

HYDROGEOLOGICAL REVIEW REPORT

1066 Dunbarton Road, Pickering, Ontario PREPARED FOR: UPRC 49 Bogurt Avenue North York, ON, M2N 1K6

ATTENTION: Ross Edwards and Edwin Cheng

Grounded Engineering Inc. File No. 22-088 Issued August 29, 2022

Executive Summary

Grounded Engineering Inc. (Grounded) was retained by UPRC to conduct a Hydrogeological Review for the proposed redevelopment of 1066 Dunbarton Road in Pickering, Ontario (site). The conclusions of the investigation are summarized as follows:

Site Information

Existing Development						
	Ahava		Belo	w Grade Levels		
Site	Above Grade		Lowest Finished Floor		Approximate Base	
one	Levels	Level #	Depth (m)	Elevation (masl)	of Foundations (masl)	
1066 Dunbarton Rd./ Preliminary	1	1	n/a	n/a	n/a	

Site	Above		Bel	ow Grade Levels		
	Grade		Lowest Fi	nished Floor	Approximate Base	
1066 Dunbarton Rd. / Preliminary	Levels	Level #	Depth (m)	Elevation (masl)	of Foundations (masl)	
Townhouse 1	3	1	2.8	97.05	96.55	
Townhouse 2	3	1	2.8	97.05	96.55	
Townhouse 3	3	1	2.8	96.1	95.6	
Townhouse 4	3	1	2.8	95.05	94.55	
Townhouse 5	3	1	2.8	93.42	92.92	

Site Conditions

Site Stratigraphy					
Stratum/Formation	Aquifer or Aquitard	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)	Method
Fill	Aquifer	0.2 - 0.8	100.0 - 97.9	1.0 x 10 ⁻⁵	Literature
Silt and Sand	Aquifer	0.8 - 4.6	99.5 - 94.1	5.0 x 10 ⁻⁷	Literature
Clayey Silt	Aquifer	4.6 - 8.2	95.7 - 90.5	7.21 x 10 ⁻⁹	Slug Test

Groundwater Elevation	
Design Groundwater Elevation (masl) (see Figure 4)	98.7, 94.0, 95.8

Groundwater Qual	ity			
Sample ID	Sample Date	Sample Expiry Date	Region of Durham Storm Sewer Limits	Region of Durham Sanitary Sewer Limits
BH3	May 12, 2022	n/a	Exceeds	Meets

Groundwater Control

Stored Groundwater (pre-excavation/dewatering)						
Townhouse ID	Volume of Excavation	Volume of Excavation Below Water		olume of Stored ndwater		d Volume of Groundwater
	(m³)	Table (m ³)	m ³	L	m ³	L
1	317	206	200	200,000	100	100,000
2	317	206	200	200,000	100	100,000
3	317	-	-	-	-	-
4	317	-	-	-	-	-
5	317	276	200	200,000	100	100,000

Short Term (Construct	tion) Steady State Grou	ndwater Quantity – Safet	y Factor of 2.0 Used

	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
Townhouse ID	Estimated Groundwater Seepage		Design Rainfall Event (25mm)		Estimated Total Daily Water Takings	
	L/day	L/min	L/day	L/min	L/day	L/min
1	30,000	20.8	2,880	2.0	32,880	22.8
2	30,000	20.8	2,880	2.0	32,880	22.8
3	-	-	3,000	2.1	3,000	2.1
4	-	-	3,000	2.1	3,000	2.1
5	4,000	2.8	2,880	2.0	6,880	4.8

Long Term (Permanent) Steady State Groundwater Quantity – Safety Factor of 2.0 Used						
Townhouse	Estimated Estimated Estimated		stimated Infiltrated	Stormwater –	Estimated Tota	l Daily Water
ID			Design Rainfall Event (25mm)		Takin	gs
	L/day	L/min	L/day	L/min	L/day	L/min
1	30,000	20.8	3,000	2.1	33,000	22.9
2	30,000	20.8	3,000	2.1	33,000	22.9
3	-	-	3,000	2.1	3,000	2.1
4	-	-	3,000	2.1	3,000	2.1
5	4,000	2.8	3,000	2.1	7,000	4.9

Land Stability		
	Short Term (Construction)	Long Term (Permanent)
Maximum Zone of Influence (m)	29	29
Maximum Potential Settlement (mm)	4	4

Regulatory Requirements	
Environmental Activity and Sector Registry (EASR) Posting	Not Required
Short Term Permit to Take Water (PTTW)	Not Required
Long Term Permit to Take Water (PTTW)	Not Required
Short Term Discharge Agreement City of Pickering / Durham Region	Required
Long Term Discharge Agreement City of Pickering / Durham Region	Required

TABLE OF CONTENTS

1	INTRODUCTION1								
2	STUDY ARE	STUDY AREA MAP							
3	GEOLOGY A	ND PHYSICAL HYDROGEOLOGY							
4	MONITORIN	IG WELL INFORMATION							
5	GROUNDW	ATER ELEVATIONS							
6	AQUIFER TESTING								
7	WATER QU	ALITY5							
8	PROPOSED	CONSTRUCTION METHOD							
9	PRIVATE WATER DRAINAGE SYSTEM (PWDS)7								
10	GROUNDWATER EXTRACTION AND DISCHARGE								
11	EVALUATIC	N OF IMPACT							
	11.1	ZONE OF INFLUENCE (ZOI)10							
	11.2	LAND STABILITY							
	11.3	CITY'S SEWAGE WORKS							
	11.4	NATURAL ENVIRONMENT							
	11.5	LOCAL DRINKING WATER WELLS							
	11.6	CONTAMINATION SOURCE							
12	PROPOSED MITIGATION MEASURES AND MONITORING PLAN12								
13	LIMITATIONS								
14	CLOSURE								

FIGURES

Figure 1 – Study Area Map Figure 2 – Borehole Location Plan – Existing

- Figure 3 Borehole Location Plan Proposed
- Figure 4 Subsurface Cross-Section

APPENDICES

- Appendix A Preliminary Site Grading Plan
- Appendix B Borehole Logs
- Appendix C Aquifer Response Tests
- Appendix D Grain Size Analysis
- Appendix E HydrogeoSieveXL Data
- Appendix F Laboratory Certificate of Analysis
- Appendix G Dewatering Calculations

1 Introduction

Drawings showing the proposed building in plan and profile are currently not available for review. Grounded must be retained to review the architectural drawings prior to construction to ensure that borehole coverage is adequate and that the boreholes are sufficient deep for the proposed development.

UPRC has retained Grounded Engineering Inc. ("Grounded") to provide hydrogeological engineering design advice for their proposed development at 1066 Dunbarton Road, in Pickering, Ontario.

Property Information		
Location of Site	1066 Dunbarton Road, Pickering, Ontario, L1V 1G8	
Ownership of Site	UPRC	
Site Dimensions (m)	Approximately 95 m (N/S) x 90 m (E/W)	
Site Area (m ²)	Approximately 8,550 m ²	

Existing Development	
Number of Building Structures	1
Number of Above Grade Levels	1
Number of Underground Levels	1
Sub-Grade Depth of Development (m)	Approximately 4.0
Sub-Grade Area (m ²)	Approximately 600
Land Use Classification	Commercial

Proposed Development	
Number of Building Structures	5 new building structures
Number of Above Grade Levels	3
Number of Underground Levels	1
Sub-Grade Depth of Development (m)	2.8 m (5 x partial 8m x12m basements only, remainder of building areas will be on-grade)
Sub-Grade Area (m ²)	96 m ² per partial basement (x 5)
Land Use Classification	Residential

Qualified Person and Hydrogeologic	al Review Information
Qualified Person	Kyle Byckalo
Consulting Firm	Grounded Engineering Inc.
Date of Hydrogeological Review	August 29, 2022
Scope of Work	 Review of MECP Water Well Records for the area
	 Review of geological information for the area
	 Review of topographic information for the area
	 Advancement of 3 boreholes to a maximum depth of 8 m, which were instrumented with 3 monitoring wells.
	 Completion of slug tests in all available monitoring wells.
	 Groundwater elevation monitoring for three (3) months on a bi- weekly basis
	 Groundwater sampling and analysis to the Region of Durham
	 Assessment of groundwater controls and potential impacts
	 Report preparation in accordance with Ontario Water Resources Act, Ontario Regulation 387/04

General Hydrogeological Characteri	zation
Site Topography	The site has an approximate ground surface elevation of 99.5 masl.
Local Physiographic Features	The site is composed of silt and sand overlaying clayey silt deposits.
Regional Physiographic Features	The Iroquois plain on the north shore of Lake Ontario from Scarborough to Newcastle. A sand plain comprised of mosaic till plains and areas of silty lacustrine deposits. The two most important soils of the area are Darlington loam and Newcastle loam, the former developed on the upland areas of till and the latter on the lacustrine sediments in the lower lying areas. They are both good, well drained soils but in some areas can be poorly drained.
Watershed	The site is located within the Lake Ontario Waterfront. Watershed. Locally, groundwater is anticipated to flow south towards Lake Ontario.
Surface Drainage	Surface water is expected to flow towards municipal catch basins located on or adjacent to the site, via Dunbarton Road to the South.

A map has been enclosed which shows the following information:

- All monitoring wells identified on site
- All monitoring wells identified off site within the study area
- All boreholes identified on site
- All buildings identified on site and within the study area
- The Site boundaries
- Any watercourses and drainage features within the study area.

3 Geology and Physical Hydrogeology

The site stratigraphy, including soil materials, composition and texture are presented in detail on the borehole logs in Appendix A. A summary of stratigraphic units that were encountered at the site are as follows:

Site Stratigraphy	Site Stratigraphy						
Stratum/Formation	Aquifer or Aquitard	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)	Method of Determination		
Fill	Aquifer	0.2 - 0.8	100.0 - 97.9	1.0 x 10⁻⁵	Literature		
Silt and Sand	Aquifer	0.8 - 4.6	99.5 - 94.1	5.0 x 10 ⁻⁷	Grain Size		
Clayey Silt	Aquifer	4.6 - 8.2	95.7 – 90.5	7.21 x 10 ⁻⁹	Slug Test		

Surface Water			
Surface Water Body	Distance from site (m)	Direction from site	Hydraulically Connected to Site (yes/no)
Lake Ontario	Approximately 550	South	no

4 Monitoring Well Information

Well ID	Well Diameter (mm)	Ground Surface (masl)	Top of Screen (masl)	Bottom of Screen (masl)	Screened Geological Unit
BH1	50	98.7	94.2	91.1	Clayey Silt
BH2	50	100.3	95.7	92.7	Clayey Silt

Well ID	Well Diameter (mm)	Ground Surface (masl)	Top of Screen (masl)	Bottom of Screen (masl)	Screened Geological Unit	
BH3	50	99.2	94.6	91.6	Clayey Silt	

5 Groundwater Elevations

Well ID			Groundwater Elevation	on (masl)
Weilid	May 12 th , 2022	May 26 th , 2022	June 22 nd , 2022	Maximum
BH1	93.1	93.9	94.0	94.0
BH2	98.7	98.7	98.6	98.7
BH3	93.8	95.5	95.8	95.8

Groundwater levels fluctuate with time depending on the amount of precipitation and surface runoff and may be influenced by known or unknown dewatering activities at nearby sites.

For preliminary design purposes, the design groundwater elevation for each of the proposed townhouse structures is provided in the table below.

Building Structure(s)	Design Groundwater Elevation (m)
Townhouses 1 and 2	98.7
Townhouses 3 and 4	94.0
Townhouse 5	95.8

6 Aquifer Testing

6.1 Single Well Response Test (Slug Test)

The hydraulic conductivities from the monitoring wells were determined based on slug tests (single-well response tests). These tests involve rapid removal of water or addition of a "slug" which displaces a known volume of water from a single well, and then monitoring the water level in the well until it recovers. The results of the slug tests were analyzed using the Bouwer and Rice method (1976).

The hydraulic properties of the strata applicable to the site are as follows:

Well ID	Well Screen Elevation (masl)	Screened Geological Unit	Hydraulic Conductivity (m/s)
BH2	95.7 - 92.7	Clayey Silt	7.21 x 10 ⁻⁹
BH3	94.6 - 91.6	Clayey Silt	5.05 x 10 ⁻⁹

The hydraulic conductivities of various soil types can also be estimated from grain size analyses. An assessment of the grain sizes was conducted using the excel-based tool, HydrogeoSieve XL (*HydrogeoSieve XL ver.2.2, J.F. Devlin, University of Kansas, 2015*). HydrogeoSieve XL compares the results of the grain size analyses against fifteen (15) different analytical methods.

Given our experience in the area as well as published literature, some of the geometric means provided for the soil were biased low by one or more methods. In these instances, the values determined by these methods were excluded from the mean. The table below illustrates the hydraulic conductivity values estimated from the mean of the analytical methods where the soil met the applicable analysis criteria.

Sample ID	Soil Description	Applicable Analysis Methods	Hydraulic Conductivity (m/s)
BH1-SS3	Sandy Silt, clayey	Alyamani and Sen, Barr, Sauerbrei	4.8 x 10 ⁻⁷
BH2-SS6	Clay with fines	Alyamani and Sen, Barr, Sauerbrei	1.4 x 10 ⁻⁹
BH3-SS4	Clay with fines	Alyamani and Sen, Barr, Sauerbrei	1.3 x 10 ⁻⁹
BH3-SS8	Clay with fines	Alyamani and Sen, Barr, Sauerbrei	1.0 x 10 ⁻⁹

The results of the analyses are presented in Appendix D.

6.3 Literature

According to Freeze and Cherry (1979), the typical hydraulic conductivity of the strata investigated at the site are:

Stratum/Formation	Hydraulic Conductivity (m/s)
Earth Fill	10 ⁻² to 10 ⁻⁶
Silt and Sand	10 ⁻⁵ to 10 ⁻⁹
Clayey Silt	10 ⁻⁷ to 10 ⁻¹⁰

7 Water Quality

One (1) unfiltered groundwater sample was collected and analyzed by a Canadian laboratory accredited and licensed by Standards Council of Canada and or Canadian Association for Laboratory Accreditation.

The sample was collected directly from monitoring well BH3 on May 12th, 2022. The sample was analyzed for the following parameters:

- Durham Region Sanitary Sewers Discharge Criteria (55-2013)
- Durham Region Storm Sewers Discharge Criteria (55-2013)

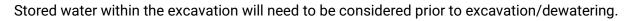
The groundwater sample **exceeded** the **Limits for Storm Sewer Discharge** for the following parameters:

• Total Suspended Solids (Limit 15 mg/L, Result 110 mg/L)

The groundwater sample **met** the **Limits for Sanitary Sewer Discharge** for all parameters analyzed.

A true copy of the analysis report, Certificate of Analysis and a chain of custody record for the sample are enclosed.

8 Proposed Construction Method


The proposed methodology to support open excavations at the site is currently undetermined. For the purposes of this report, equivalent well analyses were conducted employing conventional open cut excavation in order to determine a "worst-case scenario" with respect to dewatering volumes and groundwater seepage at the site.

For design purposes, the groundwater table is at about Elev. 98.7± masl for Townhouses 1 and 2 in the silt and sand deposits, at Elev. 94.0± masl for Townhouses 3 and 4 in the clayey silt deposit, and at Elev. 95.8± masl for Townhouse 5 also in the clayey silt deposit. These deposits have a relatively low permeability and will yield only minor seepage in the long term. The groundwater table is present in all of the native soil units.

The lowest (B1) FFE for all Townhouses 1 and 2 is at Elev. 97.05± m, Townhouse 3 is at Elev. 96.1± m, Townhouse 4 is at Elev. 95.05± m and Townhouse 5 is at Elev. 93.42± m. Therefore,

- Bulk excavations for basements will extend below the elevation of the design groundwater table(s) for Townhouses 1, 2, and 5.
- Foundation excavations will be made in relatively low-permeability soils below the design groundwater table.
- Bulk excavations for basements will remain above the design groundwater table(s) for Townhouses 3 and 4.
- Foundation excavations may extend below the design groundwater table, however they will be made in relatively low-permeability soils.

Dewatering of all basement excavations will be required to facilitate construction as well as to maintain the integrity of the subgrade for foundation and slab-on-grade support. The water level must be kept at least 1.2 m below the lowest excavation elevation during construction. Failure to dewater prior to final excavation may result in unrecoverable disturbance of the subgrade, which will render advice provided for undisturbed subgrade conditions inapplicable.

If it is proposed to discharge groundwater to the municipal sewers, a professional dewatering contractor must be consulted to review the subsurface conditions and to design a site-specific dewatering system. It is the dewatering contractor's responsibility to assess the factual data and to provide recommendations on dewatering system requirements.

9 Private Water Drainage System (PWDS)

If the proposed development consists of drained foundations, then a private water drainage system will be required for structures with basements constructed below the groundwater table. The total sub floor drain area is approximately 96 m² per basement based on an excavated area of 12 m x 8 m.

If basements are designed with a private water drainage system, the drainage system is a critical structural element since it keeps water pressure from acting on the basement walls and floor slab. As such, the sump that ensures the performance of this system must have a duplexed pump arrangement for 100% pumping redundancy and these pumps must be on emergency power. The size of the sump should be adequate to accommodate the estimated groundwater seepage. It is anticipated that the groundwater seepage can be controlled with typical, widely available, commercial/residential sump pumps.

If the proposed basements are designed as watertight structures, then a private water drainage system will not be required. However, the structure must then be designed to resist hydrostatic pressure and uplift forces.

10 Groundwater Extraction and Discharge

Equivalent well analyses were conducted for both short-term and long-term dewatering scenarios. Equivalent well analyses for groundwater seepage indicates the short term (construction) and long term (permanent) dewatering requirements as provided below. The results are presented in Appendix G.

The groundwater seepage estimates, which have been provided, represent the steady state groundwater seepage. There will be an initial drawdown of the groundwater before a steady state condition is reached. The rate of the initial drawdown, and therefore discharge, is dependent on the dewatering contractor and how the groundwater is being dealt with at the site. An estimated initial volume of stored groundwater which will require removal before steady state is reached has been provided below.

Please note that if excavation is exposed to the elements, stormwater will have to be managed. The short-term control of groundwater should consider stormwater management from rainfall events. A dewatering system should be designed to consider the removal of rainfall from excavation. A design storm of 25 mm has been used in the quantity estimates.

As required by Ontario Regulation 63/16, a plan for discharge must consider the conveyance of stormwater from a 100-year storm. The additional volume that will be generated in the occurrence of a 100-year storm event is approximately 10,000 L.

The following design considerations and values have been incorporated into the numerical modelling / dewatering estimates:

- A Factor of Safety of 2.0 was used for all groundwater seepage volume calculations.
- The design hydraulic conductivities for the site are:

Design Hydraulic Conductivity	
Stratum/Formation	K (m/s)
Earth Fill	1.0 x 10⁻⁵
Silt and Sand	5.0 x 10 ⁻⁷
Clayey Silt	7.21 x 10 ⁻⁹

Stored Ground	water (pre-excav	ation/dewatering)				
Townhouse ID	Volume of Excavation	Volume of Excavation Below Water	Estimated Volume of Stored Groundwater		Estimated Volume of Available Groundwater	
	(m³)	Table (m ³)	m ³	L	m ³	L
1	317	206	200	200,000	100	100,000
2	317	206	200	200,000	100	100,000
3	317	-	-	-	-	-
4	317	-	-	-	-	-
5	317	317	276	200	200,000	100

Гownhouse ID		Groundwater epage	Design Rainfall Event (25mm) Estimated Tota Water Takin			
	L/day	L/min	L/day	L/min	L/day	L/min
1	30,000	20.8	2,880	2.0	32,880	22.8
2	30,000	20.8	2,880	2.0	32,880	22.8
3	-	-	3,000	2.1	3,000	2.1
4	-	-	3,000	2.1	3,000	2.1
5	4,000	2.8	2,880	2.0	6,880	4.8

Long Term (Permanent) Steady State Groundwater Quantity – Safety Factor of 2.0 Used						
Townhouse	e Estimated Estimated Infiltrated Stormwater -		Stormwater –	Estimated Total Daily Water		
ID	Groundwater S	r Seepage Design Rainfall Event (25mm)		ent (25mm)	Takings	
	L/day	L/min	L/day	L/min	L/day	L/min
1	30,000	20.8	3,000	2.1	33,000	22.9
2	30,000	20.8	3,000	2.1	33,000	22.9
3	-	-	3,000	2.1	3,000	2.1
4	-	-	3,000	2.1	3,000	2.1
5	4,000	2.8	3,000	2.1	7,000	4.9

Regulatory Requirements	
Environmental Activity and Sector Registry (EASR) Posting	Not Required
Short Term Permit to Take Water (PTTW)	Not Required
Long Term Permit to Take Water (PTTW)	Not Required
Short Term Discharge Agreement City of Pickering / Durham Region	Required
Long Term Discharge Agreement City of Pickering / Durham Region	Required

Please note:

- The native soils must be dewatered a minimum of 1.2 m below the footing elevation prior to foundation excavation to preserve the in-situ integrity of the native soils during construction dewatering activities.
- The proposed pump schedule for short term construction dewatering has not been completed. As such, the actual peak short term discharge rate is not available at the time of writing this report. The pump schedule must be specified by either the dewatering contractor retained or the mechanical consultant.
- The proposed pump schedule for long term permanent drainage has not been completed. As such the actual peak long term discharge rate is not available at the time writing of this report. The pump schedule must be specified by the mechanical consultant if necessary.
- Watertight basement structures (that do not include a private water drainage system) have not been considered as part of the proposed development at this time.
- On-site containment (infiltration gallery/dry well etc.) has not been considered as part of the proposed development at this time. If this option is considered, additional work will have to be conducted (i.e. infiltration testing).

11 Evaluation of Impact

11.1 Zone of Influence (ZOI)

The Zone of Influence (ZOI) with respect to groundwater was calculated based on the estimated groundwater taking rate and the hydraulic conductivity of the unit which water will be taken at the Site.

The ZOI was calculated using the Sichardt equation below.

Equation:

 $R_0 = 3000(\Delta H)\sqrt{K}$

ΔН	=	dewatering thickness (m)
Κ	=	hydraulic conductivity (m/s)
R 0	=	radius of influence (m)

The ZOI with respect to groundwater seepage at the site is summarized as follows.

Zone of Influence (ZOI)		
	Short Term (Construction)	Long Term (Permanent)
Maximum Zone of Influence (m)	29	29

11.2 Land Stability

The impacts to land stability on adjacent structures due to the proposed short- and long-term dewatering at the site are summarized as follows:

	Short Term (Construction)	Long Term (Permanent)
Dewatering Thickness (m)	4.6	4.6
Increase in Effective Stress (kPa)	45	45
Maximum Theoretical Settlement due to Dewatering (mm)	4	4
Public Realm Theoretical Settlement due to Dewatering (mm)	4	4

The theoretical maximum induced settlement occurs directly adjacent to the proposed excavation and decreases in a nonlinear fashion with distance away from the excavation.

On this basis, the impact of the proposed dewatering on the existing adjacent structures is considered by Grounded to be within acceptable limits.

11.3 City's Sewage Works

Negative impacts to City's sewage works may occur in terms of the quantity or quality of the groundwater discharged. This report provided the estimated quantity of the water discharge. However, this report does not speak to the sewer capacities. The sewer capacity analysis is provided under a separate cover by the civil consultant.

The quality of the proposed groundwater discharge is provided in Section 7. As noted in that section, the groundwater sample exceeded the Limits for Storm Sewer Discharge and met the Limits for Sanitary Sewer Discharge.

As such, additional treatment will be required before the water can be discharged to the Storm Sewer to avoid impacts to the City's sewage works caused by groundwater quality. Additional treatment will not be required before the water can be discharged to the Sanitary and Combined Sewer.

11.4 Natural Environment

There are no natural waterbodies within the ZOI that will be affected by the proposed construction dewatering or permanent drainage. Any groundwater which will be taken from the site will be discharged (if required) into the City's sewer systems and not into any natural waterbody. As such, there will be no impact to the natural environment caused by the water takings at the site.

11.5 Local Drinking Water Wells

The site is located within the municipal boundaries of the City of Pickering. The site and surrounding area are provided with municipal piped water and sewer supply. There is no use of the groundwater for water supply in this area of Toronto. As such, there will be no impact to drinking water wells.

11.6 Contamination Source

The site and immediately surrounding area currently consist mostly of residential and commercial areas. These land uses are not anticipated to be a source of potential contamination and are not expected to provide an Area of Potential Environmental Concern for the site. As such, the pumping of groundwater at the site is not anticipated to facilitate the movement of potential contaminants onto the site. Evaluation of the environmental condition of the site has been completed under a separate cover.

The extent of the negative impact identified in previous sections will be limited to the ZOI caused by the groundwater taking at the site.

As a result of dewatering and draining the soil, changes in groundwater level have the potential to cause settlement based on the change in the effective stresses within the ZOI.

If adjacent buildings or municipal infrastructure are within the ZOI and will undergo settlement that may be considered unacceptable as identified the Land Stability Section, consideration should be given to implement a monitoring and mitigation program during dewatering activities.

Both the temporary construction dewatering system and the permanent building drainage system must be properly installed and screened to ensure sediments and fines will not be removed, which is typically a primary cause of dewatering related settlement.

13 Limitations

Natural occurrences, the passage of time, local construction, and other human activity all have the potential to directly or indirectly alter the subsurface conditions at or near the project site. Contractual obligations related to groundwater or stormwater control must be considered with attention and care as they relate this potential site alteration.

The hydrogeological engineering advice provided in this report is based on the factual observations made from the site investigations as reported. It is intended for use by the owner and their retained design team. If there are changes to the features of the development or to the scope, the interpreted subsurface information, geotechnical engineering design parameters, advice, and discussion on construction considerations may not be relevant or complete for the project. Grounded should be retained to review the implications of such changes with respect to the contents of this report.

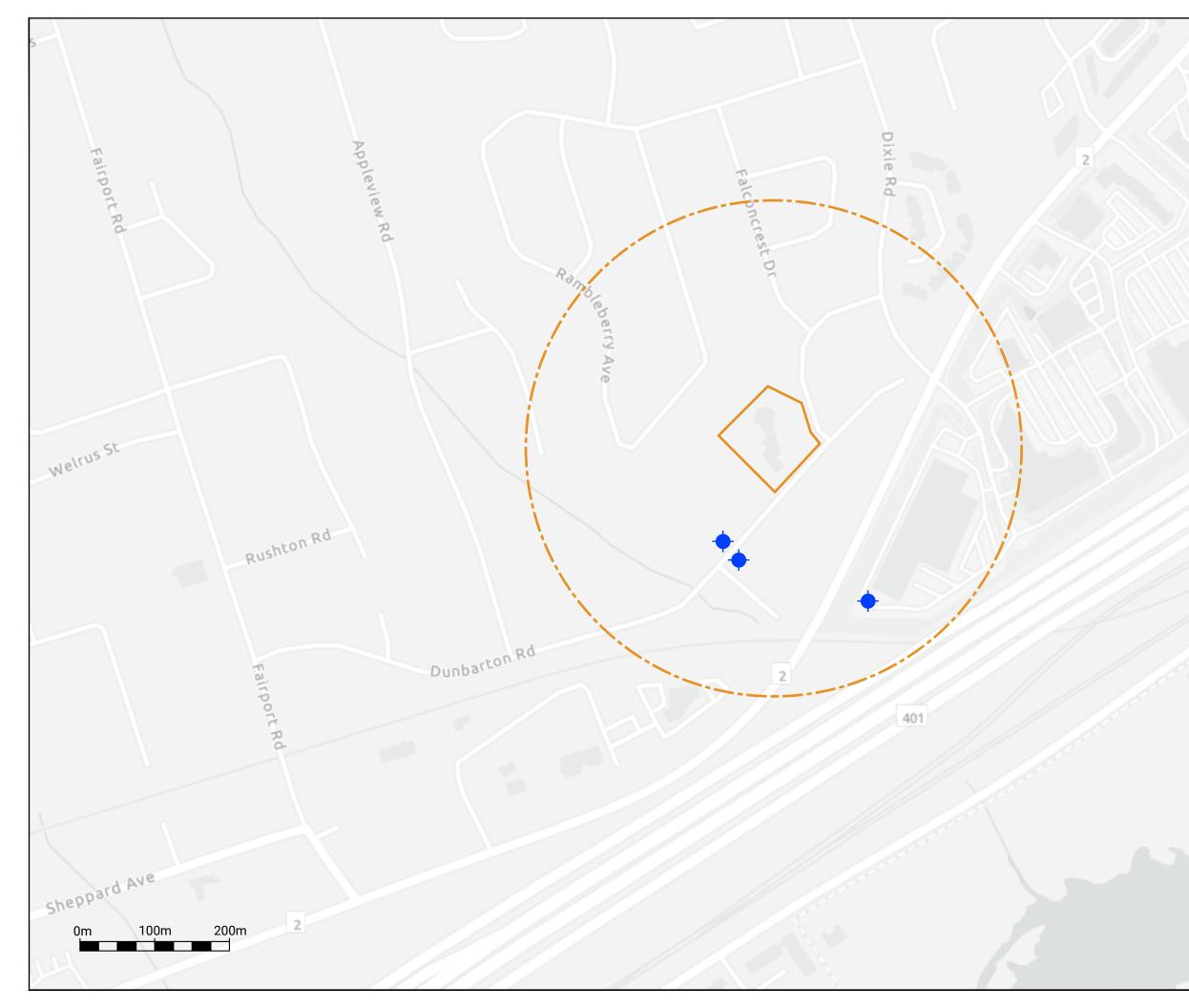
Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Grounded accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, including consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

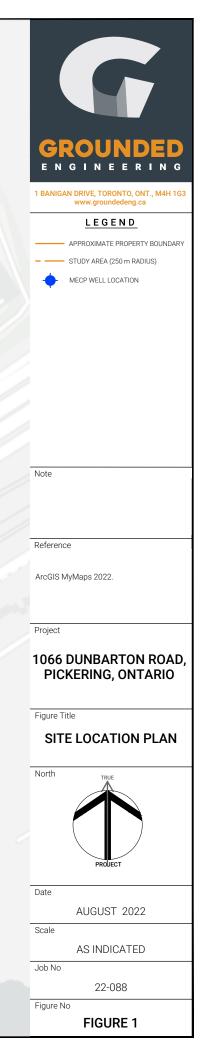
The authorized users of this report are UPRC and their design team, for whom this report has been prepared. Grounded Engineering Inc. maintains the copyright and ownership of this document. Reproduction of this report in any format or medium requires explicit prior authorization from Grounded Engineering Inc. The City of Pickering and/or Durham Region may also make use of and rely upon this report, subject to the limitations as stated.

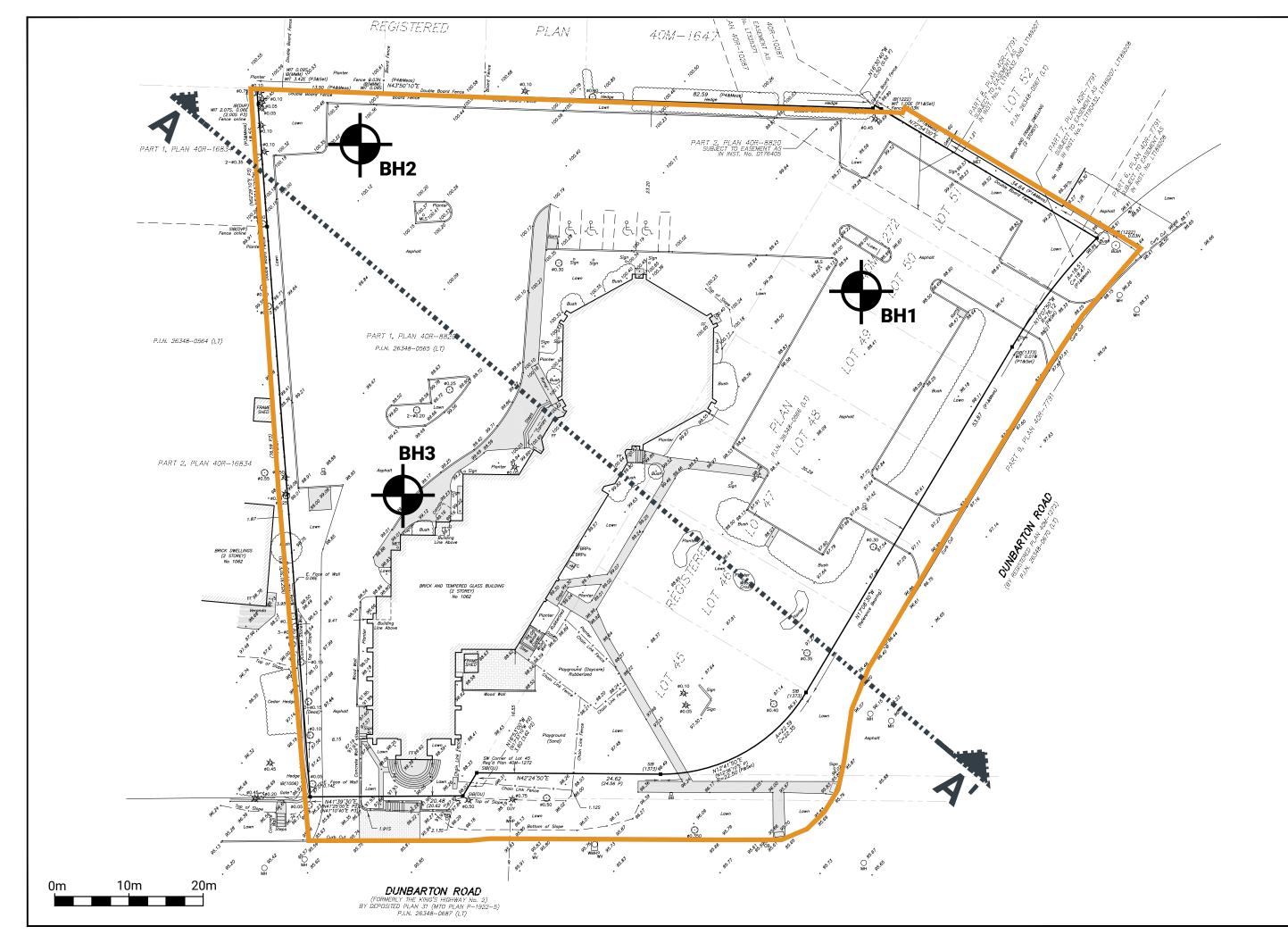
Drawings showing the proposed building in plan and profile are currently not available for review. Grounded must be retained to review the architectural drawings prior to construction to ensure

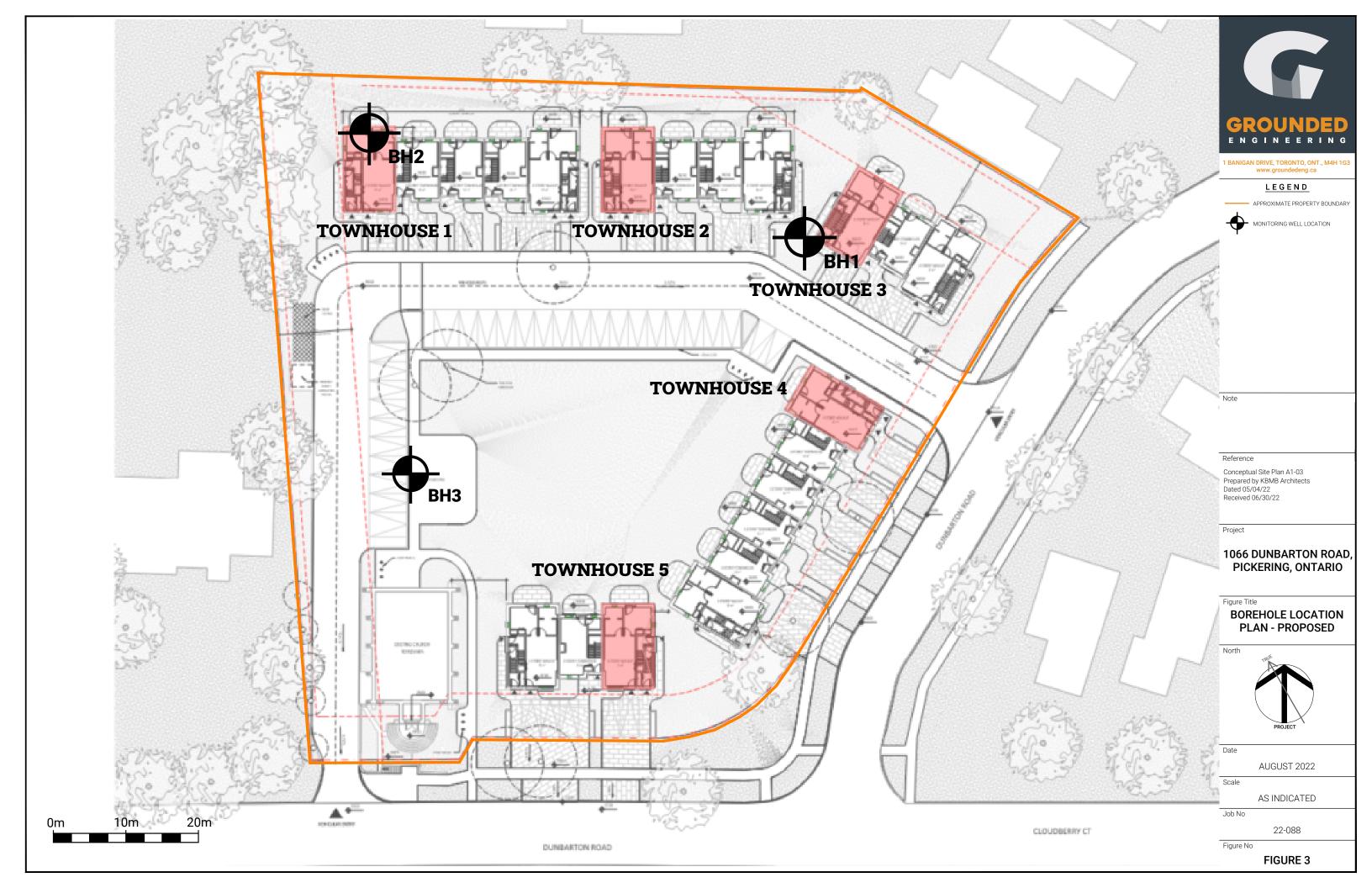
that borehole coverage is adequate and that the boreholes are sufficient deep for the proposed development.

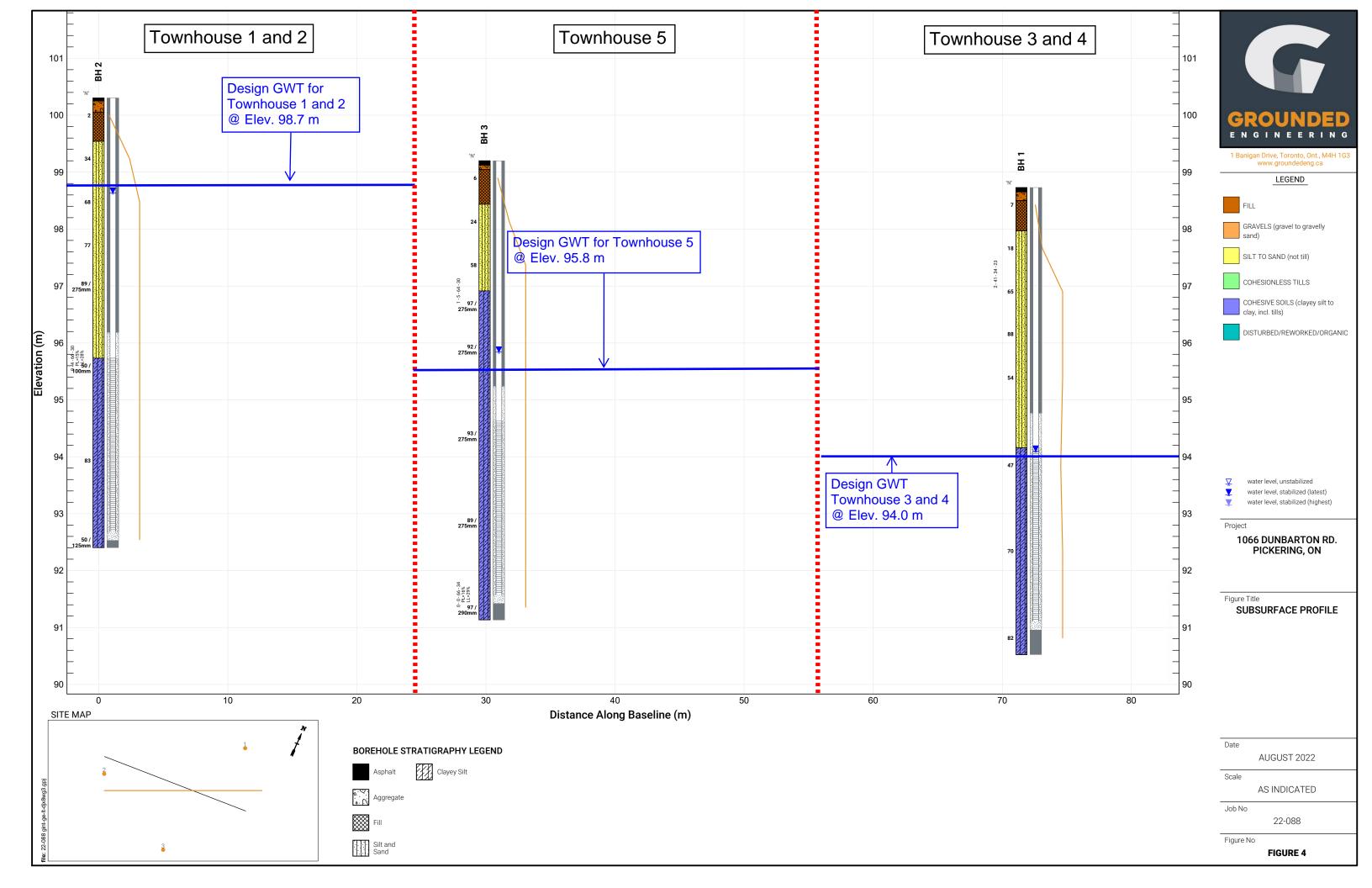
14 Closure

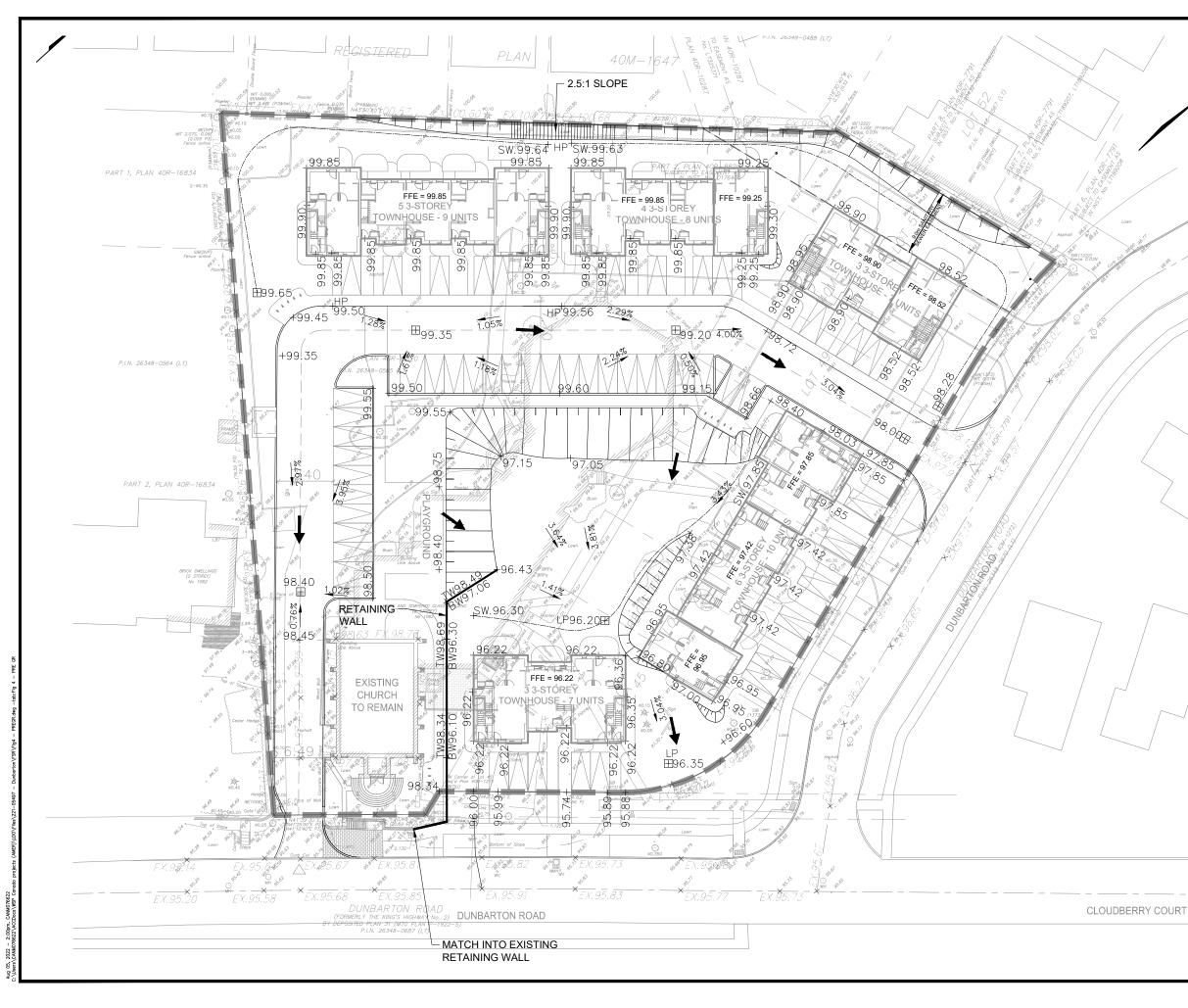

If there are any questions regarding the discussion and advice provided, please do not hesitate to contact our office. We trust that this report meets your requirements at present.

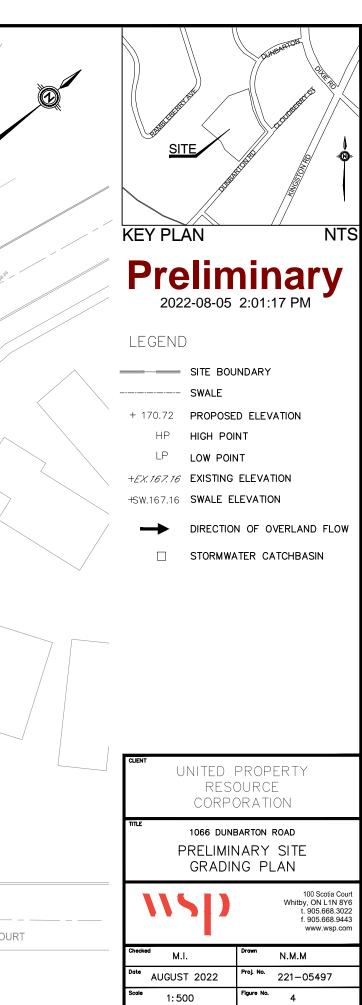

For and on behalf of our team,




401


Begley St


Figure Title BOREHOLE LOCATION PLAN - EXISTING		
North		
PROJECT		
Date		
AUGUST 2022		
Scale		
AS INDICATED		
Job No		
22-088		
Figure No		



APPENDIX A

APPENDIX B

LL: liquid limit

PL: plastic limit

PI: plasticity index y: soil unit weight (bulk)

Gs: specific gravity

V

Su: undrained shear strength

1st water level measurement

☑ unstabilized water level

SAMPLING/TESTING METHODS

SS: split spoon sample

AS: auger sample

GS: grab sample

FV: shear vane

DP: direct push

ST: shelby tube

PMT: pressuremeter test

ENGINEE P Ν SYMBOLS & ABBREVIATIONS **ENVIRONMENTAL SAMPLES** M&I: metals and inorganic parameters MC: moisture content

Mai. metais and morganic parameters	
PAH: polycyclic aromatic hydrocarbon	
PCB: polychlorinated biphenyl	
VOC: volatile organic compound	
PHC: petroleum hydrocarbon	
BTEX: benzene, toluene, ethylbenzene and xyler	ie
PPM: parts per million	

100 - 200

>200

15 - 30 >30

CORE: soil coring RUN: rock coring	 2nd water level measure water level measure 	asurement most recent ement				
FIELD MOISTURE (based on tactile	inspection)		5	COHESIVE		
DRY: no observable pore water		Relative Density	N-Value	Consistency	N-Value	Su (kPa)
MOIST: inferred pore water, not observa	ble (i.e. grey, cool, etc.)	Very Loose	<4	Very Soft	<2	<12
WET: visible pore water		Loose	4 - 10	Soft	2 - 4	12 - 25
		Compact	10 - 30	Firm	4 - 8	25 - 50
COMPOSITION		Dense	30 - 50	Stiff	8 - 15	50 - 100

Very Dense

|--|

Term	% by weight
trace silt	<10
some silt	10 - 20
silt y	20 - 35
sand and silt	>35

ASTM STANDARDS

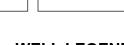
ASTM D1586 Standard Penetration Test (SPT)

Driving a 51 mm O.D. split-barrel sampler ("split spoon") into soil with a 63.5 kg weight free falling 760 mm. The blows required to drive the split spoon 300 mm ("bpf") after an initial penetration of 150 mm is referred to as the N-Value.

ASTM D3441 Cone Penetration Test (CPT)

Pushing an internal still rod with a outer hollow rod ("sleeve") tipped with a cone with an apex angle of 60° and a cross-sectional area of 1000 mm² into soil. The resistance is measured in the sleeve and at the tip to determine the skin friction and the tip resistance.

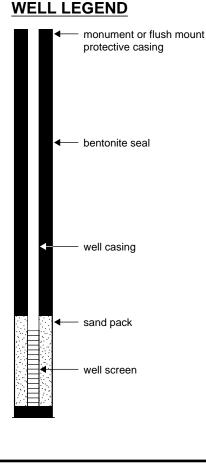
ASTM D2573 Field Vane Test (FVT)


Pushing a four blade vane into soil and rotating it from the surface to determine the torque required to shear a cylindrical surface with the vane. The torque is converted to the shear strength of the soil using a limit equilibrium analysis.

ASTM D1587 Shelby Tubes (ST)

Pushing a thin-walled metal tube into the in-situ soil at the bottom of a borehole, removing the tube and sealing the ends to prevent soil movement or changes in moisture content for the purposes of extracting a relatively undisturbed sample.

ASTM D4719 Pressuremeter Test (PMT)


Place an inflatable cylindrical probe into a pre-drilled hole and expanding it while measuring the change in volume and pressure in the probe. It is inflated under either equal pressure increments or equal volume increments. This provides the stress-strain response of the soil.

Hard

Very Stiff

>50

ROCK CORE TERMINOLOGY (MTO SHALE)

TCR Total Core Recovery the total length of recovery (soil or rock) per run, as a percentage of the drilled length

- SCR Solid Core Recovery the total length of sound full-diameter rock core pieces per run, as a percentage of the drilled length
- RQD Rock Quality Designation the sum of all pieces of sound rock core in a run which are 10 cm or greater in length, as a percentage of the drilled length

Natural Fracture Frequency (typically per 0.3 m) The number of natural discontinuities (joints, faults, etc.) which are present per 0.3m. Ignores mechanical or drill-induced breaks, and closed discontinuities (e.g. bedding planes).

LOGGING DISCONTINUITIES

Spacing in Discontinuity Sets Discontinuity Type Roughness (Barton et al.) (ISRM 1981) **BP** bedding parting vc very close < 60 mm CL cleavage 5 cm 60 - 200 mm С close CS crushed seam М mod. close 0.2 to 0.6 m VR Very rough F7 fracture zone 0.6 to 2 m JRC = 16 - 18 W wide MB mechanical break very wide VW > 2 m IS infilled seam JRC = 18 - 20 JT Joint R Rough SS shear surface JRC = 12 - 14 **Aperture Size** SZ shear zone JRC = 14 - 16 VN vein т closed / tight < 0.5 mm vo void s Smooth **GA** gapped 0.5 to 10 mm OP open *JRC* = 4 - 6 > 10 mm Coating CN Clean JRC = 6 - 8 Planarity SN Stained SL Slickensided PR Planar ОХ Oxidized (visually assessed) UN Undulating VN Veneer POL Polished ST Stepped Coating (>1 mm) СТ JRC = 0 - 2 IR Irregular DIS Discontinuous **Dip Inclination** JRC = 2 - 4 CU Curved horizontal/flat 0-20° н 20 - 50° D dipping

OP	מיידא	AT
GE.	NER	АЬ

sub-vertical

vertical

SV

ν

Degree of Weathering (after MTO, RR229 Evaluation of Shales for Construction Projects)

Zone	Degree	Description
Z1	unweathered	shale, regular jointing
Z2		angular blocks of unweathered shale, no matrix, with chemically weathered but intact shale
Z3	partially weathered	soil-like matrix with frequent angular shale fragments < 25mm diameter
Z4a		soil-like matrix with occasional shale fragments < 3mm diameter
Z4b	fully weathered	soil-like matrix only

Strength classification (after Marinos and Hoek, 2001; ISRM 1981b)

50 - 90°

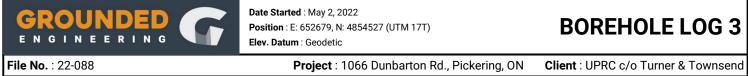
90±°

Grade		UCS (MPa)	Field Estimate (Description)	Vol 3, 1
R6	extremely strong	> 250	can only be chipped by geological hammer	Very th
R5	very strong	100 - 250	requires many blows from geological hammer	Thickly
R4	strong	50 - 100	requires more than one blow from geological hammer	Mediur
R3	medium strong	25 - 50	can't be scraped, breaks under one blow from geological hammer	Thinly I Very th
R2	weak	5 - 25	can be peeled / scraped with knife with difficulty	Lamina
R1	very weak	1 - 5	easily scraped / peeled, crumbles under firm blow of geo. hammer	Thinly I
R0	extremely weak	< 1	indented by thumbnail	

Bedding Thickness (Q. J. Eng. Geology, Vol 3, 1970)

> 2 m
0.6 – 2m
200 - 600mm
60 – 200mm
20 – 60mm
6 – 20mm
< 6mm

Fi	е	No.	: 22-088			Pr	oject	: 1066 Dunbai	rton	Rd., Pickering, ON	Client : UPRC c/o T	urner & Townsend
			stratigraphy			samp	les	Ê		undrained shear strength (kPa) O unconfined + field vane	headspace vapour (ppm) X hexane	lab data
drill method :		<u>elev</u> lepth (m)	description	graphic log	number	Ð	SPT N-value	depth scale (m) well details	elevation (m)	pocket penetrometer ↓ Lab Vane 40 80 120 160 SPT N-values (bpf) X dynamic cone	Image: methane 100 200 300 moisture / plasticity PL MC LL	and comments restant restant restant distribution (%) (MIT)
dril		98.7	GROUND SURFACE	gra	nur	type	SP.	0- -	Ð	10 20 30 40	10 20 30	(MII) GR SA SI CL
		98.5	75mm ASPHALT	α ^{. O.}	·							-
		0.2 - 97.9	125mm AGGREGATE FILL, clayey silt, some sand, trace gravel, firm, brown, moist		1	SS	7				80	-
		0.8 -	SILT AND SAND, clayey, trace gravel, orange staining, very stiff to hard, greyish brown, moist		2	SS	18		98		x 0	
		-	at 1.5 m, silty sand, very dense		3	SS	65	 	97		x 0	2 41 34 23
		_	at 2.3 m, sandy silt some clay		4	SS	88		96			-
		_			5	SS	54	3- - -				-
- hollow stem augers	0D=215 mm								95			
llod	_	94.1 4.6	CLAYEY SILT, some sand, hard, grey, moist		6	SS	47		94			
		-							12			-
					7	SS	70		93			
		-							92			
		-			8	SS	82		91		3 O	- <u>SS8:</u> BTEX, Metals, PAHs, PCBs, PHCs, VOCs, DUP
F		90.5 8.2		11								
199			END OF BOREHOLE Dry and open upon completion of drilling. 50 mm dia. monitoring well installed. No. 10 screen					M	lay 26	GROUNDWATER LEVEL depth (m) 2,2022 5.6 ,2022 4.8 ,2022 4.7	S <u>elevation (m)</u> 93.1 93.9 94.0	


		. 22-088		1		-			undrained shear strength (kPa)	headspace vapour (ppm)	
	<u> </u>	stratigraphy	1		samp	ies	E "	Ē	O unconfined shear strength (kPa) O unconfined + field vane ● pocket penetrometer Lab Vane	X hexane 🛛 isobutylene	lab data ਤੁ _ਰ and
	alari		6			еп	depth scale (m) well details	elevation (m)	40 80 120 160	methane 100 200 300	and <u>izija</u> <u>comments</u> <u>ration</u> <u>ration</u> <u>distribution</u> (%)
ethod 5	depth	description	ic lo	ēr		V-val	oth s	/atio	SPT N-values (bpf)	moisture / plasticity	da به tai tai tai tai tai tai tai tai
ill m€ ME 75	elev depth (m)		graphic log	number	type	SPT N-value	dep wel	elev	X dynamic cone	PL MC LL 10 20 30	(MIT)
5g	100.3	GROUND SURFACE	Б 	-	5.	S	0-		10 20 30 40	10 20 30	GR SA SI C
	100.0- 0.3		e XXX		SS	2		100		x 0	
	- 0.3	FILL, clayey silt, some sand, trace gravel, trace organics, black staining, soft, dark		<u>'</u>	33	2		- 100			SS1: BTEX, Metals, PAHs, PCBs, PHCs, VOCs
	_ 99.5			<u> </u>			-				
	0.8			о ·			-	_			
	-	brown, moist		. 2	SS	34	1 —	_			
	-			·[_			-	- 00			
	-			·			-	- 99			
	-	at 1.5 m, very dense					-	_			
	-			3	SS	68	-	_			
	-						2 -	_			
	-			·							
	-							- 98			
	-			4	SS	77	-	_			
	-						-				
	-	at 3.0 m, sandy silt, some clay					3 —				
	-	at 3.0 m, sandy siit, some clay		5	SS	89 / 275mm		- 97			
	-					275000	-	- 51			
ers-	-			·			-				
n aug	-						-				
hollow stem augers OD=215 mm	-			:]			4 —				
vollo 0	- 1			:			[] [96			
	_ 95.7										
	4.6	CLAYEY SILT, trace sand, hard, brown,		6	SS	50 /					0 4 66 30
	-	moist		+		100mm					
	-			1			5-				
	-							- 95			
	-										
	-		H								
	-										
	-			1			6-				
	-			1_				- 94			
	-			7	SS	83					<u>SS7:</u> Metals
	-			\vdash				2 -			
	-		M					.]			
	-		Ħ				7-1 目	·]			
	-		H					-93			
	-		H	1				4			
	-		Ľ.	8	SS	50 /		<u>-</u>			
•	92.4 7.9		ÉÉ	1°	33	125mm	-				SS8: BTEX, PAHs, PCBs, PHCs, VOCs
	7.9	END OF BOREHOLE									
									GROUNDWATER LEVEL	S	
		Dry and open upon completion of drilling.						<u>da</u> Mav 1	a <u>te depth (m)</u> 2, 2022 1.6	elevation (m) 98.7	
1		50 mm dia monitoring well installed						May 2	2, 2022 1.6 7, 2022 1.6	98.7	

50 mm dia. monitoring well installed. No. 10 screen

ate	depth (m)	elevation
2,2022	1.6	98.7
7,2022	1.6	98.7
2, 2022	1.7	98.6

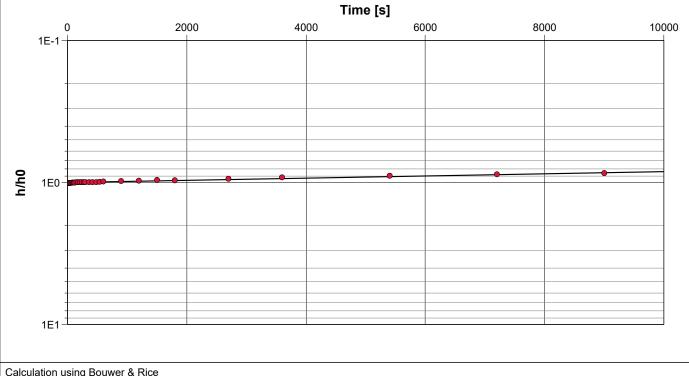
11103 12,2022	
May 27, 2022	1
Jun 22, 2022	1

7 98.7 98.6

File No. : 22-088Project : 1066 Dunbarton Rd., Pickering, ONClient : UF								l ient : UPRC	c/o T	urner & Townsend						
		stratigraphy	stratigraphy samples		Ē			undrained shear strength (kPa) O unconfined + field vane		head	headspace vapour (ppm) X hexane		lab data			
						ē	depth scale (m)	ails	elevation (m)	 pocket pen 40 		Lab Vane 20 160		methane	300	ਸ਼ੁਰੂ and ≝≝o comments
: poų	elev depth (m)	description	c log	er.		-valu	h sc	well details	ation	SPT N-valu		<u>to ito</u>	mois	sture / plasticity		e a
drill method : CME 75	(m)		graphic log	number	type	SPT N-value	dept	well	elevi	×dynamic	cone	\geq			ц. —	grain size distribution (%) (MIT)
ੱਤਤੋ			gr	л	ty	ŝ	0 -			10	20 3	30 40	_	10 20	30	GR SA SI CL
ĪĪ	99.0 0.2	75mm ASPHALT	XX XX				-		- 99							-
	-	FILL, clayey silt, some sand, trace gravel,	***	1	SS	6	-		_				×1	0		SS1: BTEX, Metals, PAHs, PCBs, PHCs, VOCs
	-	firm, brown, moist 🛛 🕺	***				-		-							-
	98.4 0.8		***				-		_							
	_	SILT AND SAND, trace clay, compact, brown, moist					1-		_							
				2	SS	24	-		- 98				25	0		
							-		_							
		at 1.5 m, very dense					-		_							
				3	SS	58	-		_					0		
	-			5	55	50	2-		_				***			
	96.9						-		- 97				_			
	2.3	CLAYEY SILT, trace sand, trace gravel, hard,				07 /	-		_							-
		brown, moist		4	SS	97 / 275mm	-		_				63	0		1 5 64 30
									_							_
							3-		_							_
		at 3.0 m, sandy silt, some clay, some sand, grey, moist, hard				02/			- 96							
				5	SS	92 / 275mm		_	_				22	0		_
Jers -																
hollow stem augers	_						1-									
v stel			11				4		∵−95							
vollo4			Ħ						. 95							
Ī	-						-	1 🗌								-
		at 4.6 m, clayey silt		6	SS	93 / 275mm		に目の					50	0		
	-			0	33	275mm							1	0		-
	-						5 -		: T							-
	-						-		94							-
	-						-	18								-
	-		H				-									-
	-								T							-
	-						6-	1/目/								-
	-			7	SS	89 / 275mm	-		93				63	0		-
	-		Y			2701111	-	「目								-
	-						-	し目	()							-
	-		11					1 🗏								-
	-		Ħ				7-									-
	-						-	18	- 92							-
	'							は目								
	'					07 /			j.							0 0 66 34
	- ⁻		¥!	8	SS	97 / 290mm							k	○ ⊢	1	<u>SS8:</u> BTEX, Metals, PAHs, PCBs, PHCs, VOCs
₽	91. 1 8.1	1	X41				8-									- 003, 11103, 9008
		END OF BOREHOLE														
									da		JNDWA <u>dept</u>	TER LEV		vation (m)		
		Dry and open upon completion of drilling.							<u>da</u> May 12 May 26	2, 2022	5	.4	ele	93.8		
		50 mm dia. monitoring well installed. No. 10 screen							May 26 Jun 22	o, 2022 , 2022	3	.7 .4		95.5 95.8		
									·							
2.																
200																
																0

file: 22-088 gint.gpj

APPENDIX C


 Slug Test Analysis Report

 Project:
 1066 Dunbarton Rd., Pickering

 Number:
 22-088

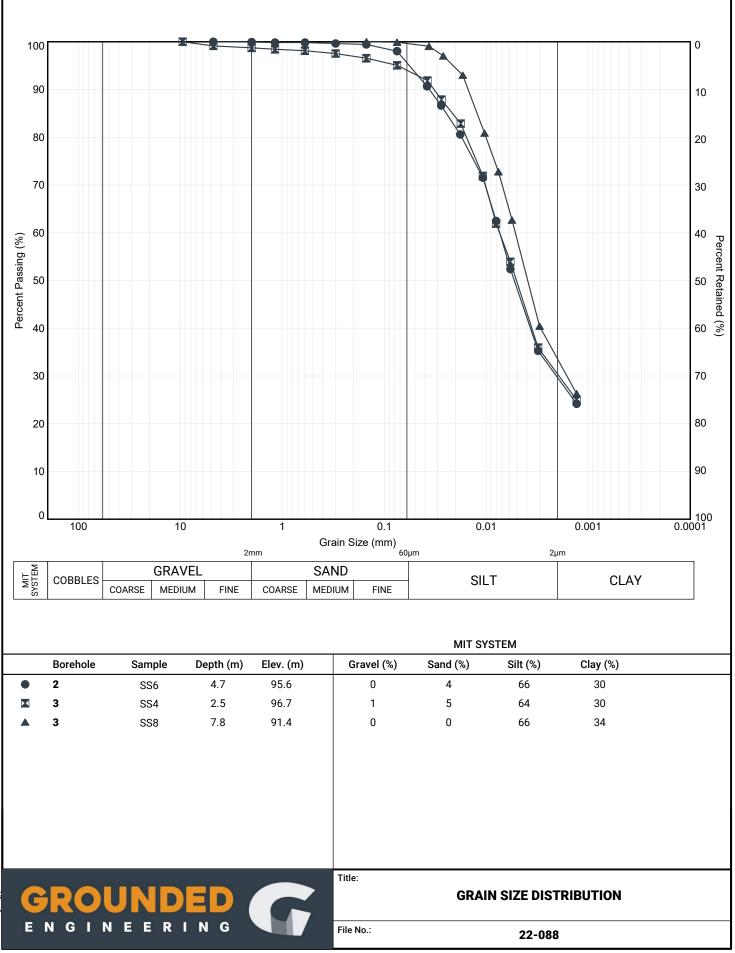
 Client:
 Turner & Townsend

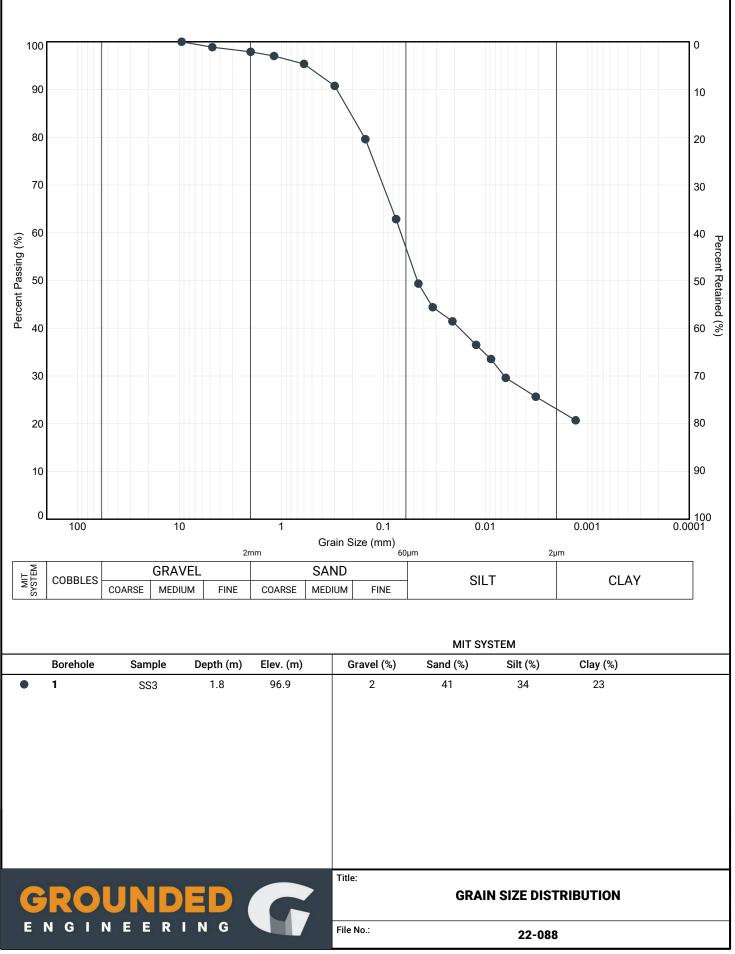
Location: 1066 Dunbarton Rd., Pickering Slug Test: BH2		Slug Test: BH2	Test Well: BH2
	Test Conducted by: LB		Test Date: 2022-05-31
	Analysis Performed by: SB	Bouwer & Rice	Analysis Date: 2022-05-31
	Aquifer Thickness: 7.92 m		

Observation Well	Hydraulic Conductivity					
	[m/s]					
BH2	7.21 × 10 ⁻⁹					

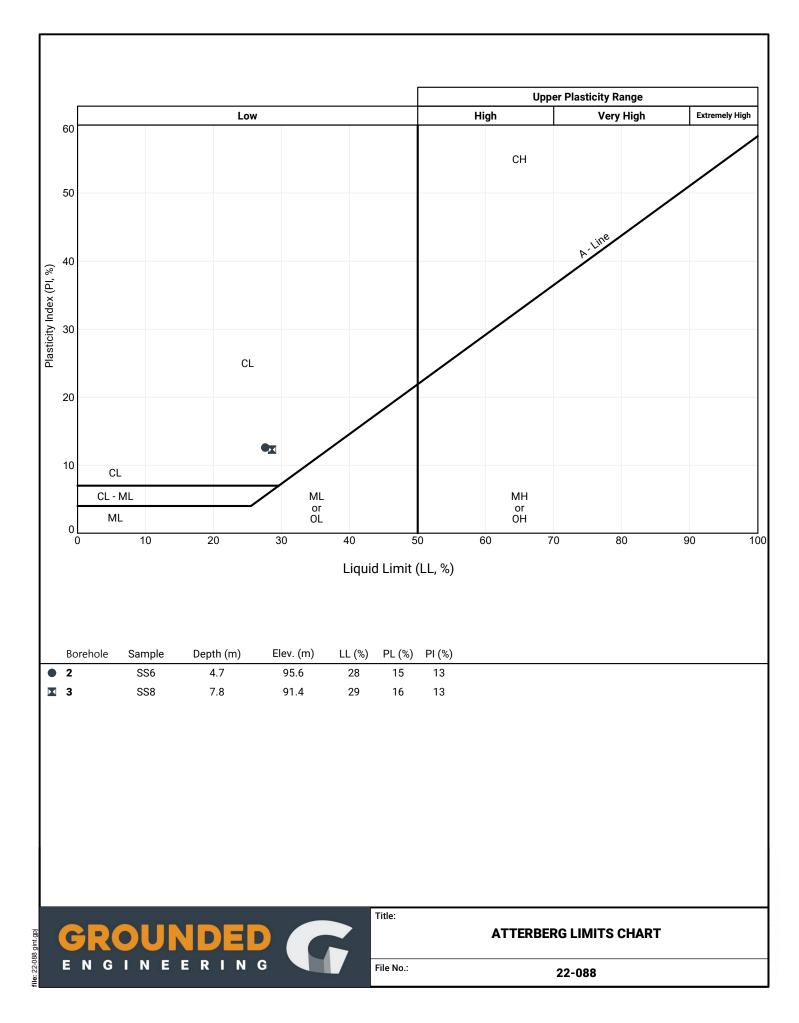
GROUNDED ENGINEERING

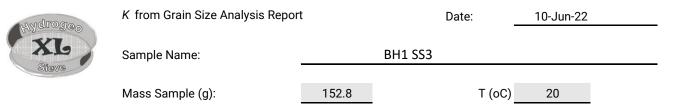
Slug Test Analysis Report
Project: 1066 Dunbarton Rd., Pickering
Number: 22-088
Client: Turner & Townsend


Location: 1066 Dunbarton Rd., Pickering	Slug Test: BH3	Test Well: BH3
Test Conducted by: LB		Test Date: 2022-05-12
Analysis Performed by: SB	Bouwer & Rice	Analysis Date: 2022-05-31
Aquifer Thickness: 7.92 m		

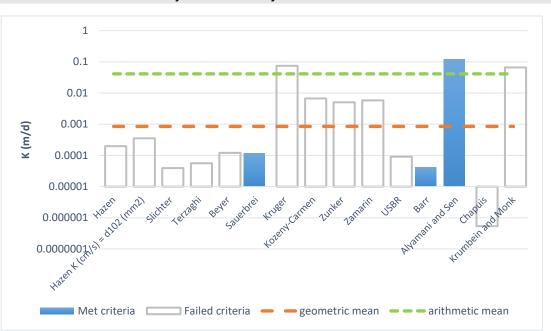

	Time [s]							
0	2000	4000	6000	8000	1000			
1E-1								
_								
04/ч								
<u>د</u>								
					A			
1E0					-			
L								

Calculation using Bouwer & Rice						
Observation Well	Hydraulic Conductivity [m/s]					
BH3 5.10 × 10 ⁻⁹						

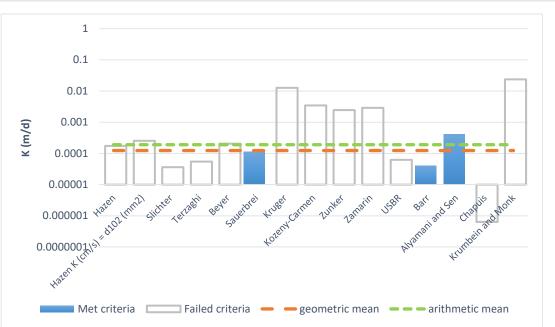

APPENDIX D



ile: 22-088 gint.gpj

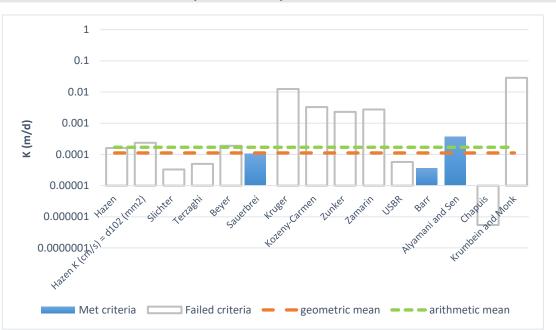


APPENDIX E


Poorly sorted sandy silt with fines

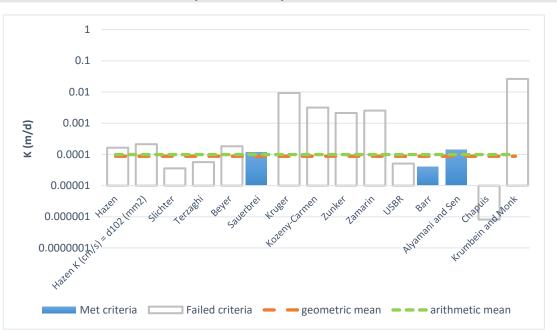
Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	2.3E-07	2.3E-09	0.00	
Hazen K (cm/s) = d ₁₀ (mm)	4.1E-07	4.1E-09	0.00	
Slichter	4.5E-08	4.5E-10	0.00	
Terzaghi	6.4E-08	6.4E-10	0.00	
Beyer	1.4E-07	1.4E-09	0.00	
Sauerbrei	1.4E-07	1.4E-09	0.00	
Kruger	8.6E-05	8.6E-07	0.07	
Kozeny-Carmen	7.7E-06	7.7E-08	0.01	
Zunker	5.8E-06	5.8E-08	0.01	
Zamarin	6.7E-06	6.7E-08	0.01	
USBR	1.0E-07	1.0E-09	0.00	
Barr	4.8E-08	4.8E-10	0.00	
Alyamani and Sen	1.4E-04	1.4E-06	0.12	
Chapuis	6.2E-10	6.2E-12	0.00	
Krumbein and Monk	7.7E-05	7.7E-07	0.07	
geometric mean	9.8E-07	9.8E-09	0.00	
arithmetic mean	4.8E-05	4.8E-07	0.04	

Hydrogeo	K from Grain Size Analysis Report			Date:	13-May-22
XL Siave	Sample Name:		BH2 SS6		
	Mass Sample (g):	198.47		T (oC)	20



Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	2.0E-07	2.0E-09	0.00	
Hazen K (cm/s) = d ₁₀ (mm)	2.9E-07	2.9E-09	0.00	
Slichter	4.2E-08	4.2E-10	0.00	
Terzaghi	6.3E-08	6.3E-10	0.00	
Beyer	2.4E-07	2.4E-09	0.00	
Sauerbrei	1.3E-07	1.3E-09	0.00	
Kruger	1.5E-05	1.5E-07	0.01	
Kozeny-Carmen	4.0E-06	4.0E-08	0.00	
Zunker	2.8E-06	2.8E-08	0.00	
Zamarin	3.4E-06	3.4E-08	0.00	
USBR	7.2E-08	7.2E-10	0.00	
Barr	4.6E-08	4.6E-10	0.00	
Alyamani and Sen	4.8E-07	4.8E-09	0.00	
Chapuis	7.4E-10	7.4E-12	0.00	
Krumbein and Monk	2.7E-05	2.7E-07	0.02	
geometric mean	1.4E-07	1.4E-09	0.00	
arithmetic mean	2.2E-07	2.2E-09	0.00	

Hydrogeo	K from Grain Size Analysis Report			ate:	13-May-22	
XL Sieve	Sample Name:		BH3 SS4			
	Mass Sample (g):	167.5		T (oC)	20	


Poorly sorted clay with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	1.8E-07	1.8E-09	0.00	
Hazen K (cm/s) = d ₁₀ (mm)	2.7E-07	2.7E-09	0.00	
Slichter	3.8E-08	3.8E-10	0.00	
Terzaghi	5.8E-08	5.8E-10	0.00	
Beyer	2.2E-07	2.2E-09	0.00	
Sauerbrei	1.2E-07	1.2E-09	0.00	
Kruger	1.4E-05	1.4E-07	0.01	
Kozeny-Carmen	3.8E-06	3.8E-08	0.00	
Zunker	2.7E-06	2.7E-08	0.00	
Zamarin	3.2E-06	3.2E-08	0.00	
USBR	6.7E-08	6.7E-10	0.00	
Barr	4.2E-08	4.2E-10	0.00	
Alyamani and Sen	4.3E-07	4.3E-09	0.00	
Chapuis	6.3E-10	6.3E-12	0.00	
Krumbein and Monk	3.3E-05	3.3E-07	0.03	
geometric mean	1.3E-07	1.3E-09	0.00	
arithmetic mean	2.0E-07	2.0E-09	0.00	

Hydrogeo	K from Grain Size Analysis Report			Date:	13-May-22
Sieve	Sample Name:		BH3 SS8		
	Mass Sample (g):	213.32		T (oC)	20

Poorly sorted clay with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	1.9E-07	1.9E-09	0.00	
Hazen K (cm/s) = d_{10} (mm)	2.5E-07	2.5E-09	0.00	
Slichter	4.1E-08	4.1E-10	0.00	
Terzaghi	6.5E-08	6.5E-10	0.00	
Beyer	2.1E-07	2.1E-09	0.00	
Sauerbrei	1.3E-07	1.3E-09	0.00	
Kruger	1.1E-05	1.1E-07	0.01	
Kozeny-Carmen	3.7E-06	3.7E-08	0.00	
Zunker	2.5E-06	2.5E-08	0.00	
Zamarin	2.9E-06	2.9E-08	0.00	
USBR	5.9E-08	5.9E-10	0.00	
Barr	4.7E-08	4.7E-10	0.00	
Alyamani and Sen	1.6E-07	1.6E-09	0.00	
Chapuis	9.4E-10	9.4E-12	0.00	
Krumbein and Monk	3.0E-05	3.0E-07	0.03	
geometric mean	1.0E-07	1.0E-09	0.00	
arithmetic mean	1.1E-07	1.1E-09	0.00	

APPENDIX F

Grounded Engineering Inc ATTN: Sam Baston 1 Banigan Drive TORONTO ON M4H 1G3 Date Received: 12-MAY-22 Report Date: 25-MAY-22 08:58 (MT) Version: FINAL

Client Phone: 647-361-5136

Certificate of Analysis

Lab Work Order #: L2706126

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 22-088 20-951299

Amindo Quarholite

Amanda Overholster Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2706126 CONT'D.... Job Reference: 22-088 PAGE 2 of 16 25-MAY-22 08:58 (MT)

Summary of Guideline Exceedances

Guideline						
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
(No pa	rameter exceedances)	aam Sanitary Sewer (55-2013) aam Storm Sewer - (55-2013)				
L2706126-1	BH3	Physical Tests	Total Suspended Solids	110	15	mg/L

L2706126 CONT'D.... Job Reference: 22-088 PAGE 3 of 16 25-MAY-22 08:58 (MT)

Physical Tests - WATER

Lab ID Sample Date Sample ID				L2706126-1 12-MAY-22 BH3
Analyte	Unit	Guide #1	Limits #2	
рН	pH units	6.00- 10.5	6.0-9.0	8.37 PEHT
Total Suspended Solids	mg/L	350	15	110

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2706126 CONT'D.... Job Reference: 22-088 PAGE 4 of 16 25-MAY-22 08:58 (MT)

Anions and Nutrients - WATER

		L	ab ID	L2706126-1
		Sample	e Date	12-MAY-22
		Sam	ple ID	BH3
Analyte	Unit	Guide #1	Limits #2	
Fluoride (F)	 mg/L	10	-	0.479
Total Kjeldahl Nitrogen	mg/L	100	1	0.414
Phosphorus, Total	mg/L	10	0.4	0.0349
Sulfate (SO4)	mg/L	1500	-	39.7

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2706126 CONT'D Job Reference: 22-088 PAGE 5 of 16 25-MAY-22 08:58 (MT)

Cyanides - WATER

		Sampl	Lab ID e Date ple ID	L2706126-1 12-MAY-22 BH3
Analyte	Unit	Guide #1	Limits #2	
Cyanide, Total	mg/L	2	0.02	<0.0020

Guide Limit #1: Durham Sanitary Sewer (55-2013) Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2706126 CONT'D.... Job Reference: 22-088 PAGE 6 of 16 25-MAY-22 08:58 (MT)

Bacteriological Tests - WATER

	S	ampl	Lab ID e Date ple ID	L2706126-1 12-MAY-22 BH3
Analyte	C Unit	Guide #1	Limits #2	
E. Coli	CFU/100m L	-	200	0

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2706126 CONT'D Job Reference: 22-088 PAGE 7 of 16 25-MAY-22 08:58 (MT)

Total Metals - WATER

	Lab ID Sample Date Sample ID				
Analyte	Unit	Guide #1	Limits #2		
Aluminum (Al)-Total	mg/L	50	-	0.296	
Antimony (Sb)-Total	mg/L	5	-	0.00071	
Arsenic (As)-Total	mg/L	1	0.02	0.00310	
Cadmium (Cd)-Total	mg/L	0.7	0.008	<0.000010	
Chromium (Cr)-Total	mg/L	2	0.08	0.00067	
Cobalt (Co)-Total	mg/L	5	-	0.00032	
Copper (Cu)-Total	mg/L	3	0.05	0.0018	
Lead (Pb)-Total	mg/L	1	0.12	0.00029	
Manganese (Mn)-Total	mg/L	5	0.15	0.0217	
Mercury (Hg)-Total	mg/L	0.01	0.0004	<0.0000050	
Molybdenum (Mo)-Total	mg/L	5	-	0.0298	
Nickel (Ni)-Total	mg/L	2	0.08	0.00103	
Selenium (Se)-Total	mg/L	1	0.02	0.000187	
Silver (Ag)-Total	mg/L	5	0.12	0.000089	
Tin (Sn)-Total	mg/L	5	-	0.00387	
Titanium (Ti)-Total	mg/L	5	-	0.00774	
Zinc (Zn)-Total	mg/L	2	0.04	<0.0030	

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2706126 CONT'D Job Reference: 22-088 PAGE 8 of 16 25-MAY-22 08:58 (MT)

Aggregate Organics - WATER

		Sampl	Lab ID e Date ple ID	L2706126-1 12-MAY-22 BH3
Analyte	Unit		Limits #2	
BOD	mg/L	300	15	<3.0 BODL
Oil and Grease, Total	mg/L	-	-	<5.0
Animal/Veg Oil & Grease	mg/L	150	-	<5.0
Mineral Oil and Grease	mg/L	15	-	<2.5
Phenols (4AAP)	mg/L	1	0.008	<0.0010

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2706126 CONT'D Job Reference: 22-088 PAGE 9 of 16 25-MAY-22 08:58 (MT)

Volatile Organic Compounds - WATER

		Sample	_ab ID e Date ple ID	L2706126-1 12-MAY-22 BH3
Analyte	Unit	Guide #1	Limits #2	
Benzene	ug/L	10	2	<0.50
Chloroform	ug/L	40	2	<1.0
1,2-Dichlorobenzene	ug/L	50	5.6	<0.50
1,4-Dichlorobenzene	ug/L	80	6.8	<0.50
cis-1,2-Dichloroethylene	ug/L	4000	5.6	<0.50
Dichloromethane	ug/L	2000	5.2	<2.0
trans-1,3-Dichloropropene	ug/L	140	5.6	<0.50
Ethylbenzene	ug/L	160	2	<0.50
Methyl Ethyl Ketone	ug/L	8000	-	<20
Styrene	ug/L	200	-	<0.50
1,1,2,2-Tetrachloroethane	ug/L	1400	17	<0.50
Tetrachloroethylene	ug/L	1000	4.4	<0.50
Toluene	ug/L	270	2	<0.50
Trichloroethylene	ug/L	400	8	<0.50
o-Xylene	ug/L	-	-	<0.50
m+p-Xylenes	ug/L	-	-	<1.0
Xylenes (Total)	ug/L	1400	4.4	<1.1
Surrogate: 4-Bromofluorobenzene	%	-	-	94.4
Surrogate: 1,4-Difluorobenzene	%	-	-	101.2

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2706126 CONT'D Job Reference: 22-088 PAGE 10 of 16 25-MAY-22 08:58 (MT)

Phthalate Esters - WATER

			Lab ID	L2706126-1
		Sample	e Date	12-MAY-22
	Sample ID			BH3
		Guide	Limits	
Analyte	Unit	#1	#2	
Bis(2-ethylhexyl)phthalate	ug/L	12	8.8	<2.0
Surrogate: 2-fluorobiphenyl	%	-	-	87.8
Surrogate: p-Terphenyl d14	%	-	-	102.2

Guide Limit #1: Durham Sanitary Sewer (55-2013) Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2706126 CONT'D Job Reference: 22-088 PAGE 11 of 16 25-MAY-22 08:58 (MT)

Semi-Volatile Organics - WATER

		l Sample Sam	L2706126-1 12-MAY-22 BH3	
Analyte	Unit	Guide #1	Limits #2	
Di-n-butylphthalate	ug/L	80	15	1.7
Surrogate: 2-Fluorobiphenyl	%	-	-	87.8
Surrogate: p-Terphenyl d14	%	-	-	102.2

Guide Limit #1: Durham Sanitary Sewer (55-2013) Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2706126 CONT'D Job Reference: 22-088 PAGE 12 of 16 25-MAY-22 08:58 (MT)

Polychlorinated Biphenyls - WATER

			Lab ID	L2706126-1
		Sampl	e Date	12-MAY-22
		Sam	ple ID	BH3
		Guide	Limits	
Analyte	Unit	#1	#2	
Aroclor 1242	ug/L	-	-	<0.020
Aroclor 1248	ug/L	-	-	<0.020
Aroclor 1254	ug/L	-	-	<0.020
Aroclor 1260	ug/L	-	-	<0.020
Surrogate: Decachlorobiphenyl	%	-	-	142.7
Total PCBs	ug/L	1	0.4	<0.040
Surrogate: Tetrachloro-m-xylene	%	-	-	99.2

Guide Limit #1: Durham Sanitary Sewer (55-2013) Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2706126 CONT'D.... Job Reference: 22-088 PAGE 13 of 16 25-MAY-22 08:58 (MT)

Organic Parameters - WATER

James a anote to the second				
		I	_ab ID	L2706126-1
		Sample	e Date	12-MAY-22
		Sam	ple ID	BH3
Analyte	Unit	Guide #1	Limits #2	
Nonylphenol	ug/L	20	-	10.9
Nonylphenol Diethoxylates	ug/L	-	-	<0.10
Total Nonylphenol Ethoxylates	ug/L	200	-	<2.0
Nonylphenol Monoethoxylates	ug/L	-	-	<2.0

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Reference Information

Qualifiers for Sample Submission Listed:

Qualifier			
	Description		
CINT	Cooling initiate	ed. Samples were received packed with	n ice or ice packs and were sampled the same day as received.
Qualifiers for Inc	dividual Parameters	Listed:	
Qualifier	Description		
PEHT	Parameter Exceeded	Recommended Holding Time Prior to A	nalysis
BODL	Limit of Reporting for	BOD was increased to account for the la	argest volume of sample tested.
lethods Listed	(if applicable):		
ALS Test Code	Matrix	Test Description	Method Reference**
625-BIS-2-PH	TH-WT Water	Bis(2-ethylhexyl)phthalate	SW846 8270
Aqueous sam	ples are extracted and	d extracts are analyzed on GC/MSD.	
625-DNB-PHT	H-WT Water	Di-n-Butyl Phthalate	SW846 8270
Aqueous sam	ples are extracted and	d extracts are analyzed on GC/MSD.	
BOD-WT	Water	BOD	APHA 5210 B
and incubating	g a sample for a speci	fied time period, and measuring the oxy	5210B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting /gen depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a
glass fibre filte	er prior to dilution. Car	bonaceous BOD (CBOD) is determined	by adding a nitrification inhibitor to the diluted sample prior to incubation.
glass fibre filte CN-TOT-WT	er prior to dilution. Car Water	bonaceous BOD (CBOD) is determined Cyanide, Total	l by adding a nitrification inhibitor to the diluted sample prior to incubation. ISO 14403-2
CN-TOT-WT Total cyanide	Water is determined by the o	Cyanide, Total	ISO 14403-2 tion. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a
CN-TOT-WT Total cyanide combination of When using th	Water is determined by the o of barbituric acid and is his method, high levels	Cyanide, Total combination of UV digestion and distillat sonicotinic acid to form a highly colored	ISO 14403-2 tion. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a complex. alse positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method,
CN-TOT-WT Total cyanide combination of When using th	Water is determined by the o of barbituric acid and is his method, high levels ends analysis for thioc	Cyanide, Total combination of UV digestion and distillat sonicotinic acid to form a highly colored s of thiocyanate in samples can cause fa	ISO 14403-2 tion. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a complex. alse positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, rence
CN-TOT-WT Total cyanide combination of When using th ALS recommended EC-SCREEN-M	Water is determined by the of of barbituric acid and is his method, high levels ends analysis for thioc WT Water	Cyanide, Total combination of UV digestion and distillat sonicotinic acid to form a highly colored s of thiocyanate in samples can cause for yanate to check for this potential interfe Conductivity Screen (Internal Us	ISO 14403-2 tion. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a complex. alse positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, rence se APHA 2510
CN-TOT-WT Total cyanide combination of When using th ALS recommended EC-SCREEN-M	Water is determined by the o of barbituric acid and is his method, high levels ends analysis for thioc WT Water halysis of conductivity w	Cyanide, Total combination of UV digestion and distillat sonicotinic acid to form a highly colored s of thiocyanate in samples can cause fa yanate to check for this potential interfe Conductivity Screen (Internal Us Only)	ISO 14403-2 tion. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a complex. alse positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, rence se APHA 2510
CN-TOT-WT Total cyanide combination of When using th ALS recommended EC-SCREEN-N Qualitative an EC-WW-MF-W	Water is determined by the of of barbituric acid and is his method, high levels ends analysis for thioc WT Water alysis of conductivity w VT Water	Cyanide, Total combination of UV digestion and distillat sonicotinic acid to form a highly colored s of thiocyanate in samples can cause fa yanate to check for this potential interfe Conductivity Screen (Internal Us Only) where required during preparation of oth E. Coli	ISO 14403-2 tion. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a complex. alse positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, rence se APHA 2510 her tests - e.g. TDS, metals, etc.
CN-TOT-WT Total cyanide combination of When using th ALS recommended EC-SCREEN-N Qualitative an EC-WW-MF-W	Water is determined by the of of barbituric acid and is his method, high levels ends analysis for thioc WT Water alysis of conductivity w VT Water	Cyanide, Total combination of UV digestion and distillat sonicotinic acid to form a highly colored s of thiocyanate in samples can cause fa yanate to check for this potential interfe Conductivity Screen (Internal Us Only) where required during preparation of oth E. Coli	ISO 14403-2 tion. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a complex. alse positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, rence se APHA 2510 her tests - e.g. TDS, metals, etc. SM 9222D
CN-TOT-WT Total cyanide combination of When using th ALS recomme EC-SCREEN-W Qualitative an EC-WW-MF-W A 100 mL volu F-IC-N-WT	Water is determined by the of of barbituric acid and is his method, high levels ends analysis for thioc WT Water alysis of conductivity w VT Water ume of sample is filter Water	Cyanide, Total combination of UV digestion and distillat sonicotinic acid to form a highly colored s of thiocyanate in samples can cause fa yanate to check for this potential interfe Conductivity Screen (Internal Us Only) where required during preparation of oth E. Coli ed through a membrane, the membrane	ISO 14403-2 tion. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a complex. alse positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, rence se APHA 2510 her tests - e.g. TDS, metals, etc. SM 9222D e is placed on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200 EPA 300.1 (mod)
CN-TOT-WT Total cyanide combination of When using th ALS recomme EC-SCREEN-W Qualitative an EC-WW-MF-W A 100 mL volu F-IC-N-WT	Water is determined by the of of barbituric acid and is his method, high levels ends analysis for thioc WT Water alysis of conductivity w VT Water ume of sample is filter Water ons are analyzed by lo	Cyanide, Total combination of UV digestion and distillat sonicotinic acid to form a highly colored s of thiocyanate in samples can cause fa yanate to check for this potential interfe Conductivity Screen (Internal Us Only) where required during preparation of oth E. Coli ed through a membrane, the membrane Fluoride in Water by IC	ISO 14403-2 tion. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a complex. alse positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, rence se APHA 2510 her tests - e.g. TDS, metals, etc. SM 9222D e is placed on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200 EPA 300.1 (mod) d/or UV detection.
CN-TOT-WT Total cyanide combination of When using th ALS recomme EC-SCREEN-N Qualitative an EC-WW-MF-W A 100 mL volu F-IC-N-WT Inorganic anic HG-T-CVAA-W	Water is determined by the of of barbituric acid and is his method, high levels ends analysis for thioc WT Water allysis of conductivity w VT Water ume of sample is filter Water ons are analyzed by lo	Cyanide, Total combination of UV digestion and distillat sonicotinic acid to form a highly colored s of thiocyanate in samples can cause fr yanate to check for this potential interfe Conductivity Screen (Internal Us Only) where required during preparation of oth E. Coli ed through a membrane, the membrane Fluoride in Water by IC n Chromatography with conductivity and Total Mercury in Water by CVAA	ISO 14403-2 tion. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a complex. alse positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, rence se APHA 2510 her tests - e.g. TDS, metals, etc. SM 9222D e is placed on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200 EPA 300.1 (mod) d/or UV detection.

Water samples are digested with nitric and hydrochloric acids, and analyzed by CRC ICPMS.

Reference Information

thods Listed (if applic			
S Test Code	Matrix	Test Description	Method Reference**
Method Limitation (re:	Sulfur): Sulfide	and volatile sulfur species may not be recov	vered by this method.
Analysis conducted in	accordance wit	h the Protocol for Analytical Methods Used	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
NP,NPE-LCMS-WT	Water	Nonylphenols and Ethoxylates by LC/MS-MS	J. Chrom A849 (1999) p.467-482
Water samples are filt	tered and analy	zed on LCMS/MS by direct injection.	
OGG-SPEC-CALC-WT	Water	Speciated Oil and Grease A/V Calc	CALCULATION
Sample is extracted wi	ith hexane, sam	ple speciation into mineral and animal/vege	stable fractions is achieved via silica gel separation and is then determined gravimetrically.
OGG-SPEC-WT	Water	Speciated Oil and Grease-Gravimetric	APHA 5520 B
The procedure involves determined gravimetric		of the entire water sample with hexane. Same	mple speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then
P-T-COL-WT	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried	d out using proc	edures adapted from APHA Method 4500-P	"Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.
PCB-WT	Water	Polychlorinated Biphenyls	EPA 8082
PCBs are extracted fro	om an aqueous	sample at neutral pH with aliquots of dichlor	romethane using a modified separatory funnel technique. The extracts are analyzed by GC/MSD.
PH-WT	Water	рН	APHA 4500 H-Electrode
Water samples are and	alyzed directly b	by a calibrated pH meter.	
Analysis conducted in samples under this reg			in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime fo
PHENOLS-4AAP-WT	Water	Phenol (4AAP)	EPA 9066
An automated method colorimetrically.	is used to distil	I the sample. The distillate is then buffered	to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured
SO4-IC-N-WT	Mator	Cultate in Water build	EPA 300.1 (mod)
	Water	Sulfate in Water by IC	
		Chromatography with conductivity and/or U	
Inorganic anions are an SOLIDS-TSS-WT	nalyzed by Ion (Water	Chromatography with conductivity and/or UN Suspended solids	✓ detection. APHA 2540 D-Gravimetric
Inorganic anions are an SOLIDS-TSS-WT	nalyzed by Ion (Water	Chromatography with conductivity and/or UN Suspended solids	✓ detection. APHA 2540 D-Gravimetric
Inorganic anions are an SOLIDS-TSS-WT A well-mixed sample is TKN-F-WT	nalyzed by Ion (Water s filtered througl Water	Chromatography with conductivity and/or UN Suspended solids n a weighed standard glass fibre filter and th	V detection. APHA 2540 D-Gravimetric ne residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achie J. ENVIRON. MONIT., 2005,7,37-42,RSC
Inorganic anions are an SOLIDS-TSS-WT A well-mixed sample is TKN-F-WT	nalyzed by Ion (Water s filtered througl Water	Chromatography with conductivity and/or UN Suspended solids n a weighed standard glass fibre filter and th TKN in Water by Fluorescence	V detection. APHA 2540 D-Gravimetric ne residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achie J. ENVIRON. MONIT., 2005,7,37-42,RSC

Reference Information

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference**

XYLENES-SUM-CALC-WT Water Sum of Xylene Isomer Concentrations CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

20-951299

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

			Workorder:	L2706120	6 R	eport Date: 25-	MAY-22		Page 1 of 11
Client:	1 Banigar TORONT	O ON M4H 1G3							
Contact:	Sam Bast	ton							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-BIS-2-PHTH	-WT	Water							
Batch	R5785171								
WG3727801-2 Bis(2-ethylhe:		te		119.3		%		50-140	19-MAY-22
WG3727801-1 Bis(2-ethylhe		te		<2.0		ug/L		2	19-MAY-22
Surrogate: 2-	fluorobiphe	enyl		93.9		%		40-130	19-MAY-22
Surrogate: p-	Terphenyl	d14		107.0		%		40-130	19-MAY-22
625-DNB-PHTH-	wт	Water							
Batch	R5785171								
WG3727801-2 Di-n-butylphth				106.2		%		50-150	19-MAY-22
WG3727801-1 Di-n-butylphth				<1.0		ug/L		1	19-MAY-22
Surrogate: 2-	Fluorobiph	enyl		93.9		%		40-130	19-MAY-22
Surrogate: p-	Terphenyl	d14		107.0		%		40-130	19-MAY-22
BOD-WT		Water							
Batch	R5785270								
WG3727454-2 BOD	2 DUP		L2706137-1 <3.0	<3.0	RPD-NA	mg/L	N/A	30	14-MAY-22
WG3727454-3 BOD	B LCS			91.9		%		85-115	14-MAY-22
WG3727454-1	МВ								
BOD				<2.0		mg/L		2	14-MAY-22
CN-TOT-WT		Water							
Batch	R5784019								
WG3728528-3 Cyanide, Tota			WG3728528-5 <0.0020	<0.0020	RPD-NA	mg/L	N/A	20	17-MAY-22
WG3728528-2 Cyanide, Tota				105.1		%		80-120	17-MAY-22
WG3728528- 1 Cyanide, Tota				<0.0020		mg/L		0.002	17-MAY-22
WG3728528-4 Cyanide, Tota			WG3728528-5	89.0		%		70-130	17-MAY-22
EC-WW-MF-WT		Water							
	R5780478								
WG3727377- 1 E. Coli				0		CFU/100mL		1	14-MAY-22

			Workorder:	L2706126	Re	eport Date: 25-M	4Y-22		Page 2 of 11
Client:	1 Banigan	Engineering Inc Drive O ON M4H 1G3							
Contact:	Sam Bast	on							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F-IC-N-WT		Water							
Batch I WG3728239-4 Fluoride (F)	R5784093 4 DUP		WG3728239-3 0.073	0.073		mg/L	0.1	20	17-MAY-22
WG3728239-2 Fluoride (F)	2 LCS			102.0		%		90-110	17-MAY-22
WG3728239-1 Fluoride (F)	I MB			<0.020		mg/L		0.02	17-MAY-22
WG3728239-5 Fluoride (F)	5 MS		WG3728239-3	95.3		%		75-125	17-MAY-22
HG-T-CVAA-WT		Water							
Batch	R5781344								
WG3727585-3 Mercury (Hg)			WG3727585-5 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	16-MAY-22
WG3727585-2 Mercury (Hg)				99.2		%		80-120	16-MAY-22
WG3727585-1 Mercury (Hg)				<0.0000050		mg/L		0.000005	16-MAY-22
WG3727585-4 Mercury (Hg)	-		WG3727585-6	91.3		%		70-130	16-MAY-22
MET-T-CCMS-W	т	Water							
	R5781260								
WG3727506-4 Aluminum (Al	-		WG3727506-3 <0.050	<0.050	RPD-NA	mg/L	N/A	20	16-MAY-22
Antimony (Sb	,		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAY-22
Arsenic (As)-			<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAY-22
Cadmium (Co			<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	16-MAY-22
Chromium (C	r)-Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAY-22
Cobalt (Co)-T	otal		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAY-22
Copper (Cu)-	Total		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAY-22
Lead (Pb)-To	tal		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAY-22
Manganese (Mn)-Total		0.105	0.105		mg/L	0.2	20	16-MAY-22
Molybdenum	(Mo)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAY-22
Nickel (Ni)-To	otal		<0.0050	<0.0050	RPD-NA	mg/L	N/A	20	16-MAY-22
Selenium (Se	e)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAY-22
Silver (Ag)-To	otal		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	16-MAY-22
Tin (Sn)-Tota	I		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	16-MAY-22
Titanium (Ti)-	Total		<0.0030	<0.0030	RPD-NA	mg/L	N/A	20	16-MAY-22

Workorder: L2706126 Report Date: 25-MAY-22 Page 3 of 11 Grounded Engineering Inc Client: 1 Banigan Drive TORONTO ON M4H 1G3 Contact: Sam Baston Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-T-CCMS-WT Water R5781260 Batch WG3727506-3 WG3727506-4 DUP Zinc (Zn)-Total < 0.030 < 0.030 **RPD-NA** mg/L N/A 20 16-MAY-22 WG3727506-2 LCS % Aluminum (Al)-Total 92.1 80-120 16-MAY-22 Antimony (Sb)-Total 98.5 % 80-120 16-MAY-22 Arsenic (As)-Total % 95.0 80-120 16-MAY-22 Cadmium (Cd)-Total 95.1 % 80-120 16-MAY-22 Chromium (Cr)-Total 92.8 % 80-120 16-MAY-22 Cobalt (Co)-Total 94.5 % 80-120 16-MAY-22 Copper (Cu)-Total 92.6 % 80-120 16-MAY-22 Lead (Pb)-Total % 98.7 80-120 16-MAY-22 Manganese (Mn)-Total 94.8 % 80-120 16-MAY-22 Molybdenum (Mo)-Total 92.0 % 80-120 16-MAY-22 Nickel (Ni)-Total 94.3 % 16-MAY-22 80-120 Selenium (Se)-Total 94.1 % 80-120 16-MAY-22 Silver (Ag)-Total 89.8 % 80-120 16-MAY-22 Tin (Sn)-Total 95.5 % 80-120 16-MAY-22 Titanium (Ti)-Total 87.4 % 80-120 16-MAY-22 Zinc (Zn)-Total 91.5 % 80-120 16-MAY-22 WG3727506-1 MB Aluminum (Al)-Total < 0.0050 mg/L 0.005 16-MAY-22 Antimony (Sb)-Total < 0.00010 mg/L 0.0001 16-MAY-22 Arsenic (As)-Total < 0.00010 mg/L 0.0001 16-MAY-22 0.000005 Cadmium (Cd)-Total < 0.0000050 mg/L 16-MAY-22 Chromium (Cr)-Total < 0.00050 mg/L 0.0005 16-MAY-22 Cobalt (Co)-Total < 0.00010 0.0001 mg/L 16-MAY-22 Copper (Cu)-Total < 0.00050 mg/L 0.0005 16-MAY-22 Lead (Pb)-Total < 0.000050 mg/L 0.00005 16-MAY-22 Manganese (Mn)-Total < 0.00050 mg/L 0.0005 16-MAY-22 0.00005 Molybdenum (Mo)-Total < 0.000050 mg/L 16-MAY-22 Nickel (Ni)-Total 0.0005 < 0.00050 mg/L 16-MAY-22 Selenium (Se)-Total < 0.000050 0.00005 mg/L 16-MAY-22 < 0.000050 0.00005 Silver (Ag)-Total mg/L 16-MAY-22 Tin (Sn)-Total < 0.00010 mg/L 0.0001 16-MAY-22 0.0003 Titanium (Ti)-Total < 0.00030 mg/L 16-MAY-22

		Workorder:	L270612	6 R	eport Date: 2	25-MAY-22		Page 4 of 11
Client:	Grounded Engineering Ind 1 Banigan Drive TORONTO ON M4H 1G Sam Baston							
Contact:								
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-V								
Batch WG3727506 Zinc (Zn)-To			<0.0030		mg/L		0.003	16-MAY-22
WG3727506 Aluminum (/		WG3727506-6	95.9		%		70-130	16 MAX 22
Antimony (S			95.9 N/A	MS-B	%		-	16-MAY-22 16-MAY-22
Arsenic (As)			100.2	WO-D	%		- 70-130	16-MAY-22
Cadmium (C			99.0		%		70-130	16-MAY-22
Chromium (,		102.1		%		70-130	16-MAY-22
Cobalt (Co)-			N/A	MS-B	%		-	16-MAY-22
Copper (Cu)			N/A	MS-B	%		-	16-MAY-22
Lead (Pb)-T			100.1		%		70-130	16-MAY-22
Manganese			N/A	MS-B	%		-	16-MAY-22
Molybdenun			N/A	MS-B	%		-	16-MAY-22
Nickel (Ni)-7			95.1		%		70-130	16-MAY-22
Selenium (S	se)-Total		102.5		%		70-130	16-MAY-22
Silver (Ag)-1	Fotal		87.0		%		70-130	16-MAY-22
Tin (Sn)-Tot	al		98.2		%		70-130	16-MAY-22
Titanium (Ti)-Total		98.1		%		70-130	16-MAY-22
Zinc (Zn)-To	otal		97.2		%		70-130	16-MAY-22
NP,NPE-LCMS-	WT Water							
Batch	R5784526							
WG3727734 Nonylpheno		L2706038-1 <1.0	<1.0	RPD-NA	ug/L	N/A	30	17-MAY-22
	I Monoethoxylates	<2.0	<2.0	RPD-NA	ug/L	N/A	30	17-MAY-22
	l Diethoxylates	<0.10	<0.10	RPD-NA	ug/L	N/A	30	17-MAY-22
WG3727734	-2 LCS				-			
Nonylpheno			94.8		%		75-125	17-MAY-22
	I Monoethoxylates		95.2		%		75-125	17-MAY-22
	I Diethoxylates		99.5		%		75-125	17-MAY-22
WG3727734 Nonylpheno			<1.0		ug/L		1	17-MAY-22
Nonylpheno	I Monoethoxylates		<2.0		ug/L		2	17-MAY-22
Nonylpheno	l Diethoxylates		<0.10		ug/L		0.1	17-MAY-22
WG3727734 Nonylpheno		L2706038-1	143.4	К	%		60-140	17-MAY-22

				•			
	Workorder:	L270612	6	Report Date: 2	5-MAY-22		Page 5 of 11
rounded Engineering Inc Banigan Drive ORONTO ON M4H 1G3							
am Baston							
Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Water							
784526							
MS	L2706038-1			0/			
-			ĸ				17-MAY-22
		60.7		70		60-140	17-MAY-22
786461							
Total		103.3		%		70-130	19-MAY-22
Grease		96.5		%		70-130	19-MAY-22
МВ							
Total		<5.0		mg/L		5	19-MAY-22
Grease		<2.5		mg/L		2.5	19-MAY-22
Water							
782606							
DUP	L2705650-8	0.0555		"			
	0.0672	0.0555		mg/L	19	20	17-MAY-22
LCS tal		97.3		%		80-120	17-MAY-22
MB tal		<0.0030		mg/L		0.003	17-MAY-22
MS	L2705650-8						
tal		73.5		%		70-130	17-MAY-22
Water							
783805							
LCS		95.0		%		65-130	18-MAY-22
				%			18-MAY-22
							18-MAY-22
		93.8		%			18-MAY-22
MB		<0.020		ua/l			18-MAY-22
							18-MAY-22
							18-MAY-22
				-			18-MAY-22
chlorobiphenyl							18-MAY-22
				%		50-150	18-MAY-22
-		-					
	Banigan Drive DRONTO ON M4H 1G3 am Baston Matrix Water 784526 MS noethoxylates thoxylates thoxylates Water 786461 LCS Total Grease MB Total Grease Water 7826006 DUP ral LCS ral Brease Water 7826006 DUP ral LCS ral MB ral MB ral Kasa Kasa Kasa Kasa Kasa Kasa Kasa Ka	rounded Engineering Inc Banigan Drive DRONTO ON M4H 1G3 am Baston Matrix Reference Water 784526 MS L2706038-1 noethoxylates thoxylates thoxylates thoxylates Water 786461 LCS Total Grease MB Total MB Total	Banigan Drive DRONTO ON M4H 1G3 am Baston Reference Result Water E2706038-1 151.4 MS L2706038-1 151.4 MS L2706038-1 151.4 moethoxylates L2706038-1 151.4 MS L2706038-1 151.4 MS L2705038-1 151.4 MS Vater 96.5 MB 103.3 103.3 Grease 96.5 103.3 Grease 0.0672 0.0555 MB 0.0672 0.0555 MB 0.0672 0.0030 MS L2705650-8 0.0030 MS L2705650-8 95.0 MB 0.0672 0.0030 MS L2705650-8 95.0 MB 99.6 91.9 MB 99.6 91.9 MB 93.8 93.8 MB <0.020	Banigan Drive DRONTO ON M4H 1G3 am Baston Matrix Reference Result Qualifier Water	MatrixReferenceResultQualifierUnitsWater </td <td>Matrix Reference Result Qualifier Units RPD Matrix Reference Result Qualifier Units RPD Water 784326 - <td< td=""><td>Banigan Drive SRONTO ON M4H 163 am Baston Reference Result Units RPD Limit Water </td></td<></td>	Matrix Reference Result Qualifier Units RPD Matrix Reference Result Qualifier Units RPD Water 784326 - <td< td=""><td>Banigan Drive SRONTO ON M4H 163 am Baston Reference Result Units RPD Limit Water </td></td<>	Banigan Drive SRONTO ON M4H 163 am Baston Reference Result Units RPD Limit Water

PH-WT

			Workorder:	L2706126	6	Report Date	: 25-MAY-22		Page 6 of 11
Client:	1 Banigan	Engineering Inc Drive O ON M4H 1G3							
Contact:	Sam Bast	on							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-WT		Water							
Batch I WG3728172-4 pH	R5783717 4 DUP		WG3728172-3 8.37	8.21	J	pH units	0.16	0.2	17-MAY-22
WG3728172-2 рН	2 LCS			7.06		pH units		6.9-7.1	17-MAY-22
PHENOLS-4AAP	-WT	Water							
Batch I WG3727762-2 Phenols (4AA				101.5		%		85-115	16-MAY-22
WG3727762-1 Phenols (4AA	МВ			<0.0010		mg/L		0.001	16-MAY-22
SO4-IC-N-WT		Water							
	R5784093								
WG3728239-4 Sulfate (SO4))		WG3728239-3 55.8	55.8		mg/L	0.0	20	17-MAY-22
WG3728239-2 Sulfate (SO4)				102.7		%		90-110	17-MAY-22
WG3728239-1 Sulfate (SO4)				<0.30		mg/L		0.3	17-MAY-22
WG3728239-5 Sulfate (SO4)			WG3728239-3	105.6		%		75-125	17-MAY-22
SOLIDS-TSS-WT	г	Water							
	R5780957								
WG3727479-3 Total Suspen	ded Solids		L2706250-1 72.0	73.0		mg/L	1.4	20	16-MAY-22
WG3727479-2 Total Suspen				106.7		%		85-115	16-MAY-22
WG3727479-1 Total Suspen				<3.0		mg/L		3	16-MAY-22
TKN-F-WT		Water							
WG3727736-3			WG3727736-5	0.700					
Total Kjeldah WG3727736-2	2 LCS		0.796	0.726		mg/L	9.2	20	17-MAY-22
Total Kjeldah WG3727736- 1	-			101.3		%		75-125	17-MAY-22
Total Kjeldah WG3727736-4	-		WG3727736-5	<0.050		mg/L		0.05	17-MAY-22
1100121100-									

		Workorder:	L270612	6 R	eport Date: 2	5-MAY-22		Page 7 of 11
Client:	Grounded Engineering Inc 1 Banigan Drive TORONTO ON M4H 1G3							
Contact:	Sam Baston							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
TKN-F-WT	Water							
Batch WG372773 Total Kjelo	R5784167 3 6-4 MS dahl Nitrogen	WG3727736-5	99.2		%		70-130	17-MAY-22
VOC-ROU-HS	G-WT Water							
Batch WG372833 1,1,2,2-Te	R5784216 80-4 DUP etrachloroethane	WG3728330-3 <0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAY-22
1,2-Dichlo	robenzene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAY-22
1,4-Dichlo	robenzene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAY-22
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAY-22
Chloroform	n	<1.0	<1.0	RPD-NA	ug/L	N/A	30	18-MAY-22
cis-1,2-Dic	chloroethylene	0.67	0.67		ug/L	0.0	30	18-MAY-22
Dichlorom	ethane	<2.0	<2.0	RPD-NA	ug/L	N/A	30	18-MAY-22
Ethylbenze	ene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAY-22
m+p-Xyler	nes	<0.40	<0.40	RPD-NA	ug/L	N/A	30	18-MAY-22
Methyl Eth	nyl Ketone	<20	<20	RPD-NA	ug/L	N/A	30	18-MAY-22
o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	18-MAY-22
Styrene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAY-22
Tetrachlor	oethylene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAY-22
Toluene		<0.40	<0.40	RPD-NA	ug/L	N/A	30	18-MAY-22
trans-1,3-I	Dichloropropene	<0.50	<0.30	RPD-NA	ug/L	N/A	30	18-MAY-22
Trichloroe	thylene	4.52	4.61		ug/L	2.0	30	18-MAY-22
WG372833								
	etrachloroethane		95.1		%		70-130	17-MAY-22
	robenzene		105.2		%		70-130	17-MAY-22
Benzene	robenzene		106.4 95.2		%		70-130	17-MAY-22
Chloroform	n				%		70-130	17-MAY-22
			106.5 109.5		%		70-130	17-MAY-22
Dichlorom	chloroethylene		109.5		%		70-130	17-MAY-22
Ethylbenze			95.0		%		70-130 70-130	17-MAY-22 17-MAY-22
m+p-Xyler			101.3		%		70-130	17-MAY-22
Methyl Eth			97.0		%		60-140	17-MAY-22
o-Xylene			95.3		%		70-130	17-MAT-22
Styrene			83.7		%		70-130	17-MAY-22
2.,							10100	

		Workorder:	L270612	26	Report Date:	25-MAY-22		Page 8 of 11
Client:	Grounded Engineering Inc 1 Banigan Drive TORONTO ON M4H 1G3							
Contact:	Sam Baston							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-	WT Water							
Batch	R5784216							
WG3728330 Tetrachloro			95.1		%		70 400	47 MAX 00
Toluene			97.1		%		70-130 70-130	17-MAY-22 17-MAY-22
	ichloropropene		62.7	MES	%		70-130	17-MAY-22
Trichloroeth			100.2	WES	%		70-130	17-MAY-22
WG3728330			100.2		70		70-130	17-1017(1-22
	rachloroethane		<0.50		ug/L		0.5	17-MAY-22
1,2-Dichlore	obenzene		<0.50		ug/L		0.5	17-MAY-22
1,4-Dichlore	obenzene		<0.50		ug/L		0.5	17-MAY-22
Benzene			<0.50		ug/L		0.5	17-MAY-22
Chloroform			<1.0		ug/L		1	17-MAY-22
cis-1,2-Dicł	nloroethylene		<0.50		ug/L		0.5	17-MAY-22
Dichlorome	thane		<2.0		ug/L		2	17-MAY-22
Ethylbenze	ne		<0.50		ug/L		0.5	17-MAY-22
m+p-Xylene	es		<0.40		ug/L		0.4	17-MAY-22
Methyl Ethy	/I Ketone		<20		ug/L		20	17-MAY-22
o-Xylene			<0.30		ug/L		0.3	17-MAY-22
Styrene			<0.50		ug/L		0.5	17-MAY-22
Tetrachloro	pethylene		<0.50		ug/L		0.5	17-MAY-22
Toluene			<0.40		ug/L		0.4	17-MAY-22
trans-1,3-D	ichloropropene		<0.30		ug/L		0.3	17-MAY-22
Trichloroeth	hylene		<0.50		ug/L		0.5	17-MAY-22
Surrogate:	1,4-Difluorobenzene		101.3		%		70-130	17-MAY-22
Surrogate:	4-Bromofluorobenzene		93.0		%		70-130	17-MAY-22
WG3728330		WG3728330-3						
	rachloroethane		95.2		%		50-150	18-MAY-22
1,2-Dichlore			104.3		%		50-150	18-MAY-22
1,4-Dichlore	obenzene		104.2		%		50-150	18-MAY-22
Benzene			92.5		%		50-150	18-MAY-22
Chloroform			108.5		%		50-150	18-MAY-22
cis-1,2-Dich	hloroethylene		107.3		%		50-150	18-MAY-22
Dichlorome			113.1		%		50-150	18-MAY-22
Ethylbenzer			91.5		%		50-150	18-MAY-22
m+p-Xylene			98.9		%		50-150	18-MAY-22
Methyl Ethy	/I Ketone		83.9		%		50-150	18-MAY-22

		Workorder:	L2706126	j -	Report Date:	25-MAY-22		Page 9 of 11
Client:	Grounded Engineering Inc 1 Banigan Drive TORONTO ON M4H 1G3							
Contact:	Sam Baston							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-W Batch WG3728330-{	R5784216	WG3728330-3	3					
o-Xylene			92.7		%		50-150	18-MAY-22
Styrene								
Otyrene			80.4		%		50-150	18-MAY-22
Tetrachloroet	thylene		80.4 91.2		% %		50-150 50-150	18-MAY-22 18-MAY-22
2	thylene							-
Tetrachloroet Toluene	thylene hloropropene		91.2		%		50-150	18-MAY-22

Workorder: L2706126

Client:	Grounded Engineering Inc
	1 Banigan Drive
	TORONTO ON M4H 1G3
Contact:	Sam Baston

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
К	Matrix Spike recovery outside ALS DQO due to sample matrix effects.
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Page 10 of 11

Workorder: L2706126

Report Date: 25-MAY-22

Client:	Grounded Engineering Inc
	1 Banigan Drive
	TORONTO ON M4H 1G3
Contact:	Sam Baston

Page 11 of 11

Hold Time Exceedances:

ALS Produc	t Description	Sample ID	Sampling Date	Date Processed	Rec. HT	Actual HT	Units	Qualifier
Physical Tes	sts							
рН		1	12-MAY-22 10:00	17-MAY-22 00:00	4	5	days	EHT
Legend & Q EHTR-FM: EHTR: EHTL: EHT: Rec. HT:	Exceeded ALS Exceeded ALS	recommende recommende recommende recommende	d hold time prior to san d hold time prior to san d hold time prior to ana d hold time prior to ana e (see units).	nple receipt. Ilysis. Sample was rec				piry.

Notes*:

Where actual sampling date is not provided to ALS, the date (& time) of receipt is used for calculation purposes. Where actual sampling time is not provided to ALS, the earlier of 12 noon on the sampling date or the time (& date) of receipt is used for calculation purposes. Samples for L2706126 were received on 12-MAY-22 16:30.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

(Prs)	
WWW.S	

Chain of Custody (COC) / Analytical Ret

L2706126-COFC

> . ယ

)51299

City/Province: Postal Code: Invoice To Report To Company: Contact: PO / AFE: Company: Contact: Are samples taken from a Regulated DW System? ALS Sample # (ALS use only) Phone: ALS Account # / Quote #: Released by: S ALS Lab Work Order # (ALS use only): 10700120 samples for human consumption/ use? Drinking Water (DW) Samples¹ (client use) Project Information Copy of Invoice with Report Same as Report To 5 L H C J NO SHIPMENT RELEA mpany address 6-1900 21 +) mr. lsglobat.com Conta Ø 1500 tan 981-25 γ x 10 だけ below will appear on the final report LEASE (client use) Date: 210 V ame below will appear on the final report N D 34 D VO Duitian Selow gb **.[ime:** 식:]? Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) AFE/Cost Center: Major/Minor Code: Requisitioner: Email 1 or Fax Email 2 Email 3 Region Invoice Recipients Select Invoice Distribution: 2 BML PML FAX Received by: ALS Contact: Select Report Format: Merge QC/QC/ Reports with COA Compare Results to Otteria on Report - provide details below if box checked Select Distribution: Se mail 1900 (~~ Oil and Gas Required Fields (client use) PO# 1.2 ~ 1.1 Sayar C G (dd-mmm-yy) Canada Toll Free: 1 800 668 9878 Date Ŭ Reports / Recipients 1.146 WHITE- LABORATORY COPY 1- u-1 Sampler: Routing Code ND.COL (hh:mm) 2 PTION (ALS 1 2 Garbol storen Sample Type J 64 122 ·
 Turnaround Time (TAT) Requested

 Dradine [R] if received by 3pm NFF - to surcharges apply

 a day [34] if received by 3pm NFF - 20% tash surcharge minimum

 3 day [29] if received by 3pm NFF - 20% tash surcharge minimum

 1 day [34] if received by 3pm NFF - 20% tash surcharge minimum

 1 day [20] if received by 3pm NFF - 20% tash surcharge minimum

 1 day [20] if received by 3pm NFF - 20% tash surcharge minimum

 1 day [21] if received by 3pm NFF - 100% tash surcharge minimum

 1 day [22] if received by 3pm NFF - 20% tash surcharge minimum

 2 day [22] if received by 3pm NFF - 20% tash surcharge minimum

 1 day [2] if received by 3pm NFF - 20% tash surcharge minimum

 2 some day [22] if received by 3pm NFF - 20% tash surcharge minimum

 3 may tapky totali received by 3pm NFF - 20% tash surcharge minimum
 V - CLIENT COPY
 SAMPLE RECEIPT DETAILS (ALS use only)

 Cooling Method
 work
 rc
 DuerFACIS
 reczy

 Submission Comments identified on Sample Decept Notification:
 ID
 ID
 ID
 ID

 Cooler Custody Seals Intact:
 ID
 IS
 IV
 Sample Output
 Evelopies
 NUMBER OF CONTAINERS 11.9 Date and Time Re hum Regin For all toxis with rush TAT's requested, picese contact your AM to contern routability Analysis Request cato Filered (F), Preserved (P) or Filered and Preserved (FIP) below all E&P TATS NENAL SHIPMENT RECEPTION (ALS use only) t Notification: Sample Custody Seals Inlact FINAL COLER TEMPE ್ಲ AFFIX ALS BARCODE LABEL HERE (ALS use only) NOS IL SAMPLES ON HOLD EXTENDED STORAGE REQUIRED SUSPECTED HAZARD (see notes)

Testevsoru *Y., G., M., T. C., Y., C., Y., Y., Y., Y., Y., T. C.*REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION
Reference of this form may delay analysis. Pagase lin this form LEGIBLY. By the use of this form the user acknowle
full any water samples are taken form a Regulated Drinking Water (DW)
System, please submit using an Authorized DW COC form. ledges and agrees WAG the Terms and Allia report copy.

APPENDIX G

Equivalent Well Radius (TOWNHOUSE 1)

R ₀	=	3000*dH*K ^{0.5}	
r _s	=	(a+b)/3.14	applies when a/b <1.5 and R ₀ >>rs
r _s	=	((a*b)/3.14) ^{0.5}	
Q	=	$\frac{3.14*K*(H^{2}-h_{w}^{2})}{\ln(R_{0}/r_{s})}$	

Ground Surface	99.85	masl
Highest Water Level	98.7	masl
Base of Excavation	96.55	masl
Drawdown Target	95.7	masl
Aquifer Bottom	95.7	masl
Rain Fall	0.030	m
Factor of Saftey	2.0	
Hydrualic Gradient	1	
K =	1.00E-05	m/s
H =	3.0	m
h _w =	0.0	m
dH =	3.0	m
R _{0 =}	28.5	m
r _s + R ₀₌	35	m
a =	12	m
b =	8	m
r _{s =}	6	m

SHORT TERM				
Summary L/day L/min				
Groundwater	30,000	20.8		
Rainfall	2,880	2.0		
Total	32,880	22.8		

100 year storm event (L/day):

10,000

LONG TERM				
Summary L/day L/min				
Groundwater	30,000	20.8		
Infiltration	3,000	2.1		
Total	33,000	22.9		

Legend:

- K = Hydraulic Conductivity
- H = Depth from static wate table to the assumed aquifer bottom
- $h_{\rm w}$ = Depth from the dewatering target to the assumed aquifer bottom
- dH = Dewatering thickness
 - a = Length of Excavation
 - b = Width of Excavation

Reference: J. Patrick Powers... [et al.] (2007), "Construction Dewatering and Groundwater Control: New Methods and Applications, 3rd ed." Wiley, Hoboken, NJ.

Equivalent Well Radius (TOWNHOUSE 2)

R ₀	=	3000*dH*K ^{0.5}	
r _s	=	(a+b)/3.14	applies when a/b <1.5 and R ₀ >>rs
r _s	=	((a*b)/3.14) ^{0.5}	
Q	=	$\frac{3.14*K*(H^{2}-h_{w}^{2})}{\ln(R_{0}/r_{s})}$	

		-
Ground Surface	99.85	masl
Highest Water Level	98.7	masl
Base of Excavation	96.55	masl
Drawdown Target	95.7	masl
Aquifer Bottom	95.7	masl
Rain Fall	0.030	m
Factor of Saftey	2.0	
Hydrualic Gradient	1	
K =	1.00E-05	m/s
H =	3.0	m
h _w =	0.0	m
dH =	3.0	m
R _{0 =}	28.5	m
r _s + R ₀₌	35	m
a =	12	m
b =	8	m
r _{s =}	6	m

SHORT TERM				
Summary L/day L/min				
Groundwater	30,000	20.8		
Rainfall	2,880	2.0		
Total	32,880	22.8		

100 year storm event (L/day):

10,000	

LONG TERM				
Summary L/day L/min				
Groundwater	30,000	20.8		
Infiltration	3,000	2.1		
Total	33,000	22.9		

Legend:

- K = Hydraulic Conductivity
- H = Depth from static wate table to the assumed aquifer bottom
- $h_{\rm w}$ = Depth from the dewatering target to the assumed aquifer bottom
- dH = Dewatering thickness
 - a = Length of Excavation
 - b = Width of Excavation

Reference: J. Patrick Powers... [et al.] (2007), "Construction Dewatering and Groundwater Control: New Methods and Applications, 3rd ed." Wiley, Hoboken, NJ.

SHORT TERM - 1 BASEMENT LEVEL (TOWNHOUSE 3)					
Excavation D	imensions [m]			Rainfall Data	
N-S	8		Year	2	100
E-W	12		Hour	3	12
Area (m2)	96		Depth (mm)	30	98
Perimeter (m)	40		Depth (m)	0.03	0.098
	-				
S	Section		Flow [m3/day]	Length [m]	Volume [L/day]
Base		0	8	-	
Sides		0	40	-	
Total				-	
Factor of	of Safety	2.0			-
Storm Events			Summary	L/day	L/min
2 Year [L/day]	100 Year [L/day]		Groundwater	-	-
2,880	10,000		Rainfall	3,000	2.1
			Total	3,000	2.1

LONG TERM - 1 BASEMENT LEVEL (TOWNHOUSE 3)				
Excavation Dimensions [m]		Rainfall Data		
N-S	8	Year	2	100
E-W	12	Hour	3	12
Area (m2)	96	Depth (mm)	30	98
Perimeter (m)	40	Depth (m)	0.03	0.098
Section		Flow [m3/day]	Length [m]	Volume [L/day]
Base		0	8	-
Sides		0	40	-
Total				-
Factor of Safety 2.0				-
Infiltratio	on [L/day]	Summary	L/day	L/min
1915.2		Groundwater	-	-
		Infiltration	3,000	2.1
		Total	3,000	2.1

SHORT TERM - 1 BASEMENT LEVEL (TOWNHOUSE 4)					
Excavation Dimensions [m] Rainfall Data					
N-S	8		Year	2	100
E-W	12		Hour	3	12
Area (m2)	96		Depth (mm)	30	98
Perimeter (m)	40		Depth (m)	0.03	0.098
Section		Flow [m3/day]	Length [m]	Volume [L/day]	
Base		0	8	-	
Sides		0	40	-	
Total				-	
Factor of Safety 2.0				-	
Storm Events			Summary	L/day	L/min
2 Year [L/day]	100 Year [L/day]		Groundwater	-	-
2,880	10,000		Rainfall	3,000	2.1
			Total	3,000	2.1

LONG TERM - 1 BASEMENT LEVEL (TOWNHOUSE 4)						
Excavation Dimensions [m]		Rainfall Data				
N-S	8	Year	2	100		
E-W	12	Hour	3	12		
Area (m2)	96	Depth (mm)	30	98		
Perimeter (m)	40	Depth (m)	0.03	0.098		
	· · · · · · · · · · · · · · · · · · ·					
Section		Flow [m3/day]	Length [m]	Volume [L/day]		
Base		0	8	-		
Sides		0	40	-		
Total				-		
Factor of Safety 2.0				-		
Infiltratio	on [L/day]	Summary	L/day	L/min		
1897.2		Groundwater	-	-		
		Infiltration	3,000	2.1		
		Total	3,000	2.1		

Equivalent Well Radius (TOWNHOUSE 5)

R ₀	=	3000*dH*K ^{0.5}	
r _s	=	(a+b)/3.14	applies when a/b <1.5 and R ₀ >>rs
r _s	=	((a*b)/3.14) ^{0.5}	
Q	=	$\frac{3.14*K*(H^{2}-h_{w}^{2})}{\ln(R_{0}/r_{s})}$	

Ground Surface	96.22	masl
Highest Water Level	95.8	masl
Base of Excavation	92.92	masl
Drawdown Target	91.2	masl
Aquifer Bottom	80	masl
Rain Fall	0.030	m
Factor of Saftey	2.0	
Hydrualic Gradient	1	
K =	7.21E-09	m/s
H =	15.8	m
h _w =	11.2	m
dH =	4.6	m
R _{0 =}	1.2	m
r _s + R ₀₌	8	m
a =	12	m
b =	8	m
r _{s =}	6	m

SHORT TERM				
Summary	L/day	L/min		
Groundwater	4,000	2.8		
Rainfall	2,880	2.0		
Total	6,880	4.8		

100 year storm event (L/day):

LONG TERM				
Summary L/day L/min				
Groundwater	4,000	2.8		
Infiltration	3,000	2.1		
Total	7,000	4.9		

Legend:

- K = Hydraulic Conductivity
- H = Depth from static wate table to the assumed aquifer bottom
- $h_{\rm w}$ = Depth from the dewatering target to the assumed aquifer bottom
- dH = Dewatering thickness
 - a = Length of Excavation
 - b = Width of Excavation

Reference: J. Patrick Powers... [et al.] (2007), "Construction Dewatering and Groundwater Control: New Methods and Applications, 3rd ed." Wiley, Hoboken, NJ.