WATER/DurhamTable 2-Storm Sewer Di					
Parameter	Units	RL	L1	L2	Result
Microbiology			1		
E. Coli	cfu/100mL	-		200	< 2↑
DACKACE CANCEN Named to the state of	54 b		9	ample Numbei	r 8
PACKAGE: SANSEW - Nonylphenol and	Etnoxylates				
(WATER)					
				Sample Name	
L1 = SANSEW / WATER / Durham Table 1 - Sanitary Sewer I	Discharge - BL_43_2004			Sample Matrix	
L2=SANSEW/WATER/DurhamTable2-StormSewerDi	ischarge-BL_43_2004			Sample Date	08/03/2019
Parameter	Units	RL	L1	L2	Result
Nonylphenol and Ethoxylates					
Nonylphenol	mg/L	0.001	0.02		< 0.001
Nonylphenol Ethoxylates	mg/L	0.01	0.2		< 0.01
Nonylphenol diethoxylate	mg/L	0.01			< 0.01
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01
PACKAGE: SANSEW - Oil and Great	ase (WATER)		S	ample Number	r 8
				Sample Name	19MW-7
L1 = SANSEW/WATER/Durham Table 1 - Sanitary Sewer I	Discharge-BL_43_2004			Sample Matrix	Ground Water
L2=SANSEW/WATER/DurhamTable 2-Storm Sewer Di	ischarge-BL_43_2004			Sample Date	08/03/2019
Parameter	Units	RL	L1	L2	Result
Oil and Grease					
	mg/L	2			< 2
Oil & Grease (total)		_			
Oil & Grease (total) Oil & Grease (animal/vegetable)		4	150		< 4
Oil & Grease (total) Oil & Grease (animal/vegetable) Oil & Grease (mineral/synthetic)	mg/L	4	150 15		< 4 < 4

CA14255-MAR19 R1

Client: Toronto Inspection Ltd.

Project: 4986

Project Manager: Tabitha Lee

							• • • • • • • • • • • • • • • • • • • •
PACKAGE: SANSEW - Other (ORP) ((WATER)		Sa	ample Number	8		
				Sample Name	19MW-7		
.1 = SANSEW / WATER / Durham Table 1 - Sanitary Sewer Di	scharge - BL_43_200)4	:	Sample Matrix			
L2=SANSEW/WATER/DurhamTable2-StormSewerDisc	charge-BL_43_200	4	;	Sample Date	08/03/2019		
Parameter	Units	RL	L1	L2	Result		
Other (ORP)							
рН	no unit	0.05	10.5	9	8.15		
Mercury (total)	mg/L	0.00001	0.01	0.004	< 0.00001		
			_		_		
PACKAGE: SANSEW - PCBs (WATE	R)			ample Number			
				Sample Name	19MW-7		
L1 = SANSEW/WATER/Durham Table 1 - Sanitary Sewer Di	scharge - BL_43_200)4		Sample Matrix			
L2=SANSEW/WATER/DurhamTable2-StormSewerDisc	charge-BL_43_200	4		Sample Date	08/03/2019		
Parameter	Units	RL	L1	L2	Result		
PCBs							
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001		
			_		_		
PACKAGE: SANSEW - Phenols (WA	ΓER)		Sa	ample Number			
				Sample Name			
L1 = SANSEW / WATER / Durham Table 1 - Sanitary Sewer Di	scharge - BL_43_200)4		•	Ground Water		
L2=SANSEW/WATER/DurhamTable2-StormSewerDisc	charge-BL_43_200	4		Sample Date	08/03/2019		
Parameter	Units	RL	L1	L2	Result		
Phenois							
4AAP-Phenolics	mg/L	0.002	1	0.008	< 0.002		
					_		
PACKAGE: SANSEW - SVOCs (WAT	ER)		Sa	ample Number	8		
				Sample Name	19MW-7		
L1 = SANSEW/WATER/ Durham Table 1 - Sanitary Sewer Di	scharge - BL_43_200)4		Sample Matrix	Ground Water		
L2=SANSEW/WATER/DurhamTable 2-StormSewer Dis	charge-BL_43_200	4		Sample Date	08/03/2019		
Parameter	Units	RL	L1	L2	Result		

CA14255-MAR19 R1

Client: Toronto Inspection Ltd.

Project: 4986

Project Manager: Tabitha Lee

PACKAGE: SANSEW - SVOCs (WAT	ER)		Sa	ımple Numbeı	8
			;	Sample Name	19MW-7
.1 = SANSEW / WATER / Durham Table 1 - Sanitary Sewer Di	ischarge - BL_43_200	14		Sample Matrix	Ground Water
.2=SANSEW/WATER/DurhamTable 2-Storm Sewer Dis	=			Sample Date	08/03/2019
Parameter	Units	RL	L1	L2	Result
SVOCs					1100411
di-n-Butyl Phthalate	mg/L	0.002	80.0	0.015	< 0.002
Bis(2-ethylhexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002
			6-	ımple Numbeı	r 8
PACKAGE: SANSEW - VOCs (WATE	R)			•	
				Sample Name	
.1 = SANSEW/WATER/ Durham Table 1 - Sanitary Sewer Di	ischarge - BL_43_200)4	•	Sample Matrix	Ground Water
2=SANSEW/WATER/DurhamTable 2-Storm Sewer Dis	charge-BL_43_2004	4		Sample Date	08/03/2019
Parameter	Units	RL	L1	L2	Result
/OCs					
Chloroform	mg/L	0.0005	0.04	0.002	< 0.0005
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005
cis-1,2-Dichloroethene	mg/L	0.0005	4	0.0056	< 0.0005
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	0.0056	< 0.0005
Methylene Chloride	mg/L	0.0005	2	0.0052	< 0.0005
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	0.0044	< 0.0005
Trichloroethylene	mg/L	0.0005	0.4	0.008	< 0.0005
Methyl ethyl ketone	mg/L	0.02	8		0.18
Styrene	mg/L	0.0005	0.2		< 0.0005

CA14255-MAR19 R1

Client: Toronto Inspection Ltd.

Project: 4986

Project Manager: Tabitha Lee

PACKAGE: SANSEW - VOCs - B	TEX (WATER)		Sa	mple Numbe	. 8
			5	Sample Name	19MW-7
.1 = SANSEW/WATER/Durham Table 1 - Sanitary Se	ewer Discharge - BL_43_2004	ı	S	Sample Matrix	Ground Water
.2=SANSEW/WATER/DurhamTable 2-Storm Sev	wer Discharge - BL_43_2004		S	Sample Date	08/03/2019
Parameter	Units	RL	L1	L2	Result
OCs - BTEX					
Benzene	mg/L	0.0005	0.01	0.002	< 0.0005
Ethylbenzene	mg/L	0.0005	0.16	0.002	< 0.0005
Toluene	mg/L	0.0005	0.27	0.002	< 0.0005
Xylene (total)	mg/L	0.0005	1.4	0.0044	< 0.0005
m-p-xylene	mg/L	0.0005			< 0.0005
o-xylene	mg/L	0.0005			< 0.0005

EXCEEDANCE SUMMARY

				SANSEW/WATER /Durham Table 1-Sanitary Sewer Discharge-	SANSEW / WATER /Durham Table 2-Storm Sewer Discharge-
Parameter	Method	Units	Result	BL_43_2004 L1	BL_43_2004 L2

Total Suspended Solids SM 2540D mg/L 46

20190318 9 / 22

QCSUMMARY

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / R	ef.
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)		ery Limits (%) High	Spike Recovery (%)		ry Limits %) High
Sulphate	DIO0206-MAR19	mg/L	2	<2	9	20	103	80	120	96	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS	S/Spike Blank		M	atrix Spike / R	ef.
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recove (°	ry Limits %) High	Spike Recovery (%)		ry Limits %) High
Biochemical Oxygen Demand (BOD5)	BOD0020-MAR19	mg/L	2	< 2	2	30	89	70	130	NV	70	130

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		M	atrix Spike / F	lef.
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)		ry Limits %) High	Spike Recovery (%)		ry Limits %) High
Cyanide(total)	SKA0081-MAR19	mg/L	0.01	<0.01	ND	10	93	90	110	90	75	125

20190318

QCSUMMARY

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		М	atrix Spike / R	ef.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(/-)	(%)	Low	High	(%)	Low	High
Fluoride	EWL0175-MAR19	mg/L	0.06	<0.06	NV	10	102	90	110	100	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / R	lef.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(///)	(%)	Low	High	(%)	Low	High
Mercury(total)	EHG0009-MAR19	mg/L	0.00001	<0.00001	4	20	103	80	120	90	70	130

20190318 11 / 22

QCSUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ma	atrix Spike / R	ef.
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	ry Limits
					2	(%)	Recovery	(%	6)	Recovery	(%	%)
							(%)	Low	High	(%)	Low	High
Silver (total)	EMS0055-MAR19	mg/L	0.00005	<0.00005	ND	20	95	90	110	79	70	130
Aluminum (total)	EMS0055-MAR19	mg/L	0.001	<0.001	ND	20	107	90	110	NV	70	130
Arsenic (total)	EMS0055-MAR19	mg/L	0.0002	<0.0002	2	20	97	90	110	NV	70	130
Cadmium (total)	EMS0055-MAR19	mg/L	0.000003	<0.000003	ND	20	96	90	110	78	70	130
Cobalt (total)	EMS0055-MAR19	mg/L	0.000004	<0.000004	ND	20	99	90	110	NV	70	130
Chromium (total)	EMS0055-MAR19	mg/L	80000.0	<0.00008	1	20	100	90	110	105	70	130
Copper (total)	EMS0055-MAR19	mg/L	0.0002	<0.0002	4	20	99	90	110	NV	70	130
Manganese (total)	EMS0055-MAR19	mg/L	0.00001	<0.00001	ND	20	103	90	110	NV	70	130
Molybdenum (total)	EMS0055-MAR19	mg/L	0.00004	<0.00004	0	20	99	90	110	98	70	130
Nickel (total)	EMS0055-MAR19	mg/L	0.0001	<0.0001	2	20	99	90	110	NV	70	130
Lead (total)	EMS0055-MAR19	mg/L	0.00001	<0.00001	ND	20	94	90	110	102	70	130
Antimony (total)	EMS0055-MAR19	mg/L	0.0009	<0.0009	ND	20	101	90	110	107	70	130
Selenium (total)	EMS0055-MAR19	mg/L	0.00004	<0.00004	ND	20	98	90	110	106	70	130
Tin (total)	EMS0055-MAR19	mg/L	0.00006	< 0.0006	ND	20	94	90	110	NV	70	130
Titanium (total)	EMS0055-MAR19	mg/L	0.00005	<0.00005	ND	20	96	90	110	NV	70	130
Zinc (total)	EMS0055-MAR19	mg/L	0.002	<0.002	ND	20	100	90	110	NV	70	130

20190318

QCSUMMARY

Metals in aqueous samples - ICP-OES

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		М	atrix Spike / R	ef.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Phosphorus(total)	EMS0055-MAR19	mg/L	0.003	<0.003	ND	20	95	90	110	NV	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-[ENV]MIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		м	latrix Spike / R	lef.
	Reference			Blank	RPD	AC	Spike	Recover	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
E. Coli	BAC9170-MAR19	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

20190318 13 / 22

QCSUMMARY

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-015

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	LCS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0186-MAR19	mg/L	0.01	< 0.01			77	55	120			
Nonylphenol Ethoxylates	GCM0186-MAR19	mg/L	0.01	< 0.01								
Nonylphenol monoethoxylate	GCM0186-MAR19	mg/L	0.01	< 0.01			86	55	120			
Nonylphenol	GCM0186-MAR19	mg/L	0.001	< 0.001			83	55	120			

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	icate	LCS	S/Spike Blank	/Spike Blank		Matrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike Recovery	(9	ry Limits %)	Spike Recovery (%)	(ry Limits %)
							(%)	Low	High		Low	High
Oil & Grease (total)	GCM0185-MAR19	mg/L	2	<2			107	75	125			

20190318 14 / 22

QCSUMMARY

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-[ENV]GC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%) Low High		Spike Recovery		ry Limits %)
						(%)	Recovery (%)			(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0185-MAR19	mg/L	4	< 4			NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0185-MAR19	mg/L	4	< 4			NA	70	130			

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Method Duplicate LCS/Spike Blank			М	atrix Spike / R	ef.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)		ery Limits (%) High	Spike Recovery (%)	Recover (%	-
рН	EWL0177-MAR19	nounit	0.05	NA	0	<u> </u>	101			NA	<u> </u>	<u> </u>

Phenois by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank	/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
4AAP-Phenolics	SKA0078-MAR19	mg/L	0.002	<0.002	ND	10	104	90	110	102	75	125	

20190318 15 / 22

QCSUMMARY

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-[ENV]GC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank	/Spike Blank		Matrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)		ry Limits %) High	Spike Recovery (%)		ry Limits %) High
Polychlorinated Biphenyls (PCBs) -	GCM0155-MAR19	mg/L	0.0001	<0.0001	ND	30	107	60	140	94	60	140

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENV]GC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank	6/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)			ry Limits %)		
						(%)	Recovery (%)	Low	High	(%)	Low	High		
Bis(2-ethylhexyl)phthalate	GCM0145-MAR19	mg/L	0.002	< 0.002	NSS	30	106	50	140	NSS	50	140		
di-n-Butyl Phthalate	GCM0145-MAR19	mg/L	0.002	< 0.002	NSS	30	103	50	140	NSS	50	140		

20190318 16 / 22

QCSUMMARY

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank	Spike Blank		atrix Spike / R	Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)	
						(79)	(%)	Low	High	(%)	Low	High	
Total Suspended Solids	EWL0172-MAR19	mg/L	2	< 2	0	10	NV	90	110	NA			

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-002

Reference Blank RPD AC Spike (%) Recovery Limits Spike (%) Recovery (%) Low High Limits Recovery (%) Limits Recovery (%) Low High Recovery (%) Limits Recovery (%) Recovery (%) Limits Recovery (%) Recovery (%) Limits Recovery (%) Recovery (%)	
RPD AC Spike (%) Recovery Limits Spike (%) Recovery	High
Defense.	overy Limits (%)
Parameter QC batch Units RL Method Duplicate LCS/Spike Blank Matrix S	e / Ref.

20190318 17 / 22

QCSUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENV]GC-LAK-AN-004

Parameter	QC batch			Method	Dup	licate	LCS	S/Spike Blank		M	atrix Spike / R	ef.
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	ry Limits
						(%)	Recovery	(%	6)	Recovery	(%	%)
							(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	99	60	130	98	50	140
1,2-Dichlorobenzene	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	98	60	130	98	50	140
1,4-Dichlorobenzene	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	97	60	130	97	50	140
Benzene	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	97	60	130	101	50	140
Chloroform	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	98	60	130	99	50	140
cis-1,2-Dichloroethene	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	96	60	130	100	50	140
Ethylbenzene	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	100	60	130	100	50	140
m-p-xylene	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	101	60	130	102	50	140
Methyl ethyl ketone	GCM0146-MAR19	mg/L	0.02	<0.02	ND	30	101	50	140	99	50	140
Methylene Chloride	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	96	60	130	98	50	140
o-xylene	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	100	60	130	100	50	140
Styrene	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	101	60	130	101	50	140
Tetrachloroethylene	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	95	60	130	96	50	140
(perchloroethylene)												
Toluene	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	98	60	130	98	50	140
trans-1,3-Dichloropropene	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	99	60	130	95	50	140
Trichloroethylene	GCM0146-MAR19	mg/L	0.0005	<0.0005	ND	30	96	60	130	96	50	140

20190318

QCSUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20190318 19 / 22

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

↑ Reporting limit raised.

↓ Reporting limit lowered.

NA The sample was not analysed for this analyte

ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20190318 20 / 22

Request for Laboratory Services and CHAIN OF CUSTODY

Erwironment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-8365 Web: www.sgs.com/environment

-London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

No: 006101

Cooling Agent Present:
Temperature Upon Receipt ("C) 42 42 42 32 32 AB LIMS #CH 14055-Hall 9 Samples received after 6pm or on weekends: TAT begins next business day TAT's are quoted in business days (exclude statutory holidays & weekends). Yellow & White Copy - SGS COMMENTS: Page of NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE Pink Copy - Client PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION 1 Day 2 Days 3 Days 4 Days SUBMITTED WITH SGS DRINKING WATER CHAIN OF CUSTODY TURNAROUND TIME (TAT) REQUIRED (mm/dd/yy) (mm/dd/yy) PROJECT INFORMATION Rush Confirmation ID: Site Location/ID: ANALYSIS REQUESTED Date: 03/[2/(9 Water Pkg Gen. Ext. RUSH TAT (Additional Charges May Apply): □ N8A TCLP M&I

VOC

PCB Pesticides OC -Laboratory Information Section - Lab use only VOC□ BTEX□ THM□ Regular TAT (5-7days) Cooling Agent Present: BTEX □ BTEX/F1 □ F2-F4□ NOC DHC F1-F4 PCB Total

Aroclor Specify Due Date: PAH ABN SVOC(all) Quotation #: Metals & Inorganics Project #: \geq Field Filtered (Y/N) Fhone: Sans Otomohinspecting MATRIX Sewer By-Law: CHE Poor SAMPLED BOTTLES INVOICE INFORMATION Received By (signature): # OF Custody Seal Present: Custody Seal Intact: V (same as Report Information) Reg 347/558 (3 Day min TAT) Signature: Signature MMER Other. NO Other Regulations: March 12 , Long SAMPLED PWQO CCME MISA Contact: REGULATIONS YES Company: (4 (mm/ddlyy) Address: 10 Ferral Gas, U.+ 16. RECORD OF SITE CONDITION (RSC) associal ted 889 Medium Coarse Ha a tombreaspection Soil Texture: Fine Received Time: [5 : 1 | 1 Observations/Comments/Special Instructions 945-8192 Received Date (mm/dd/yyyy): 03, 12-1 SAMPLE IDENTIFICATION REPORT INFORMATION motor RVP/I JI/C/C A/O change Relinquished by (NAME): Markhan 0 500 Regulation 153/04: Sampled By (NAME): Email: Lab Table 1 Table 3 Received By: Table 2 Company: Contact: Phone: Email: 10 10 12 9 00 3 4 10

RE: Toronto Inspection-Markham

Wells, Katrina (Lakefield)

Tue 3/12/2019 7:18 PM

Inbox

To:Ross, Scott (Mississauga) <Scott.Ross@sgs.com>; Moore, Brad (Lakefield) <brad.moore@sgs.com>; Vaithilingam, Stephanie (Mississauga) <Stephanie.Vaithilingam@sgs.com>; LR.Envlogin1 (Lakefield) <LR.Envlogin1@sgs.com>; Anderson, Hawley (Lakefield) <Hawley.Anderson@sgs.com>;

CcVukovic, Ivana (Mississauga) <lvana.Vukovic@sgs.com>;

This ecoli Sample is an addition For CA14255-MAR19. It was sent by purolator on Friday for Saturday receipt but di not make it to the lab until Monday.

Please add to this report, as a new sample line with new date and time please.

Thank you,
Katrina Wells
Environment, Health and Safety
Project Specialist Assistant
SGS - Lakefield

185 Concession St. Lakefield, ON K0L 2H0 Phone: 705-652-2191

Fax: 705-652-6365

E-mail : katrina,wells@sgs.com

INTRODUCING SGS ENGAGE WEB PORTAL FAST AND SAFE ACCESS TO YOUR LAB RESULTS. ANY TIME. ANYWHERE

REGISTER TODAY AT ENGAGE SGS.COM

SGS

From: Ross, Scott (Mississauga)

Sent: Tuesday, March 12, 2019 3:16 PM

To: Wells, Katrina (Lakefield) <Katrina.Wells@sgs.com>; Moore, Brad (Lakefield) <brad.moore@sgs.com>; Vaithilingam, Stephanie (Mississauga) <Stephanie.Vaithilingam@sgs.com>; LR.Envlogin1 (Lakefield) <LR.Envlogin1@sgs.com>; Anderson, Hawley (Lakefield) <Hawley.Anderson@sgs.com>

APPENDIX E

Dewatering Analysis

603-643, 645 and 699 Kingston Road, Pickering, ON - Podium 1

Equivalent Well Radius (Equivalent Perimeter Approximation of Rectangular Excavation):

$$r_s = \frac{a+b}{\pi}$$

Where:

 r_s = Equivalent well radius (m)

a = Length of excavation (m)

b = Width of excavation (m)

Radius of Influence Formula (Bear, 1979)

$$R_{01} = 2.45 \sqrt{\frac{HK}{S_y}} t$$

Where

 R_{01} = Radius of Influence (m), beyond which there is negligible drawdown

H = Distance from initial static water level to bottom of saturated aquifer (m)

K = Hydraulic conductivity (m/s)

 $S_y =$ Specific yield of the aquifer formation [-]

t = Time (s) required to draw the static groundwater level to the desired level (assumed to be equivalent to 14 days)

Dewatering Rate Formula for a Rectangular Excavation in Unconfined Aquifer (Powers et al., 2007):

$$Q = \frac{\pi K (H^2 - h^2)}{\ln(R_{02} / r)} + 2 \left[\frac{x K (H^2 - h^2)}{2L} \right]$$

Where:

Q = Anticipated pumping rate (m3/day)

K = Hydraulic Conductivity (m/day)

H = Distance from initial static water level to bottom of the saturated aquifer (m)

h = Depth of water in the well while pumping (m)

R 02 = Radius of Influence (m) from excavation, beyond which there is negligible drawdown. Equivalent to R01 plus rs.

 r_s = Equivalent well radius (m)

x = Trench Length (m)

L = Distance from a line source to the trench, equivalent to R_{02} (m)

Incident Precipi	tation	
Design Event =	10	mm in 24-hours
Area =	5,950	m ²
Volume =	59.500	m ³ /day
volunie –	59,500	L/day

^{* 10} mm/24-hr = 80th Percentile Accumulation

Summary

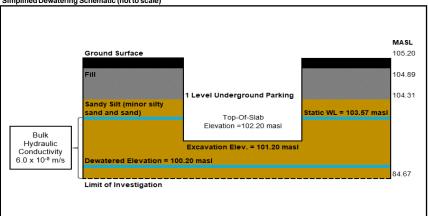
Summary	Shor	Short-Term Pumping Rate Q						
	m³/day	L/day	L/s	L/day				
Groundwater	28.771	28,771	0.33	9,590				
Precipitation	59.500	59,500	0.69	-				
Total	88.271	88,271	1.02	9,590				

Notes

1. Considering a groundwater factor of safety of:

Podium 1 1 Level Uro erm rate

2. Long-term pumping rate approximately 1/3rd short-term rate.


- 5		
а	170	m
b	35	m
		-

Parameter	Value	Units	
R ₀₁	6	m	
Н	12	m	
K	6.0E-08	m/s	
Sy	0.20	[-]	(,
t	1,209,600	S	

(Johnson, 1967)

Parameter	Value	Units
Q	14.386	m³/day
~	0.167	L/s
K	5.2E-03	m/day
Н	12	m
h	9	m
R ₀₁ + r _s	72	m
rs	66	m
Х	170	m
L	72	m

Simplified Dewatering Schematic (not to scale)

603-643, 645 and 699 Kingston Road, Pickering, ON - Podium 4

Equivalent Well Radius (Equivalent Perimeter Approximation of Rectangular Excavation):

 $r_s =$

Where:

 r_s = Equivalent well radius (m)

a = Length of excavation (m)

b = Width of excavation (m)

Radius of Influence Formula (Bear, 1979):

$$R_{01} = 2.45 \sqrt{\frac{HK}{S_y}} t$$

 R_{01} = Radius of Influence (m), beyond which there is negligible drawdown

H = Distance from initial static water level to bottom of saturated aquifer (m)

K = Hydraulic conductivity (m/s)

 $S_y =$ Specific yield of the aquifer formation [-]

t = Time (s) required to draw the static groundwater level to the desired level (assumed to be equivalent to 14 days)

Dewatering Rate Formula for a Rectangular Excavation in Unconfined Aquifer (Powers et al., 2007):

$$Q = \frac{\pi K(H^2 - h^2)}{\ln(R_{02}/r)} + 2\left[\frac{xK(H^2 - h^2)}{2L}\right]$$

Where:

Q = Anticipated pumping rate (m³/day)

K = Hydraulic Conductivity (m/day)

H = Distance from initial static water level to bottom of the saturated aquifer (m)

h = Depth of water in the well while pumping (m)

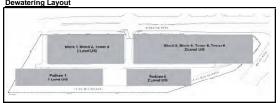
R @ = Radius of Influence (m) from excavation, beyond which there is negligible drawdown. Equivalent to R₀₁ plus r_s.

 r_s = Equivalent well radius (m)

x = Trench Length (m)

L = Distance from a line source to the trench, equivalent to R_{02} (m)

Incident Precipitation				
Design Event =	10	mm in 24-hours		
Area =	4,305	m ²		
Volume =	43.050	m³/day		
voidine =	43.050	L/dav		

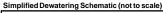

^{* 10} mm/24-hr = 80th Percentile Accumulation

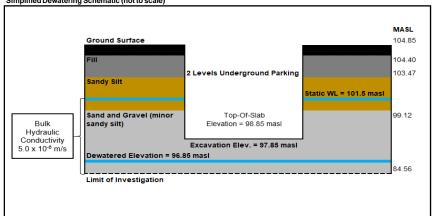
Summary	Short-Term Pumping Rate Q			Long-Term Pumping Rate Q
	m³/day	L/day	L/s	L/day
Groundwater	569.298	569,298	6.59	189,766
Precipitation	43.050	43,050	0.50	-
Total	612.348	612,348	7.09	189,766

1. Considering a groundwater factor of safety of:

2. Long-term pumping rate approximately 1/3rd short-term rate.

Dewatering Layout





Parameter	Value	Units	l
R ₀₁	45	m	
Н	14	m	
K	5.0E-06	m/s	
Sy	0.25	[-]	(~
t	1,209,600	S	

Johnson, 1967)

Parameter	Value	Units
Q	284.649	m³/day
_	3.295	L/s
K	4.3E-01	m/day
Н	14	m
h	9	m
R ₀₁ + r _s	96	m
rs	51	m
х	123	m
L	96	m

603-643, 645 and 699 Kingston Road, Pickering, ON - Block 1, Block 2, Tower 4

Equivalent Well Radius (Equivalent Perimeter Approximation of Rectangular Excavation):

$$r_s = \frac{a+b}{\pi}$$

Where:

r s = Equivalent well radius (m)

a = Length of excavation (m)

b = Width of excavation (m)

Radius of Influence Formula (Bear, 1979):

$$R_{01} = 2.45 \sqrt{\frac{HK}{S_y}} t$$

 R_{01} = Radius of Influence (m), beyond which there is negligible drawdown

H = Distance from initial static water level to bottom of saturated aquifer (m)

K = Hydraulic conductivity (m/s)

 $S_v =$ Specific yield of the aquifer formation [-]

t = Time (s) required to draw the static groundwater level to the desired level (assumed to be equivalent to 14 days)

Dewatering Rate Formula for an Excavation in Unconfined Aquifer (Powers et al., 2007):

$$Q = \frac{\pi K (H^2 - h^2)}{\ln(R_{02}/r_s)}$$

Q = Anticipated pumping rate (m³/day)

K = Hydraulic Conductivity (m/day)

H = Distance from initial static water level to bottom of the saturated aquifer (m)

h = Depth of water in the well while pumping (m)

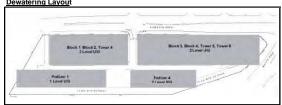
R @ = Radius of Influence (m) from excavation, beyond which there is negligible drawdown. Equivalent to R₀₁ plus r_s.

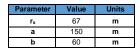
r s = Equivalent well radius (m)

Incident Precipitation			
Design Event =	10	mm in 24-hours	
Area =	9,000	m ²	
Volume =	90.000	m³/day	
volume =	90,000	L/day	

^{* 10} mm/24-hr = 80th Percentile Accumulation

s	u	n	1	n	18	ır	У

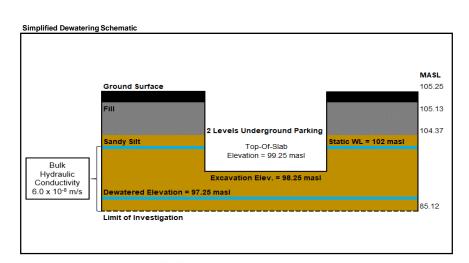

Summary	Short-Term Pumping Rate Q		Long-Term Pumping Rate Q	
	m³/day	L/day	L/s	L/day
Groundwater	27.408	27,408	0.32	9,136
Precipitation	90.000	90,000	1.04	-
Total	117.408	117,408	1.36	9,136


Notes:

1. Considering a groundwater factor of safety of:

2. Long-term pumping rate approximately 1/3rd short-term rate.

Dewatering Layout



Parameter	Value	Units	
R ₀₁	5	m	
Н	9	m	
K	6.0E-08	m/s	
Sy	0.20	[-]	(
t	1,209,600	S	

Johnson, 1967)

Parameter	Value	Units
Q	13.704	m³/day
Q	0.159	L/s
K	5.2E-03	m/day
Н	9	m
h	4	m
R ₀₁ + r _s	72	m
rs	67	m

603-643, 645 and 699 Kingston Road, Pickering, ON - Block 3, Block 4, Tower 5, and Tower 8

Equivalent Well Radius (Equivalent Perimeter Approximation of Rectangular Excavation):

 $r_s =$

Where:

 r_s = Equivalent well radius (m)

a = Length of excavation (m)

b = Width of excavation (m)

Radius of Influence Formula (Bear, 1979):

$$R_{01} = 2.45 \sqrt{\frac{HK}{S_y}} t$$

 R_{01} = Radius of Influence (m), beyond which there is negligible drawdown

H = Distance from initial static water level to bottom of saturated aquifer (m)

K = Hydraulic conductivity (m/s)

 $S_y =$ Specific yield of the aquifer formation [-]

t = Time (s) required to draw the static groundwater level to the desired level (assumed to be equivalent to 14 days)

Dewatering Rate Formula for a Rectangular Excavation in Unconfined Aquifer (Powers et al., 2007):

$$Q = \frac{\pi K(H^2 - h^2)}{\ln(R_{02}/r)} + 2\left[\frac{xK(H^2 - h^2)}{2L}\right]$$

Where:

Q = Anticipated pumping rate (m³/day)

K = Hydraulic Conductivity (m/day)

H = Distance from initial static water level to bottom of the saturated aquifer (m)

h = Depth of water in the well while pumping (m)

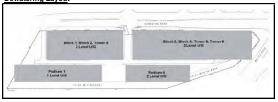
R @ = Radius of Influence (m) from excavation, beyond which there is negligible drawdown. Equivalent to R₀₁ plus r_s.

 r_s = Equivalent well radius (m)

x = Trench Length (m)

L = Distance from a line source to the trench, equivalent to R_{02} (m)

Incident Precipitation								
Design Event =	10	mm in 24-hours						
Area =	14,030	m ²						
Volume =	140.300	m ³ /day						
volunie –	140,300	L/day						


^{* 10} mm/24-hr = 80th Percentile Accumulation

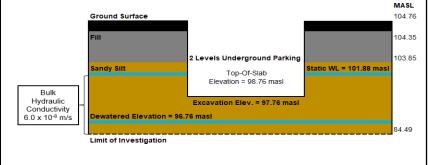
Summary	Short	Long-Term Pumping Rate Q		
	m³/day	L/day	L/s	L/day
Groundwater	43.416	43,416	0.50	14,472
Precipitation	140.300	140,300	1.62	-
Total	183.716	183,716	2.13	14,472

1. Considering a groundwater factor of safety of:

2. Long-term pumping rate approximately 1/3rd short-term rate.

Dewatering Layout

Parameter	Value	Units
rs	93	m
a	230	m
b	61	m


Parameter	Value	Units	
R ₀₁	5	m	
Н	9	m	
K	6.0E-08	m/s	
Sy	0.20	[-]	(Jo
t	1,209,600	S	

ohnson, 1967)

Parameter	Value	Units
Q	21.708	m³/day
_	0.251	L/s
K	5.2E-03	m/day
Н	9	m
h	4	m
R ₀₁ + r _s	98	m
rs	93	m
х	230	m
L	98	m

Simplified Dewatering Schematic (not to scale)

APPENDIX F

MECP Water Well Records

Water Well Records

May 28, 2019

3:06:26 PM

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
PICKERING TOWN	17 650678 4852481 W	2011-04 7241	2			MT	0008 5	7162828 (Z132057) A111513	BRWN FILL 0004 GREY SILT TILL WBRG 0008 GREY SILT DNSE 0013
PICKERING TOWN	17 651536 4852845 W	2012-05 7241	2.04			MT	0010 10	7183708 (Z150892) A131170	BRWN LOAMLOOS 0001 BRWN SILT CLAY DNSE 0010 GREY SILT CLAY DNSE 0020
PICKERING TOWN	17 650674 4852462 W	2011-07 7241				MT		7168012 (Z136726) A111514 A	
PICKERING TOWN	17 650665 4852459 W	2011-07 7241				MT		7168011 (Z136725) A111513 A	
PICKERING TOWN	17 650664 4852473 W	2011-07 7241				MT		7168010 (Z136724) A111512 A	
PICKERING TOWN	17 650945 4852828 W	2011-07 7241	2				0005 10	7166731 (Z134953) A120954	BLCK 0000 BRWN SAND GRVL LOOS 0001 BRWN SILT SAND LOOS 0012 GREY SILT SAND LOOS 0015
PICKERING TOWN	17 650935 4852797 W	2011-07 7241	2			MT	0010 10	7166730 (Z134954) A120953	BLCK 0000 BRWN SAND GRVL LOOS 0001 BRWN SILT SAND LOOS 0012 GREY SILT SAND LOOS 0020
PICKERING TOWN	17 650955 4852775 W	2011-07 7241	2			MT	0008 10	7166729 (Z134952) A120952	BLCK 0000 BRWN SAND GRVL LOOS 0001 BRWN SILT SAND LOOS 0010 GREY SILT SAND LOOS 0018
PICKERING TOWN	17 651656 4852833 W	2012-05 7241	2.04			MT	0010 10	7183709 (Z150891) A131171	BRWN LOAMLOOS 0001 BRWN SILT SAND DNSE 0010 GREY SILT SAND DNSE 0020
PICKERING TOWN	17 650685 4852485 W	2011-04 7241	2			MT	0008 5	7162829 (Z132056) A111514	BRWN FILL 0004 GREY SILT TILL WBRG 0008 GREY SILT DNSE 0013
PICKERING TOWN	17 650986 4852936 W	2007-04 7215	0.79					7044062 (Z70361) A041768	
PICKERING TOWN	17 650683 4852494 W	2011-04 7241	2			MT	0008 5	7162827 (Z132058) A111512	BRWN FILL 0004 GREY SILT TILL WBRG 0008 GREY SILT DNSE 0013
PICKERING TOWN	17 651565 4853343 W	2009-05 6607	2.00			МО		7125150 (M05150) A082740	BRWN SILT SAND PCKD 0002 BRWN SILT TILL HARD 0007 GREY SILT TILL HARD 0013

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
PICKERING TOWN	17 651543 4853487 W	2009-03 7241	1.5			MT	0008 10	7122456 (Z93173) A081890	BRWN 0001 BRWN SILT CLAY DNSE 0014 GREY SILT CLAY DNSE 0018
PICKERING TOWN	17 650971 4852926 W	2007-04 7215	0.79					7044063 (Z70360) A055063	
PICKERING TOWN	17 651443 4853606 W	2017-01 7383	2			МО	0010 10	7288920 (Z257467) A211867	SNDY TILL 0020
PICKERING TOWN	17 651869 4852506 W	2007-02 6607	2.00			NU	0005 15	7041862 (Z64678) A049110	BRWN SAND GRVL 0020
PICKERING TOWN	17 650854 4852808 W	2006-07 6032	1.97			NU	0005 10	1918446 (Z05119) A005430	BRWN SAND GRVL 0006 GREY CLAY SLTY GRVL 0010 GREY TILL 0015
PICKERING TOWN	17 650967 4852770 W	2011-07 7241	2			MT	0010 10	7166728 (Z136822) A120951	BLCK 0000 BRWN SAND GRVL LOOS 0001 BRWN SILT SAND LOOS 0012 GREY SILT SAND LOOS 0020
PICKERING TOWN	17 651544 4852840 W	2015-11 7241	2			MT	0005 10	7253328 (Z219332) A180381	BRWN FILL GRVL LOOS 0005 BRWN SILT SAND DNSE 0010 GREY SILT SAND DNSE 0015
PICKERING TOWN	17 651854 4853712 W	2016-11 7230						7283297 (C36623) A217100 P	
PICKERING TOWN	17 652010 4853977 W	2015-11 7247	2			MT	0030 10	7265423 (Z226651) A179566	BRWN SAND CLAY LOOS 0007 BRWN SILT CLAY DNSE 0013 GREY SAND CLAY DNSE 0026 GREY CLAY FSND HARD 0042
PICKERING TOWN	17 652384 4854148 W	2016-04 7147						7263265 (C32467) A198593 P	
PICKERING TOWN	17 651509 4853534 W	2016-01 6032	1.79			МО	0015 10	7262371 (Z183676) A194335	BRWN FILL LOOS 0003 BRWN SILT SAND 0025
PICKERING TOWN	17 652383 4852829 W	2016-03 4102						7260538 (Z213890) A	
PICKERING TOWN	17 651531 4853635 W	2012-10 7241	2			МО	0010 10	7190980 (Z160697) A109671	BRWN FILL 0005 BRWN TILL SILT HARD 0010 GREY TILL HARD 0020
PICKERING TOWN	17 651438 4853616 W	2017-01 7383	2			МО	0010 10	7288919 (Z257468) A211866	SNDY TILL 0020

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
PICKERING TOWN	17 651494 4853615 W	2014-09 7241	2.04			MT	0015 10	7228398 (Z195962) A164767	BRWN FILL GRVL LOOS 0005 BRWN TILL SAND DNSE 0010 BRWN SAND SILT DNSE 0015 GREY SAND SAND DNSE 0020 GREY SAND TILL DNSE 0025
PICKERING TOWN	17 651478 4853604 W	2014-09 7241	2.04			MT	0015 10	7228397 (Z195695) A164762	BRWN FILL GRVL LOOS 0005 BRWN TILL SAND DNSE 0010 BRWN SAND SILT DNSE 0015 GREY SAND SAND DNSE 0020 GREY SAND TILL DNSE 0025
PICKERING TOWN	17 650854 4852808 W	2006-11 6032				NU		7041285 (Z46585) A005430 A	0015
PICKERING TOWN	17 651493 4853732 W	2012-10 7241	2			МО	0010 10	7190982 (Z160699) A123787	BRWN FILL 0005 BRWN TILL SILT HARD 0010 GREY TILL HARD 0020
PICKERING TOWN	17 651590 4853660 W	2012-10 7241	2			МО	0010 10	7190981 (Z160698) A109687	BRWN FILL 0001 BRWN TILL SILT HARD 0006 GREY TILL HARD 0020
PICKERING TOWN	17 651547 4852865 W	2015-11 7241	2			MT	0005 10	7253330 (Z219334) A156245	BRWN FILL GRVL LOOS 0005 BRWN SAND SILT DNSE 0010 GREY SILT SAND DNSE 0015
PICKERING TOWN 02 440	17 651361 4853532 W	2006-10 1413	5.5		10///:			1918489 (Z53348) A	
PICKERING TOWN 028	17 651846 4853697 W	2005-08 6946	5					1917749 (Z10103) A	
PICKERING TOWN CON 01 027	17 652055 4854073 W	1970-06 0001	48	FR 0042	6///:	NU		4605199 ()	OBDN 0044
PICKERING TOWN CON 01 028	17 651488 4854071 W	1964-11 5420	5					4601228 () A	PRDG 0047 GRVL CLAY STNS 0085 BRWN SHLE 0171
PICKERING TOWN CON 01 028	17 651465 4854175 W	1964-11 5420	5					4601229 () A	CLAY STNS 0027 MSND CLAY 0030 GRVL CLAY STNS 0055 GRVL CLAY 0060 BLUE CLAY MSND 0083 BRWN SHLE 0087
PICKERING TOWN CON 01 028	17 651446 4854047 W	1964-11 5420	5					4601226 () A	GRVL CLAY STNS 0069
PICKERING TOWN CON 01 028	17 651572 4853540 W	1994-11 5459				СО		1912210 (141557) A	GREY CLAY SAND STNS 0017 GREY SAND GRVL SILT 0037 GREY LMSN
PICKERING TOWN CON 01 028	17 651574 4853540 W	1994-11 5459	6	FR 0022	20/23/30/1:0	СО	0029 2	1912209 (141554)	GREY CLAY SAND STNS 0017 GREY SAND GRVL SILT 0022 BLCK CSND 0037 GREY LMSN 0037
PICKERING TOWN CON 01 028	17 651573 4853540 W	1994-11 5459	6	FR 0022	12/16/30/1:0	СО	0025 3	1912207 (141552)	GREY CLAY SAND STNS 0017 GREY SAND GRVL SILT 0022 BLCK SAND LOOS 0037 GREY LMSN 0037
PICKERING TOWN CON 01 028	17 651571 4853540 W	1994-11 5459	6	FR 0021	12/15/30/1:0	СО	0026 12	1912208 (141555)	GREY CLAY SAND 0018 GREY SAND STNS SILT 0021 BLCK SAND LOOS 0038 GREY LMSN
PICKERING TOWN CON 01 029	17 651075 4853923 W	1974-11 2218	30	FR 0010	9/20/6/1:0	DO		4606113 ()	BLCK LOAM 0001 BLUE CLAY 0010 GRVL 0012 BLUE CLAY 0023

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
PICKERING TOWN CON 01 030	17 650582 4853818 W	1958-09 2516	5	FR 0079	22/37/5/1:0	DO	0077 2	4601234 ()	CLAY 0079
PICKERING TOWN CON 01 030	17 650513 4854047 W	1964-02 5420	34	FR 0018	10///:	DO		4601232 ()	LOAM 0001 BRWN CLAY STNS 0012 BLUE CLAY STNS 0029
PICKERING TOWN CON 01 031	17 650426 4854159 W	1995-05 5459				NU		1912418 (141601) A	
PICKERING TOWN CON 01 031	17 650516 4853801 W	2009-12 1663	36		8///:	NU		7140475 (Z94137) A	BRWN 0005 0006 BRWN 0014 0016
PICKERING TOWN RANGE 01 027	17 651778 4853826 W	2005-12 4102						1918302 (Z36198) A	
PICKERING TOWN RANGE 03 027	17 652169 4853901 W	2006-09 6032	0.20			NU	0030 10	1918449 (Z46512) A005442	BRWN SAND SILT CLAY 0044
PICKERING TOWN RANGE 03 027	17 652376 4852785 W	1963-11 2610	30	FR 0034	29//0/24:0	DO		4601896 ()	BRWN CLAY 0017 GREY CLAY 0034 CSND 0037
PICKERING TOWN RANGE 03 028	17 651731 4853724 W	1963-05 5412	30	FR 0057	48///:	DO		4601907 ()	BRWN CLAY 0008 BLUE CLAY STNS 0024 BLUE CLAY 0057 SHLE 0058
PICKERING TOWN RANGE 03 028	17 652094 4852775 W	1954-01 3421	4	FR 0093	63///:			4601906 () A	BRWN CLAY BLDR 0023 BLDR STNS 0060 BLUE CLAY 0093 BLCK SHLE 0123
PICKERING TOWN RANGE 03 028	17 651718 4853927 W	1955-11 3512	6	FR 0063	30/51/1/:	DO		4601905 ()	BLUE CLAY STNS 0062 BLCK SLTE 0100
PICKERING TOWN RANGE 03 028	17 651747 4853940 W	1958-10 2516	5	FR 0080	46/80/1/1:0	DO		4601904 ()	LOAM 0005 GREY CLAY 0070 BRWN SLTE 0080
PICKERING TOWN RANGE 03 029	17 651541 4852865 W	2015-11 7241	0.79			MT	0033 33	7253329 (Z219331) A181297	BRWN FILL GRVL LOOS 0007 BRWN SILT SAND DNSE 0033 GREY SILT SAND DNSE 0066
PICKERING TOWN RANGE 03 029	17 651495 4853563 W	1969-09 5420	34	FR 0018	14/14/10/2:0	DO		4604328 ()	LOAM 0001 BRWN CLAY STNS 0012 BLUE CLAY STNS 0018 GREY GRVL CSND 0027
PICKERING TOWN RANGE 03 030	17 650765 4853368 W	1962-07 2636	4	FR 0227	34/185/10/48:0	DO	0227 4	4601874 ()	YLLW CLAY STNS 0019 BLUE CLAY STNS 0227 GRVL 0231
PICKERING TOWN RANGE 03 030	17 650885 4853159 W	1952-02 4823	4					4601908 () A	RED MSND CLAY STNS 0018 GREY CLAY GRVL 0055 HPAN 0078 GRVL SILT 0079 BLCK SHLE 0097
PICKERING TOWN RANGE 03 030	17 651174 4852255 W	1955-04 4222	6	FR 0035 FR 0048	20///:	NU		4601909 () A	FILL 0001 LOAM 0002 BRWN CLAY MSND 0009 GREY CLAY SILT STNS 0035 MSND GRVL 0038 GREY SILT MSND 0077
PICKERING TOWN RANGE 03 030	17 651172 4852305 W	1957-04 2610	30	FR 0042	35///:	DO		4601910 ()	BRWN CLAY 0010 GREY CLAY 0035 QSND 0042
PICKERING TOWN RANGE 03 030	17 650815 4853513 W	1971-11 2214						4605056 () A	LOAM 0001 BRWN CLAY STNS 0012 BLUE CLAY STNS 0030
PICKERING TOWN RANGE 03 031	17 650603 4853494 W	1966-02 5420	30	FR 0007	5///:	DO		4601913 ()	LOAM 0001 YLLW CLAY 0005 CLAY GRVL 0010 BLUE CLAY 0017

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION	
PICKERING TOWN RANGE 03 031	17 650771 4852580 L	2001-11 2214						1915420 (240016) A		
PICKERING TOWN RANGE 03 031	17 650831 4852894 W	1966-08 5412	30	FR 0020	17//6/:	DO		4601912 ()	LOAM 0001 BRWN CLAY 0010 GREY CLAY 0020 GRVL 0025	
PICKERING TOWN RANGE 03 031	17 650591 4853144 W	1966-11 2610	30	FR 0010	10//1/:	DO		4601914 ()	MSND 0022	
PICKERING TOWN RANGE 03 031	17 650624 4852568 W	1964-06 2613	7					4601915 () A	GREY CLAY 0133 GREY SHLE 0138 LMSN 0218	
PICKERING TOWN RANGE 03 031	17 650915 4852783 W	1967-09 2306	6	FR 0102	90/95/3/2:30	DO		4601916 ()	PRDG 0040 CLAY 0100 GRVL 0102	
PICKERING TOWN RANGE 03 031	17 650891 4852820 W	2015-07 7147						7245784 (C28817) P		
PICKERING TOWN RANGE 03 031	17 650699 4852903 W	2014-07 4102						7227606 (Z154883) A		
PICKERING TOWN RANGE 03 031	17 650683 4852905 W	2014-07 4102						7227605 (Z154882) A		
PICKERING TOWN RANGE 03 031	17 650691 4852889 W	2014-07 4102						7227604 (Z154881) A		
PICKERING TOWN RANGE 03 031	17 650683 4853245 W	1958-11 2516	5					4601911 () A	PRDG 0025 GREY LMSN 0050	

TOWNSHIP CON LOT UTM DATE CNTR CASING DIA WATER PUMP TEST WELL USE SCREEN WELL FORMATION

SNDS SANDSTONE

SNDY SANDYOAPSTONE

Notes:

DRTY DIRTY

DRY DRY

UTM: UTM in Zone, Easting, Northing and Datum is NAD83; L: UTM estimated from Centroid of Lot; W: UTM not from Lot Centroid DATE CNTR: Date Work Completedand Well Contractor Licence Number

PEAT PEAT

PGVL PEA GRAVEL

CASING DIA: .Casing diameter in inches

WATER: Unit of Depth in Fee. See Table 4 for Meaning of Code

HARD HARD

HPAN HARDPAN

PUMP TEST: Static Water Level in Feet / Water Level After Pumping in Feet / Pump Test Rate in GPM / Pump Test Duration in Hour: Minutes

WELL USE: See Table 3 for Meaning of Code SCREEN: Screen Depth and Length in feet

WELL: WEL (AUDIT #) Well Tag . A: Abandonment; P: Partial Data Entry Only

FORMATION: See Table 1 and 2 for Meaning of Code

1. Core Material and Descriptive terms

Code	Description	Code	Description	Code	Description	Code	Description	Code	Description
BLDR	BOULDERS	FCRD	FRACTURED	IRFM	IRON FORMATION	PORS	POROUS	SOFT	SOFT
BSLT	BASALT	FGRD	FINE-GRAINED	LIMY	LIMY	PRDG	PREVIOUSLY DUG	SPST	SOAPSTONE
CGRD	COARSE-GRAINED	FGVL	FINE GRAVEL	LMSN	LIMESTONE	PRDR	PREV. DRILLED	STKY	STICKY
CGVL	COARSE GRAVEL	${\tt FILL}$	FILL	LOAM	TOPSOIL	QRTZ	QUARTZITE	STNS	STONES
CHRT	CHERT	FLDS	FELDSPAR	LOOS	LOOSE	QSND	QUICKSAND	STNY	STONEY
CLAY	CLAY	FLNT	FLINT	LTCL	LIGHT-COLOURED	QTZ	QUARTZ	THIK	THICK
CLN C	CLEAN	FOSS	FOSILIFEROUS	LYRD	LAYERED	ROCK	ROCK	THIN	THIN
CLYY	CLAYEY	FSND	FINE SAND	MARL	MARL	SAND	SAND	TILL	TILL
CMTD	CEMENTED	GNIS	GNEISS	MGRD	MEDIUM-GRAINED	SHLE	SHALE	UNKN	UNKNOWN TYPE
CONG	CONGLOMERATE	GRNT	GRANITE	MGVL	MEDIUM GRAVEL	SHLY	SHALY	VERY	VERY
CRYS	CRYSTALLINE	GRSN	GREENSTONE	MRBL	MARBLE	SHRP	SHARP	WBRG	WATER-BEARING
CSND	COARSE SAND	GRVL	GRAVEL	MSND	MEDIUM SAND	SHST	SCHIST	WDFR	WOOD FRAGMENTS
DKCL	DARK-COLOURED	GRWK	GREYWACKE	MUCK	MUCK	SILT	SILT	WTHD	WEATHERED
DLMT	DOLOMITE	GVLY	GRAVELLY	OBDN	OVERBURDEN	SLTE	SLATE		
DNSE	DENSE	GYPS	GYPSUM	PCKD	PACKED	SLTY	SILTY		

2. Core Color

Code Description Code Description Code Description WHIT WHITE DO Domestic OT Other ST Livestock TH Test Hole BLUE BLUE IR Irrigation DE Dewatering GREN GREEN MO Monitoring IN Industrial YLLW YELLOW CO Commercial MT Monitoring TestHole

3. Well Use

BRWN BROWN MN Municipal RED RED PS Public

BLCK BLACK AC Cooling And A/C

BLGY BLUE-GREY NU Not Used

4. Water Detail

Code Description Code Description FR Fresh GS Gas SA Salty IR Iron

SU Sulphur MN Mineral UK Unknown