

Soil Engineers Ltd.

GEOTECHNICAL • ENVIRONMENTAL • HYDROGEOLOGICAL • BUILDING SCIENCE

90 WEST BEAVER CREEK ROAD, SUITE 100, RICHMOND HILL, ONTARIO L4B 1E7 · TEL: (416) 754-8515 · FAX: (905) 881-8335

BARRIE MISSI: TEL: (705) 721-7863 TEL: (90 FAX: (705) 721-7864 FAX: (90

June 1, 2023

MISSISSAUGA TEL: (905) 542-7605 FAX: (905) 542-2769

OSHAWA TEL: (905) 440-2040 FAX: (905) 725-1315

NEWMARKET 040 TEL: (905) 853-0647 315 FAX: (905) 881-8335 MUSKOKA TEL: (705) 684-4242 FAX: (705) 684-8522

HAMILTON 2 TEL: (905) 777-7956 2 FAX: (905) 542-2769

Reference No. 2111-W043 Page 1 of 5

1334281 Ontario Limited 720 Granite Court Pickering, Ontario L1W 4A3

Attention: Mr. Domenic Grossi

Re: Groundwater Quality Assessment Proposed Mid-Rise Residential Development 720 Granite Court City of Pickering

Dear Sir:

As requested, we have completed a groundwater quality sampling, analysis to evaluate shortterm construction dewatering and long-term foundation drainage effluent disposal management options for the proposed development at the captioned site, in the City of Pickering and our assessment and findings are discussed as follows.

Background

Soil Engineers Ltd. has completed a hydrogeological investigation for subject site, SEL Reference No. 2111-W043, dated March 2022 (revision in March 2023). The field work for borehole drilling and monitoring well construction was performed on December 14, 16 and 17, 2021. It consisted of four (4) drilled boreholes (BH) and the installation of three (3) monitoring wells (MW), one (1) within each of three (3) selected boreholes drilled at the locations, shown on Drawing No. 1. All three (3) monitoring wells were installed to a depth of 9.0 m below ground surface. This study has revealed that beneath a layer of topsoil, the native subsoils underlying the site consist of sandy silt till. The detailed borehole logs, showing the monitoring well installation details are provided in Figure 1.

Groundwater Monitoring

Groundwater levels, beneath the site were recently recorded on two (2) occasions, on May 8, 2023 (Monitoring Well Development), and again, on May 16, 2023 (Groundwater Sampling). The groundwater levels and their corresponding elevations are summarized in Table 1, presented below:

N N	Vell ID	May 08, 2023	May 16, 2023
	mbgs	6.83	6.82
BH/IVI W 1	masl	97.67	97.68
mbgs		7.23	8.76
BH/MW 2	masl	97.17	95.64
	mbgs	1.68	7.05
BH/IVI W 4	masl	102.31	96.94

Table 1 - Water Level Measurements

Notes: mbgs—meter below ground surface masl—meter above sea level

Groundwater Quality

To address the approval requirements for any proposed short-term construction dewatering and any long-term foundation drainage effluent discharge disposal requirements, or for the disposal of any generated, temporary groundwater effluent from construction dewatering to the Region of Durham sewer system, a groundwater sampling and analysis assessment is required to confirm that the groundwater quality will meet the Region of Durham storm and sanitary sewer use disposal standards. As such, one (1) groundwater sample, comprised of both unfiltered and filtered groundwater samples were collected for analysis from the on-site monitoring well at BH/MW 4 on May 16, 2023 using a dedicated sampling bailer. The monitoring well was purged on May 8, 2023 of a minimum of three (3) casing volumes of standing groundwater, prior to groundwater sample collection. Upon sampling, all of the sample bottles were placed in ice and packed in a cooler at about 4° C for shipment to the analytical laboratory. The groundwater samples were submitted for analysis, for comparison evaluation of the analysis results against the Region of Durham storm and sanitary sewer use by-law standards. Sample analysis was performed by SGS Environmental Services, which is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA). Results for the analysis are provided in Appendix, with a discussion of the findings and comparison evaluation of the results, provided below. The chain of custody number for the lab sample submissions is 031764 and the SGS report number is CA40228-MAY23 R1. The site plan, showing the approximate sampling points (monitoring well at BH/MW4) is provided on Drawing No. 1.

1334281 Ontario Limited June 1, 2023

As per the standard practice for Region of Durham storm and sanitary sewer use, a full suite of submitted samples, consisting of unfiltered groundwater underwent analysis, with results presented as totals for various parameters analyzed. A second set of selected samples underwent field filtration, during sample collection, prior to analysis for Metals and Total Phosphorous. This was performed in order to evaluate the potential source for any potentially elevated Metals and Phosphorous in a dissolved form, which may have been indicated from the results of the total analysis (unfiltered samples).

<u>Comparison Evaluation against Region of Durham Sanitary and Storm Sewer Use</u> <u>(Unfiltered-Groundwater)</u>

The analytical results for the unfiltered groundwater showed three (3) exceedances of the Region of Durham Storm Sewer Use by-law standards. The exceedances, together with the storm sewer use limits criteria, are presented in Table 2.

Parameter	Groundwater Quality Results (<u>Unfiltered</u> Groundwater) (mg/L) BH/MW 4	Region of Durham Sanitary Sewer Use Limit Standards (mg/L)	Region of Durham Storm Sewer Use Limit Standards (mg/L)
Total Suspended Solids (TSS)	17	350	15
Manganese (Total)	0.381	5	0.15
Phosphorus (Total)	0.504	10	0.4

Table 2 - Groundwater Quality Results (Unfiltered-Groundwater- Totals)

As shown above, the analysis results for the unfiltered groundwater obtained from BH/MW 4, indicates that the concentrations for all the parameters, except Total Suspended Solids (TSS), Manganese (Total) and Phosphorous (Total), are within, or meet the Region of Durham Storm Sewer Use limit standards, with the concentrations for all the parameters meeting the Region of Durham Sanitary Sewer Use limits.

The results suggest that any dewatering or long-term foundation drainage effluent should be acceptable for disposal to the Region of Durham Sanitary Sewer with some pre-treatment being implemented to meet Region of Durham Storm Sewer Use standards.

<u>Comparison Evaluation against Region of Durham Storm and Sanitary Sewer Use</u> (Filtered-Groundwater)

The results of analysis for groundwater at BH/MW 4 for the filtered samples, for selected parameters, indicates that all of the tested parameters (phosphorus and metals) meet the Region of Durham Storm and Sanitary Sewer disposal standards. The filtered sample shows

1334281 Ontario Limited June 1, 2023

that the Manganese and Phosphorous concentrations are within and meet the storm sewer limits, exhibiting a decrease of 0.37393 mg/L and 0.497 mg/L, respectively, compared with the unfiltered groundwater sample results, suggesting that the elevated concentrations for the said parameters can be partially attributed to the presence of suspended solids resulting in concentrations being above the Storm sewer-use standards.

The results of the filter sampling and analysis would mimic the discharged water quality after having gone through pre-treatment to remove any levels of elevated suspended solids. The levels of manganese and phosphorus in the filtered sample meet applicable storm sewer use standards, suggesting that the suspended solids is the primary source for the elevated phosphorus and manganese that were determined from the analysis of the Total (unfiltered) sample.

Discussion

The results suggest that any construction dewatering effluent should be acceptable for disposal discharge to the Region of Durham Storm sewer after undergoing minimal pre-treatment to lower concentrations of Total Suspended Solids (TSS), Manganese (total) and Phosphorous (total).

The final designs for any construction dewatering effluent pre-treatment system would be the responsibility of contractors responsible for construction and/or the mechanical engineer for any long-term drainage effluent pre-treatment.

Potential scour erosion and sedimentation impacts associated with construction are anticipated, and as such, a mitigation program may be required to minimize any potential erosion and sediment solids impacts to the adjacent natural features. Dewatering should be carried out in accordance with OPSS 518 and OPSS 805. Appropriate erosion and sediment control measures should be installed where appropriate. These measures would likely include placement of straw bales, silt fences and coir matting to filter out any release of sediment and to prevent scour erosion. Other methods of filtration, or sedimentation detention may be installed, if required to achieve surface water quality objectives. No dewatering effluent should be directly released to a natural water course with the discharge location being set back at least 30 m from the receiving water course with proper erosion and sediment control measures being implemented at the point of discharge.

The final design for any dewatering effluent pre-treatment system will be the responsibility of the contractors responsible for construction. The final design for any short-term dewatering or any long-term foundation drainage effluent pre-treatment system, will be the responsibility of

1334281 Ontario Limited June 1, 2023

Reference No. 2111-W043 Page 5 of 5

the mechanical engineer and or pre-treatment system engineers responsible for the design of the short-term dewatering or long-term foundation drainage effluent pre-treatment system.

A dewatering plan, if needed, may need to be coordinated with the civil engineer for the project who would confirm the discharge location and capacity of the receiving catch basin, with the dewatering plan being finalized once the discharge location and receiving catch basin capacity have been confirmed.

It is recommended that the monitoring wells be decommissioned in accordance with O. Regulation 903 in advance of earthworks if they are no longer needed.

We trust that this correspondence will address your current needs and ask that you contact the undersigned should you have any questions or require additional information.

Yours truly, **SOIL ENGINEERS LTD.**

Harshpinder Brar

Harshpinder Singh Brar, M.Eng., E.I.T

6h Shin

Gavin O'Brien, M.Sc., P.Geo. HB/GO

ENCLOSURES

Borehole Log (BH/MW 4)	Figure No. 1
Borehole and Monitoring Well Location Plan	Drawing No. 1
Water Quality Certification of Analyses	Appendix

This letter/report/certification was prepared by Soil Engineers Ltd. for the account of the captioned clients and may be relied upon by regulatory agencies. The material in it reflects the writer's best judgment in light of the information available to it at the time of preparation. Any use which a third party makes of this letter/report/certification, or any reliance on or decisions to be made based upon it, are the responsibility of such third parties. Soil Engineers Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this letter/report/certification.

JOB NO.: 2111-W043 LOG OF BOREHOLE:

BH/MW 4 FIGURE NO.:

PROJECT DESCRIPTION: Proposed Mid-Rise Residential Development

PROJECT LOCATION: 720 Granite Court, City of Pickering

METHOD OF BORING: Flight Auger

DRILLING DATE: December 14, 2021

1

•OKLAHOMA DR

651800

CA40228-MAY23 R1

2111-W043, 720 Granite Court, City of Pickering

Prepared for

Soil Engineers Ltd.

First Page

CLIENT DETAILS	i	LABORATORY DETAIL	S
Client	Soil Engineers Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	90 West Beaver Creek Rd	Address	185 Concession St., Lakefield ON, K0L 2H0
	Richmond, ON		
	M1S 3A7. Canada		
Contact	Gurkaranbir Singh	Telephone	705-652-2143
Telephone	519-731-6442	Facsimile	705-652-6365
Facsimile		Email	brad.moore@sgs.com
Email	gurkaranbir.singh@soilengineersltd.com	SGS Reference	CA40228-MAY23
Project	2111-W043, 720 Granite Court, City of Pickering	Received	05/17/2023
Order Number		Approved	05/29/2023
Samples	Ground Water (2)	Report Number	CA40228-MAY23 R1
		Date Reported	05/29/2023

COMMENTS

RL - SGS Reporting Limit

Nonylphenol Ethoxylates is the sum of nonylphenol monoethoxylate and nonylphenol diethoxylate.

Total PAH is the sum of anthracene, benzo(a)pyrene, benzo(a)anthracene, benzo(e)pyrene, benzo(b,j)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, chrysene, dibenzo(a,h)anthracene, dibenzo(a,i)pyrene, dibenzo(a,j)acridine, 7H-dibenzo(c,g)carbazole, fluoranthene, indeno(1,2,3-c,d)pyrene, perylene, phenanthrene and pyrene.

Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number: 031764

SIGNATORIES

TABLE OF CONTENTS

First Page	1
ndex	2
Results	. 3-6
Exceedance Summary	7
QC Summary	8-16
_egend	17
Annexes	18

Client: Soil Engineers Ltd.

Project: 2111-W043, 720 Granite Court, City of Pickering

Project Manager: Gurkaranbir Singh

		:	Sample Number	8	9
			Sample Name	BH/MW4	BH/MW4
					Dissolved
ary Sewer Discharge - I	3L_55_2013		Sample Matrix	Ground Water	Ground Water
n Sewer Discharge - BL	_55_2013		Sample Date	16/05/2023	16/05/2023
Units	RL	L1	L2	Result	Result
mg/L	2	300	15	< 4↑	
mg/L	2	350	15	17	
as N mg/L	0.5	100	1	< 0.5	
mg/L	2	1500		240	
mg/L	0.01	2	0.02	< 0.01	
mg/L	0.06	10		0.34	
mg/L	0.001	50		7.66	0.011
mg/L	0.0009	5		< 0.0009	< 0.0009
mg/L	0.0002	1	0.02	0.0067	0.0010
mg/L	0.000003	0.7	0.008	0.000135	0.000072
mg/L	0.00008	2	0.08	0.0246	0.00021
mg/L	0.000004	5		0.00485	0.000087
mg/L	0.0002	3	0.05	0.0120	0.0008
mg/L	0.00009	1	0.12	0.00693	< 0.00009
mg/L	0.00001	5	0.15	0.381	0.00707
mg/L	0.00004	5		0.0301	0.0311
mg/L	0.0001	2	0.08	0.0131	0.0010
mg/L	0.003	10	0.4	0.504	0.007
mg/L	0.00004	1	0.02	0.00070	0.00046
mg/L	0.00005	5	0.12	< 0.00005	< 0.00005
	ary Sewer Discharge - B n Sewer Discharge - BL Units mg/L mg/L as N mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	ary Sewer Discharge - BL_55_2013 h Sewer Discharge - BL_55_2013 Units RL mg/L 2 mg/L 2 mg/L 2 as N mg/L 0.5 mg/L 2 mg/L 0.01 mg/L 0.01 mg/L 0.001 mg/L 0.0001 mg/L 0.0002 mg/L 0.0002 mg/L 0.0002 mg/L 0.00003 mg/L 0.00004 mg/L 0.00004 mg/L 0.0001 mg/L 0.0001 mg/L 0.00004 mg/L 0.0001 mg/L 0.0004 mg/L 0.0003 mg/L 0.0004 mg/L 0.0004	ary Sewer Discharge - BL_55_2013 In Sever Discharge - BL_55_2013 Units RL L1 mg/L 2 300 mg/L 2 350 mg/L 2 350 as N mg/L 0.5 100 mg/L 2 1500 mg/L 0.01 2 mg/L 0.001 50 mg/L 0.0003 0.7 mg/L 0.00003 0.7 mg/L 0.00003 0.7 mg/L 0.00003 0.7 mg/L 0.00004 5 mg/L 0.00003 0.7 mg/L 0.00003 0.7 mg/L 0.00004 5 mg/L 0.00004 5 mg/L 0.00004 5 mg/L 0.0001 2 mg/L 0.0001 2 mg/L 0.0004 5 mg/L 0.0003 10 mg/L 0.000	Sample Number Sample Mathix Sample Discharge - BL_55_2013 Sample Mathix Sample Date International Sectors of Se	Sample Number8 Sample Name8 BH/MW4ary Sever Discharge - BL_SS_2013Sample Matx Sample DataGround Water 16/05/2023UnitsRLL1L2Resultmg/L230015<41

Client: Soil Engineers Ltd.

Project: 2111-W043, 720 Granite Court, City of Pickering

Project Manager: Gurkaranbir Singh

MATRIX: WATER			5	Sample Number	8	9
				Sample Name	BH/MW4	BH/MW4
						Dissolved
L1 = SANSEW / WATER / Durham Sewer Use ByLaw - Sanitary	y Sewer Discharge - I	BL_55_2013		Sample Matrix	Ground Water	Ground Water
L2 = SANSEW / WATER / Durham Sewer Use ByLaw - Storm S	Sewer Discharge - BL	55_2013		Sample Date	16/05/2023	16/05/2023
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics (continued)						
Tin (total)	mg/L	0.00006	5		0.00055	0.00084
Titanium (total)	mg/L	0.00005	5		0.310	0.00123
Zinc (total)	mg/L	0.002	2	0.04	0.026	0.003
Microbiology						
E. Coli	cfu/100mL	0		200	0	
Nonylphenol and Ethoxylates						
Nonylphenol	mg/L	0.001	0.02		< 0.001	
Nonylphenol Ethoxylates	mg/L	0.01	0.2		< 0.01	
Nonylphenol diethoxylate	mg/L	0.01			< 0.01	
Nonylphenol monoethoxylate	mg/L	0.01			< 0.01	
Oil and Grease						
Oil & Grease (total)	mg/L	2			< 2	
Oil & Grease (animal/vegetable)	mg/L	4	150		< 4	
Oil & Grease (mineral/synthetic)	mg/L	4	15		< 4	

Client: Soil Engineers Ltd.

Project: 2111-W043, 720 Granite Court, City of Pickering

Project Manager: Gurkaranbir Singh

MATRIX: WATER			:	Sample Number	8	9
				Sample Name	BH/MW4	BH/MW4
						Dissolved
L1 = SANSEW / WATER / Durham Sewer Use ByLaw - Sanita	ry Sewer Discharge - E	BL_55_2013		Sample Matrix	Ground Water	Ground Water
L2 = SANSEW / WATER / Durham Sewer Use ByLaw - Storm	Sewer Discharge - BL	_55_2013		Sample Date	16/05/2023	16/05/2023
Parameter	Units	RL	L1	L2	Result	Result
Other (ORP)						
рН	No unit	0.05	10.5	9	8.32	
Mercury (total)	mg/L	0.00001	0.01	0.0004	< 0.00001	
PCBs						
Polychlorinated Biphenyls (PCBs) - Total	mg/L	0.0001	0.001	0.0004	< 0.0001	
Phenols			1	I		
4AAP-Phenolics	mg/L	0.002	1	0.008	< 0.002	
SVOCs						
di a Rutul Dhthalata		0.002	0.09	0.015	< 0.002	
	mg/L	0.002	0.06	0.015	< 0.002	
Bis(2-ethylnexyl)phthalate	mg/L	0.002	0.012	0.0088	< 0.002	
VOCs			1			
Chloroform	mg/L	0.0005	0.04	0.002	< 0.0005	
1,2-Dichlorobenzene	mg/L	0.0005	0.05	0.0056	< 0.0005	
1,4-Dichlorobenzene	mg/L	0.0005	0.08	0.0068	< 0.0005	
cis-1,2-Dichloroethene	mg/L	0.0005			< 0.0005	
trans-1,3-Dichloropropene	mg/L	0.0005	0.14	0.0056	< 0.0005	
Methylene Chloride	mg/L	0.0005	2	0.0052	< 0.0005	
1,1,2,2-Tetrachloroethane	mg/L	0.0005	1.4	0.017	< 0.0005	
Tetrachloroethylene (perchloroethylene)	mg/L	0.0005	1	0.0044	< 0.0005	
Trichloroethylene	mg/L	0.0005	0.4	0.008	< 0.0005	
Methyl ethyl ketone	mg/L	0.02	8		< 0.02	
Styrene	ma/l	0.0005	0.2		< 0.0005	
6.9.6.16	g/L	5.0000	0.2		- 0.0000	

Client: Soil Engineers Ltd.

Project: 2111-W043, 720 Granite Court, City of Pickering

Project Manager: Gurkaranbir Singh

MATRIX: WATER			s	Sample Number	8	9
				Sample Name	BH/MW4	BH/MW4
						Dissolved
L1 = SANSEW / WATER / Durham Sewer Use ByL	Law - Sanitary Sewer Discharge - BL_55_	5_2013		Sample Matrix	Ground Water	Ground Water
L2 = SANSEW / WATER / Durham Sewer Use ByL	Law - Storm Sewer Discharge - BL_55_20	2013		Sample Date	16/05/2023	16/05/2023
Parameter	Units R	RL	L1	L2	Result	Result
VOCs (continued)						
VOCs - BTEX						
Benzene	mg/L 0.0	0005	0.01	0.002	< 0.0005	
Ethylbenzene	mg/L 0.0	0005	0.16	0.002	< 0.0005	
Toluene	mg/L 0.0	0005	0.27	0.002	< 0.0005	
Xylene (total)	mg/L 0.0	0005	1.4	0.0044	< 0.0005	
m-p-xylene	mg/L 0.0	0005			< 0.0005	
o-xylene	mg/L 0.0	0005			< 0.0005	

EXCEEDANCE SUMMARY

					SANSEW / WATER / Durham Sewer Use ByLaw - Sanitary Sewer Discharge - BL_55_2013	SANSEW / WATER / Durham Sewer Use ByLaw - Storm Sewer Discharge - BL_55_2013
	Parameter	Method	Units	Result	L1	L2
3H/	MW4					
	Total Suspended Solids	SM 2540D	mg/L	17		15
	Manganese	SM 3030/EPA 200.8	mg/L	0.381		0.15
	Phosphorus	SM 3030/EPA 200.8	mg/L	0.504		0.4

Anions by discrete analyzer

Method: US EPA 375.4 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-026

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recoverv	Recovery Limits	
								Low	High	(%)	Low	High
Sulphate	DIO5097-MAY23	mg/L	2	<2	2	20	103	80	120	102	75	125

Biochemical Oxygen Demand

Method: SM 5210 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-007

Parameter	QC batch	Units	RL	Method	Dup	plicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recovery Limits		
						(%)	Recovery	(%)		Recovery		6)	
						(70)	(%)	Low	High	(%)	Low	High	
Biochemical Oxygen Demand (BOD5)	BOD0040-MAY23	mg/L	2	< 2	1	30	115	70	130	NV	70	130	

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	.)
	Reference			Blank	RPD	AC	AC Spike (%) Recovery	Recover	y Limits	Spike	Recover	y Limits
						(%)		(9	6)	Recovery	(%	6)
						(78)	(%)	Low	High	(%)	Low	High
Cyanide (total)	SKA0202-MAY23	mg/L	0.01	<0.01	ND	10	95	90	110	90	75	125

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	'D AC (%)	Spike	Recover	ry Limits 6)	Spike Recovery	Recover	y Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0464-MAY23	mg/L	0.06	<0.06	ND	10	103	90	110	96	75	125

Mercury by CVAAS

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	y Limits	Spike	Recover	y Limits
						(%)	Recovery	(%	6)	Recovery	(%	6)
						(70)	(%)	Low	High	(%)	Low	High
Mercury (total)	EHG0037-MAY23	mg/L	0.00001	< 0.00001	ND	20	107	80	120	112	70	130

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover (%	y Limits စ်)
						(%)	(%)	Low	High	(%)	Low	High
Silver (total)	EMS0155-MAY23	mg/L	0.00005	<0.00005	ND	20	102	90	110	96	70	130
Aluminum (total)	EMS0155-MAY23	mg/L	0.001	<0.001	3	20	98	90	110	127	70	130
Arsenic (total)	EMS0155-MAY23	mg/L	0.0002	<0.0002	ND	20	101	90	110	98	70	130
Cadmium (total)	EMS0155-MAY23	mg/L	0.000003	<0.000003	0	20	102	90	110	105	70	130
Cobalt (total)	EMS0155-MAY23	mg/L	0.000004	<0.000004	2	20	98	90	110	101	70	130
Chromium (total)	EMS0155-MAY23	mg/L	0.00008	<0.00008	ND	20	99	90	110	101	70	130
Copper (total)	EMS0155-MAY23	mg/L	0.0002	<0.0002	2	20	101	90	110	116	70	130
Manganese (total)	EMS0155-MAY23	mg/L	0.00001	<0.00001	1	20	102	90	110	100	70	130
Molybdenum (total)	EMS0155-MAY23	mg/L	0.00004	<0.00004	ND	20	98	90	110	97	70	130
Nickel (total)	EMS0155-MAY23	mg/L	0.0001	<0.0001	ND	20	102	90	110	93	70	130
Lead (total)	EMS0155-MAY23	mg/L	0.00009	<0.00009	ND	20	90	90	110	100	70	130
Phosphorus (total)	EMS0155-MAY23	mg/L	0.003	<0.003	ND	20	99	90	110	NV	70	130
Antimony (total)	EMS0155-MAY23	mg/L	0.0009	<0.0009	ND	20	105	90	110	117	70	130
Selenium (total)	EMS0155-MAY23	mg/L	0.00004	<0.00004	4	20	101	90	110	107	70	130
Tin (total)	EMS0155-MAY23	mg/L	0.00006	<0.00006	ND	20	103	90	110	NV	70	130
Titanium (total)	EMS0155-MAY23	mg/L	0.00005	<0.00005	17	20	104	90	110	NV	70	130
Zinc (total)	EMS0155-MAY23	mg/L	0.002	<0.002	ND	20	97	90	110	104	70	130

Microbiology

Method: SM 9222D | Internal ref.: ME-CA-IENVIMIC-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dupl	cate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover	/ Limits)	Spike Recovery	Recovery (%	/ Limits)
						(70)	(%)	Low	High	(%)	Low	High
E. Coli	BAC9327-MAY23	cfu/100mL	-	ACCEPTED	ACCEPTE							
					D							

Nonylphenol and Ethoxylates

Method: ASTM D7065-06 | Internal ref.: ME-CA-IENVIGC-LAK-AN-015

Parameter	QC batch	Units	RL	Method Blank	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits)	Spike Recovery	Recovery (%)	Limits
						(70)	(%)	Low	High	(%)	Low	High
Nonylphenol diethoxylate	GCM0360-MAY23	mg/L	0.01	<0.01			82	55	120			
Nonylphenol Ethoxylates	GCM0360-MAY23	mg/L	0.01	0								
Nonylphenol monoethoxylate	GCM0360-MAY23	mg/L	0.01	<0.01			89	55	120			
Nonylphenol	GCM0360-MAY23	mg/L	0.001	<0.001			85	55	120			

Oil & Grease

Method: MOE E3401 | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref.	
	Reference			Blank	RPD	RPD AC (%)	Spike	Recove	ry Limits 6)	Spike Recovery	Recover	y Limits
							Recovery (%)	Low	High	(%)	Low	High
Oil & Grease (total)	GCM0405-MAY23	mg/L	2	<2	NSS	20	99	75	125			

Oil & Grease-AV/MS

Method: MOE E3401/SM 5520F | Internal ref.: ME-CA-IENVIGC-LAK-AN-019

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits 6)	Spike Recovery	Recover (%	y Limits
						(%)	(%)	Low	High	(%)	Low	High
Oil & Grease (animal/vegetable)	GCM0405-MAY23	mg/L	4	< 4	NSS	20	NA	70	130			
Oil & Grease (mineral/synthetic)	GCM0405-MAY23	mg/L	4	< 4	NSS	20	NA	70	130			

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recove	ery Limits %)	Spike Recovery	Recover	y Limits
					(%)		Recovery (%)	Low	High	(%)	Low	High
рН	EWL0469-MAY23	No unit	0.05	NA	0		100			NA		

Phenols by SFA

Method: SM 5530B-D | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	:
	Reference			Blank	RPD AC (%)	Spike	Recove	ry Limits %)	Spike Recovery	Recover	ry Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
4AAP-Phenolics	SKA0194-MAY23	mg/L	0.002	<0.002	ND	10	92	80	120	101	75	125

Polychlorinated Biphenyls

Method: MOE E3400/EPA 8082A | Internal ref.: ME-CA-IENVIGC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Polychlorinated Biphenyls (PCBs) -	GCM0404-MAY23	mg/L	0.0001	<0.0001	NSS	30	95	60	140	NSS	60	140
Total												

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Ref.	•
	Reference			Blank	RPD	AC	Spike	Recover	y Limits)	Spike Recovery	Recover	y Limits 6)
						(%)	(%)	Low	High	(%)	Low	High
Bis(2-ethylhexyl)phthalate	GCM0364-MAY23	mg/L	0.002	< 0.002	NSS	30	120	50	140	NSS	50	140
di-n-Butyl Phthalate	GCM0364-MAY23	mg/L	0.002	< 0.002	NSS	30	119	50	140	NSS	50	140

Suspended Solids

Method: SM 2540D | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	y Limits	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Total Suspended Solids	EWL0523-MAY23	mg/L	2	< 2	0	10	98	90	110	NA			

Total Nitrogen

Method: SM 4500-N C/4500-NO3- F | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-002

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.				
	Reference			Blank	RPD	AC	Spike	Recover (۹	y Limits 6)	Spike Recovery	Recover	y Limits		
						(%)	Recovery (%)	Low	High	(%)	Low	High		
Total Kjeldahl Nitrogen	SKA0220-MAY23	as N mg/L	0.5	<0.5	ND	10	97	90	110	102	75	125		

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	3/Spike Blank		Matrix Spike / Ref. Spike Recovery Limits Recovery (%)		
	Reference			Blank	RPD	AC	Spike	Recover (%	y Limits	Spike Recovery	Recover (%	y Limits 6)
						(76)	(%)	Low	High	(%)	Low	High
1,1,2,2-Tetrachloroethane	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	99	60	130	101	50	140
1,2-Dichlorobenzene	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	105	60	130	97	50	140
1,4-Dichlorobenzene	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	101	60	130	92	50	140
Benzene	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	102	60	130	91	50	140
Chloroform	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	99	60	130	91	50	140
cis-1,2-Dichloroethene	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	101	60	130	89	50	140
Ethylbenzene	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	102	60	130	90	50	140
m-p-xylene	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	102	60	130	90	50	140
Methyl ethyl ketone	GCM0334-MAY23	mg/L	0.02	<0.02	ND	30	100	50	140	107	50	140
Methylene Chloride	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	102	60	130	93	50	140
o-xylene	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	104	60	130	93	50	140
Styrene	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	102	60	130	93	50	140
Tetrachloroethylene	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	101	60	130	85	50	140
(perchloroethylene)												
Toluene	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	100	60	130	89	50	140
trans-1,3-Dichloropropene	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	98	60	130	89	50	140
Trichloroethylene	GCM0334-MAY23	mg/L	0.0005	<0.0005	ND	30	100	60	130	89	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - Reporting limit raised.
 - ↓ Reporting limit lowered.
 - NA The sample was not analysed for this analyte
 - ND Non Detect

Results relate only to the sample tested.

Data reported represent the sample as submitted to SGS. Solid samples expressed on a dry weight basis.

"Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act and Excess Soil Quality" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated.

SGS Canada Inc. statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or regulation. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm.

The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Reproduction of this analytical report in full or in part is prohibited.

This report supersedes all previous versions.

-- End of Analytical Report --

	AB LIMS # 64 - 40236 - May 33		grant court,	49 Petering	days (exclude statutory holidays & weekends). r on weekends: TAT begins next business day		HUMAN CONSUMPTION MUST BE SUBMITTED	CHAIN OF CUSTODY	SPLPTCLP	Specify Specify tests tests tests over Owner COMMENTS:											/dd/wv) Pink Conv - Client	
		# C d	Site Location/ID: 720	TAT) REQUIRED	TAT's are quoted in business of Samples received after 6pm or	s 3 Days 4 Days	KIOK TO SUBMISSION LE) WATER SAMPLES FOR H	ITH SGS DRINKING WATER (Other (please specify)	()	Alerer Use: Characteria	S S									o5, 23 (mm	24 24
nment 361	3. Type: 100			TURNAROUND TIME (1 Day 2 Day	*NOTE: DRINKING (POTAB	W YSIS REQUEST	IC VOC Pest	P Infect	in the set only only only only only only only only										Date: 6	11
65 Web: www.sgs.com/enviro 877-848-8060 Fax: 519-672-0	ection - Lab use only ant Present: Yes D No C e Upon Receipt (°C) 99		-Woy3		(5-7days)	I Charges May Apply):		ANA	SVOC PCB PF	Aroclor	sr, Co, Cu, Pa, Mo, Ni, Se, Ag, TI, U, V SAHS only SVOCS Mind Patts, ABNs, CPs Total Tot											
o-ooz-zuuu rax: / uo-ooz-oo ne: 519-672-4500 Toll Free: {	Atory Information Se CANNA Cooling Age Temperatur	Ouotation #:	Project #: 211		Regular TAT	RUSH TAT (Additional	PLEASE CONFIRM RU Specify Due Date:		M&I	۲) (۱) (۱) (۱) (۱) (۱) (۱) (۱) (۱	Tield Filtered (Y/N metals & Inorgan netals & Inorgan netals plus B(HWS,eoli only cP Metals plus B(HWS-soli only Full Metals only s CP Metals only s CP Metals only s	1 - 2	7								/	
ON, NGE 2S8 Phot	ire): A Mue it: Yes No [Yes No [NOI							Sewer Bv-Law:	Municipality:	DF MATRIX	NO 1	Car								ure:	20 V
ortium Court, London	Received By (signatu Custody Seal Presen Custody Seal Intact:	VOICE INFORMAT			and the second se				tions:	(3 Day min TAT) MMER Other: Reportable *See note	NO TIME # C	11: 000- 17	1 whyon 1		**						Signat	
- London: 657 Cons	y)	IN as a mas	Company:	Contact:	Address:		Phone:	Email: JLATIONS	Other Regula	Reg 347/558 PPW20 [CCME [MISA]	DATE SAMPLED	16/05/23	16/05/23								m	X L
	eceived By: AM eceived Date: 05 / / / 33 (mm/dd/y eceived Time: 13 : 50 (mr. min)	REPORT INFORMATION SOIL ENGINEERS UP	Contact: GURKARANBIR SINGH	ddress: 90 West Beaver	Greek Richmand Hill	hone: 519-7316442	ax gurkenenkin bight	main porten uners the com	O.Rea 153/04 O.Rea 406/19	Table 1 Res/Park Soil Texture: Table 2 Ind/Com Coarse Table 3 Agri/Other Medium/Fine Table Appx. Soil Volume <350m3	RECORD OF SITE CONDITION (RSC) SAMPLE IDENTIFICATION	1 BM MW4	2 GU/MWY	3 4	01	9	8	6	10	 Observations/Comments/Special Instructions	sampled By (NAME): Junk Curdenters	- Monday