SEPTEMBER 26, 2022

PROJECT NO: 1807-5430

SENT VIA: EMAIL

City of Pickering 1 The Esplanade South City of Pickering, ON, L1V 6K7

Attention: Richard Holborn

Director, Engineering Services, City of Pickering

RE: TRANSPORTATION UPDATE LETTER

FILE NO. A05/20 OPA 20-001/P D-5100

2055 BROCK ROAD

CITY OF PICKERING, DURHAM REGION

Dear Richard,

C.F. Crozier & Associates Inc. (Crozier) was retained by Brock Road Duffins Forest Inc. to undertake a Traffic Impact Study (TIS) in support of a Zoning By-Law Amendment (ZBA) and an Official Plan Amendment (OPA) for a residential development located at 2055 Brock Road, in the City of Pickering, Regional Municipality of Durham.

The following submissions were previously prepared in support of the development:

- Traffic Impact Study (Crozier, April 2020)
- Traffic Impact Study Addendum (Crozier, September 2021)

The Transportation Update Letter herein, accompanies the previously submitted TIS Addendum, dated September 2021, summarizes the changes in the most recent Site Plan, as well as addresses the City's most recent comments.

The most recent Site Plan dated September 2022 is attached as **Attachment 1**. The City's most recent comments, including associated responses, is included in **Attachment 2**.

1.0 Development Proposal

The most recent Site Plan prepared by Kohn Partnership Architects Inc. proposes a residential development consisting of a 20-storey tower with 328 residential units, 10 street townhouses and 34 back-to-back townhouses. The development also proposes 514 parking spaces and a full moves site access at Usman Road (south).

The most recent Site Plan dated September 2022 is attached as Attachment 1.

Table 1 below outlines the breakdown of the development proposal, as well as changes in the site statistics when compared to the previously submitted studies.

Table 1
Proposed Development Breakdown (Comparison)

Block	April 2020	September 2021	September 2022
Block A Residential Tower High Rise with 4 storey podium	307 units	328 units	328 units
Block B Street Townhouse 3 storeys	9 units	10 units	10 units
Block C & D Back-to-Back Townhouses 3 storeys	64 units	34 units	34 units
Total	380 units	372 units	372 units
Parking Spaces	502 spaces	513 spaces	514 spaces

As shown in **Table 1**, the most recent Site Plan proposes 372 residential units and 514 parking spaces. In comparison to the previous submission, the development proposes an **unchanged** number of residential units and an increase of one (1) parking space.

2.0 Sensitivity Analysis

As mentioned in **Section 4.5** of the previously submitted TIS Addendum (Crozier, September 2021), prior to road widening, significant delays and capacity issues are expected for the southbound left-turn movement at Brock Road and Usman Road (south). As such, it is expected that a portion of residents and regular commuters who are familiar with the area will alternatively choose to make the southbound left-turn at the signalized intersection of Brock Road and Major Oaks Road/Usman Road (north).

2.1 Brock Road at Major Oaks Road/Usman Road (North) – 50% SBL

In the previous TIS Addendum, a sensitivity analysis was prepared to review the operations of Brock Road at Major Oaks Road/Usman Road (north), and Brock Road at Usman Road (south), if 50% of the southbound left-turn traffic at Brock Road and Usman Road (south), did so at Brock Road and Major

Oaks Road/Usman Road (north) instead. These results are outlined in **Table 2** below.

As road widening is recommended by 2029 and the intersection of Brock Road and Usman Road (south) operates acceptably post-road widening, the analysis is reviewed only for 2024 future background and future total volumes **without road widening**. The analysis has been conservatively conducted for the Friday Mid-day peak hour as this peak period yielded the highest delays and the highest theoretical volume-to-capacity ratio based on the 2024 future background and future total operations outlined in the previously submitted TIS Addendum (Crozier, September 2021).

Table 2
2024 Future Total Level of Service: 50% SBL at Major Oaks Road/Usman Road (North)

Intersection	Control Peak Hour		Level of Service ¹	Control Delay	Maximum V/C Ratios ²
Brock Road (RR1) at Major Oaks Road/Usman Road (north)	Signalized (Reconfigured & Optimized)	Friday Mid-day	E	67.4 s	1.15 (NBT)
Brock Road (RR1) at Usman Road (south)	One-Way Stop Controlled	Friday Mid-day	В	14.9 s	0.86 (SBL)

Note 1: The Level of Service of a signalized intersection is based on the average control delay per vehicle. The level of Service of a stop-controlled intersection is based on the minor (stopped)approach control delay per vehicle.

Note 2: The critical v/c ratio is considered to be the maximum v/c ratio at the intersection. All v/c ratios greater than 0.90 are outlined and highlighted.

As shown above in **Table 2**, the intersection of Brock Road at Major Oaks/Usman Road (north) is expected to continue to operate at an unchanged level of service (LOS) "E" during the Friday Midday peak hour despite the expected additional southbound left-turning vehicles. When compared to the future total operations outlined in **Table 13** of the previous TIS Addendum (September 2021), the intersection is expected to operate with a minor, but acceptable, increase in control delay of 11.5 seconds and a minor increase in maximum theoretical volume-to-capacity ratio of 0.05.

The intersection of Brock Road and Usman Road (south) is expected to continue to operate at an unchanged LOS "B" with an unchanged control delay of 14.9 seconds during the Friday Mid-day peak hour. The intersection is expected to operate with a maximum volume-to-capacity ratio of 0.86, a material improvement from 1.72 as previously shown in **Table 13** of the previous TIS Addendum.

As such, if regular commuters of the area choose to avoid the unsignalized intersection of Brock Road and Usman Road (south) by making the southbound left-turn at the signalized intersection of Brock Road and Major Oaks Road/Usman Road (north), the intersection is expected to continue to operate acceptably with no additional improvements required prior to Brock Road widening.

2.2 Brock Road at Major Oaks Road/Usman Road (North) – 100% SBL

Per the City of Pickering comments dated July 2022, the above sensitivity analysis was updated for the scenario in which 100% of the southbound left-turning traffic at Brock Road and Usman Road (south), did so at Brock Road and Major Oaks Road/Usman Road (north) instead.

Based on observed site conditions in September 2022, the intersection of Brock Road (RR1) and Usman

Road (south) is still configured as left-in right-in right-out. As such, this analysis can be considered conservative as it is unlikely that all southbound left-turn maneuvers would take place at the intersection of Brock Road (RR1) and Major Oaks Road/Usman Road (north). Instead, it is anticipated that a portion of southbound left-turns will continue to be made at the unsignalized intersection of Brock Road (RR1) and Usman Road (south), as shown above in **Section 2.1**.

The revised sensitivity analysis is outlined in **Table 3** below.

Table 3 2024 Future Level of Service: 100% SBL at Major Oaks Road/Usman Road (north)

Intersection	Control	Peak Hour	Level of Service ¹	Control Delay	Maximum V/C Ratios ²					
Future Background										
Brock Road (RR1) at Major Oaks Road/Usman Road (north)	Signalized (Reconfigured & Optimized)	Friday Mid-day	´ I ⊨		1.19 (NBT)					
Brock Road (RR1) at Usman Road (south)	One-Way Stop Controlled	i i i i i i i i i i i i i i i i i i i		14.4 s	0.63 (NBT)					
		Future Total								
Brock Road (RR1) at Major Oaks Road/Usman Road (north)	Signalized (Reconfigured & Optimized)	Friday Mid-day	F	87.2 s	1.23 (NBT)					
Brock Road (RR1) at Usman Road (south)	One-Way Stop Controlled	Friday Mid-day	В	14.9 s	0.63 (NBT)					

Note 1: The Level of Service of a signalized intersection is based on the average control delay per vehicle. The level of Service of a stop-controlled intersection is based on the minor (stopped)approach control delay per vehicle.

As shown above in **Table 3**, the intersection of Brock Road at Major Oaks/Usman Road (north) is expected to operate at a level of service "F" during the Friday Mid-day peak hour under future total sensitivity conditions. The intersection is expected to operate with a maximum control delay of 87.2 seconds or less, and maximum theoretical volume-to-capacity ratio of 1.23 or less. When compared to the future background sensitivity conditions, the intersection is expected to experience an increase in control delay of 12.1 seconds and a minor increase of maximum volume-to-control ratio of 0.04.

The intersection of Brock Road and Usman Road (south) is expected to continue to operate at an unchanged level of service "B" with a control delay of 14.9 seconds during the Friday Mid-day peak hour under future total sensitivity conditions. The intersection is expected to operate with a reduced maximum volume-to-capacity ratio of 0.63, a material improvement from 1.72 under future total conditions as outlined in the previous submission.

Detailed capacity analyses are included in **Attachment 3**.

Note 2: The critical v/c ratio is considered to be the maximum v/c ratio at the intersection. All v/c ratios greater than 0.90 are outlined and highlighted.

Note 3: Lost time adjustments and/or left-turns during intergreen were not accounted for.

2.3 Conservative Assumptions

As the southbound left-turn movement at Brock Road and Usman Road (south) is not proposed to be removed, the analysis above is considered conservative. The analysis represents the upper bound scenario, where all southbound left-turn traffic is to be conducted at Brock Road and Major Oaks Road/Usman Road (north). Nonetheless, based on **Table 3** operations outlined above, both intersections are expected to continue to operate comparably to the boundary road network's existing and future background traffic conditions.

The above analysis in **Section 2.2** and **2.3** can also be considered conservative as existing Peak Hour Factors (PHF) of 0.84 and 0.90 were applied to the intersections of Brock Road and Major Oaks Road/Usman Road (north), and Brock Road and Usman Road (south), respectively, for all future analysis per previous Region staff request. As peak hour traffic flow typically becomes more uniformly distributed as traffic approaches capacity, the above analysis may also be considered conservative from this perspective.

Furthermore, it is noted that left-turns during intergreen (or lost time adjustments) were not accounted for in the analysis above. Based on typical peak hour traffic conditions, an average of 1 to 2 left-turning vehicles may proceed during the amber and all red phases, representing an increase in left-turn capacity of approximately 32-65 vehicles per peak hour. Thus, once again, the analysis above may be considered conservative. Similar to the previously submitted TIS, an analysis considering a lost time adjustment of 3.0 seconds is outlined in **Section 2.4** below.

Lastly, the traffic conditions herein, are based on the Friday Mid-day peak hour volumes. As Friday Mid-day is not typically associated with peak hour trip generation for residential developments, the above analysis can once again be considered conservative.

As the operations outlined herein are considered conservative, typical for urban arterial roadways, and are consistent with existing and future background operations of other intersections in the boundary road network, additional background warranted interim improvements (prior to Brock Road widening) are not required.

2.4 Sensitivity Analysis with Lost Time Adjustments

Table 4 below outlines the 2024 Future Total Level of Service of Brock Road and Major Oaks Road/Usman Road (north) with 100% southbound left-turns and lost time adjustments applied to account for left-turns during the intergreen period.

Table 4 2024 Future Total Level of Service: 100% SBL at Major Oaks Road/Usman Road (north) With Lost Time Adjustments

Intersection	Control	Peak Hour	Level of Service ¹	Control Delay	Maximum V/C Ratios ²
Brock Road (RR1) at Major Oaks Road/Usman	Signalized (Reconfigured & Optimized with Lost	Friday Mid-day	E	77.3 s	1.18 (NBT)
Road (north)	Time)				

Note 1: The Level of Service of a signalized intersection is based on the average control delay per vehicle. The level of Service of a stop-controlled intersection is based on the minor (stopped)approach control delay per vehicle.

With lost time adjustments applied, the intersection is expected to operate at a level of service "E" during the Friday Mid-day peak hour under future total sensitivity conditions. The intersection is expected to operate with a reduced maximum control delay of 77.3 seconds or less, and maximum theoretical volume-to-capacity ratio of 1.18 or less. These peak hour operations are typical for an urban arterial roadway and are consistent with other intersection operations in the boundary road network, thus, once again, additional background warranted interim improvements (prior to Brock Road widening) are not required.

3.0 Vehicle Turning Diagrams

As required by Durham Region Waste Management Services, a 13-metre centerline radius has been provided along the drive aisle, where waste collection vehicles are expected. Per discussion with the proponent, waste collection for the development will exclusively take place at the Block A loading spaces.

Based on the updated Vehicle Turning Diagrams, no operational issues are expected for waste collection vehicles, delivery vehicles (i.e., MSU), and fire trucks.

The updated Vehicle Turning Diagrams are included in Attachment 4.

4.0 Pavement Marking and Signage Plan

A Pavement Marking and Signage Plan will be prepared at the Site Plan Application stage.

5.0 Comment Response

Comment responses are included as **Attachment 2** of this letter. It is noted that Region of Durham comments are still outstanding and will be addressed at a later date.

Per City staff request, the previous Trip Distribution and Assignment traffic volume figures have been included as **Attachment 5**. It is noted that these figures are associated with the base trip assignment reviewed in **Section 5.0** of the previously submitted TIS Addendum (Crozier, September 2021).

Note 2: The critical v/c ratio is considered to be the maximum v/c ratio at the intersection. All v/c ratios greater than 0.90 are outlined and highlighted.

6.0 Conclusions

The revised Site Plan proposes a residential development with 372 units, unchanged in comparison to the previous submission. Thus, the previous traffic operational analysis remains valid and is not updated herein.

The City of Pickering's comments as of July 20, 2022, are addressed herein. The Region of Durham comments are still outstanding and will be addressed at a later date.

We trust that this review addresses any transportation related concerns with the project. Should you have any questions or require any further information, please do not hesitate to contact the undersigned.

Respectfully submitted by,

C.F. CROZIER & ASSOCIATES INC.

Martin Chan, P.Eng.

Project Engineer, Transportation

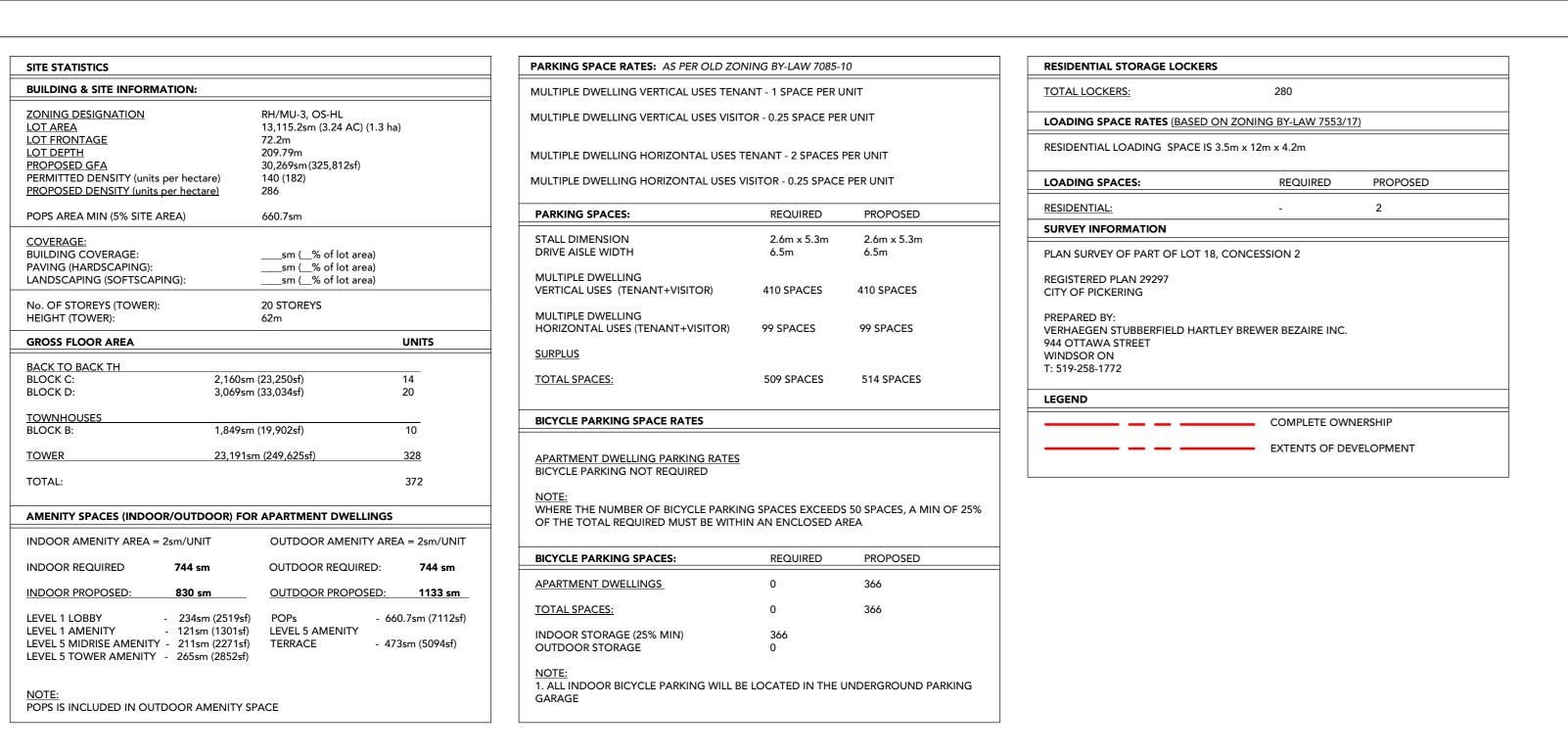
C.F. CROZIER & ASSOCIATES INC.

My-Linh Yee, BESc.

Engineering Intern, Transportation

Enclosed

Attachment 1: Site Plan


Attachment 2: Comment Response Matrix Attachment 3: Detailed Capacity Analyses Attachment 4: Vehicle Turning Diagrams

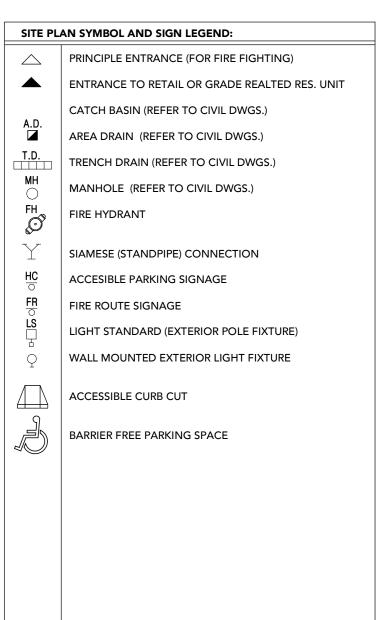
Attachment 5: Trip Distribution & Assignment Figures

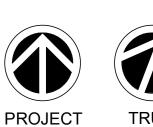
/MY/KH

N:\1800\1807 - Brock Road Duffins Forest Inc\5430 - 2055 Brock Rd\Reports\2022.09.19 TIS Addendum\2022.09.26 2055 Brock Road TUL.docx

ATTACHMENT 1 Site Plan

Kohn Partnership Architects Inc. 116 Spadina Avenue, Suite 501, Toronto ON M5V 2K6 Tel 416.703.6700 www.kohnarchitects.com


ALL DIMENSIONS ARE GIVEN IN MILLIMETRES UNLESS OTHERWISE INDICATED. DO NOT SCALE DRAWINGS.


CONTRACTOR SHALL VERIFY AND CHECK ALL DIMENSIONS AND CONDITIONS ON SITE PRIOR TO STARTING ANY OF THE WORK AND REPORT ANY DISCREPANCY TO THE ARCHITECT AND CONSULTANTS BEFORE PROCEEDING. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF AUTHORITIES HAVING JURISDICTION PERTAINING TO THIS APPLICATION. THE ARCHITECT BEARS NO RESPONSIBILITY FOR THE INTERPRETATION OF THESE DOCUMENTS BY THE CONTRACTOR. UPON WRITTEN APPLICATION THE ARCHITECT WILL PROVIDE WRITTEN OR GRAPHIC CLARIFICATION AS SUPPLEMENTARY INFORMATION REGARDING THE INTENT OF THE CONTRACT DOCUMENTS. FIXTURES ARE INDICATED ON ARCHITECTURAL DRAWINGS. WHICH SHALL GOVERN OVER THE MECHANICAL AND ELECTRICAL DRAWINGS. THOSE ITEMS NOT CLEARLY LOCATED, TO BE LOCATED AS DIRECTED BY THE ARCHITECT.

NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITIONS OR POLLUTIONS OF THIS SITE. COPYRIGHT 2005 KOHN ARCHITECTS INC. COPYRIGHT OF THIS DRAWING AND THE DESIGN INTENT IS RESERVED BY THE ARCHITECT. THE DRAWINGS AND ALL ASSOCIATED DOCUMENTS ARE AN INSTRUMENT OF SERVICE BY KOHN ARCHITECTS INC. THE DRAWINGS AND THE INFORMATION CONTAINED THEREIN MAY NOT BE REPRODUCED IN WHOLE OR IN PART WITHOUT

IOR	IOR WRITTEN PERMISSION OF THE KOHN ARCHITECTS INC.				
	RAWINGS ARE THE PR EST.	ROPERTY OF THE ARCHITECT AND MUST BE RETURNED ON			
SU	E DATES AND I	DISTRIBUTION	_		
Э.	Date	Note	•		
	2019-08-28	ISSUED FOR COORDINATION	_		
	2019-10-30	ISSUED FOR COORDINATION	_		
	2019-11-21	ISSUED FOR COORDINATION	_		
	2020-02-20	ISSUED FOR COORDINATION	_		
	2020-03-03	ISSUED FOR COORDINATION	_		
	2020-03-10	ISSUED FOR COORDINATION	_		
	2020-04-03	ISSUED FOR ZBA #1	_		
	2021-06-02	ISSUED FOR COORDINATION			

9 2022-02-07 ISSUED FOR ZBA RESUBMISSION

2055 BROCK ROAD

BROCK RD DUFFINS FOREST INC.

ENLARGED SITE PLAN &

STATISTICS

2022-09-22 6:36:31 PM
Building No.:

SITE PLAN 1 SCALE: 1 : 250 A1 01

ATTACHMENT 2 Comment Response Matrix

Department/Agency	Comment	Crozier Response
	Table 2 of the Transportation Impact Study (TIS) Addendum dated September 2021 shows that the posted speed limit for Major Oaks Road is 50 km/hour. Revise this to 40 km/hr.	Noted. This a typo and does not affect the conclusions of the report.
		Noted. The 'existing' condition is not updated as the report reflects the 'existing' traffic operations at the time of the initial report.
City of Pickering – Engineering Services Traffic Comments dated June 23, 2022 Richard Holborn Director, Engineering	Section 12 of the TIS recommends a list of interim improvements for 2024, regarding the signal timing. The Region of Durham has recently added an advance green signal timing for the southbound left traffic on the Major Oaks Road and Usman Road intersection. Please contact the Region and update the traffic report accordingly.	The future conditions are also not updated as the TIS reflects the optimal signal timing plan for the projected volumes in the future horizon year. The Region's recently revised signal timing plan would have to be further optimized to the signal timings outlined in the TIS, in the future horizon year. It is also noted that based on a site visit on September 24 th , 2022, no advanced green signal was observed for the southbound left traffic at the Major Oaks Road and Usman Road intersection. Finally, as concluded in the TIS, the site generated traffic
Services		does not materially change future traffic operations. Thus, regardless of the recently revised Region's signal timing plan, the conclusions of the TIS do not change.
	As per Section 12 of the TIS, a traffic signal is recommended at the Brock Road and Usman Road intersection for the to provide pedestrian and cyclist crossing opportunity across Brock Road. The city is supportive of adding a signal at this location due to the high volume of pedestrian crossing the road. However, the signalization of this intersection is under the jurisdiction of the Region of Durham.	Per discussion with Durham Region staff, an internal meeting will be held to discuss the signalization of Brock Road and Usman Road (south). Correspondence with the Region has been included following this matrix.

Department/Agency	Comment	Crozier Response
	Provide an Autoturn diagram for all the proposed design vehicles including a fire truck.	Vehicle Turning Diagrams were previously provided as part of the TIS. Nevertheless, updated Vehicle Turning Diagrams were prepared per the latest Site Plan. The Vehicle Turning Diagrams are included as Attachment 4 .
	Show the proposed road widths, radiuses and the access width on the proposed plans.	Noted.
	Shows the proposed signage on the proposed plans.	A Pavement Marking and Signage Plan will be provided during the Site Plan Application process.
	A sightline review should be provided at the proposed access.	A sight distance assessment was provided in Section 8.0 of the previously submitted TIS Addendum (Crozier, September 2021).
	Several area residents expressed concerns that existing traffic levels along Usman Road are already high and the proposal will only worsen the existing traffic issues experienced along this roadway.	The previous submissions concluded that the site generated traffic is not expected to materially change future traffic operations.
City of Pickering City Development Department — Transportation Impact Study Comments as of July 20, 2022	Additionally on February 22, 2021 City Council adopted a motion requesting: 1. That the Region of Durham consider the expedited approval and installation of full traffic and pedestrian signals at the intersection of Brock Road (RR#1) and the southern leg of Usman Road in place of the existing left in, right in and right out only access; 2. That the installation of signals be completed prior to the beginning of construction of the new development in order to address construction traffic from having to drive through the existing neighbourhood.	Per discussion with the Durham Region staff, an internal meeting will be held to discuss the signalization of Brock Road and Usman Road (south). Correspondence with the Region has been included following this matrix.

Department/Agency	Comment	Crozier Response
	A Transportation Impact Study (TIS) Addendum, prepared by Crozier Consulting Engineers, dated September 2021, was submitted in support of the proposed development. The study undertook a signal warrant analysis for the signalization of the Brock Road/Usman Road intersection, which determined that a signal is not warranted under 2029 future total conditions based on the OTM Book 12 guidelines. Although not warranted under OTM Book 12 conditions, the TIS outlined that signalization could provide benefits, such as pedestrian and cycling crossing opportunity across Brock Road.	Noted.
	The City's Engineering Services Department has reviewed the submitted TIS Addendum and have outlined the City is supportive of the signalization of the Brock Road/Usman Road (south) intersection due to high pedestrian volume crossing the road. However, Engineering Services identified signalization of this intersection is under the jurisdiction of the Region of Durham.	Per discussion with the Durham Region staff, an internal meeting will be held to discuss the signalization of Brock Road and Usman Road (south). Correspondence with the Region has been included following this matrix.

Department/Agency	Comment	Crozier Response
, , ,	The TIS also noted that it is expected that regular commuters	The sensitivity analysis was updated to reflect 100% of
	will choose to make a southbound left turn at the signalized	vehicles making a southbound left turn will utilize Brock
	intersection of Brock Road at Major Oaks/Usman Road (north)	Road at Major Oaks/Usman Road (north) and is included
	rather than Brock Road at Usman Road (south) to avoid delays.	in Section 2.0 of the Transportation Update Letter.
	A sensitivity analysis confirms that in the case that 50% of the	·
	southbound left-turning traffic at Brock Road and Usman Road	It is unclear whether the City/Region intends to remove
	(south) turns at Brock Road and Major Oaks/Usman Road	the southbound left-in from Brock Road to Usman Road
	(north) instead, the intersection still operates acceptably with	(south). Based on a site visit on September 24th, 2022,
	no additional improvements required. Please revise the TIS to	the intersection of Brock Road and Usman Road (south)
	recognize all (100%) of vehicles making a southbound left turn	is configured as a left-in-right-in-right-out. Nevertheless,
	will utilize the Brock Road at Major Oaks/Usman Road (north),	we have provided analysis of 100% of southbound left-
	given the Brock Road and Usman Road (south) is limited to a	turns occurring at Brock Road and Major Oaks/Usman
	northbound right turn only.	Road (north). This analysis is considered conservative,
		as it is not expected that 100% of trips will make the
	Please also provide a summary as a part of the Trip	southbound left-turn at Brock Road and Major
	Generation/Distribution section of the report which provides a	Oaks/Usman Road (north).
	summary on how many outbound trips during the	
	AM/PM/Friday Mid-Day Peak hours are anticipated to travel	The previously submitted TIS (Crozier, September 2021)
	north on Usman Road to the Brock Road and Major	included trip distribution and trip assignment figures.
	Oaks/Usman Road (north) and west to the Brock Road and	The trip distribution and trip assignment figures are
	Usman Road (south) from the subjects lands.	attached in Attachment 5 .
	Comments have not yet been received by the Region of Durham, however, in light of Council's motion, the findings of the TIS and comments received from the City's Engineering Services Department, City staff request the applicant engage the Region of Durham regarding the feasibility of the signalization of the Brock Road/Usman Road intersection.	Per discussion with the Durham Region staff, an internal meeting will be held to discuss the signalization of Brock Road and Usman Road (south). Correspondence with the Region has been included following this matrix.

Kierra Harper

From: Amanda Spencer <Amanda.Spencer@Durham.ca>

Sent: Thursday, September 8, 2022 8:42 AM

To: Kierra Harper

Cc: Steven Kemp; Lynda Motschenbacher; Joel Walker **Subject:** FW: 2055 Brock Road - Brock and Usman Signalization

Hi Kierra,

A letter will be sent today to the City of Pickering responding to their Council resolution to install a traffic control signal at the subject intersection. We would like to give the City of Pickering an opportunity to comment and discuss these plans prior to giving any direction on proposed traffic control at Brock/Usman South.

I apologize for the delay.

Regards, Amanda

From: Lynda Motschenbacher < Lynda. Motschenbacher @ Durham.ca>

Sent: September 7, 2022 4:07 PM

To: Amanda Spencer < Amanda. Spencer@Durham.ca>

Subject: FW: 2055 Brock Road - Brock and Usman Signalization

Hi Amanda,

I hope that you had a great summer and great vacation! Would you be able to contact Kierra, she's been trying to contact someone in Traffic the last few weeks.

Thanks

Lynda

From: Kierra Harper < kharper@cfcrozier.ca>

Sent: September 7, 2022 2:35 PM

To: Lynda Motschenbacher < Lynda. Motschenbacher @ Durham.ca>

Cc: Michael Linton < mlinton@cfcrozier.ca >; Martin Chan < mchan@cfcrozier.ca >; My-Linh Yee < myee@cfcrozier.ca >

Subject: RE: 2055 Brock Road - Brock and Usman Signalization

Hi Lynda,

I hope you are doing well and enjoyed the long weekend.

Have you had any luck reaching anyone to help us with our inquiry regarding the Region's position on signalization at Brock Road and Usman Road?

Feel free to give me a call if that is easier.

Thanks, Kierra

Kierra Harper, EIT | Engineering Intern 211 Yonge Street, Suite 600 | Toronto, ON M5B 1M4 T: 416.477.3392

Crozier Connections: f y in @

Read our latest news and announcements here.

From: Kierra Harper

Sent: Wednesday, August 31, 2022 2:37 PM

To: Lynda Motschenbacher < Lynda. Motschenbacher@Durham.ca >

Cc: Michael Linton <mlinton@cfcrozier.ca>; Martin Chan <mchan@cfcrozier.ca>; My-Linh Yee <myee@cfcrozier.ca>

Subject: RE: 2055 Brock Road - Brock and Usman Signalization

Thanks Lynda, really appreciate your help on this!

Kierra

From: Lynda Motschenbacher < Lynda. Motschenbacher@Durham.ca >

Sent: Wednesday, August 31, 2022 1:57 PM **To:** Kierra Harper < <u>kharper@cfcrozier.ca</u>>

Subject: RE: 2055 Brock Road - Brock and Usman Signalization

Hi Kierra,

Sorry it has been so crazy busy this summer and then vacations on top of that. I'll try to reach someone for you.

Thanks for your patience.

Lynda

From: Kierra Harper < kharper@cfcrozier.ca>

Sent: August 31, 2022 1:51 PM

To: Lynda Motschenbacher < Lynda. Motschenbacher @ Durham.ca >

Cc: Michael Linton < mlinton@cfcrozier.ca >; Martin Chan < mchan@cfcrozier.ca >; My-Linh Yee < myee@cfcrozier.ca >

Subject: FW: 2055 Brock Road - Brock and Usman Signalization

Hi Lynda,

I hope you are doing well.

I was wondering if you could reach out to Amanda or Joel on my behalf or refer me to someone else in the Traffic and Operations Division to proceed with this inquiry. I tried reaching out to Amanda and Joel by email and voicemail and have not heard back.

Any help to get this moving along would be greatly appreciated!

Thanks, Kierra

Kierra Harper, EIT | Engineering Intern 211 Yonge Street, Suite 600 | Toronto, ON M5B 1M4 T: 416.477.3392

Crozier Connections: f y in

Read our latest news and announcements here.

From: Kierra Harper

Sent: Tuesday, August 30, 2022 2:16 PM

To: 'Amanda Spencer' < <u>Amanda.Spencer@Durham.ca</u>>; 'Joel Walker' < <u>Joel.Walker@Durham.ca</u>>

Cc: Michael Linton <mlinton@cfcrozier.ca>; Martin Chan <mchan@cfcrozier.ca>; My-Linh Yee <myee@cfcrozier.ca>

Subject: RE: 2055 Brock Road - Brock and Usman Signalization

Hi Amanda, Joel,

Just called you both and left voicemails. I am just following up on the emails below regarding the Region's position on the signalization of Brock Road and Usman Road.

Feel free to call me back or respond here.

Thanks, Kierra

From: Kierra Harper

Sent: Monday, August 22, 2022 10:42 AM

To: Amanda Spencer < Amanda. Spencer@Durham.ca >; Joel Walker < Joel. Walker@Durham.ca >

Cc: Michael Linton <mli>mlinton@cfcrozier.ca>; Martin Chan <mchan@cfcrozier.ca>; My-Linh Yee <myee@cfcrozier.ca>

Subject: RE: 2055 Brock Road - Brock and Usman Signalization

Hi Amanda, Joel,

Just following up on my emails below.

Thanks, Kierra

From: Kierra Harper

Sent: Friday, August 19, 2022 8:47 AM

To: Amanda Spencer Amanda.Spencer@Durham.ca; Joel Walker < Joel.Walker@Durham.ca>

Cc: Michael Linton < mlinton@cfcrozier.ca >; Martin Chan < mchan@cfcrozier.ca >; My-Linh Yee < myee@cfcrozier.ca >

Subject: RE: 2055 Brock Road - Brock and Usman Signalization

Hi Amanda, Joel,

I hope you are doing well.

I have been referred to you regarding my email below (also attached). We are inquiring about the Region's position on the signalization of Brock Road and Usman Road.

Could you advise on the Region's stance on this signalization issue?

Thanks, Kierra

From: Lynda Motschenbacher < Lynda. Motschenbacher@Durham.ca >

Sent: Thursday, August 18, 2022 3:30 PM **To:** Kierra Harper < <u>kharper@cfcrozier.ca</u>>

Cc: Amanda Spencer <Amanda.Spencer@Durham.ca>; Joel Walker <Joel.Walker@Durham.ca>

Subject: RE: 2055 Brock Road - Brock and Usman Signalization

Hi Keirra,

You can contact Amanda Spencer or Joel Walker in the Traffic and Operations division.

Regards,

Lynda

From: Kierra Harper < kharper@cfcrozier.ca>

Sent: August 18, 2022 3:12 PM

To: Lynda Motschenbacher < Lynda. Motschenbacher @ Durham.ca>

Cc: Glyn Reedman < <u>Glyn.Reedman@Durham.ca</u>>; Michael Linton < <u>mlinton@cfcrozier.ca</u>>; Martin Chan

<mchan@cfcrozier.ca>; My-Linh Yee <myee@cfcrozier.ca>
Subject: RE: 2055 Brock Road - Brock and Usman Signalization

Hi Lynda,

Just following up on the below emails. Is there someone in the Traffic and Operations Division I can follow up with about this?

Thanks, Kierra

Kierra Harper, EIT | Engineering Intern 211 Yonge Street, Suite 600 | Toronto, ON M5B 1M4 T: 416.477.3392

Crozier Connections: f y in @

Read our latest news and announcements here.

From: Lynda Motschenbacher < Lynda. Motschenbacher@Durham.ca >

Sent: Thursday, August 11, 2022 1:57 PM

To: Kierra Harper < kharper@cfcrozier.ca >; Glyn Reedman < Glyn.Reedman@Durham.ca >

Cc: Michael Linton <mlinton@cfcrozier.ca>; Martin Chan <mchan@cfcrozier.ca>; My-Linh Yee <myee@cfcrozier.ca>

Subject: RE: 2055 Brock Road - Brock and Usman Signalization

Hi Kierra,

The Region's Traffic and Operations Division has been involved with the request for signalization at this intersection, I'll reach out to staff there and have someone contact you.

Regards,

Lynda

From: Kierra Harper < kharper@cfcrozier.ca>

Sent: August 11, 2022 1:45 PM

To: Glyn Reedman < <u>Glyn.Reedman@Durham.ca</u>>; Lynda Motschenbacher < <u>Lynda.Motschenbacher@Durham.ca</u>> **Cc:** Michael Linton < mlinton@cfcrozier.ca>; Martin Chan < mchan@cfcrozier.ca>; My-Linh Yee < myee@cfcrozier.ca>

Subject: FW: 2055 Brock Road - Brock and Usman Signalization

Hi Glyn,

Just forwarding the below message to you as I got your contact from Doug's out of office email. Would you be able to respond to our inquiry below?

Thanks, Kierra

Kierra Harper, EIT | Engineering Intern 211 Yonge Street, Suite 600 | Toronto, ON M5B 1M4 T: 416.477.3392

Crozier Connections: f y in <a> in

Read our latest news and announcements here.

From: Kierra Harper

Sent: Wednesday, August 10, 2022 3:39 PM

To: Doug Robertson < Doug.Robertson@Durham.ca>; Lynda.Motschenbacher@Durham.ca

Cc: Michael Linton <mlinton@cfcrozier.ca>; Martin Chan <mchan@cfcrozier.ca>; My-Linh Yee <myee@cfcrozier.ca>

Subject: 2055 Brock Road - Brock and Usman Signalization

Hi Doug, Lynda,

I hope you are both doing well.

I am working on the Transportation Impact Study for the proposed development at 2055 Brock Road and would like to clarify something with you.

You are probably aware that the City of Pickering is supportive of installing a signal at the intersection of Brock Road (RR#1) and the southern leg of Usman Road in place of the existing left in, right in and right out only access. We understand this request would provide an additional pedestrian crossing opportunity between Major Oaks and Finch Ave (particularly with the Brock Ridge Community Park west of Brock Road) and generally improve operations along Major Oaks and Usman. However, the signalization of this intersection is under the jurisdiction of the Region.

Considering the City Council motion requesting that Region of Durham consider the expedited approval and installation of full traffic and pedestrian signals at the intersection of Brock Road and Usman Road, the City has requested that we engage with the Region regarding the feasibility of the signalization. I'm not sure if your team has had further discussion with City staff on this. We understand that the Region has previously had concerns with the installation of a signal at this location given the ultimate 6-lane configuration and possible spacing concerns.

As such, we are looking for a definitive answer from the Region with their position on the signalization of Brock and Usman if possible. You may recall that our TIS did not consider a signal in our primary analysis and would technically not be reliant on it.

Are you able confirm the Region's stance on this signalization issue? Our concern would be having this item in limbo with respect to the current application so any clarification we can provide in response to the City's request would be helpful.

Thank you,

Kierra

THIS MESSAGE IS FOR THE USE OF THE INTENDED RECIPIENT(S) ONLY AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, PROPRIETARY, CONFIDENTIAL, AND/OR EXEMPT FROM DISCLOSURE UNDER ANY RELEVANT PRIVACY LEGISLATION. No rights to any privilege have been waived. If you are not the intended recipient, you are hereby notified that any review, re-transmission, dissemination, distribution, copying, conversion to hard copy, taking of action in reliance on or other use of this communication is strictly prohibited. If you are not the intended recipient and have received this message in error, please notify me by return e-mail and delete or destroy all copies of this message.

THIS MESSAGE IS FOR THE USE OF THE INTENDED RECIPIENT(S) ONLY AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, PROPRIETARY, CONFIDENTIAL, AND/OR EXEMPT FROM DISCLOSURE UNDER ANY RELEVANT PRIVACY LEGISLATION. No rights to any privilege have been waived. If you are not the intended recipient, you are hereby notified that any review, re-transmission, dissemination, distribution, copying, conversion to hard copy, taking of action in reliance on or other use of this communication is strictly prohibited. If you are not the intended recipient and have received this message in error, please notify me by return e-mail and delete or destroy all copies of this message. THIS MESSAGE IS FOR THE USE OF THE INTENDED RECIPIENT(S) ONLY AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, PROPRIETARY, CONFIDENTIAL, AND/OR EXEMPT FROM DISCLOSURE UNDER ANY RELEVANT PRIVACY LEGISLATION. No rights to any privilege have been waived. If you are not the intended recipient, you are hereby notified that any review, re-transmission, dissemination, distribution, copying, conversion to hard copy, taking of action in reliance on or other use of this communication is strictly prohibited. If you are not the intended recipient and have received this message in error, please notify me by return e-mail and delete or destroy all copies of this message. THIS MESSAGE IS FOR THE USE OF THE INTENDED RECIPIENT(S) ONLY AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, PROPRIETARY, CONFIDENTIAL, AND/OR EXEMPT FROM DISCLOSURE UNDER ANY RELEVANT PRIVACY LEGISLATION. No rights to any privilege have been waived. If you are not the intended recipient, you are hereby notified that any review, re-transmission, dissemination, distribution, copying, conversion to hard copy, taking of action in reliance on or other use of this communication is strictly prohibited. If you are not the intended recipient and have received this message in error, please notify me by return e-mail and delete or destroy all copies of this message.

$\begin{array}{c} \text{ATTACHMENT 3} \\ \text{Detailed Capacity Analyses} \end{array}$

	1	•	1	-	1	Ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		7	^	7	7	^	
Traffic Volume (veh/h)	0	85	1935	282	0	1139	
Future Volume (Veh/h)	0	85	1935	282	0	1139	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	94	2150	313	0	1266	
Pedestrians	55		7			1	
Lane Width (m)	4.5		3.4			3.4	
Walking Speed (m/s)	1.2		1.2			1.2	
Percent Blockage	6		1			0	
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			367			225	
pX, platoon unblocked	0.59	0.47			0.47		
vC, conflicting volume	2845	1131			2518		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	803	0			1964		
tC, single (s)	6.8	6.9			4.1		
tC, 2 stage (s)							The second secon
tF (s)	3.5	3.3	- 4		2.2		
p0 queue free %	100	80			100		
cM capacity (veh/h)	181	477		400	128		
Direction, Lane #	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3
Volume Total	94	1075	1075	313	0	633	633
Volume Left	0	0	0	0	0	0	0
Volume Right	94	0	0	313	0	0	0
cSH	477	1700	1700	1700	1700	1700	1700
Volume to Capacity	0.20	0.63	0.63	0.18	0.00	0.37	0.37
Queue Length 95th (m)	5.8	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (s)	14.4	0.0	0.0	0.0	0.0	0.0	0.0
Lane LOS	В						
Approach Delay (s)	14.4	0.0			0.0		
Approach LOS	В						
Intersection Summary							
Average Delay			0.4				
Intersection Capacity Utiliza	tion		65.8%	IC	U Level	of Service	С
Analysis Period (min)			15	_			

	١	→	*	•	+	•	₽ſ	1	1	~	/	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations		र्स	7	*	f)			*	^	7	T	†
Traffic Volume (vph)	33	12	249	159	25	47	2	280	1817	24	233	1010
Future Volume (vph)	33	12	249	159	25	47	2	280	1817	24	233	1010
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.7	3.7	3.6	3.0	3.5	3.5	3.0	3.5
Storage Length (m)	0.0		30.0	20.0		0.0		72.0		70.0	60.0	
Storage Lanes	0		1	1		0		1	A	1	1	
Taper Length (m)	7.5			48.0				72.0			92.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95	1.00	1.00	0.95
Ped Bike Factor		0.99	0.94	0.95	0.98					0.95		1.00
Frt			0.850		0.902					0.850		0.997
Flt Protected		0.965		0.950				0.950			0.950	
Satd. Flow (prot)	0	1689	1566	1733	1654	0	0	1652	3400	1597	1685	3294
Flt Permitted		0.741		0.722				0.113			0.075	
Satd. Flow (perm)	0	1286	1472	1257	1654	0	0	196	3400	1512	133	3294
Right Turn on Red			Yes			Yes				Yes		
Satd. Flow (RTOR)			277		56					69		2
Link Speed (k/h)		50			40				60			60
Link Distance (m)		292.9			123.2	70			224.5			180.3
Travel Time (s)		21.1			11.1				13.5			10.8
Confl. Peds. (#/hr)	10		37	37	ALL DE	10		10		13	13	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles (%)	10%	0%	2%	3%	5%	2%	0%	2%	5%	0%	0%	8%
Adj. Flow (vph)	39	14	296	189	30	56	2	333	2163	29	277	1202
Shared Lane Traffic (%)				THE RESERVE TO SERVE								
Lane Group Flow (vph)	0	53	296	189	86	0	0	335	2163	29	277	1226
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	R NA	Left	Left	Right	Left	Left
Median Width(m)		3.5			3.5	J			3.3			3.3
Link Offset(m)		0.0			0.0				0.0			0.0
Crosswalk Width(m)	-	4.8	Albud		4.8				4.8			4.8
Two way Left Turn Lane												
Headway Factor	1.01	1.01	1.01	1.01	0.99	0.99	1.00	1.09	1.01	1.01	1.09	1.01
Turning Speed (k/h)	25		15	25		15	15	25		15	25	
Number of Detectors	1	1	1	1	1		1	1	0	0	1	0
Detector Template	Left						Left					
Leading Detector (m)	2.0	12.0	12.0	12.0	12.0		2.0	24.0	0.0	0.0	24.0	0.0
Trailing Detector (m)	0.0	-3.0	-3.0	-3.0	-3.0		0.0	14.0	0.0	0.0	14.0	0.0
Detector 1 Position(m)	0.0	-3.0	-3.0	-3.0	-3.0		0.0	14.0	0.0	0.0	14.0	0.0
Detector 1 Size(m)	2.0	15.0	15.0	15.0	15.0		2.0	10.0	0.6	2.0	10.0	0.6
Detector 1 Type	CI+Ex	CI+Ex	CI+Ex	CI+Ex	CI+Ex		Cl+Ex	Cl+Ex	Cl+Ex	CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Perm	NA	Perm	Perm	NA		custom	pm+pt	NA	Perm	pm+pt	NA
Protected Phases		4			8			5	2		1	6
Permitted Phases	4		4	8			5	2	_	2	6	
Detector Phase	4	4	4	8	8		5	5	2	2	1	6

	3500	
Lane Group	SBR	
Lare Configurations		
Traffic Volume (vph)	20	
Future Volume (vph)	20	
Ideal Flow (vphpl)	1900	
Lane Width (m)	3.5	
Storage Length (m)	0.0	
Storage Lanes	0	
Taper Length (m)		
Lane Util. Factor	0.95	
Ped Bike Factor		
Frt		
Flt Protected		
Satd. Flow (prot)	0	
Flt Permitted		
Satd. Flow (perm)	0	
Right Turn on Red	Yes	
Satd. Flow (RTOR)		
Link Speed (k/h)		
Link Distance (m)		
Travel Time (s)		
Confl. Peds. (#/hr)	10	
Peak Hour Factor	0.84	
Heavy Vehicles (%)	6%	
Adj. Flow (vph)	24	
Shared Lane Traffic (%)		
Lane Group Flow (vph)	0	
Enter Blocked Intersection	No	
Lane Alignment	Right	
Median Width(m)		
Link Offset(m)		
Crosswalk Width(m)		
Two way Left Turn Lane		
Headway Factor	1.01	
Turning Speed (k/h)	15	
Number of Detectors		
Detector Template		
Leading Detector (m)		
Trailing Detector (m)		
Detector 1 Position(m)		
Detector 1 Size(m)		
Detector 1 Type		
Detector 1 Channel		
Detector 1 Extend (s)		
Detector 1 Queue (s)		
Detector 1 Delay (s)		
Turn Type		
Protected Phases		
Permitted Phases		
Detector Phase		

	٠	→	•	1	←	*	₹I	1	†	~	-	ļ
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Switch Phase												
Minimum Initial (s)	8.0	8.0	8.0	4.0	4.0		5.0	5.0	20.0	20.0	5.0	20.0
Minimum Split (s)	32.0	32.0	32.0	32.0	32.0		8.0	8.0	29.0	29.0	9.5	29.0
Total Split (s)	32.0	32.0	32.0	32.0	32.0		24.0	24.0	65.0	65.0	13.0	54.0
Total Split (%)	29.1%	29.1%	29.1%	29.1%	29.1%		21.8%	21.8%	59.1%	59.1%	11.8%	49.1%
Maximum Green (s)	25.0	25.0	25.0	25.0	25.0		21.0	21.0	58.6	58.6	10.0	47.6
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1		3.0	3.0	4.2	4.2	3.0	4.2
All-Red Time (s)	2.9	2.9	2.9	2.9	2.9		0.0	0.0	2.2	2.2	0.0	2.2
Lost Time Adjust (s)		0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)		7.0	7.0	7.0	7.0			3.0	6.4	6.4	3.0	6.4
Lead/Lag							Lead	Lead	Lag	Lag	Lead	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None		None	None	C-Max	C-Max	None	C-Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0				7.0	7.0		7.0
Flash Dont Walk (s)	18.0	18.0	18.0	18.0	18.0			NA.	14.0	14.0		14.0
Pedestrian Calls (#/hr)	0	0	0	0	0				0	0		0
Act Effct Green (s)		20.8	20.8	20.8	20.8	700		77.1	58.6	58.6	69.9	53.1
Actuated g/C Ratio		0.19	0.19	0.19	0.19			0.70	0.53	0.53	0.64	0.48
v/c Ratio		0.22	0.59	0.80	0.24	_		0.84	1.19	0.03	0.98	0.77
Control Delay		38.1	10.8	65.9	16.8			42.4	119.4	0.1	81.3	29.0
Queue Delay		0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Delay		38.1	10.8	65.9	16.8			42.4	119.4	0.1	81.3	29.0
LOS		D	В	E	В			D	F	Α	F	С
Approach Delay		15.0			50.6				107.8			38.6
Approach LOS		В		_ "	D				F			D
Intersection Summary												
Area Type:	Other	When										
Cycle Length: 110												
Actuated Cycle Length: 1			About									
Offset: 0 (0%), Reference	d to phase 2	NBTL an	d 6:SBTL	, Start of	Green							
Natural Cycle: 150												
Control Type: Actuated-C	oordinated											
Maximum v/c Ratio: 1.19												
Intersection Signal Delay:					ntersection							
Intersection Capacity Utilized	zation 96.9%	<u> </u>		I	CU Level	of Service	e F					
Analysis Period (min) 15												
Splits and Phases: 3: B	rock Road &	Maior Oa	aks Road/	Usman R	load							
T A	(R) •	•						1	04			
13s 65s	(14)							32 s	- D7		1	
	1 1							4	-2			- 1

Lane Group	SBR	
Switch Phase		
Minimum Initial (s)		
Minimum Split (s)		
Total Split (s)		
Total Split (%)		
Maximum Green (s)		
Yellow Time (s)		
All-Red Time (s)		
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Vehicle Extension (s)		
Recall Mode		
Walk Time (s)		
Flash Dont Walk (s)		
Pedestrian Calls (#/hr)		
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Intersection Summary		

	1	•	1	1	1	Ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations		7	^	7	7	^	
Traffic Volume (veh/h)	0	101	1935	342	0	1177	
Future Volume (Veh/h)	0	101	1935	342	0	1177	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (vph)	0	112	2150	380	0	1308	
Pedestrians	55		7			1	
Lane Width (m)	4.5		3.4			3.4	
Walking Speed (m/s)	1.2		1.2			1.2	
Percent Blockage	6		1			0	
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)			367			225	
pX, platoon unblocked	0.60	0.47			0.47		
vC, conflicting volume	2866	1131			2585		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	737	0			2108		
tC, single (s)	6.8	6.9		40	4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	100	77			100		
cM capacity (veh/h)	202	477			113	_	
Direction, Lane #	WB 1	NB 1	NB 2	NB 3	SB 1	SB 2	SB 3
Volume Total	112	1075	1075	380	0	654	654
Volume Left	0	0	0	0	0	0	0
Volume Right	112	0	0	380	0	0	0
cSH	477	1700	1700	1700	1700	1700	1700
Volume to Capacity	0.23	0.63	0.63	0.22	0.00	0.38	0.38
Queue Length 95th (m)	7.2	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (s)	14.9	0.0	0.0	0.0	0.0	0.0	0.0
Lane LOS	В						
Approach Delay (s)	14.9	0.0			0.0		
Approach LOS	В						
Intersection Summary							
Average Delay			0.4				
Intersection Capacity Utiliza	ation		66.7%	IC	U Level o	of Service	С
Analysis Period (min)			15				

Lane Group EBL EBR EBR WBL WBT WBR NBU NBL NBT NBR SBL SBT Lane Configurations 4 7 1 4 7 1
Traffic Volume (vph) 33 12 249 197 25 47 2 280 1833 24 259 1036 Future Volume (vph) 33 12 249 197 25 47 2 280 1833 24 259 1036 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 3.5 3.5 3.5 3.5 3.5 3.7 3.7 3.6 3.0 3.5 3.5 3.5 Storage Length (m) 0.0 30.0 20.0 0.0 72.0 70.0 60.0
Traffic Volume (vph) 33 12 249 197 25 47 2 280 1833 24 259 1036 Future Volume (vph) 33 12 249 197 25 47 2 280 1833 24 259 1036 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 3.5 3.5 3.5 3.5 3.5 3.7 3.7 3.6 3.0 3.5 3.5 3.5 Storage Length (m) 0.0 30.0 20.0 0.0 72.0 70.0 60.0
Future Volume (vph) 33 12 249 197 25 47 2 280 1833 24 259 1036 Ideal Flow (vphpl) 1900
Ideal Flow (vphpl) 1900
Lane Width (m) 3.5 3.5 3.5 3.7 3.6 3.0 3.5 3.5 3.5 Storage Length (m) 0.0 30.0 20.0 0.0 72.0 70.0 60.0
Storage Length (m) 0.0 30.0 20.0 0.0 72.0 70.0 60.0
Storage Lanes 0 1 1 0 1 1 1
Taper Length (m) 7.5 48.0 72.0 92.0
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.95 1.00 0.95
Ped Bike Factor 0.99 0.94 0.95 0.98 0.95 1.00
Frt 0.850 0.902 0.850 0.997
Flt Protected 0.965 0.950 0.950 0.950
Satd. Flow (prot) 0 1689 1566 1733 1654 0 0 1652 3400 1597 1685 3294
Flt Permitted 0.751 0.722 0.098 0.077
Satd. Flow (perm) 0 1303 1472 1257 1654 0 0 170 3400 1512 137 3294
Right Turn on Red Yes Yes Yes
Satd. Flow (RTOR) 246 56 69 2
Link Speed (k/h) 50 40 60
Link Distance (m) 292.9 123.2 224.5 180.3
Travel Time (s) 21.1 11.1 13.5 10.8
Confl. Peds. (#/hr) 10 37 37 10 10 13 13
Peak Hour Factor 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
Heavy Vehicles (%) 10% 0% 2% 3% 5% 2% 0% 2% 5% 0% 0% 8%
Adj. Flow (vph) 39 14 296 235 30 56 2 333 2182 29 308 1233
Shared Lane Traffic (%)
Lane Group Flow (vph) 0 53 296 235 86 0 0 335 2182 29 308 1257
Enter Blocked Intersection No
Lane Alignment Left Left Right Left Right R NA Left Left Right Left Left
Median Width(m) 3.5 3.5 3.3 3.3
Link Offset(m) 0.0 0.0 0.0
Crosswalk Width(m) 4.8 4.8 4.8 4.8
Two way Left Turn Lane
Headway Factor 1.01 1.01 1.01 0.99 0.99 1.00 1.09 1.01 1.01
Turning Speed (k/h) 25 15 25 15 25
Number of Detectors 1 1 1 1 1 1 1 0 0 1 0
Detector Template Left Left
Leading Detector (m) 2.0 12.0 12.0 12.0 2.0 24.0 0.0 0.0 24.0 0.0
Trailing Detector (m) 0.0 -3.0 -3.0 -3.0 -3.0 0.0 14.0 0.0 0.0 14.0 0.0
Detector 1 Position(m) 0.0 -3.0 -3.0 -3.0 -3.0 0.0 14.0 0.0 0.0 14.0 0.0
Detector 1 Size(m) 2.0 15.0 15.0 15.0 2.0 10.0 0.6 2.0 10.0 0.6
Detector 1 Type CI+Ex CI
Detector 1 Channel
Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
Turn Type Perm NA Perm Perm NA custom pm+pt NA Perm pm+pt NA
Protected Phases 4 8 5 2 1 6
Permitted Phases 4 4 8 5 2 2 6
Detector Phase 4 4 4 8 8 5 5 2 2 1 6

Lane Group	SBR
Larie Configurations	ODIN
	20
Traffic Volume (vph) Future Volume (vph)	20
Ideal Flow (vphpl)	1900
Lane Width (m)	3.5
Storage Length (m)	0.0
Storage Lanes	0.0
Taper Length (m)	U
Lane Util. Factor	0.95
Ped Bike Factor	0.95
Frt	
FIt Protected	
Satd. Flow (prot)	0
Flt Permitted	U
Satd. Flow (perm)	0
Right Turn on Red	Yes
Satd. Flow (RTOR)	163
Link Speed (k/h)	
Link Distance (m)	
Travel Time (s)	
Confl. Peds. (#/hr)	10
Peak Hour Factor	0.84
Heavy Vehicles (%)	6%
Adj. Flow (vph)	24
Shared Lane Traffic (%)	24
Lane Group Flow (vph)	0
Enter Blocked Intersection	No
Lane Alignment	Right
Median Width(m)	Night
Link Offset(m)	
Crosswalk Width(m)	
Two way Left Turn Lane	
Headway Factor	1.01
Turning Speed (k/h)	15
Number of Detectors	13
Detector Template	
Leading Detector (m) Trailing Detector (m)	
Detector 1 Position(m)	
Detector 1 Size(m)	
Detector 1 Type	
Detector 1 Channel	
Detector 1 Extend (s)	
Detector 1 Queue (s)	
Detector 1 Delay (s)	
Turn Type	
Protected Phases	
Permitted Phases	
Detector Phase	

•	\rightarrow	*	1	•	•	₹I	1	1	1	1	Ţ
EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
8.0	8.0	8.0	4.0	4.0		5.0	5.0	20.0	20.0	5.0	20.0
32.0	32.0	32.0	32.0	32.0		8.0	8.0	29.0	29.0	9.5	29.0
32.0	32.0	32.0	32.0	32.0		22.0	22.0	64.0	64.0	14.0	56.0
29.1%	29.1%	29.1%	29.1%	29.1%		20.0%	20.0%	58.2%	58.2%	12.7%	50.9%
25.0	25.0	25.0	25.0	25.0		19.0	19.0	57.6	57.6	11.0	49.6
4.1	4.1	4.1	4.1	4.1		3.0	3.0	4.2	4.2	3.0	4.2
2.9	2.9	2.9	2.9	2.9		0.0	0.0	2.2	2.2	0.0	2.2
	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0
	7.0	7.0	7.0	7.0			3.0	6.4	6.4	3.0	6.4
						Lead	Lead	Lag	Lag	Lead	Lag
						Yes	Yes	Yes	Yes	Yes	Yes
3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
None	None	None	None	None		None	None	C-Max	C-Max	None	C-Max
7.0	7.0	7.0	7.0	7.0				7.0	7.0		7.0
18.0	18.0	18.0	18.0	18.0			AW.	14.0	14.0		14.0
0	0	0	0	0				0	0		0
	23.3	23.3	23.3	23.3			75.6	57.6	57.6	67.8	51.7
	0.21	0.21	0.21	0.21			0.69	0.52	0.52	0.62	0.47
	0.19	0.59	0.88	0.22			0.91	1.23	0.04	1.17	0.81
	36.6	13.1	74.7	16.3			56.3	133.3	0.1	141.6	30.9
	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0
	36.6	13,1	74.7	16.3			56.3	133.3	0.1	141.6	30.9
	D	В	E E	В			Е	F	Α	F	С
	16.7			59.0				121.6			52.7
	В			E				F			D
Other	What			-							
	8.0 32.0 32.0 29.1% 25.0 4.1 2.9 3.0 None 7.0 18.0 0	8.0 8.0 32.0 32.0 32.0 32.0 29.1% 29.1% 25.0 25.0 4.1 4.1 2.9 2.9 0.0 7.0 3.0 3.0 None None 7.0 7.0 18.0 18.0 0 0 23.3 0.21 0.19 36.6 0.0 36.6 D 16.7 B	EBL EBT EBR 8.0 8.0 32.0 32.0 32.0 32.0 32.10 32.0 32.0 32.0 32.0 29.1% 25.0 25.0 25.0 4.1 4.1 4.1 2.9 2.9 2.9 0.0 0.0 7.0 7.0 7.0 7.0 18.0 18.0 18.0 18.0 18.0 18.0 23.3 23.3 23.3 0.21 0.21 0.21 0.19 0.59 36.6 13.1 0.0 36.6 13.1 D B 16.7 B 16.7 B	EBL EBT EBR WBL 8.0 8.0 8.0 4.0 32.0 32.0 32.0 32.0 32.1 32.0 32.0 32.0 29.1% 29.1% 29.1% 29.1% 25.0 25.0 25.0 25.0 4.1 4.1 4.1 4.1 2.9 2.9 2.9 2.9 0.0 0.0 0.0 0.0 7.0 7.0 7.0 7.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 23.3 23.3 23.3 23.3 0.21 0.21 0.21 0.21 0.19 0.59 0.88 36.6 13.1 74.7 0.0 0.0 0.0 36.6 13.1 74.7 D B E 16.7 B	EBL EBT EBR WBL WBT 8.0 8.0 8.0 4.0 4.0 32.0 32.0 32.0 32.0 32.0 32.1% 29.1% 29.1% 29.1% 29.1% 25.0 25.0 25.0 25.0 25.0 4.1 4.1 4.1 4.1 4.1 2.9 2.9 2.9 2.9 2.9 0.0 0.0 0.0 0.0 0.0 7.0 7.0 7.0 7.0 7.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 <	EBL EBT EBR WBL WBT WBR 8.0 8.0 8.0 4.0 4.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 29.1% 29.1% 29.1% 29.1% 29.1% 25.0 25.0 25.0 25.0 25.0 4.1 4.1 4.1 4.1 4.1 2.9 2.9 2.9 2.9 2.9 0.0 0.0 0.0 0.0 0.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 0.19 0.59 0.88 0.22 36.6 13.1 74.7 16.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	EBL EBT EBR WBL WBT WBR NBU 8.0 8.0 4.0 4.0 5.0 32.0 32.0 32.0 32.0 32.0 22.0 29.1% 29.1% 29.1% 29.1% 29.1% 20.0% 25.0 25.0 25.0 25.0 25.0 19.0 4.1 4.1 4.1 4.1 3.0 2.9 2.9 2.9 0.0 0.0	EBL EBT EBR WBL WBT WBR NBU NBL 8.0 8.0 8.0 4.0 4.0 5.0 5.0 32.0 32.0 32.0 32.0 32.0 22.0 22.0 29.1% 29.1% 29.1% 29.1% 20.0% 20.0% 25.0 25.0 25.0 25.0 19.0 19.0 4.1 4.1 4.1 4.1 3.0 3.0 2.9 2.9 2.9 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 7.0 7.0 7.0 3.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 <	EBL EBT EBR WBL WBT WBR NBU NBL NBT 8.0 8.0 8.0 4.0 4.0 5.0 5.0 20.0 32.0 32.0 32.0 32.0 32.0 22.0 22.0 64.0 29.1% 29.1% 29.1% 29.1% 20.0% 20.0% 58.2% 25.0 25.0 25.0 25.0 25.0 19.0 19.0 57.6 4.1 4.1 4.1 4.1 4.1 3.0 3.0 4.2 2.9 2.9 2.9 2.9 2.9 0.0 0.0 0.0 7.0 7.0 7.0 7.0 7.0 3.0 6.4 Lead Lead Lead Lead Lead Lead Yes Yes Yes Yes Yes 3.0 3.0 3.0 3.0 3.0 3.0 None None None None None	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR 8.0 8.0 8.0 4.0 4.0 5.0 5.0 20.0 20.0 32.0 32.0 32.0 32.0 32.0 22.0 22.0 64.0 64.0 29.1% 29.1% 29.1% 29.1% 20.0% 20.0% 58.2% 58.2% 25.0 25.0 25.0 25.0 25.0 25.0 19.0 19.0 57.6 4.1 4.1 4.1 4.1 4.1 3.0 3.0 3.0 3.0 3.0 3.0 4.2 4.2 2.9 2.9 2.9 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBL 8.0 8.0 8.0 4.0 4.0 5.0 5.0 20.0 20.0 5.0 32.0 32.0 32.0 32.0 32.0 32.0 22.0 22.0 64.0 64.0 14.0 29.1% 29.1% 29.1% 29.1% 20.0% 20.0% 58.2% 58.2% 12.7% 25.0 25.0 25.0 25.0 25.0 19.0 19.0 57.6 57.6 11.0 4.1 4.1 4.1 4.1 4.1 3.0 3.0 4.2 4.2 3.0 2.9 2.9 2.9 2.9 0.0 <td< td=""></td<>

Actuated Cycle Length: 110

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 150

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.23

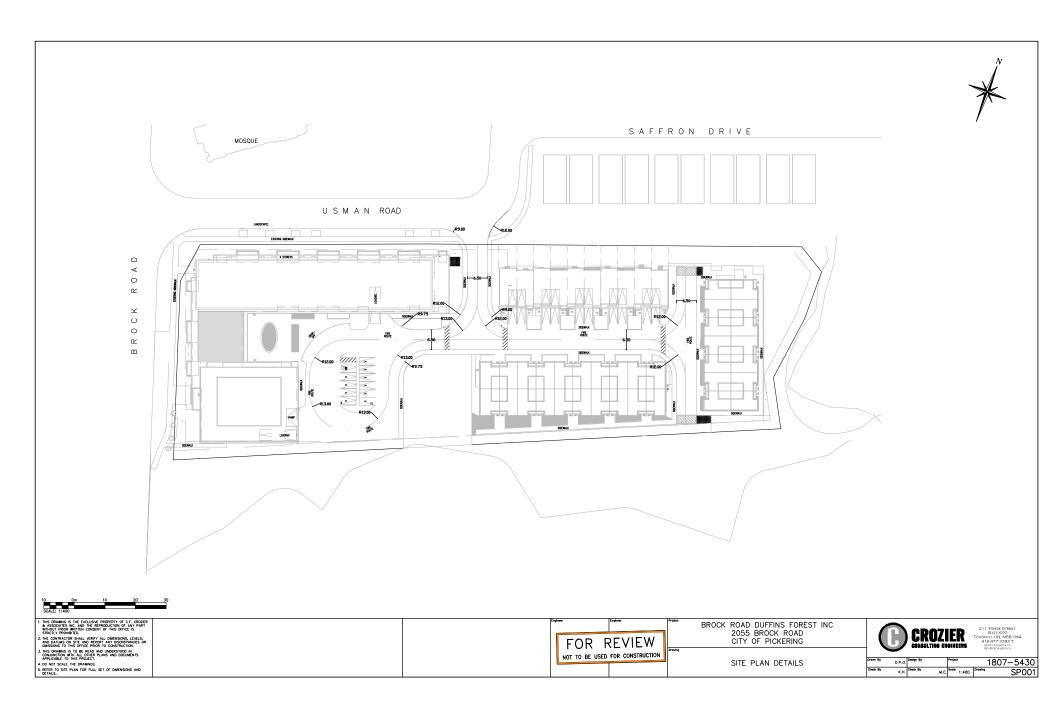
Intersection Signal Delay: 87.2 Intersection LOS: F Intersection Capacity Utilization 99.2% ICU Level of Service F

Analysis Period (min) 15

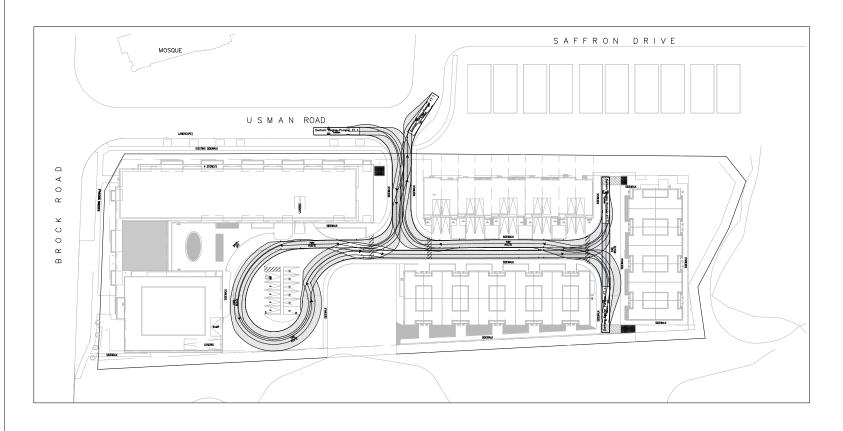
Splits and Phases: 3: Brock Road & Major Oaks Road/Usman Road

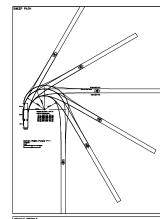
Lane Group SBR Switch Phase Minimum Initial (s) Minimum Split (s) Total Split (a)	
Minimum Initial (s) Minimum Split (s)	
Minimum Split (s)	
Total Calif (a)	
Total Split (s)	
Total Split (%)	
Maximum Green (s)	
Yellow Time (s)	
All-Red Time (s)	
Lost Time Adjust (s)	
Total Lost Time (s)	
Lead/Lag	
Lead-Lag Optimize?	
Vehicle Extension (s)	
Recall Mode	
Walk Time (s)	
Flash Dont Walk (s)	
Pedestrian Calls (#/hr)	
Act Effct Green (s)	
Actuated g/C Ratio	
v/c Ratio	
Control Delay	
Queue Delay	
Total Delay	
LOS	
Approach Delay	
Approach LOS	
Intersection Summary	

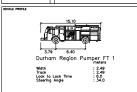
	۶	→	•	•	←	•	₹I	4	†	~	1	
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations		र्स	7	*	13			ă	^	7	*	†
Traffic Volume (vph)	33	12	249	197	25	47	2	280	1833	24	259	1036
Future Volume (vph)	33	12	249	197	25	47	2	280	1833	24	259	1036
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.5	3.5	3.5	3.5	3.7	3.7	3.6	3.0	3.5	3.5	3.0	3.5
Storage Length (m)	0.0		30.0	20.0		0.0		72.0		70.0	60.0	
Storage Lanes	0		1	1		0		1		1	1	
Taper Length (m)	7.5			48.0				72.0			92.0	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	0.95	1.00	1.00	0.95
Ped Bike Factor		0.99	0.94	0.95	0.98					0.95		1.00
Frt			0.850		0.902					0.850		0.997
Flt Protected		0.965		0.950				0.950			0.950	>
Satd. Flow (prot)	0	1689	1566	1733	1654	0	0	1652	3400	1597	1685	3294
FIt Permitted		0.751	1000	0.722				0.098	0.100	1001	0.073	020 .
Satd. Flow (perm)	0	1303	1472	1257	1654	0	0	170	3400	1512	129	3294
Right Turn on Red		1000	Yes	1207	1001	Yes	Ů	170	0100	Yes	120	0201
Satd. Flow (RTOR)			246		56	100				69		2
Link Speed (k/h)		50	240		40				60	03		60
Link Distance (m)		292.9			123.2				224.5			180.3
Travel Time (s)		21.1			11.1				13.5			10.8
Confl. Peds. (#/hr)	10	21.1	37	37	11.1	10		10	10.0	13	13	10.0
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles (%)	10%	0%	2%	3%	5%	2%	0%	2%	5%	0.04	0%	8%
Adj. Flow (vph)	39	14	296	235	30	56	2	333	2182	29	308	1233
Shared Lane Traffic (%)	00	17	230	200	30	30		000	2102	25	300	1200
Lane Group Flow (vph)	0	53	296	235	86	0	0	335	2182	29	308	1257
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	R NA	Left	Left	Right	Left	Left
Median Width(m)	Len	3.5	Night	Leit	3.5	Right	IX IVA	Leit	3.3	Right	Leit	3.3
Link Offset(m)		0.0			0.0				0.0			0.0
Crosswalk Width(m)		4.8			4.8				4.8			4.8
Two way Left Turn Lane		4.0			4.0				4.0			4.0
Headway Factor	1.01	1.01	1.01	1.01	0.99	0.99	1.00	1.09	1.01	1.01	1.09	1.01
Turning Speed (k/h)	25	1.01	1.01	25	0.99	15	1.00	25	1.01	1.01	25	1.01
Number of Detectors	1	1	1	23	1	13	1	1	0	0	1	0
Detector Template	Left	1	1		ı		Left	ı	U	U	ı	U
Leading Detector (m)	2.0	12.0	12.0	12.0	12.0		2.0	24.0	0.0	0.0	24.0	0.0
Trailing Detector (m)	0.0	-3.0	-3.0	-3.0	-3.0		0.0	14.0	0.0	0.0	14.0	0.0
Detector 1 Position(m)	0.0	-3.0	-3.0	-3.0	-3.0		0.0	14.0	0.0	0.0	14.0	0.0
Detector 1 Size(m)	2.0	15.0	15.0	15.0	15.0		2.0	10.0	0.6	2.0	10.0	0.6
` ,					Cl+Ex			CI+Ex	CI+Ex		Cl+Ex	
Detector 1 Type	CI+Ex	CI+Ex	Cl+Ex	Cl+Ex	CI+EX		Cl+Ex	UI+EX	CI+EX	CI+Ex	CI+EX	CI+Ex
Detector 1 Channel	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Extend (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Turn Type	Perm	NA	Perm	Perm	NA		custom	pm+pt	NA	Perm	pm+pt	NA
Protected Phases		4		^	8		-	5	2	_	1	6
Permitted Phases	4		4	8			5	2		2	6	
Detector Phase	4	4	4	8	8		5	5	2	2	1	6


Lane Group	SBR	
LareConfigurations		
Traffic Volume (vph)	20	
Future Volume (vph)	20	
Ideal Flow (vphpl)	1900	
Lane Width (m)	3.5	
Storage Length (m)	0.0	
Storage Lanes	0.0	
Taper Length (m)		
Lane Util. Factor	0.95	
Ped Bike Factor	0.00	
Frt		
Flt Protected		
Satd. Flow (prot)	0	
Flt Permitted	U	
	0	
Satd. Flow (perm)		
Right Turn on Red	Yes	
Satd. Flow (RTOR)		
Link Speed (k/h)		
Link Distance (m)		
Travel Time (s)		
Confl. Peds. (#/hr)	10	
Peak Hour Factor	0.84	
Heavy Vehicles (%)	6%	
Adj. Flow (vph)	24	
Shared Lane Traffic (%)		
Lane Group Flow (vph)	0	
Enter Blocked Intersection	No	
Lane Alignment	Right	
Median Width(m)		
Link Offset(m)		
Crosswalk Width(m)		
Two way Left Turn Lane		
Headway Factor	1.01	
Turning Speed (k/h)	15	
Number of Detectors		
Detector Template		
Leading Detector (m)		
Trailing Detector (m)		
Detector 1 Position(m)		
Detector 1 Size(m)		
Detector 1 Type		
Detector 1 Channel		
Detector 1 Extend (s)		
Detector 1 Queue (s)		
` '		
Detector 1 Delay (s)		
Turn Type		
Protected Phases		
Permitted Phases		
Detector Phase		

	۶	→	*	•	-	•	₹I	1	†	~	-	↓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Switch Phase												
Minimum Initial (s)	8.0	8.0	8.0	4.0	4.0		5.0	5.0	20.0	20.0	5.0	20.0
Minimum Split (s)	32.0	32.0	32.0	32.0	32.0		8.0	8.0	29.0	29.0	9.5	29.0
Total Split (s)	32.0	32.0	32.0	32.0	32.0		22.0	22.0	66.0	66.0	12.0	56.0
Total Split (%)	29.1%	29.1%	29.1%	29.1%	29.1%		20.0%	20.0%	60.0%	60.0%	10.9%	50.9%
Maximum Green (s)	25.0	25.0	25.0	25.0	25.0		19.0	19.0	59.6	59.6	9.0	49.6
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1		3.0	3.0	4.2	4.2	3.0	4.2
All-Red Time (s)	2.9	2.9	2.9	2.9	2.9		0.0	0.0	2.2	2.2	0.0	2.2
Lost Time Adjust (s)		0.0	0.0	0.0	0.0			0.0	0.0	0.0	-3.0	0.0
Total Lost Time (s)		7.0	7.0	7.0	7.0	4		3.0	6.4	6.4	0.0	6.4
Lead/Lag							Lead	Lead	Lag	Lag	Lead	Lag
Lead-Lag Optimize?							Yes	Yes	Yes	Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	None	None	None		None	None	C-Max	C-Max	None	C-Max
Walk Time (s)	7.0	7.0	7.0	7.0	7.0				7.0	7.0		7.0
Flash Dont Walk (s)	18.0	18.0	18.0	18.0	18.0				14.0	14.0		14.0
Pedestrian Calls (#/hr)	0	0	0	0	0				0	0		0
Act Effct Green (s)		23.3	23.3	23.3	23.3			76.0	59.6	59.6	71.7	51.7
Actuated g/C Ratio		0.21	0.21	0.21	0.21			0.69	0.54	0.54	0.65	0.47
v/c Ratio		0.19	0.59	0.88	0.22			0.91	1.18	0.03	1.11	0.81
Control Delay		36.6	13.1	74.7	16.3			56.1	114.8	0.1	119.4	30.8
Queue Delay		0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0
Total Delay		36.6	13.1	74.7	16.3			56.1	114.8	0.1	119.4	30.8
LOS		D	В	E	В			Е	F	Α	F	С
Approach Delay		16.7			59.0				105.7			48.3
Approach LOS		В			E				F			D
Intersection Summary												
Area Type:	Other											
Cycle Length: 110												
Actuated Cycle Length: 1	10											
Offset: 0 (0%), Reference	ed to phase 2	:NBTL an	d 6:SBTL	, Start of	Green							
Natural Cycle: 150												
Control Type: Actuated-C	Coordinated											
Maximum v/c Ratio: 1.18												
Intersection Signal Delay: 77.3 Intersection LOS: E												
Intersection Capacity Utilization 99.2% ICU Level of Service F												
Analysis Period (min) 15												
Splits and Dhases: 3: Brook Poad & Major Oaks Poad/Lleman Poad												
Splits and Phases: 3: Brock Road & Major Oaks Road/Usman Road												
Ø1 Ø2	R)							-	Ø4			

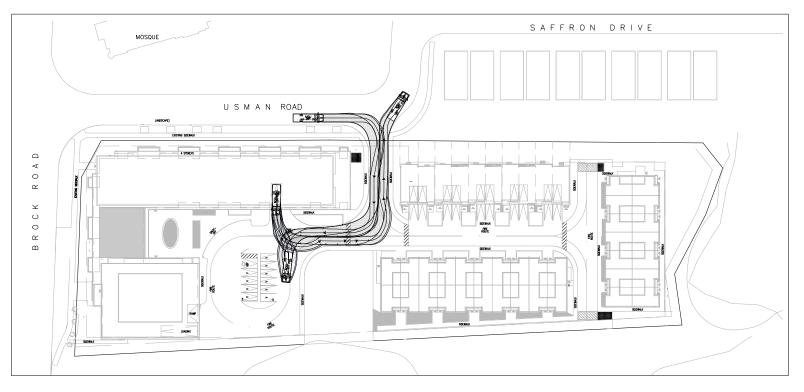


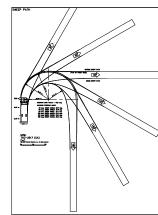

		4
Lane Group	SBR	
Switch Phase		
Minimum Initial (s)		
Minimum Split (s)		
Total Split (s)		
Total Split (%)		
Maximum Green (s)		
Yellow Time (s)		
All-Red Time (s)		
Lost Time Adjust (s)		
Total Lost Time (s)		
Lead/Lag		
Lead-Lag Optimize?		
Vehicle Extension (s)		
Recall Mode		
Walk Time (s)		
Flash Dont Walk (s)		
Pedestrian Calls (#/hr)		
Act Effct Green (s)		
Actuated g/C Ratio		
v/c Ratio		
Control Delay		
Queue Delay		
Total Delay		
LOS		
Approach Delay		
Approach LOS		
Intersection Summary		

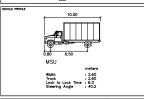

ATTACHMENT 4 Vehicle Turning Diagrams

No.	ISSUE	DATE: MM/DD/YYYY
1	ISSUED FOR ZBA SUBMISSION	09/23/2022
_		

VEHICLE MANEUVERING ANALYSIS FIRE TRUCK

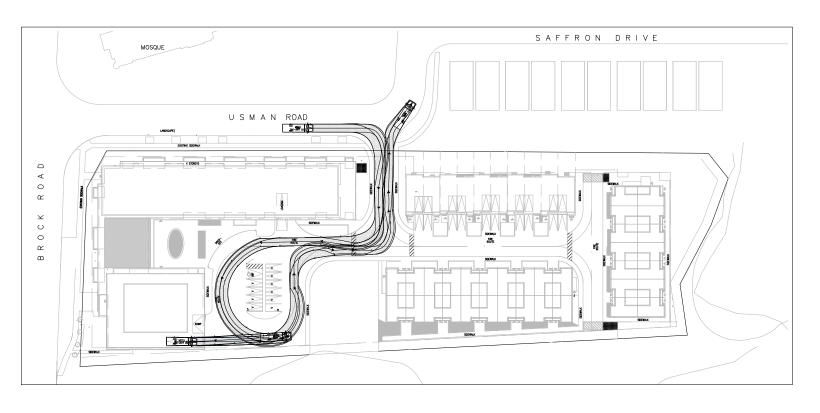


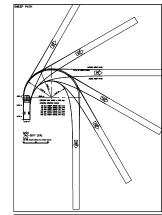

211 YONGE STREET SUITE 600 TORONTO, ON, M5B 1M 416-477-3392 T WWW.OTOROSTIKCA INDOROCHOSTIKCA

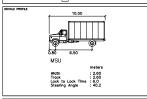

mm By D.P.O. Deekin By Project 1807—5430
sek By K.H. Oneck By M.C. Sode 1:400 Orosthop T300

No.	ISSUE	DATE: MM/DD/YYYY
1	ISSUED FOR ZBA SUBMISSION	09/23/2022
_		

VEHICLE MANEUVERING ANALYSIS MEDIUM SINGLE UNIT

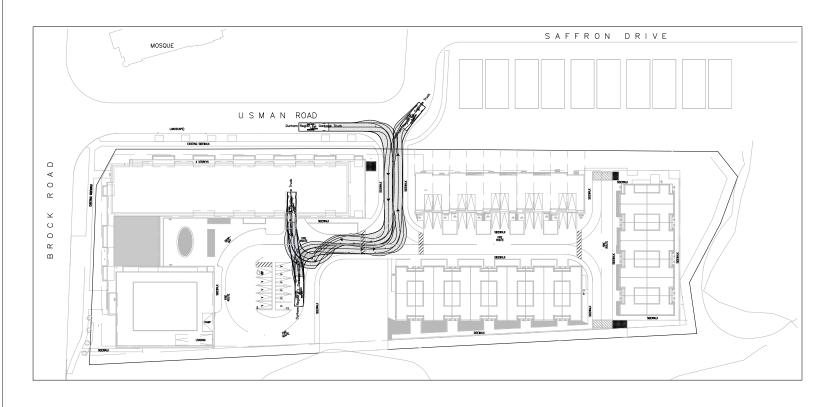

ROZIER -

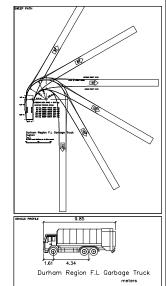

416-477-3392 T www.choner.ca Neonologym.ca


m By D.P.O. Design By Project 1807—5430
ck By K.H. Check By M.C. Scale 1:400 Design T301

No.	ISSUE	DATE: MM/DD/YYYY
1	ISSUED FOR ZBA SUBMISSION	09/23/2022
-		
_		

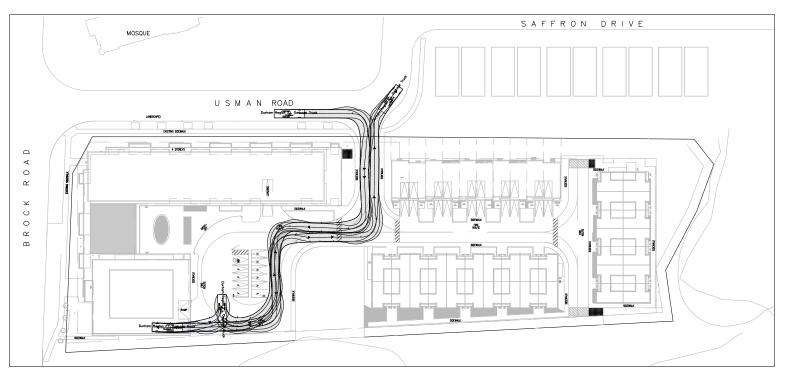
VEHICLE MANEUVERING ANALYSIS MEDIUM SINGLE UNIT

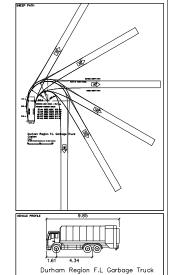



Project 1807-5430

M.C. Scole 1:400 Proving T302

	Steering Angle	: 40.0
No.	ISSUE	DATE: MM/DD/YYYY
1	ISSUED FOR ZBA SUBMISSION	09/23/2022
		-


VEHICLE MANEUVERING ANALYSIS
GARBAGE TRUCK

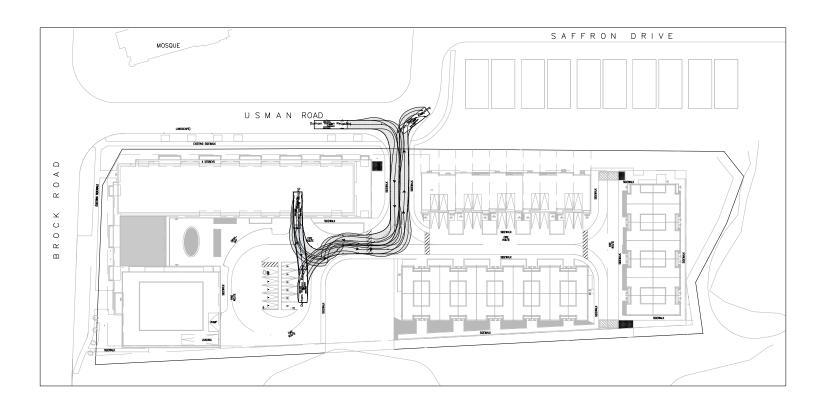


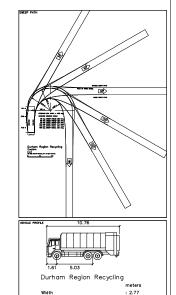
Project 1807—5430 M.C. Scale 1:400 Drawing T303

ISSUE	DATE: MM/DD/YY
ISSUED FOR ZBA SUBMISSION	09/23/2022

VEHICLE MANEUVERING ANALYSIS

GARBAGE TRUCK

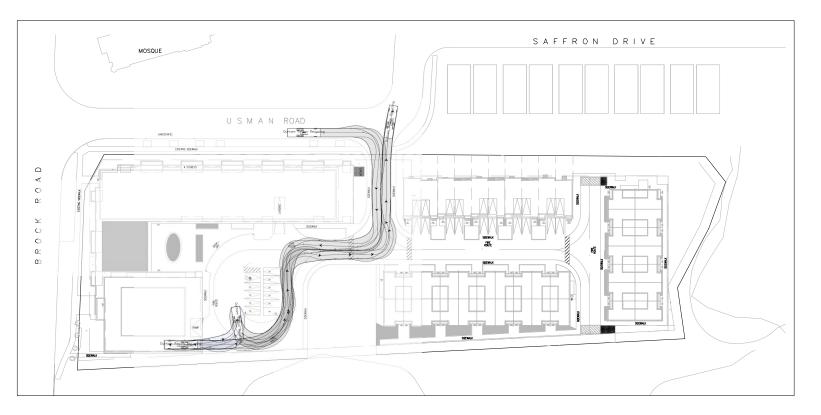


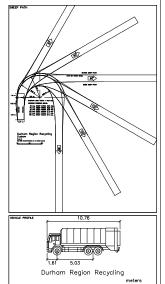

211 YONGE STREET SUITE 600 TORONTO, ON, M5B 1N 416-477-3392 T WINGEGERERA INFORCEMENTAL

y D.P.O. Check By M.C. Scale 1:400 Creeks T 304

	Track Lock to Lock Time Steering Angle	: 2.77 : 6.0 : 40.0
No.	ISSUE	DATE: MM/DD/YYYY
1	ISSUED FOR ZBA SUBMISSION	09/23/2022
_		
_		

VEHICLE MANEUVERING ANALYSIS
RECYCLING TRUCK

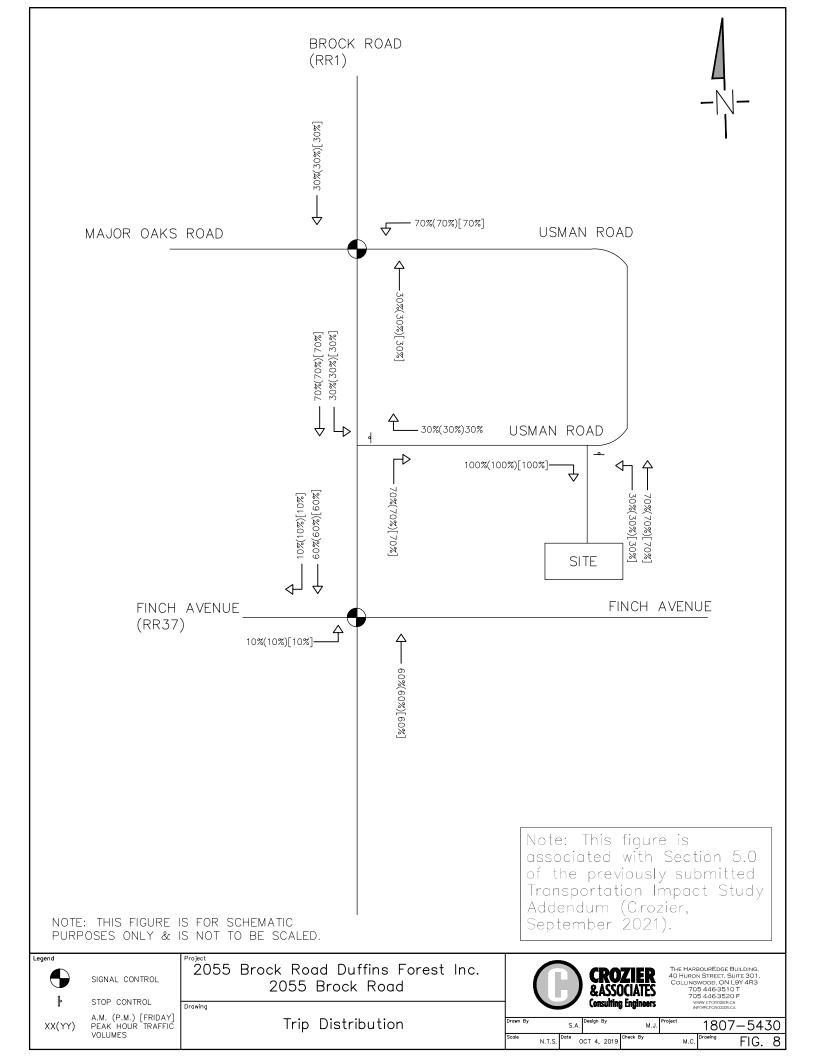

211 YONGE STREET SUITE 600 FORONTO, ON, M5B 1M4 418-477-3392 T WWW.OFCROZERCA INCORPORTED CA

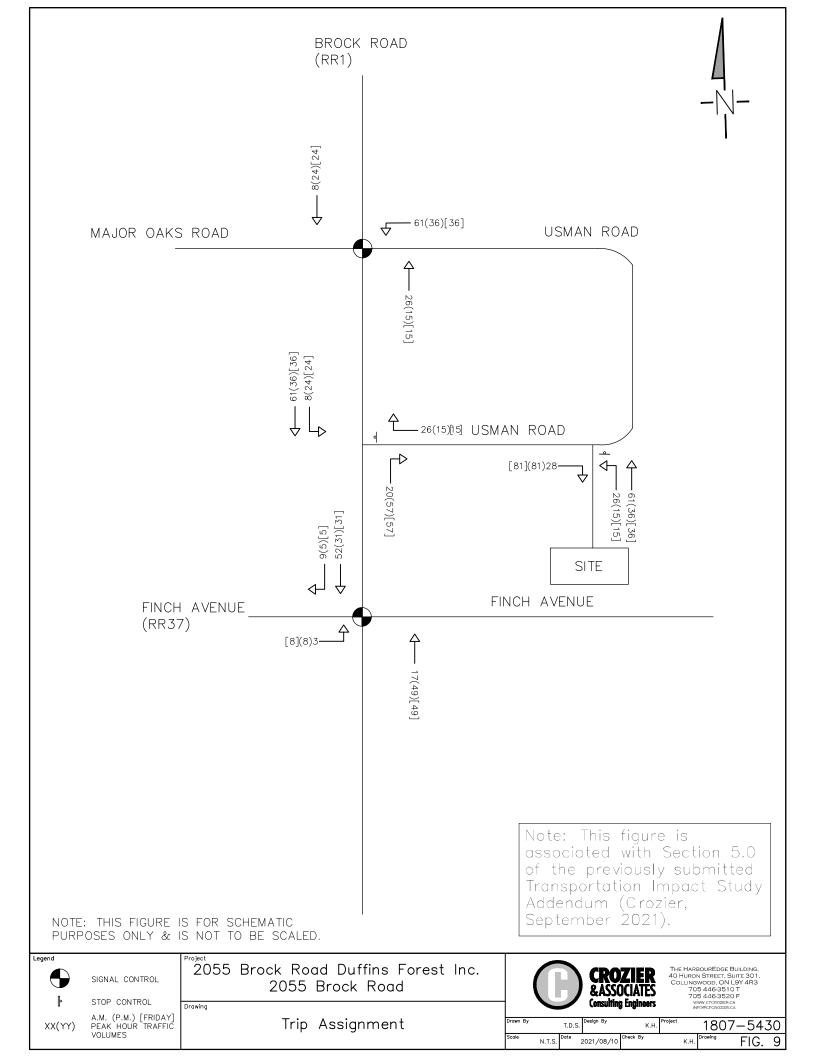

rorm By D.P.O. Design By Project 1807—5430

M.C. Scale 1:400 Preside T305

No.	ISSUE	DATE: MM/DD/YYYY
1	ISSUED FOR ZBA SUBMISSION	09/23/2022
_		

VEHICLE MANEUVERING ANALYSIS
RECYCLING TRUCK





Project 1807-5430 M.C. Scale 1:400 Drawing T306

ATTACHMENT 5

Trip Distribution & Assignment Figures

