

ALTONA GROUP

HYDROGEOLOGICAL REVIEW

RESIDENTIAL DEVELOPMENT AT 1294 KINGSTON ROAD, 1848 AND 1852 LIVERPOOL ROAD PICKERING, ONTARIO

23 May 2019

CT2817.00

<u>Distribution</u> Altona Group, 1 copy Terrapex Environmental Ltd., 1 copy

Terrapex Environmental Ltd.90 Scarsdale RoatToronto, Ontario, M3B 2R7Telephone:(416) 245-0011Facsimile:(416) 245-0012Email:toronto@terrapex.comWebsite:www.terrapex.com

EXECUTIVE SUMMARY

Terrapex Environmental Ltd. (Terrapex) was retained by Altona Group (the Client) to conduct a hydrogeological review in support of the re-development of the site known municipally as 1294 Kingston Road, 1848 Liverpool Road, and 1852 Liverpool Road ("subject site") in the City of Pickering, Ontario. Altona Group, the owner of the site is proposing the redevelopment and intensification of the subject site with a mixed-use development that incorporates a 25-storey tower, a 12-storey midrise building, and a row of 3-storey townhouses. The proposed development will also have driving lanes and landscaped areas. An underground parking garage structure will be constructed to three levels.

A network of groundwater monitoring wells was installed at nine locations. Groundwater levels were measured for three events at the monitoring wells. Single well hydraulic tests were performed. One groundwater sample was analysed for suitability for discharge to the Region of Durham's sewers.

The shallowest water table encountered was at 1.5 metres below ground, indicating the construction excavation and the underground parking structure will extend into saturated soils.

The construction excavation for the underground parking structure will likely experience seepage. The anticipated maximum rate of seepage to be managed will be 621,000 litres/day, which will require a Permit To Take Water (PTTW). In addition, approximately 181,400 litres of storm water might need to be periodically extracted, based on a relatively large precipitation event. The combined amount is 802,400 litres/day, which should be specified on the PTTW application. Foundation drains may collect up to 593,600 litres/day in post-construction.

The groundwater quality reported by the laboratory complies with the Region of Durham's bylaw criteria for sanitary/combined sewers. The quality complies with the storm sewer criteria with treatment for total suspended solids (TSS). TSS can be reduced in concentration by filtering and settlement methods prior to discharge to sewers. TSS generation should be prevented to avoid mining out of adjacent soils.

Pre-construction land use predominantly consists of several low-rise buildings with asphalt-paved open-air parking areas. The post-construction land use will consist of the proposed new buildings, retained heritage building, underground parking garage, driving lanes, surface parking, paved pedestrian areas and landscaped areas. Both pre- and post-construction land uses are essentially impervious, so there will be negligible change in recharge to the shallow groundwater regime. Low impact development (LID) measures to improve infiltration are not feasible due to the underlying parking garage occupying most of the site and that the remaining area has insufficient vertical room above the water table and below the asphalt paving subgrade for a buried type system. Permeable pavers or planters would be feasible in the southern area, but clayey soils will naturally limit infiltration amounts.

TABLE OF CONTENTS (CONT'D)

EXECUTIVE SUMMARY

1.0	BACKGROUND	1
2.0	LOCATION AND SETTING	1
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	LOCATION AND PROPERTY DIMENSIONS PRESENT LAND USE PROPOSED DEVELOPMENT SITE TOPOGRAPHY DRAINAGE REGIONAL GEOLOGY SENSITIVE ECOLOGICAL RECEIVERS GROUNDWATER SUPPLY WELLS	1 2 2 2 3
3.0	FIELD PROGRAM	3
3.1 3.2 3.3 3.4 3.5	DRILLING MONITORING WELLS GROUNDWATER LEVELS MEASUREMENTS GROUNDWATER SAMPLING HYDRAULIC CONDUCTIVITY TESTS	3 4 4
4.0	OBSERVATIONS	5
4.1 4.2	SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY GROUNDWATER LEVELS	
5.0	ANALYSIS	6
5.1 5.2 5.3 5.4	HYDRAULIC CONDUCTIVITY HYDRAULIC GRADIENT GROUNDWATER QUALITY BUILDING GEOMETRY AND HYDROGEOLOGY	6 7
6.0	DEWATERING	8
6.1 6.2 6.3	RATE PREDICTION RADIUS OF INFLUENCE AND SENSITIVE RECEIVERS WATER QUALITY OF DISCHARGE	9
7.0	WATER BALANCE ASPECTS 1	0
8.0	CLOSURE 1	1
9.0	REFERENCES1	2

TABLE OF CONTENTS (CONT'D)

FIGURES & CHARTS

Figure 1Site Location PlanFigure 2Site Vicinity PlanFigure 3Development Concept PlanFigure 4Locations of InvestigationsFigure 5Groundwater Regime Map

TABLES

Table 1	Monitoring Well Construction Details
Table 2	Observed Groundwater Levels
Table 3	Summary of Groundwater Quality
Table 4	Predicted Dewatering Rate for the Parking Garage
Table 5	Predicted Collection Rate for Foundation Drains

APPENDICES

Appendix I	Figures
Appendix II	Tables
Appendix III	Borehole Records
Appendix IV	Laboratory Record of Groundwater Quality
Appendix V	Hydraulic Conductivity Testing

1.0 BACKGROUND

Terrapex Environmental Ltd. (Terrapex) was retained by Altona Group to conduct field studies and to prepare this hydrogeological review for the development described in Section 2.3 at 1294 Kingston Road and at 1848 and 1852 Liverpool Road (site), in Pickering, Ontario. This review herein is intended to satisfy requirements under the municipal development application process.

A companion geotechnical study for the site was concurrently undertaken by Alston Associates (now the geotechnical division of Terrapex). The final report for that study was submitted under separate cover (Alston, 2019). Companion Phase One and Two Environmental Site Assessment (ESA) studies for the site were concurrently undertaken by Terrapex. The draft Phase One ESA was submitted under separate cover (Terrapex, 2019). At the time of writing, the Phase Two ESA was under preparation (Terrapex, 2019).

2.0 LOCATION AND SETTING

2.1 LOCATION AND PROPERTY DIMENSIONS

The site is located on the northwest corner of the major intersection of Liverpool Road and Kingston Road in the southern portion of Pickering, which is within the Region of Durham. The general location is mapped on Figure 1.

The site covers an elongated area of approximately $9,100 \text{ m}^2$, with approximate dimensions of 55 m by 166 m, as averages. The maximum width of 66 m is planned for the north-central portion.

2.2 PRESENT LAND USE

The land use currently has three components. The southern most portion is a historic low-rise building used as a restaurant (Old Liverpool House), with adjacent asphalt-paved parking. The central portion hosts an elongated low-rise building with diverse commercial and retail tenants, with adjacent asphalt-paved parking. Fringes of lawn are present on the east, west and south sides. The northern portion is a child daycare within a single storey formerly residential dwelling, paved parking and playground backyard.

The land in the vicinity of the site (500 m radius) is shown on Figure 2. The current local land uses essentially consist of the following diverse features.

- **Southwest to southeast:** A gas station (PetroCanada), the Pickering Town Centre mall, other shopping plazas consisting of multiple buildings with diverse commercial tenants and open-air asphalt-paved parking. Also present are, two mid-rise office towers east of Liverpool Road and a low-rise office tower and restaurant buildings west of Liverpool Road.
- *West and Northwest:* Immediately to the west is a small plaza with restaurant and retail tenants. Further west is a residential neighbourhood of single-family dwellings. Green space flanks a corridor along Pine Creek.

• *East and Northeast:* A commercial strip plaza (Liverpool Plaza) with several buildings and asphalt-paved parking, residential neighbourhoods of single-family dwellings and townhouse blocks, and high-rise residential buildings.

2.3 PROPOSED DEVELOPMENT

Altona Group, owner of the site known municipally as 1294 Kingston Road, 1848 Liverpool Road, and 1852 Liverpool Road ("subject site"), is proposing the redevelopment and intensification of the subject site with a mixed-use development that incorporates a 25-storey tower, a 12-storey midrise building, and a row of 3-storey townhouses. The proposal also commits to the restoration and adaptive reuse of the Old Liverpool House as well as new publicly accessible open space and improvements to the public realm.

The proposed development adds 391 units to the 0.91 hectare site with a total residential gross floor area of 32,350 square metres. Active at-grade retail and commercial uses make up 850 square metres along the Liverpool and Kingston Road frontages of the new buildings and the retained Old Liverpool House. A total gross floor area of 33,200 square metres is proposed at a density of 3.6 FSI over the subject site. A total of 512 parking spaces will be provided, mostly within 3 levels of underground parking with 10 spaces provided at-grade to support the retail.

The common parking garage spans most of the property, over the footprint shown on Figure 2. The garage will extend to three subsurface levels.

The existing Old Liverpool House building will be preserved and shifted southward within the site.

2.4 SITE TOPOGRAPHY

Relief in the site vicinity is a plain with a general slope grading downward toward the southwest. The on-site grade is flat with a slight grade downward toward the southwest. Most of the site grade is between 88.0 and 89.4 metres above sea level (masl). The maximum elevation is 89.5 masl in the northeast corner and the lowest elevation is 87.7 masl in the southwest corner.

2.5 DRAINAGE

Pine Creek flows approximately 230 m to the west of the site, eventually discharging to Frenchman's Bay in Lake Ontario. No other watercourses, ponds, or other surface water features are located on the site itself or within 500 m of the site.

Local roads and adjacent properties manage stormwater through catch basins and the piped municipal storm sewer system.

2.6 REGIONAL GEOLOGY

A surficial geological map (Ontario Geological Survey, 2010) shows the site is situated in an area of a former glacial lake, leaving deposits comprised of silt and clay with minor and gravel.

A bedrock geological map (Ontario Geological Survey, 2007) shows the site is underlain by the Blue Mountain Formation, which is dominantly comprised of shale with minor limestone interbeds.

Based on water well database maintained by the Ministry of the Environment, Conservation and Parks (MECP), one well (No. 910330801) encountered bedrock of shale at a depth of 19.2 metres below ground (mbg). The database listings for the area within approximately 500 m of the site are provided in Appendix III.

2.7 SENSITIVE ECOLOGICAL RECEIVERS

Designated sensitive ecological areas such as Areas of Natural and Scientific Interest (ANSI), Environmentally Significant Areas (ESA's), and/or designated wetlands are absent within 500 m of the site (MNRF, 2019). Undesignated woodlands are mapped at approximately 60 m to 600 m to the north on the west side of Liverpool Road, and east near Glengrove Road, which consists of back yards of houses, suggesting these woodlands were mapped prior to development. Another green space extends as a corridor along Pine Creek that is 250 m to west.

2.8 GROUNDWATER SUPPLY WELLS

The surrounding vicinity is urbanized, so occupied properties are provided with piped municipal supplies sourced from Lake Ontario. The MECP database listings reported five local wells with a domestic supply purpose and three with a commercial purpose, but these wells were constructed during the early 1960's when the area was rural in character. These private supply wells are likely abandoned or demolished and so are not in use.

The site is shown as not being within a defined type of groundwater or surface water vulnerable area (MECP, 2019a).

3.0 FIELD PROGRAM

The following describes the methodology and locations of investigation in the field program. Observations are provided in Section 4 and interpretations are provided in Section 5.

3.1 DRILLING

Drilling programs were conducted at ten locations during 2 to 13 January and 2 to 8 February 2019 to serve the purposes of this hydrogeological review, the Phase Two environmental site assessment and the geotechnical assessment. The boreholes, with or without monitoring wells, were advanced to depth ranging from 4.0 to 16.8 mbg. Soils were logged in the field by a qualified geotechnical technician and then descriptions were confirmed by a Professional Engineer at Terrapex's Toronto facilities.

3.2 MONITORING WELLS

Monitoring wells were installed in nine of the ten borehole locations, with BH5 being a borehole without a well. Two locations, MW2 and MW4, were clustered pairs of wells with deep and shallow (A) screened intervals in adjacent separate boreholes. All of the other locations were single wells.

The well components and their relationships to adjacent stratigraphy are shown in the borehole records of Appendix III and their dimensions are reported in Table 1. The well locations and elevations were measured using a Topcon-500 GNSS device with centimetre-scale accuracy.

The monitoring wells were constructed using environmental grade, 50 mm diameter, Schedule 40, PVC piping with machine-slotted (10 slot) screens at the bottom. Each well was covered by a flush-mount casing.

Monitoring wells, when no longer useful, must eventually be abandoned by a licensed water well contractor. Abandonment must proceed in accordance with Regulation 903 and amendments issued under the Ontario Water Resources Act. The monitoring wells should remain until the time of construction to be available for observing future seasonal conditions and groundwater conditions closer to the time of construction for dewatering planning.

3.3 GROUNDWATER LEVELS MEASUREMENTS

Suites of groundwater levels were measured in the monitoring well network on 15 and 22 February and on 1 and 15 March 2019. Water levels were measured using an electric sounder device with a graduated tape. MW9 was measured less frequently due to its inaccessible location in an active restaurant's basement.

3.4 GROUNDWATER SAMPLING

The selected monitoring well for groundwater sampling was MW8. Fourteen well volumes were purged on February 15, 2019. The well was sampled using "low-flow" methodology with a peristaltic pump on March 15, 2019. Sample water was discharged directly without filtering to precleaned bottles supplied by the laboratory with preservatives as appropriate for parameters. These bottles were iced and held in a cooler prior to delivery.

The sample was submitted to ALS Canada of Mississauga (ALS), which is an independent laboratory and is certified by the Standards Council of Canada (SCC). ALS completed analysis for the suite of parameters specified under the municipal bylaw.

3.5 HYDRAULIC CONDUCTIVITY TESTS

Single well response tests to assess the hydraulic conductivity of adjacent formations were performed on the monitoring wells MW1, MW6, and MW8. The test method applied was a bail test, which is a rapid removal of a volume of water using an elongated bailer. The ensuing rising recovery to static level is observed over time. Data were analysed using the Aqtesolv software package by the Bouwer and Rice method.

4.0 **OBSERVATIONS**

4.1 SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY

Eight boreholes were advanced within or near to the area of the planned garage at broad distribution across the site. Two boreholes were drilled south of the planned garage. The subsurface conditions encountered at each borehole are detailed on the borehole records provided in Appendix III.

With respect to the planned construction, the vertical zone of most interest for hydrogeological conditions is the portion shallower than approximately 10.7 mbg. The following characterizes the hydrostratigraphy.

- <u>Fill</u>. A fill layer with variable texture extends from surface to a depth ranging from 0.7 to 1.5 mbg. The fill texture ranges from granular sand and gravel to silty clay, with brick inclusions at some locations.
- <u>Fine grained soils</u>. Below the fill, to depths shallower than approximately 6.0 mbg in the north and west and 5.0 m in the south and east, the subsurface is dominantly comprised of layers of silty clay, clay and silt and clay till. Such soil layers will exhibit relatively lower hydraulic conductivity. Also, this layer is at a shallower depth so is partially saturated and has relatively less piezometric pressure, so will seep lesser water quantity to the construction excavation and the foundation drain.
- <u>Moderate grained soils</u>. Below the fine-grained layer, the subsurface is dominantly sand till with silt, clay and gravel that is anticipated to exhibit moderate values of hydraulic conductivity. This layer is within the saturated zone below the water table, so will yield moderate quantities of seepage to the construction excavation and to the foundation drain.
- <u>Granular soils</u>. A lens of silty sand in MW3 and a lens of sand and gravel in BH5 were encountered. Such layers will exhibit relatively higher hydraulic conductivity. Where encountered and below the water table, such lenses will yield relatively higher rates of seepage to the construction excavation and to the foundation drain. Rates of discharge will be initially rapid, then lessen as the lens is drained and the surrounding lower hydraulic conductivity soil limits replenishment of the lens. It is anticipated that these lenses are not hydraulically connected to each other.
- <u>Shale.</u> The top of bedrock was encountered in MW3 at an elevation of 73.2 masl, and a corresponding depth of 15.3 mbg. The bedrock is weathered shale, which may have low to moderate hydraulic conductivity. Generally, bedrock is too deep to affect hydrogeological conditions related to the planned development at the site.

The above stratigraphic description is a generalization. Variations could occur in thickness, depth, presence and texture of units. Constructors and dewatering contractors should review the nearest borehole records for specific locations and if necessary, drill to confirm conditions if critical to their activities. Internal sand lenses and clayey lenses not so far encountered are also possible.

Grain size analyses (Alston Associates, 2019) were conducted on selected samples from MW3, MW5 and MW6 had combined silt and clay contents of 40%, 30% and 98%, respectively.

4.2 GROUNDWATER LEVELS

Groundwater level observations are presented as depth and as elevations on Table 2. The water table is indicated in wells MW2(A), MW4(A), MW7, MW8, and MW10. Piezometric pressures are indicated by MW1, MW2, MW3, MW4, and MW6.

The average depth to the water table was 2.3 mbg. The shallowest depth was in MW7 at 1.5 mbg and the greatest depth was in MW1 at 3.8 mbg. The average elevation of the water table was at 87.4 masl. The highest elevation was in MW4A at 87.8 masl. The lowest elevation was in MW2A at 86.9 masl.

The deeper piezometers at the MW2 and the MW4 clusters had groundwater elevations that were approximately 0.4 m and 0.8 m lower than in the adjacent shallower piezometers, respectively.

Groundwater levels naturally fluctuate in response to seasons, to annual variations and possibly to major storm events. The measurements reported herein occurred during later winter (February and March) which is usually near to the highest elevation (shallowest depth) period in a typical annual cycle. It is probable that the water table elevation could still rise further (become shallower depth) during early spring or in a wetter-than-average season.

5.0 ANALYSIS

5.1 HYDRAULIC CONDUCTIVITY

Hydraulic conductivity is a parameter for quantifying the ability of a soil unit to transmit water. This parameter is necessary for predicting the rate of seepage into excavations to be intercepted or collected by dewatering efforts during construction.

The bail tests were interpreted and analysis curves are presented in Appendix V. The resulting interpreted hydraulic conductivity values for MW1, MW6, and MW8 were $1x10^{-6}$ m/s, $3x10^{-6}$ m/s, and $3x10^{-6}$ m/s, respectively.

Grain size analysis can sometimes be used to interpret a hydraulic conductivity using the Hazen formula that is a function of the d_{10} value, which is the size fraction below 10% by weight. This formula is applicable for silt and coarser sediments. However, the samples from MW3 and MW5 had d_{10} values of approximately 0.0015 mm, which is below the applicable range for the Hazen formula. The sample from MW6 was from above the water table, so was not applicable. Grain-size distribution curves are provided in Appendix III.

5.2 HYDRAULIC GRADIENT

The water table surface is commonly a subdued reflection of the overlying ground surface with shallow groundwater movement parallel to the overlying general grade and toward watercourses.

Based on this interpretation and local topography, shallow groundwater in the vicinity of the site would be anticipated to move southwestward.

The groundwater elevations for the shallow monitoring wells (MW4A, MW7, MW8, MW9, and MW10) were interpreted to indicate a horizontal hydraulic gradient of approximately 0.003 m/m and a direction of movement toward the southwest. It is noted that the groundwater elevations were very similar, within 0.25 m, which are minor differences for this scale of site and possibly might not reflect the groundwater flow direction. The groundwater elevation for MW2(A) was disregarded as an outlier. The groundwater elevations for the deeper piezometers (MW1, MW2, MW3, MW4, and MW6) were interpreted to indicate a horizontal hydraulic gradient of approximately 0.03 and a direction of movement toward the west. The contours are shown on Figure 5.

The vertical hydraulic gradients were measured at the MW2 and MW4 clusters. The consistent directions are downward, with one exception. The average magnitudes of the vertical gradients at MW2 and MW4 were approximately 0.05 and 0.13 m/m, respectively. The exception was at MW2 on 22 February 2019 when an upward gradient was indicated, but may be an erroneous reading that will be verified by longer-term monitoring.

Local variations in topography, soil type and buried utilities trenches can influence the direction of the horizontal gradient.

5.3 GROUNDWATER QUALITY

Concentrations of tested parameters as reported by ALS for the sample obtained from MW8 are provided in Table 3. The Certificate of Analysis as issued by the laboratory is provided in Appendix IV. Water quality was compared to criteria in the Regional Municipality of Durham's By-Law No. 55-2013 that regulates discharges to sanitary/combined sewer and storm sewer.

Groundwater quality was acceptable with respect to the criteria for the sanitary/combined sewers.

Groundwater quality was acceptable with respect to criteria for the storm sewers, with the exception of total suspended solids (TSS). The concentration was 15.4 mg/L, as compared to the storm sewer criterion of 15 mg/L.

A datalogger was installed on 15 March 2019 in MW6, MW1 and MW8 that recorded groundwater temperatures of 12.6, 11.6 and 11.8°C, respectively.

5.4 BUILDING GEOMETRY AND HYDROGEOLOGY

The parking garage will extend to three levels. The design plan will set the foundation slab be at a depth of 9.2 mbg. Assuming that a representative elevation for the site is at 89.2 masl, then the P3 level slab will be at approximately 80.0 masl.

Building footings are typically constructed to 1.5 m below the slab level. Similarly, an elevator core is typically set approximately 1.5 m below the foundation slab. These features suggest a probable excavation elevation of approximately 78.5 masl.

The shallowest water table was at an elevation of approximately 87.8 masl. Thus, the construction excavation and finished garage will be significantly set below the water table into the saturated zone, so will require dewatering during construction and to the foundation drains over the long-term.

The planned development will include buried municipal infrastructure, such as piped sanitary sewer, storm sewer and potable water. Construction will require excavation trenches, for which the depths are presently not determined. Seepage management should be anticipated for safe installation of this infrastructure in dry conditions, unless markedly shallower than the average water table at 2.1 mbg.

The saturated soils within the planned depth of excavation consists of layers of varying hydraulic conductivity through which seepage inflows will vary. Calculations of groundwater inflows are provided in Section 6.

6.0 DEWATERING

6.1 RATE PREDICTION

The MECP requires a Permit to Take Water (PTTW) or an Environmental Activity and Sector Registry (EASR) for groundwater takings exceeding 50,000 litres per day (L/day). For the purpose of construction, a PTTW is required for dewatering extraction rates that exceed 400,000 L/day. An EASR is required for a rate between 50,000 and 400,000 L/day.

Estimation of the rate of dewatering to counteract groundwater inflows is based on mathematical analogy to a simplified, elongated rectangular trench excavation (Powers et al., 2007) with an approximate area of 7,260 m² for the three subsurface levels. The calculations anticipate that the groundwater regime will behave similarly to an unconfined aquifer. The formula, anticipated geometric conditions and values used are specified on Table 4. A hydraulic conductivity value of 3×10^{-6} m/s was used. The calculations predict a possible seepage at a maximum rate of 621,000 litres per day. This rate indicates that a PTTW will be required for construction.

The methods of dewatering of adjacent soils, such as by wellpoints or by collection from sumps should be decided by the construction and dewatering contractors.

The open excavation will capture incident precipitation. The excavation area of 7,260 m² and a relatively large precipitation event of 25 mm will capture approximately 181,450 litres. Such rain events are anticipated to recur four to five times per year. Obviously, larger precipitation events would produce larger amounts to manage, although occurring less frequently. The precipitation amount must be added to the groundwater seepage amount in the PTTW, which should be approximately 802,400 litres per day.

The volume of seepage that could need to be managed by the finished building foundation drains was calculated similarly as for the construction excavation. The depth of foundation drain was set at 0.3 m below the P3 foundation slab. The foundation drains may collect up to 593,600 litres per

day in post-construction. The calculations assume there are no contributions by stormwater or from a low impact development infiltration measure.

The calculations are based on conservative assumptions that predict relatively high rates that are less likely, but remain possible. The hydraulic conductivity that is the highest observed was input, whereas lower hydraulic conductivity conditions are more likely to prevail. The highest water table observed was applied, but lower elevations will be more common at other times of the year, at depth, and across site. The estimated rate incorporates a factor of safety of 2.0 to allow for unknown conditions, such as a permeable soil horizon between boreholes or just beyond the excavation walls.

The cumulative amount pumped from excavations should be monitored daily to confirm that the requested pumping rate limit stated in the PTTW is not exceeded. Approval must be obtained from the Durham Region to allow dewatering discharge to the storm sewer or to the sanitary sewer, if this type of outlet is proposed as a receiver.

6.2 RADIUS OF INFLUENCE AND SENSITIVE RECEIVERS

The radius of influence is the distance range beyond which the drawdown on groundwater caused by dewatering is not expected to be detectable. The radius of influence is commonly estimated using the formula of Sichart and Kryieleis (Powers et al, 2007), which is noted in Table 4. The radius of influence predicted here is approximately 56 m beyond the excavation boundary.

No off-site ecologically sensitive receivers or private water supply wells exist within the radius of influence that could be negatively affected by dewatering. Residences and commercial buildings to the west, north and east are in proximity and should be monitored prior to and during construction in case of claims of adverse effects.

6.3 WATER QUALITY OF DISCHARGE

As noted in Section 5.3, the reported groundwater quality can be discharged to a sanitary/combined sewer. The reported groundwater quality can be discharged to a storm sewer with treatment for total suspended solids (TSS).

The elevated concentration of TSS is likely due to sampling from a monitoring well screen completed in silty and clayey soil. Most of the shallow subsurface has fine-grained texture, so may be anticipated to produce waters with elevated suspended solids. Construction should anticipate the requirement to filter and/or settle water to meet the discharge criterion. Dewatering extraction systems should be thoroughly developed prior to connection to sewers to reduce the production of particulates and the mining out / erosion of adjacent soils. Similarly, the foundation base should be designed using structures, materials and/or coating that prevent the mining out / erosion of adjacent soils over the long term.

The water quality of discharge should be monitored regularly during construction. Land uses that are sometimes associated with groundwater contamination include dry cleaners and gas stations. A dry cleaner is approximately upgradient of the site at 1794 Liverpool Road. Other dry cleaners

are located at 1298 Kingston Road and 1792 Liverpool Road. Gas stations are located at 1299 Kingston Road within 100 m of the site and at 1799 Liverpool Road. Some Potentially Contaminating Activities (PCAs) were identified in the Phase One ESA (Terrapex, 2019). These cautions being said, there was no indication of fuel or other industrial contamination in the groundwater sample obtained on site or by the Phase Two Environmental Site Assessment (Terrapex, 2019).

7.0 WATER BALANCE ASPECTS

Precipitation incident to a pervious soil surface infiltrates to move through the unsaturated zone and then recharges the shallow groundwater. In turn, shallow groundwater moves toward a watercourse to contribute to baseflow or to replenish aquifers. Impervious surfaces, such as buildings or paving, prevent infiltration and precipitation becomes runoff directed to storm sewers.

The pre-construction existing site consists of buildings with paved asphalt open-air parking areas. The post-construction site will be occupied by proposed new buildings, the retained heritage building, the underground parking garage, driving lands, surface parking, paved pedestrian areas and landscaped areas. Both pre-construction and post-construction land uses are dominantly impervious, so there will be negligible change to the annual recharge to the shallow groundwater regime at the site.

Low impact development (LID) measures to promote infiltration are not feasible at the northern and central parts of the site. The northern and central parts of the site will consist of the impervious parking garage up to the property line and infiltration should not be located above or within 4 m from the footprint of the parking garage. This leaves a southern portion that is within approximately 25 m of the southern property line (southern portion) that is not underlain by the parking garage or within 4 m of the garage. Pavers and planters to be located above the parking garage would not contribute to groundwater recharge.

The portion of the site that is south of the parking garage will be unsuitable for a buried chamber style LID measure, if such were being considered. Practice guidelines (Government of Ontario, 2003) require a minimum 1.0 m vertical gap between the base of a buried chamber / gallery infiltration system and the annual high water table. The shallowest water table in the southern part of the site, as indicated at MW7, was at 1.5 m bg. The combined thickness of asphalt and sub-base for a parking area typically require a vertical span of at least 0.5 m. Thus, the vertical gap between the sub-base and the water table is approximately 0.5 m, which is insufficient vertical span for a buried infiltration system.

Permeable pavers or planters would be feasible in the area beyond 4 m south of the parking garage but clayey soils here will naturally limit the amount that can be infiltrated.

8.0 CLOSURE

This hydrogeological review was prepared in accordance with the terms of reference for this project as agreed upon by Altona Group and generally accepted engineering or environmental consulting practices in this area. The reported information is believed to provide a reasonable representation of the general environmental conditions at the site, however, the data were collected at specific locations and conditions may vary at other locations.

This report has been prepared for the sole use of the Altona Group. Terrapex Environmental Ltd. accepts no liability for claims arising from the use of this report, or from actions taken or decisions made as a result of this report, by parties other than the Altona Group.

Respectfully submitted,

Brian Theimer, M. SBIANPOGENEIMER Senior Hydrogeologist

9.0 **REFERENCES**

Alston Associates. March 1, 2019. Geotechnical Investigation Report, Proposed Mixed-Use Development. 1294 Kingston Road, 1848 and 1852 Liverpool Road, Pickering, Ontario (draft). File CA18-204.

R. Allan Freeze and John A. Cherry. 1979. Groundwater.

Government of Ontario. 2003. Stormwater management planning and design manual.

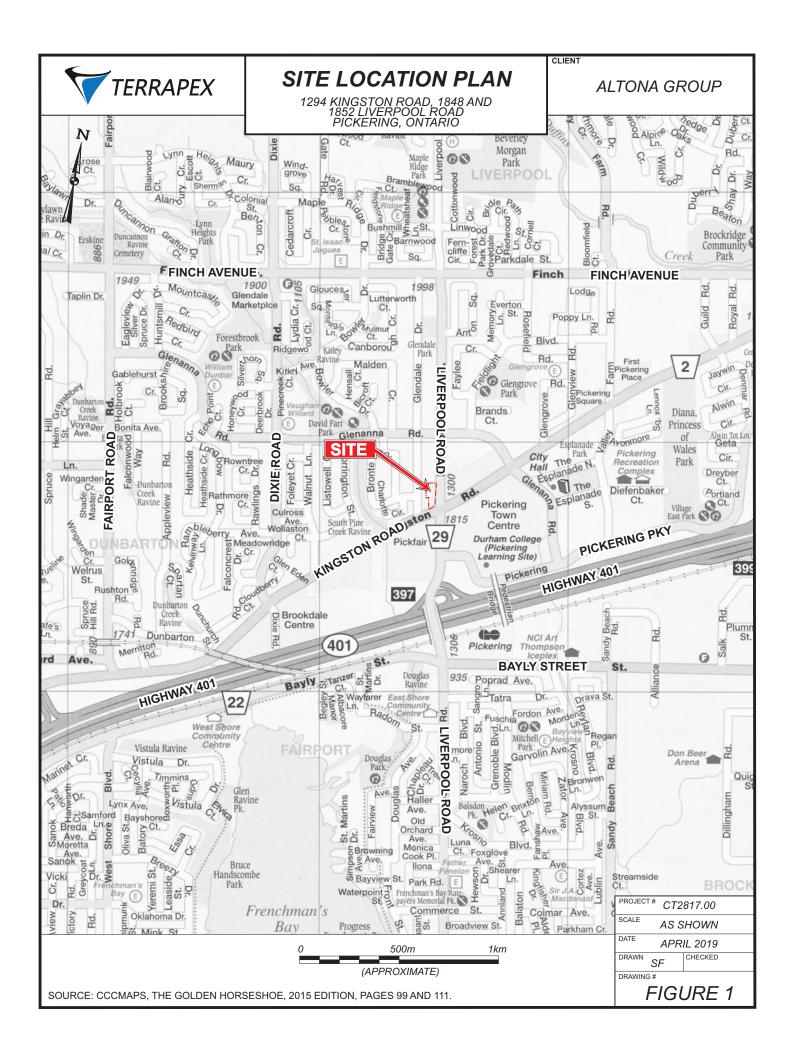
Kirkor Architects + Planners. May 6, 2019. Old Liverpool House. 1294 Kingston Road and Liverpool Road. Site Survey (Z1.2). Site Plan (Z1.3). Floor Plan- Level P1 (Z2.0, Z2.1).

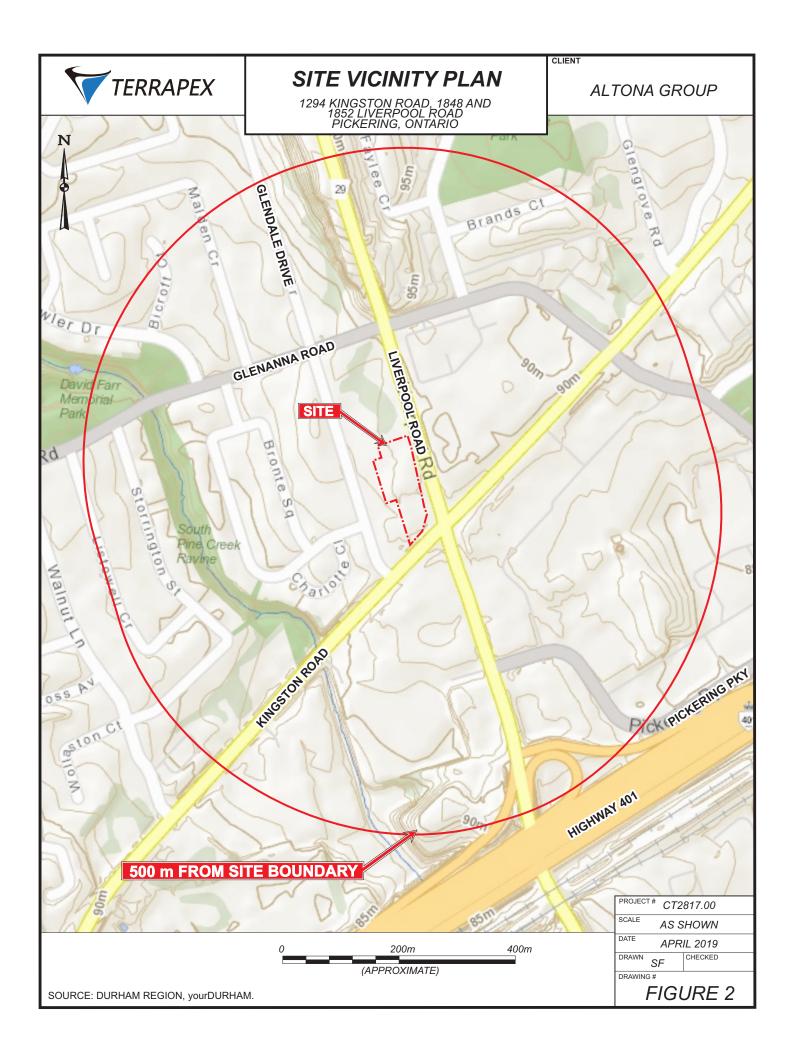
Ministry of Environment, Conservation and Parks. 2019a. Source Protection Information Atlas. Interactive mapping application on the internet.

Ministry of Environment, Conservation and Parks. 2019b. Water well database listings.

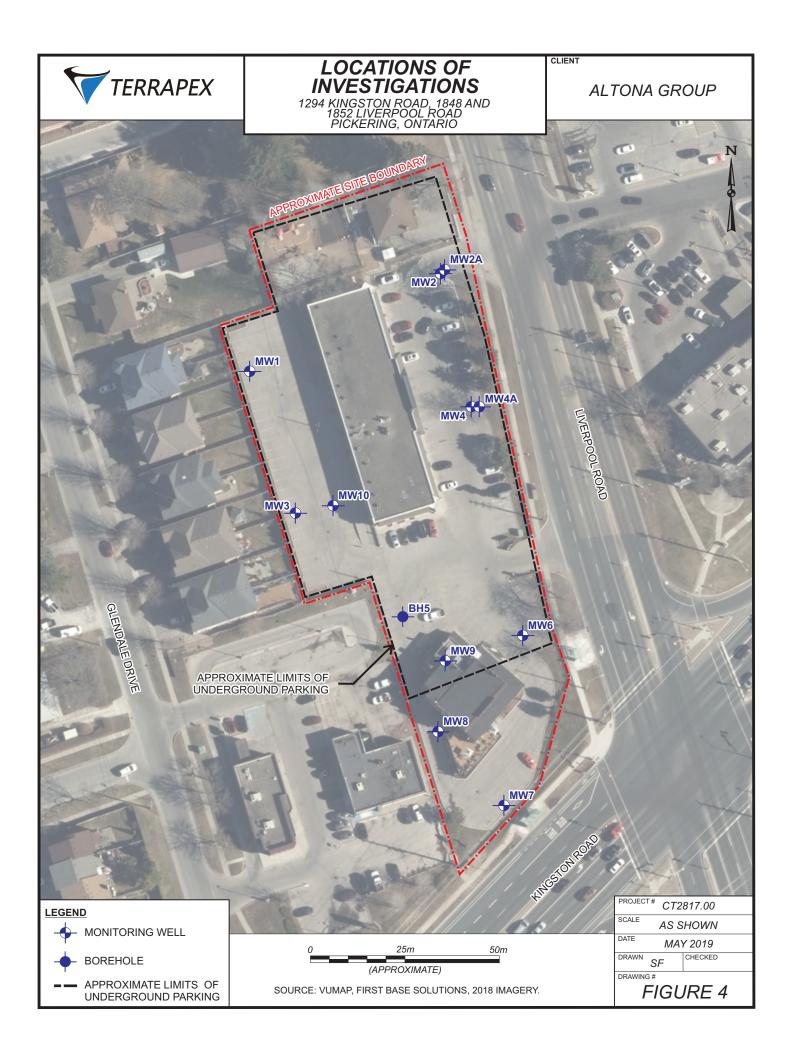
Ministry of the Natural Resources and Forestry. 2019. "Make a Natural Heritage Map". Interactive mapping application on Internet.

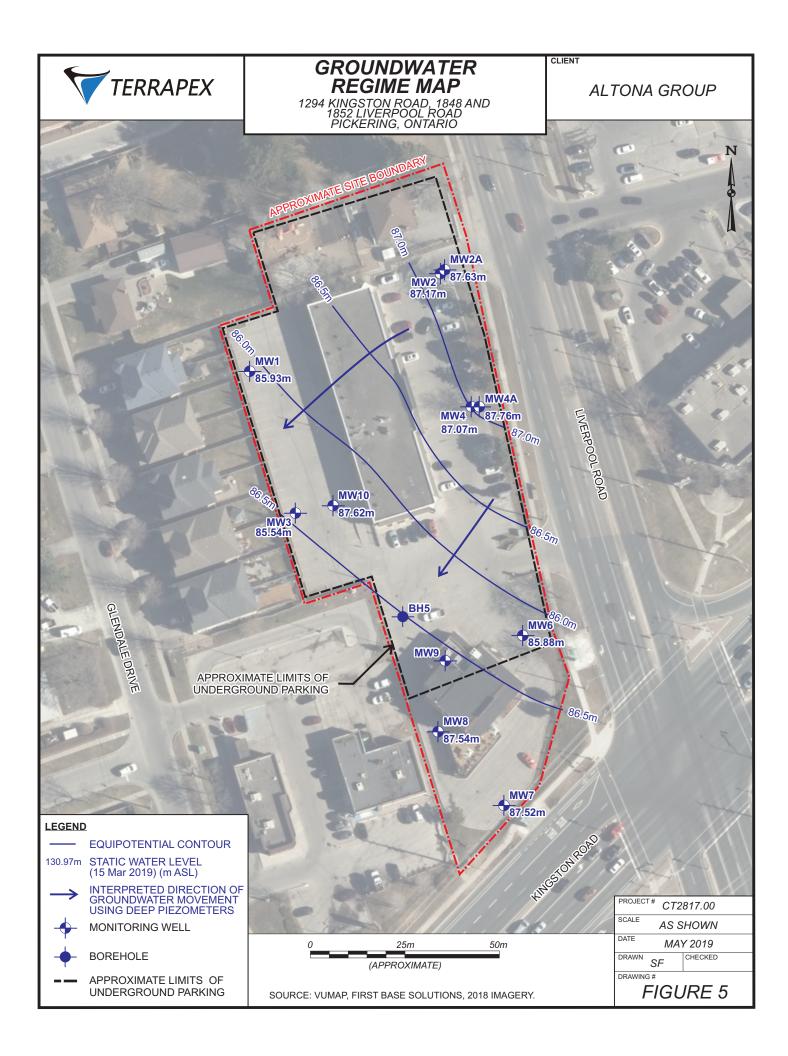
Ontario Geological Survey. 2010. MRD-128. Surficial geology of Southern Ontario. Referenced to Google Earth.


Ontario Geological Survey. 2007. MRD-219. Paleozoic geology of southern Ontario. Referenced to Google Earth.


J. Patrick Powers, Arthur Corwin, Paul Schmall, Walter Kaeck. 2007. Construction Dewatering and Groundwater Control. Third Edition.

Terrapex Environmental Ltd. April 8, 2019. Phase Two Environmental Site Assessment. (draft). 1294 Kingston Road, 1848 and 1852 Liverpool Road, Pickering, Ontario (draft). File CA18-204. File CT2817.


APPENDICES


Appendix I Figures

Appendix II Tables TABLE 1 Monitoring Well Construction Details 1294 Kingston Road, 1848 and 1852 Liverpool Road, Pickering

Position and Depth

Well Desig.	UTM	UTM	Date of	Stick	Depth of	Depth to	Screen	Depth to		Depth to Depth to
	Easting	Northing	Construct	Down	Borehole	Well	Length	Screen	Screen	Top Sand
						Bottom		Bottom	Тор	
(m)	(m)	(m)		(m)	(m bg)	(m bg)	(m)	(m bg)	(m bg)	(m bg)
MW1	653399	4855495	13-Jan-19	0.09	15.30	12.29	1.50	12.19	10.69	10.4
MW2	653450	4855523	07-Feb-19	0.13	14.20	12.87	1.50	12.77	11.27	11.0
MW2(A)	653450	4855523	08-Feb-19	0.09	5.20	5.20	3.00	5.10	2.10	1.8
MW3	653412	4855458	07-Jan-19	0.08	16.80	10.80	3.00	10.70	7.70	7.4
MW4	653460	4855487	02-Jan-19	0.21	16.80	11.00	1.50	10.90	9.40	9.1
MW4(A)	653460	4855487	02-Jan-19	0.16	4.50	4.50	1.50	4.40	2.90	2.6
MW6	653473	4855427	02-Feb-19	0.12	14.30	12.32	1.50	12.22	10.72	10.4
MW7	653469	4855382	07-Feb-19	0.15	15.30	4.97	3.00	4.87	1.87	1.6
MW8	653451	4855401	07-Feb-19	0.11	6.10	6.10	3.00	6.00	3.00	2.7
6MM	653452	4855416	31-Mar-19	0.10	3.94	3.94	3.00	3.84	0.84	0.5
MW 10	653422	4855460	07-Feb-19	0.11	6.00	5.16	3.00	5.06	2.06	1.8

Key Elevations

Well Desig.	Ground	End of	Top of Pipe	Screen	Screen
	Elev.	Borehole	Elev.	Bottom	Top Elev.
		Elev.		Elev.	
	(m asl)	(m asl)	(m asl)	(m asl)	(m asl)
MW1	89.69	74.39	09.68	77.50	79.00
MW2	90.63	76.43	90.50	77.86	79.36
MW2(A)	90.62	85.42	90.53	85.52	88.52
MW3	89.45	72.65	89.37	78.75	81.75
MW4	90.20	73.40	89.98	79.30	80.80
MW4(A)	90.23	85.73	90.07	85.83	87.33
MW6	89.68	75.38	89.56	77.46	78.96
MW7	89.02	73.72	88.87	84.15	87.15
MW8	89.22	83.12	89.11	83.22	86.22
6MM	87.70	83.76	87.60	83.86	86.86
MW10	89.48	83.48	89.37	84.42	87.42

<u>Notes:</u> 1. m asl = metres above sea level 2. m bg = metres below ground (or grade) 3. UTM locations measured by GNSS device 4. Elevations interpolated from survey points

TABLE 2

Observed Groundwater Levels 1294 Kingston Road, 1848 and 1852 Liverpool Road, Pickering

Desig. Elev. (m asl) Elev. (m asl) Depth (m bg) Depth (m bg) Depth (m bg) Elev. (m bg) Elev. (m asl) MW1 15-Feb-19 89.69 89.60 12.29 3.20 3.29 86.41 22-Feb-19 01-Mar-19 3.36 3.45 86.24 15-Mar-19 3.67 3.76 85.93 MW2 15-Feb-19 90.63 90.50 12.87 3.49 3.62 87.01 22-Feb-19 3.37 3.50 87.14 3.55 3.68 86.95 15-Mar-19 90.62 90.53 5.20 3.21 3.30 87.32 MW2(A) 15-Feb-19 90.62 90.53 5.20 3.21 3.30 87.32 15-Mar-19 22-Feb-19 3.67 3.68 3.76 86.69 15-Mar-19 89.45 89.37 10.80 3.68 3.76 85.69 MW3 15-Feb-19 89.45 89.37 10.80 3.68 3.76 85.64	Well	Date	Ground	Top Pipe	Well	Ground	lwater	Groundwater
MW1 15-Feb-19 89.69 89.60 12.29 3.20 3.29 86.41 19 14-Mar-19 3.36 3.45 86.24 3.77 3.86 85.83 15-Mar-19 90.63 90.50 12.87 3.49 3.62 87.01 22-Feb-19 90.63 90.50 12.87 3.49 3.62 87.01 22-Feb-19 90.62 90.53 5.20 3.21 3.30 87.32 MW2(A) 15-Feb-19 90.62 90.53 5.20 3.21 3.30 87.32 15-Mar-19 90.62 90.53 5.20 3.21 3.30 87.32 15-Mar-19 90.62 90.53 5.20 3.67 3.76 86.87 15-Mar-19 90.62 90.53 5.20 3.21 3.30 87.32 15-Mar-19 89.45 89.37 10.80 3.68 3.76 85.69 22-Feb-19 01-Mar-19 3.23 3.45 86.73 3.23 3.	Desig.		Elev.	Elev.	Depth	Dep	oth	Elev.
22-Feb-19 01-Mar-19 15-Mar-19 3.36 3.67 3.45 3.77 8.62 3.77 MW2 15-Feb-19 01-Mar-19 15-Mar-19 90.63 90.50 90.50 12.87 3.49 3.37 3.62 3.55 87.14 3.55 MW2(A) 15-Feb-19 01-Mar-19 15-Mar-19 90.62 90.53 5.20 3.21 3.30 87.32 86.87 MW2(A) 15-Feb-19 01-Mar-19 15-Mar-19 90.62 90.53 5.20 3.21 3.30 87.32 86.87 MW3 15-Feb-19 01-Mar-19 15-Mar-19 90.62 90.53 5.20 3.21 3.30 87.32 86.87 MW3 15-Feb-19 15-Mar-19 89.45 89.37 10.80 3.68 3.76 85.69 85.40 MW4 15-Feb-19 15-Mar-19 90.20 89.98 11.00 3.26 3.48 86.73 86.70 MW4 15-Feb-19 15-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 87.60 MW4(A) 15-Feb-19 15-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 87.60 MW4(A) 15-Feb-19 15-Mar-19 89.6			(m asl)	(m asl)	(m bg)	(m bmp)	(m bg)	(m asl)
01-Mar-19 15-Mar-19 3.77 3.67 3.86 3.67 85.83 3.76 MW2 15-Feb-19 22-Feb-19 01-Mar-19 15-Mar-19 90.63 90.50 90.50 12.87 3.49 3.37 3.60 3.55 87.14 3.37 MW2(A) 15-Feb-19 15-Mar-19 90.62 90.53 5.20 3.21 3.67 3.76 86.87 86.97 MW2(A) 15-Feb-19 01-Mar-19 15-Mar-19 90.62 90.53 5.20 3.21 3.67 3.76 3.68 87.32 3.31 MW3 15-Feb-19 01-Mar-19 89.45 89.37 10.80 3.68 3.76 3.76 85.69 MW3 15-Feb-19 01-Mar-19 89.45 89.37 10.80 3.68 3.76 3.45 86.73 MW4 15-Feb-19 01-Mar-19 90.20 89.98 11.00 3.26 3.23 3.45 86.75 MW4(A) 15-Feb-19 15-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 87.60 MW4(A) 15-Feb-19 15-Mar-19 89.68 89.56 12.32 3.58 3.70 35.98 8.88 4.00 8.88 4.00 8.68 85.69 9.23 MW6 15-Feb-19 15-Mar-19 89.02 88.87 4.	MW1	15-Feb-19	89.69	89.60	12.29	3.20	3.29	86.41
15-Mar-19 3.67 3.76 85.93 MW2 15-Feb-19 90.63 90.50 12.87 3.49 3.62 87.01 MW2 15-Feb-19 90.63 90.50 12.87 3.49 3.62 87.01 MW2(A) 15-Feb-19 90.62 90.53 5.20 3.21 3.30 87.32 MW2(A) 15-Feb-19 90.62 90.53 5.20 3.21 3.30 87.32 22-Feb-19 01-Mar-19 2.90 2.99 87.63 MW3 15-Feb-19 89.45 89.37 10.80 3.68 3.76 85.69 22-Feb-19 01-Mar-19 3.83 3.91 85.54 MW4 15-Feb-19 90.20 89.98 11.00 3.26 3.48 86.73 22-Feb-19 01-Mar-19 2.91 3.13 87.07 MW4 15-Feb-19 90.20 89.98 11.00 3.26 3.48 86.73 22-Feb-19 01-Mar-19 2.91		22-Feb-19				3.36	3.45	86.24
MW2 15-Feb-19 22-Feb-19 01-Mar-19 15-Mar-19 90.63 90.63 90.50 90.50 12.87 3.37 3.49 3.37 3.62 3.68 87.01 86.95 MW2(A) 15-Feb-19 22-Feb-19 01-Mar-19 90.62 90.53 5.20 3.21 3.30 87.32 MW2(A) 15-Feb-19 15-Mar-19 90.62 90.53 5.20 3.21 3.30 87.32 MW3 15-Feb-19 01-Mar-19 89.45 89.37 10.80 3.68 3.76 85.69 22-Feb-19 01-Mar-19 89.45 89.37 10.80 3.68 3.76 85.69 MW3 15-Feb-19 01-Mar-19 90.20 89.98 11.00 3.26 3.48 86.73 MW4 15-Feb-19 01-Mar-19 90.20 89.98 11.00 3.26 3.48 86.73 3.12 3.34 86.71 3.13 87.07 MW4(A) 15-Feb-19 01-Mar-19 90.07 4.50 2.28 2.44 87.80 2.2-Feb-19 01-Mar-19 90.23 90.07 4.50 2.28 2.44 87.60		01-Mar-19				3.77	3.86	85.83
22-Feb-19 01-Mar-19 15-Mar-19 3.37 3.50 3.714 3.55 MW2(A) 15-Feb-19 22-Feb-19 01-Mar-19 90.62 90.53 5.20 3.21 3.67 3.30 87.32 MW3 15-Feb-19 01-Mar-19 90.62 90.53 5.20 3.21 3.67 3.76 86.87 MW3 15-Feb-19 01-Mar-19 89.45 89.37 10.80 3.68 3.76 85.69 MW3 15-Feb-19 01-Mar-19 89.45 89.37 10.80 3.68 3.76 85.69 A.11 4.19 85.26 3.98 4.06 85.40 MW4 15-Feb-19 15-Mar-19 90.20 89.98 11.00 3.26 3.48 86.73 MW4 15-Feb-19 15-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 MW4(A) 15-Feb-19 22-Feb-19 90.23 90.07 4.50 2.28 2.44 87.80 MW4 15-Feb-19 22-Feb-19 90.88 89.56 12.32 3.58 3.70 85.98 15-Mar-19		15-Mar-19				3.67	3.76	85.93
01-Mar-19 15-Mar-19 90.62 90.53 5.20 3.21 3.30 87.32 MW2(A) 15-Feb-19 01-Mar-19 90.62 90.53 5.20 3.21 3.30 87.32 MW3 15-Feb-19 01-Mar-19 90.62 90.53 5.20 3.21 3.30 87.32 MW3 15-Feb-19 01-Mar-19 89.45 89.37 10.80 3.68 3.76 85.69 MW3 15-Feb-19 01-Mar-19 89.45 89.37 10.80 3.68 3.76 85.69 MW4 15-Feb-19 90.20 89.98 11.00 3.26 3.48 86.73 MW4 15-Feb-19 90.20 89.98 11.00 3.26 3.48 86.73 15-Mar-19 90.20 89.98 11.00 3.26 3.48 86.73 MW4 15-Feb-19 90.23 90.07 4.50 2.28 2.44 87.80 22-Feb-19 91-Mar-19 2.31 2.47 87.63 87.69 15-Mar-19 <td< td=""><td>MW2</td><td>15-Feb-19</td><td>90.63</td><td>90.50</td><td>12.87</td><td>3.49</td><td>3.62</td><td>87.01</td></td<>	MW2	15-Feb-19	90.63	90.50	12.87	3.49	3.62	87.01
15-Mar-19 3.33 3.46 87.17 MW2(A) 15-Feb-19 90.62 90.53 5.20 3.21 3.30 87.32 22-Feb-19 01-Mar-19 3.22 3.31 87.32 3.67 3.76 86.87 01-Mar-19 15-Mar-19 2.90 2.99 87.63 MW3 15-Feb-19 89.45 89.37 10.80 3.68 3.76 85.69 22-Feb-19 01-Mar-19 3.83 3.91 85.26 01-Mar-19 3.83 3.91 85.64 22-Feb-19 01-Mar-19 3.83 3.91 85.64 MW4 15-Feb-19 90.20 89.98 11.00 3.26 3.48 86.73 3.12 3.34 86.87 3.12 3.34 86.87 01-Mar-19 22-Feb-19 0.23 90.07 4.50 2.28 2.44 87.80 01-Mar-19 22-Feb-19 0.1-Mar-19 2.31 2.47 87.63 87.60 01-Mar-1						3.37	3.50	87.14
MW2(A) 15-Feb-19 22-Feb-19 01-Mar-19 15-Mar-19 90.62 90.53 90.53 5.20 3.21 3.67 3.30 3.67 87.32 3.67 MW3 15-Feb-19 22-Feb-19 01-Mar-19 89.45 89.37 10.80 3.68 3.76 85.69 MW3 15-Feb-19 01-Mar-19 89.45 89.37 10.80 3.68 3.76 85.69 MW4 15-Feb-19 15-Mar-19 90.20 89.98 11.00 3.26 3.48 86.73 MW4 15-Feb-19 15-Mar-19 90.20 89.98 11.00 3.26 3.48 86.73 MW4 15-Feb-19 15-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 MW4(A) 15-Feb-19 22-Feb-19 01-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 MW6 15-Feb-19 22-Feb-19 01-Mar-19 90.68 89.56 12.32 3.58 3.70 85.98 MW6 15-Feb-19 15-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 15-Mar-19		01-Mar-19				3.55	3.68	86.95
22-Feb-19 01-Mar-19 15-Mar-19 89.45 89.37 10.80 3.67 3.22 3.76 3.31 87.32 87.32 MW3 15-Feb-19 22-Feb-19 01-Mar-19 89.45 89.37 10.80 3.68 3.76 85.69 MW4 15-Feb-19 01-Mar-19 90.20 89.98 11.00 3.26 3.48 86.73 MW4 15-Feb-19 01-Mar-19 90.20 89.98 11.00 3.26 3.48 86.73 MW4 15-Feb-19 01-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 MW4(A) 15-Feb-19 01-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 MW4(A) 15-Feb-19 01-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 MW6 15-Feb-19 01-Mar-19 89.68 89.56 12.32 3.58 3.70 85.98 3.68 3.80 85.89 3.68 3.80 85.69 22-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 <td< td=""><td></td><td>15-Mar-19</td><td></td><td></td><td></td><td>3.33</td><td>3.46</td><td>87.17</td></td<>		15-Mar-19				3.33	3.46	87.17
01-Mar-19 15-Mar-19 89.45 89.37 10.80 3.68 3.68 3.76 3.98 85.69 4.11 MW3 15-Feb-19 01-Mar-19 15-Mar-19 89.45 89.37 10.80 3.68 3.98 3.76 4.11 85.26 4.11 MW4 15-Feb-19 01-Mar-19 90.20 89.98 11.00 3.26 3.23 3.48 3.45 86.73 3.23 MW4 15-Feb-19 01-Mar-19 90.20 89.98 11.00 3.26 3.23 3.44 3.45 86.73 3.23 MW4(A) 15-Feb-19 01-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 2.47 MW4(A) 15-Feb-19 15-Mar-19 90.23 90.07 4.50 2.28 2.47 2.63 87.69 2.31 87.60 2.47 MW6 15-Feb-19 15-Mar-19 89.68 89.56 12.32 3.58 3.80 3.70 85.98 3.88 85.69 3.88 MW7 15-Feb-19 15-Mar-19 89.02 88.87 4.97 1.70 1.73 1.88 87.14 1.61 1.76	MW2(A)		90.62	90.53	5.20			
15-Mar-19 2.90 2.99 87.63 MW3 15-Feb-19 89.45 89.37 10.80 3.68 3.76 85.69 22-Feb-19 01-Mar-19 3.98 4.06 85.40 15-Mar-19 3.98 4.06 85.40 15-Mar-19 90.20 89.98 11.00 3.26 3.48 86.73 MW4 15-Feb-19 90.20 89.98 11.00 3.26 3.48 86.73 15-Mar-19 90.20 89.98 11.00 3.26 3.48 86.73 15-Mar-19 90.20 89.98 11.00 3.26 3.48 86.73 MW4(A) 15-Feb-19 90.23 90.07 4.50 2.28 2.44 87.80 22-Feb-19 01-Mar-19 2.39 2.55 87.69 2.39 2.55 87.69 15-Mar-19 89.68 89.56 12.32 3.58 3.70 85.98 MW6 15-Feb-19 89.68 89.56 12.32								
MW3 15-Feb-19 22-Feb-19 01-Mar-19 15-Mar-19 89.45 89.37 10.80 3.68 4.11 3.76 4.11 85.26 85.40 MW4 15-Feb-19 15-Mar-19 90.20 89.98 11.00 3.26 3.23 3.48 3.45 86.73 86.75 MW4 15-Feb-19 15-Mar-19 90.20 89.98 11.00 3.26 3.23 3.48 86.75 MW4(A) 15-Feb-19 15-Mar-19 90.23 90.07 4.50 2.28 2.47 2.44 87.80 MW4(A) 15-Feb-19 22-Feb-19 01-Mar-19 90.23 90.07 4.50 2.28 2.47 2.47 87.76 MW6 15-Feb-19 15-Mar-19 89.68 89.56 12.32 3.58 3.88 3.70 4.00 85.69 3.88 MW6 15-Feb-19 15-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 22-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 22-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 1.73 89.02 88.87		1					3.31	
22-Feb-19 01-Mar-19 30.0 4.11 4.19 3.98 85.26 MW4 15-Feb-19 22-Feb-19 90.20 89.98 11.00 3.26 3.48 86.73 MW4 15-Feb-19 22-Feb-19 90.20 89.98 11.00 3.26 3.48 86.73 MW4 15-Feb-19 22-Feb-19 90.20 89.98 11.00 3.26 3.48 86.73 MW4(A) 15-Feb-19 90.23 90.07 4.50 2.28 2.44 87.80 22-Feb-19 90.23 90.07 4.50 2.28 2.44 87.80 22-Feb-19 90.23 90.07 4.50 2.28 2.44 87.80 22-Feb-19 91.5-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 22-Feb-19 91.5-Mar-19 90.23 90.07 4.50 2.47 2.63 87.60 01-Mar-19 3.88 89.56 12.32 3.58 3.70 85.98 22-Feb-19 3.68 3.80		15-Mar-19				2.90	2.99	87.63
01-Mar-19 15-Mar-19 90.20 89.98 11.00 3.26 3.83 3.48 3.91 85.54 MW4 15-Feb-19 22-Feb-19 01-Mar-19 15-Mar-19 90.20 89.98 11.00 3.26 3.23 3.48 3.45 86.73 86.75 MW4(A) 15-Feb-19 22-Feb-19 01-Mar-19 90.23 90.07 4.50 2.28 2.44 2.44 87.80 87.60 MW4(A) 15-Feb-19 15-Mar-19 90.23 90.07 4.50 2.28 2.31 2.44 87.80 MW6 15-Feb-19 15-Mar-19 89.68 89.56 12.32 3.58 3.88 3.70 85.98 MW6 15-Feb-19 15-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 1.61 1.76 87.26<	MW3		89.45	89.37	10.80			
15-Mar-19 3.83 3.91 85.54 MW4 15-Feb-19 90.20 89.98 11.00 3.26 3.48 86.73 22-Feb-19 01-Mar-19 3.12 3.45 86.75 3.12 3.34 86.87 MW4(A) 15-Feb-19 90.23 90.07 4.50 2.28 2.44 87.80 22-Feb-19 01-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 22-Feb-19 01-Mar-19 2.39 2.55 87.69 01-Mar-19 2.39 2.55 87.69 2.31 2.47 87.76 MW6 15-Feb-19 89.68 89.56 12.32 3.58 3.70 85.98 3.84 4.00 85.69 3.88 4.00 85.69 3.88 4.00 85.69 01-Mar-19 3.68 3.80 85.88 3.80 85.88 85.88 85.88 3.80 85.88 MW7 15-Feb-19 89.02 88.87 4		22-Feb-19				4.11	4.19	85.26
MW4 15-Feb-19 22-Feb-19 01-Mar-19 15-Mar-19 90.20 89.98 89.98 11.00 3.26 3.23 3.48 3.45 86.73 86.75 MW4(A) 15-Feb-19 15-Mar-19 90.23 90.07 4.50 2.28 2.44 2.44 87.80 MW4(A) 15-Feb-19 01-Mar-19 15-Mar-19 90.23 90.07 4.50 2.28 2.47 2.63 87.60 MW6 15-Feb-19 15-Mar-19 89.68 89.56 12.32 3.58 3.88 3.70 85.98 MW6 15-Feb-19 15-Mar-19 89.68 89.56 12.32 3.58 3.88 3.00 85.69 MW7 15-Feb-19 22-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 1.61 1.		01-Mar-19				3.98	4.06	85.40
22-Feb-19 01-Mar-19 15-Mar-19 3.23 3.45 86.75 MW4(A) 15-Feb-19 22-Feb-19 01-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 22-Feb-19 01-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 22-Feb-19 01-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 23.9 2.55 87.69 2.31 2.47 87.76 MW6 15-Feb-19 15-Mar-19 89.68 89.56 12.32 3.58 3.70 85.98 3.68 4.00 85.69 3.68 3.80 85.79 MW7 15-Feb-19 15-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 1.61 1.76 87.26 3.70 87.26 3.70 87.26		15-Mar-19				3.83	3.91	85.54
01-Mar-19 15-Mar-19 3.12 3.34 86.87 MW4(A) 15-Feb-19 22-Feb-19 01-Mar-19 15-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 MW6 15-Feb-19 15-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 MW6 15-Feb-19 15-Mar-19 89.68 89.56 12.32 3.58 3.70 85.98 MW6 15-Feb-19 15-Mar-19 89.68 89.56 12.32 3.58 3.70 85.98 MW7 15-Feb-19 15-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 10-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 10-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 10-Mar-19 89.02 88.87 4.97 1.73 1.88 87.14 01-Mar-19 01-Mar-19 01-Mar-19 01-Mar-19 1.61 1.76 87.26 <td>MW4</td> <td>1</td> <td>90.20</td> <td>89.98</td> <td>11.00</td> <td></td> <td></td> <td></td>	MW4	1	90.20	89.98	11.00			
15-Mar-19 2.91 3.13 87.07 MW4(A) 15-Feb-19 90.23 90.07 4.50 2.28 2.44 87.80 22-Feb-19 01-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 01-Mar-19 15-Mar-19 90.23 90.07 4.50 2.28 2.44 87.80 MW6 15-Feb-19 89.68 89.56 12.32 3.58 3.70 85.98 MW6 15-Feb-19 89.68 89.56 12.32 3.58 3.70 85.98 01-Mar-19 3.68 3.80 85.79 3.68 3.80 85.79 15-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 89.02 88.87 4.97 1.70 1.85 87.17 01-Mar-19 01-Mar-19 01-Mar-19 01-Mar-19 01-Mar-16 1.61 1.76 87.26		1						
MW4(A) 15-Feb-19 22-Feb-19 01-Mar-19 15-Mar-19 90.23 90.07 4.50 2.28 2.47 2.44 87.80 MW6 15-Feb-19 15-Mar-19 89.68 89.56 12.32 3.58 3.70 85.98 MW6 15-Feb-19 22-Feb-19 89.68 89.56 12.32 3.58 3.70 85.98 MW6 15-Feb-19 22-Feb-19 89.68 89.56 12.32 3.68 3.80 85.98 MW7 15-Feb-19 22-Feb-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 01-Mar-19 01-Mar-19 01-Mar-19 1.61 1.76 87.26		1						
22-Feb-19 01-Mar-19 15-Mar-19 89.68 89.56 12.32 3.58 3.70 85.98 MW6 15-Feb-19 22-Feb-19 89.68 89.56 12.32 3.58 3.70 85.98 01-Mar-19 15-Mar-19 89.68 89.56 12.32 3.68 3.80 85.98 MW6 15-Feb-19 89.68 89.56 12.32 3.58 3.70 85.98 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 89.02 88.87 4.97 1.70 1.85 87.17 01-Mar-19 01-Mar-19 01-Mar-19 1.61 1.76 87.26		15-Mar-19				2.91	3.13	87.07
01-Mar-19 15-Mar-19 89.68 89.56 12.32 3.58 3.88 3.70 4.00 85.98 85.69 MW6 15-Feb-19 22-Feb-19 01-Mar-19 89.68 89.56 12.32 3.58 3.88 3.70 85.98 MW7 15-Feb-19 15-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17	MW4(A)	15-Feb-19	90.23	90.07	4.50	2.28	2.44	87.80
15-Mar-19 2.31 2.47 87.76 MW6 15-Feb-19 89.68 89.56 12.32 3.58 3.70 85.98 22-Feb-19 01-Mar-19 3.88 4.00 85.69 01-Mar-19 3.68 3.80 85.79 15-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 89.02 88.87 4.97 1.70 1.85 87.17 01-Mar-19 01-Mar-19 01-Mar-19 01-Mar-19 01-Mar-19 01-Mar-19 87.26		22-Feb-19				2.47	2.63	87.60
MW6 15-Feb-19 89.68 89.56 12.32 3.58 3.70 85.98 22-Feb-19 01-Mar-19 3.68 3.00 85.69 15-Mar-19 3.68 3.80 85.79 15-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 MW7 15-Feb-19 89.02 88.87 4.97 1.70 1.85 87.17 01-Mar-19 01-Mar-19 01-Mar-19 01-Mar-19 01-Mar-19 01-Mar-19 87.26		01-Mar-19				2.39	2.55	87.69
22-Feb-19 01-Mar-19 15-Mar-19 3.88 4.00 85.69 MW7 15-Feb-19 22-Feb-19 89.02 88.87 4.97 1.70 1.85 87.17 1.73 1.88 87.14 1.61 1.76 87.26		15-Mar-19				2.31	2.47	87.76
01-Mar-19 15-Mar-19 3.77 3.89 85.79 MW7 15-Feb-19 22-Feb-19 01-Mar-19 89.02 88.87 4.97 1.70 1.85 87.17 1.73 1.88 87.14 1.61 1.76 87.26	MW6	15-Feb-19	89.68	89.56	12.32	3.58	3.70	85.98
15-Mar-19 3.68 3.80 85.88 MW7 15-Feb-19 89.02 88.87 4.97 1.70 1.85 87.17 22-Feb-19 01-Mar-19 01		22-Feb-19				3.88	4.00	85.69
MW7 15-Feb-19 89.02 88.87 4.97 1.70 1.85 87.17 22-Feb-19 01-Mar-19 0		01-Mar-19				3.77	3.89	85.79
22-Feb-19 1.73 1.88 87.14 01-Mar-19 1.61 1.76 87.26		15-Mar-19				3.68	3.80	85.88
01-Mar-19 1.61 1.76 87.26	MW7	1	89.02	88.87	4.97			
		22-Feb-19					1.88	87.14
		01-Mar-19				1.61	1.76	87.26
$\begin{bmatrix} 15-Mar-19 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		15-Mar-19				1.35	1.50	87.52

TABLE 2Observed Groundwater Levels1294 Kingston Road, 1848 and 1852 Liverpool Road, Pickering

Well Desig.	Date	Ground Elev.	Top Pipe Elev.	Well Depth	Ground Dep		Groundwater Elev.
		(m asl)	(m asl)	(m bg)	(m bmp)	(m bg)	(m asl)
MW8	15-Feb-19	89.22	89.11	6.10	2.01	2.12	87.10
	22-Feb-19				2.10	2.21	87.02
	01-Mar-19				1.93	2.04	87.18
	15-Mar-19				1.57	1.68	87.54
MW9	22-Feb-19	87.70	87.60	6.10	0.50	0.60	87.10
	01-Mar-19				0.41	0.51	87.19
MW10	15-Feb-19	89.48	89.37	5.16	2.04	2.15	87.33
	22-Feb-19				2.09	2.20	87.28
	01-Mar-19				2.01	2.12	87.36
	15-Mar-19				1.75	1.86	87.62

Notes

1. Ground elevation based on site survey by Topcon GNSS device

2. Tops of pipe elevation based on stick down elevation in relation to ground elevation

3. m asl = metres above sea level

4. m bmp = metres below measurement point

5. m bg = metres below ground

TABLE 3 Summary of Groundwater Quality 1294 Kingston Road, 1848 and 1852 Liverpool Road, Pickering

		Sewers	s Bylaw	MW8		
	Units	Table 1	Table 2	15-Mar-19		
MISCELLANEOUS INORGANIC PARAMETERS						
Fluoride	mg/L	10	-	<0.10		
рН	pH units	6.0 - 10.5	6.0 - 9.0	7.11		
Total Suspended Solids	mg/L	350	15	15.4		
Total Phosphorus	mg/L	10	0.4	0.0052		
Cyanide - Total (CN)	mg/L	2	0.02	<0.0020		
METALS (Total)						
Aluminium (Al)	mg/L	50	-	<0.050		
Antimony (Sb)	mg/L	5	-	<0.0010		
Arsenic (As)	mg/L	1	0.02	<0.0010		
Cadmium (Cd)	mg/L	0.7	0.008	<0.000050		
Chromium (Cr)	mg/L	2	0.08	<0.0050		
Cobalt (Co)	mg/L	5	-	<0.0010		
Copper (Cu)	mg/L	3	0.05	<0.010		
Lead (Pb)	mg/L	1	0.12	<0.00050		
Manganese (Mn)	mg/L	5	0.15	0.088		
Mercury (Hg)	mg/L	0.01	0.0004	<0.000010		
Molybdenum (Mo)	mg/L	5	-	<0.00050		
Nickel (N)	mg/L	2	0.08	<0.0050		
Selenium (Se)	mg/L	1	0.02	<0.00050		
Silver (Ag)	mg/L	5	0.12	<0.00050		
Tin (Sn)	mg/L	5	-	<0.0010		
Titanium (Ti)	mg/L	5	-	<0.0030		
Zinc (Zn)	mg/L	2	0.04	<0.030		
MICROBIOLOGICAL AND NUTRIE	NTS					
Escherichia coli	CFU/100 mL	-	200	0		
Oil & Grease: Animal and Vegetable	mg/L	150	-	<2.0		
Mineral Oil and Grease	mg/L	15	-	<1.0		
Biological Oxygen Demand (BOD)	mg/L	300	15	<3.0		
Phenols (4AAP)	mg/L	1	0.008	<0.0010		
Sulfate (SO4)	mg/L	1500	-	63		
Total Kjeldahl Nitrogen (TKN)	mg/L	100	1	0.24		

Notes

1. Table 1 is the specified criteria for sanitary and combined sewers

2. Table 2 is the specified criteria for storm sewer

3. Values based on Durham sanitary sewer bylaw (55-2013)

4. Bold and italic values at least exceed either Table 1 or Table 2, as highlighted

5. mg/L = milligrams per litre

6. CFU/100mL = colony forming units per 100 millilitres

8. "-" indicates no established criteria for the parameter

TABLE 3Summary of Groundwater Quality1294 Kingston Road, 1848 and 1852 Liverpool Road, Pickering

		-		
			s Bylaw	MW8
	Units	Table 1	Table 2	15-Mar-19
VOLATILE ORGANIC COMPOUN	DS			
Benzene	ug/L	10	2	<0.50
Chloroform	ug/L	40	2	<1.0
Dichlorobenzene, 1,2-	ug/L	50	5.6	<0.50
Dichlorobenzene,1,4-	ug/L	80	6.8	<0.50
Dichloroethylene, cis-1,2-	ug/L	4000	5.6	<0.50
Dichloropropene, trans-1,3-	ug/L	140	5.6	<0.50
Ethylbenzene	ug/L	160	2	<0.50
Methyl Ethyl Ketone	ug/L	8000	-	<20
Styrene	ug/L	200	-	<0.50
Tetrachloroethane, 1,1,2,2-	ug/L	1400	17	<0.50
Tetrachloroethylene	ug/L	1000	4.4	<0.50
Toluene	ug/L	270	2	<0.50
Trichloroethylene	ug/L	400	8	<0.50
Xylenes (Total)	ug/L	1400	4.4	<1.1
SEMIVOLATILE ORGANIC COMP	OUNDS		-	
Bis (2-ethylexyl) phthalate	ug/L	12	8.8	<2.0
Di-N-Butyl phthalate	ug/L	80	15	<1.0
MISCELLANEOUS ORGANIC PAR	RAMETERS			
Nonylphenols (Total)	ug/L	20	-	<1.0
Nonylphenol Ethoxylate (Total)	ug/L	200	-	<2.0
PCBs	ug/L	1	0.4	<0.040

Notes

1. Table 1 is the specified criteria for sanitary and combined sewers

2. Table 2 is the specified criteria for storm sewer

3. Values based on Durham sanitary sewer bylaw (55-2013)

4. Bold and italic values at least exceed either Table 1 or Table 2, as highlighted

5. mg/L = milligrams per litre

6. CFU/100mL = colony forming units per 100 millilitres

7. ND = below laboratory reported detection limits. See laboratory report for detailed values.

8. "-" indicates no established criteria for the parameter

TABLE 4 Predicted Construction Dewatering Rate for Parking Garage 1294 Kingston Road, 1848 and 1852 Liverpool Road, Pickering

Parameter	Value	Units	Symbol	Origin of Value
Aquifer Hydraulic Conditions				
Hydraulic conductivity	3E-06	m/s	К	Highest observed in field tests
Hydraulically connected to water table		-		Unconfined is anticipated
Analogous Dewatering Array Dimensio	ons			
Analogous shape	Trench	_		
Long axis along excavation	131.0	m	Х	Based on design plans, average length
Short axis along exavation	55.4	m	J	= A / X (ie average length)
Garage footprint area to be dewatered	7,258	m²	A	Based on design plans
Radius of equivalent wells at short sides	27.7	m	R _w	= J / 2
Subsurface Vertical Dimensions		1		
Surface grade (general average)	89.2	masl	E_G	Site Survey
Number of basement levels	3		Ν	Based on design plans
Height of single subsurface level	3.1	m	С	Average based on slab depth, =D _F / N
Foundation slab (upper surface), depth	9.2	mbg	D _F	Based on design plans
Foundation slab (upper surface), elevation	80.0	masl	E _F	= E _G - N * C
Elevation difference between excavation base and foundation slab surface	1.5	m		Typical for this type of structure
Excavation base (bases of footings), elevation	78.5	masl	E_{EX}	Assumed 1.5 m lower than foundation slab surface
Excavation base (bases of footings), depth	10.7	mbg	D_EX	Assumed 1.5 m deeper than foundation slab surface
Assumed elevation difference between excavation base and reference datum	3.0	m		
Reference datum (for calculation)	75.5	masl	E_{RD}	Set at 3 m below base of excavation
Dewatering Levels and Dimensions				
Water table observed, elevation	87.8	masl	EW _{HIGH}	Highest of field measurements.
Average water table observed, depth	2.1	m	DW_{SHALL}	= E _G - EW _{HIGH}
Buffer for seasonal fluctuation	0.5	m	В	Based on water levels mostly observed in late winter
Water table elevation (pre-pumping level)	88.3	masl	EW _{HIGHEST}	= EW _{HIGH} + B. Allows for seasonal fluctuation
Height of water table above reference datum	12.8	m	Н	= EW _{HIGHEST} - E _{RD}
Target dewatering level, elevation	77.5	m asl	EW _{TARG}	Target is 1 m lower than excavation base. = E_{EX} - 1.0
Target dewatering level, depth	11.7	mbg	DW _{TARG}	Target is 1 m deeper than excavation base. = D_{Fx} + 1
Height of target water level above datum	2.0	m	h _T	Target is 1 m below excavation base
Radius of Influence				
	D = 2000 * (U = b) * (K)	0.5		Sighart and Knyislais (1020)
	$R_0 = 3000 * (H - h_T) * (K)$		-	Sichart and Kryieleis (1930)
Radius of Influence	56	m	Ro	As measured from excavation edge
Equivalent line source	28	m	L	Half of radius of influence
Incident Stormwater				
Excavation open area	7,258	m²	А	Excavation design
Typical large storm	25	mm/day	P _T	Assumed. Typically 4-5 events/year. Larger is possible.
Stormwater (i.e. from precipitation)	181	m³/day	Q _{STORM}	= A * P _T
Change of units (rounded)	181,450	litres/day	Q _{STORM}	
Estimated Flaure to be Managed				

Estimated Flows to be Managed

Applied equation for trench long sides	Applied equation for trench long sides $Q_{GW} = 2 * X * K^* (H^2 - h_T^2) / (h_T^2 - h_T^2)$		⁵ * L)	Powers et. al, 2007
Applied equation for trench short sides	$Q_{GW} = K * (H^2 - h_T^2) / (5.31)$	I x 10 ⁻⁶ * In ((R _o +R _w /R _{w)})	Powers et. al, 2007
Groundwater seepage from long sides	134.1	litres/min	Q_{GW-LS}	Calculated from values in this sheet.
Groundwater seepage from short sides	81.6	litres/min	$Q_{GW ext{-ShS}}$	Calculated from values in this sheet.
Groundwater seepage from all sides	215.6	litres/min	_{GW-ShS} + Q _{GW}	/-LS
Change of units	310,493	litres/day		
Safety factor	2.0			Allow for unknown conditions between boreholes or beyond the excavation walls
Groundwater seepage, with safety factor	620,986	litres/day		= Safety Factor x Q _{GW}
Groundwater seepage plus storm water	802,436	litres/day		= Safety Factor x Q _{GW} + Q _{STORM}
Applicable Regulatory Instrument	PTTW R	equired		MECP, O.Reg 245/11, O.Reg 387/04; OWRA S.41
Value to specify in regulatory instrument	802,4	400	litres/day	Value includes stormwater.

Notes.

1 Patrick Powers, Arthur Corwin, Paul Schmall, Walter Kaeck. 2007. Construction Dewatering and Groundwater Control. Third Edition.

2 mbg = metres below ground level

3. masl = metres above sea level

Terrapex Environmental Ltd. 2019-05-07 12:34 PM

Altona Group CT2817.00

TABLE 5Predicted Foundation Drainage Rate for Parking Garage1294 Kingston Road, 1848 and 1852 Liverpool Road, Pickering

Parameter	Value	Units	Symbol	Origin of Value
Aquifer Hydraulic Conditions				
Hydraulic conductivity	3E-06	m/s	К	Highest observed in field tests
Hydraulically connected to water table (unco	nfined)	•		Unconfined
Analogous Dewatering Array Dimensio	ns			
Analogous shape	Trench			
Long axis along excavation	131.0	m	X	Based on design plans, average length
Short axis along exavation	55.4		J	= A / X (ie average length)
Garage footprint area to be dewatered Radius of an equivalent well at ends	7,258 27.7	m² m	A R _w	Based on design plans = J / 2
			• •	<u>, , -</u>
Subsurface Vertical Dimensions		1	_	
Surface grade (approximate average)	89.2	masl	E _G	Site Survey
Number of basement levels	3		N	Based on design plans
Height of single subsurface level	3.1	m	С	Average based on slab depth, =D _F / N
Foundation slab (upper surface), depth	9.2	mbg	D _F	Based on design plans
Foundation slab (upper surface), elevation	80.0	masl	E _F	= E _G - N * C
Elevation difference between foundation slab and foundation drains	0.3	m		Assumed, common design
Foundation drains, elevation	79.7	masl	E _{EX}	Assumed 0.3 m lower than foundation slab surface
Foundation drains, depth	9.5	mbg	D _{EX}	Assumed 0.3 m deeper than foundation slab surface
Elevation difference between foundation drain and reference datum	3.0	m		Assumed
Reference datum (for calculation)	76.7	masl	E _{RD}	Set at 3 m below foundation drains
Dewatering Levels and Dimensions				
Average water table observed, elevation	87.8	masl	EW _{HIGH}	Highest of field measurements.
Average water table observed, depth	2.1	m	DW_{SHALL}	= E _G - EW _{HIGH}
Buffer for seasonal fluctuation	0.5	m	В	Based on water levels mostly observed in late winter
Water table elevation (pre-pumping level)	88.3	masl	EW _{HIGHEST}	= EW _{HIGH} + B. Allows for seasonal fluctuation
Height of water table above reference datum	11.6	m	Н	= EW _{HIGHEST} - E _{RD}
Target dewatering level, elevation	79.7	m asl	EW _{TARG}	Target is foundation drain elevation
Target dewatering level, depth	9.5	mbg	DW _{TARG}	Target is 1 m below excavation base. = D _{EX} + 1
Height of target water level above datum	3.0	m	h _T	Target is 1 m below excavation base
Radius of Influence				
Applied equation F	R _O = 3000 * (H – h _T) * (K) ⁽	0.5		Sichart and Kryieleis (1930)
Radius of Influence	45	m	Ro	As measured from excavation edge
Equivalent line source	22	m	L	Half of radius of influence
Estimated Flows to be Managed				
Applied equation for trench long sides	$Q_{GW} = 2 * X * K^* (H^2 - h_T^2)$	/ (3.34 x 10	⁻⁵ * L)	Powers et. al, 2007
Applied equation for trench short sides	$Q_{GW} = K * (H^2 - h_T^2) / (5.3)$	1 x 10 ⁻⁶ * In	((R ₀ +R _W /R _{W)})	Powers et. al, 2007
Groundwater seepage from long sides	132.2	litres/min	,	Calculated from values in this sheet.
Groundwater seepage from short sides	73.9	litres/min	0.11 20	Calculated from values in this sheet.
Groundwater seepage from all sides	206.1		Q _{GW-ShS} + Q _{GW-LS}	
Change of units	296,779	litres/day		
Safety factor	2.0			Allow for unknown conditions between boreholes or
Groundwater seepage, with safety factor	593,557	litres/day		beyond the excavation walls = Safety Factor x Q _{GW}
· - ·		,		

Notes.

1 Patrick Powers, Arthur Corwin, Paul Schmall, Walter Kaeck. 2007. Construction Dewatering and Groundwater Control. Third Edition.

2 mbg = metres below ground level

3 masl = metres above sea level

Terrapex Environmental Ltd. 2019-05-07 1:00 PM

Altona Group CT2817.00 Appendix III Borehole Records

CLIENT:	W Stem Auger and Split Spoon NEER: VN ELEV. (m) 88.65 BH No.: MW1									• M\\/1											
		PROJECT ENGINEER: VN ELEV. (m) 88.65 NORTHING: EASTING:									PROJECT NO.: 18-204										
SAMPLE												SHELBY SPLIT SPOON									
GWL GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)		4 <u>0 8</u> N (Blov	(kPa 30 1: 1-Vali vs/30	enath		F	۱ C	Wate onte (%) W.C	er nt		SAMPLE NO.	SAMPLE TYPE	1	Well	REMARKS			
	150 mm Asphaltic Concrete (FILL) brown to dark brown coarse to fine sand some gravel, trace brick fragments	0	88.5	-		50/12				5	<u> </u>			1		50/ 125		Groundwater measured at 3.27 m below ground surface on February 15, 2019			
	(FILL) dark brown silty clay	- - - - - - -	88 - 87.5 -		9									2		9		Bentonite Hollow Stem augers			
	yellow -browr grey		87 - 86.5 -		14									3		14		used to start driiling at MW1			
₽	varved SILTY CLAY slightly moist yellow -browr oxidized lenses	1 - 1 -	86 - 85.5 - 85 -	• 6	5									4		6		Mud rotary drilling starte at 3.5 m depth			
	grey CLAY some gravel wet	- 4.5 	84.5 - 84 - 83.5 -	4										5		4					
	grey SANDY SILTY CLAY some gravel	- 5.5 - 6 - 6.5	83 - 82.5 - 82 -	0										6		0		Weight of hammer/450 mm			
	grey SILTY SAND some gravel some clay (TILL)	7 - 7.5 - 8 - 8 - 8.5 - 9 - 9 - 9.5	81.5 - 81 - 80.5 - 80.5 - 79.5 - 79.5 -			54	1/225	×						7		54 91/ 225					
							LOGGED BY: JA									12					
alston associates geotechnical division of TERRAPEX						LOGGED BY: JA REVIEWED BY: VN							DRILLING DATE: 13 January, 2019 Page 1 of 2								
	goologimical anyision of Terrapex			'`	<u>د ۱</u>	~ * * C	ים ש.	• •	11		1.0	-yc	101	<u> </u>							

CLIENT: Altona Group PROJECT: Liverpool House Condos	METHOD: Hollow Stem Auger PROJECT ENGINEER: VN EI							er and Split Spoon ELEV. (m) 88.65							BH No.: MW1				
LOCATION: 1294 Kingston Road, Pickering								. ,	65										
SAMPLE TYPE AUGER DRIVEN				TING: AIC CO					PROJECT NO.: 18-204 HELBY SPLIT SPOON										
GWL MAS SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	0 80) 12 Valu s/300	20 16 le (Dmm)	0		Contei (%) W.C.	LL		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS			
grey SILTY SAND some gravel some clay (TILL)	- 10 - 10.5 - 11 - 11.5 - 12 - 12.5 - 13 - 13.5 - 14 - 14.5 - 15	78.5 78 77.5 77.5 76.5 76.5 76.5 76.5 74.5 74.5	50	/100 /100 /125	•							9 10 11		50/ 100 50/ 100 50/		Bentnonite Sand Sand and Screen			
END OF BOREHOLE			- 30	,100								<u>\'</u> 2/		100					
														12					
alston associates							Y: JA DRILLING DRILLI						DATE: 13 January, 2019						

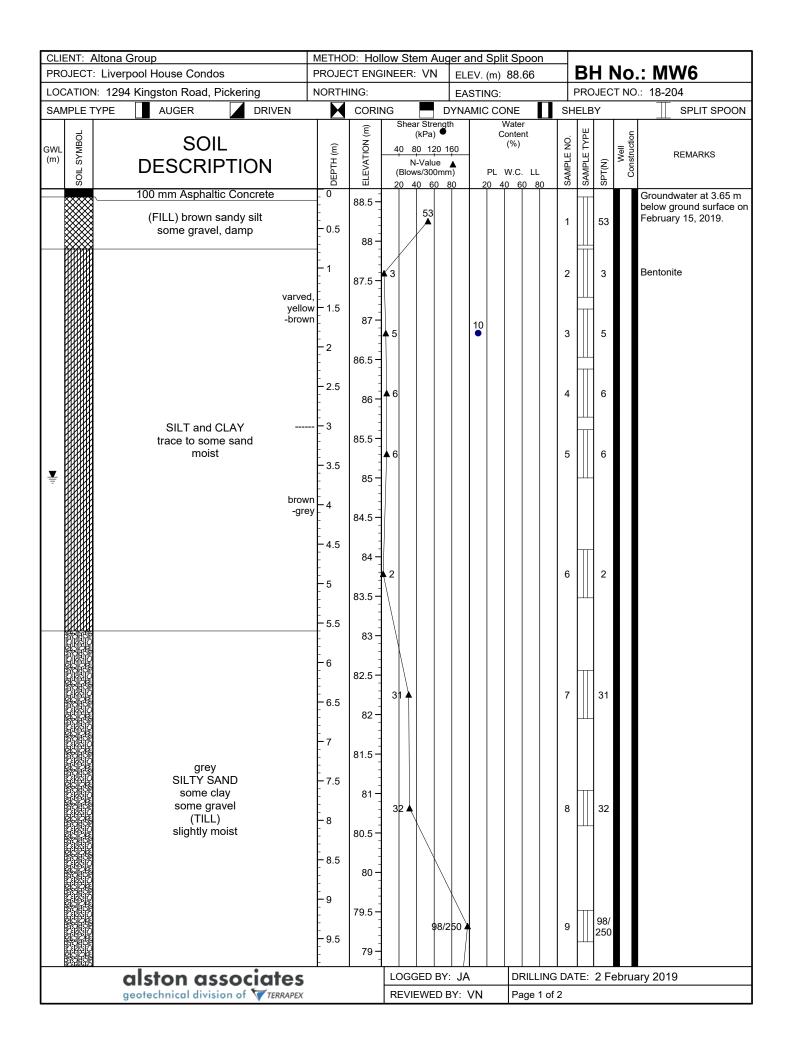
CLIENT: Altona Group METHOD: Hollow Stem Auger and Split Spoon PROJECT: Liverpool House Condos PROJECT ENGINEER: VN ELEV. (m) 89.66												_	D	u		· M/A/2					
		NORTHING: EASTING:								-	89.66 BH No.: MW2 PROJECT NO.: 18-204										
SAMPLE T			CORI								SHELBY SPLIT SPOON										
		Choor Strongth Water							•	1	1										
GWL (m)	SOIL	DEPTH (m)	ELEVATION (m)	4(0 8	0 12	0 160				(%)		SAMPLE NO.	SAMPLE TYPE		Well	REMARKS				
(m) JE	DESCRIPTION		EVAT	(1	N-Value (Blows/300mr			▲ m)		PL W.C. LL			MPLE	MPLE	SPT(N)						
SOIL	100 mm Asphaltic Concrete						<u>, 80</u>				60		- SA	SA SA	<u> </u>		Groundwater measured				
	Too min Asphalic Concrete		89.5		28								1A				at 3.56 m below ground				
		- 0.5												Ш	28		surface on February 15, 2019.				
	(Fill) silty and gravelly	-	89 -	1 /	′								1E	₽₩	-						
	sad, moist	-1		6									2		6		Bentonite				
		-	88.5														Hollow stem augering				
		1.5	-											\square	-		used st start drilling at MW2				
		F	88-	3									3		3						
	brown	-2																			
	varved SILTY CLAY	Ē	87.5											\square	-						
	moist	- 2.5	87-	47									4		7						
		Ē	07																		
	browr	-3	86.5												-						
	-grey	, E	-		19								5		19						
Ŧ	to we	t - 3.5	86-											Ш							
	SAND and SILT		-												-						
	trace gravel	-4	85.5 -	47									6		7						
	trace clay grey we		-												-						
		- 4.5	85 -		_										1						
		-5	-		0								7		10						
		ŧ	84.5																		
		- - 5.5	-																		
		-	84 -	▲ 5									8		5						
		6	-											H	-						
		-	83.5 -																		
		6.5																			
	grey SILTY CLAY	Ē	83-																		
	some gravel	-7	82.5 -																		
			02.5																		
		- 7.5	82-												_						
		Ē			16								9		16						
		-8	81.5											Ш	-		Mud rotary drilling started at 8.0 m depth.				
		+																			
		8.5	81 -																		
	grey SILTY SAND	-9																			
	some gravel	Ę	80.5												-						
	some clay (TILL)	- 9.5		29	•								10		29						
	()		80 -											Γ ¹¹	1						
MCADLAN	alston associates				LOGGED BY: ALPK							LLIN	G DA	DATE: 7 February, 2019							
geotechnical division of TERRAPEX							REVIEWED BY: VN							Page 1 of 2							

CLIENT: Altona Group				t Spoon													
PROJECT: Liverpool H								m) 89.66 BH No.: MW2									
LOCATION: 1294 King			ING: CORII				EAST					PROJECT NO.: 18-204					
SAMPLE TYPE	SAMPLE TYPE AUGER DRIVEN								NE /ater	LI,	SHE						
GWL OBWAS TIOS	SOIL ESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (E	Blows/3	120 16 Ilue 00mm	60 ▲ 1)	Co (PL V	V.C. LL 0 60 8		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS		
END OF B	grey SILTY SAND some clay some gravel (TILL)	- 10 - 10.5 - 11 - 11.5 - 12 - 12.5 - 13 - 13.5 - 14	79.5 - 79 - 78.5 - 78.5 - 77.5 - 77.5 - 77.5 - 77.5 -	20		60 8					111		38 44		Bentonite Sand Sand and Screen		
geote						ALP		DRILL Page 2		DATE: 7 February, 2019							

		Altona Group	METHC										n	1				
		: Liverpool House Condos	PROJE	CT ENG	SINE	ER:	٧N	1	ELE	V. (m	n) 89	.66			Bł	<u> </u>	NO	.: MW2A
		N: 1294 Kingston Road, Pickering	NORTH						EAS	STING	G:						T NC	D.: 18-204
SAN	IPLE 1	TYPE AUGER DRIVEN		CORII		01				MIC C			Ш,	SHE	ELB	Y		
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	10 8	(kPa) 0 12 -Valu s/300	20 16 le Dmm	50)		Wat Conte (%) - W.C	ent) C. LL	0	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
Ţ		For soil stratigraphy refer to MW2	- 0.5 - 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4 - 4.5 - 5	89.5 - 89 - 89 - 88.5 - 88.5 - 88.5 - 87 - 87 - 87 - 86.5 - 86.5 - 85.5 -														Groundwater measured at 3.28 m below ground surface on February 15, 2019. Bentonite Sand Sand and Screen
		END OF BOREHOLE																
		alston associates geotechnical division of TERRAPEX							DM Y: V				ING 1 of 1		E:	8 Fe	ebru	ary, 2019

CLIENT: Altona Group	METHC				_						-				
PROJECT: Liverpool House Condos	PROJE		SINEEF	R: VN	-	ELEV			52						.: MW3
LOCATION: 1294 Kingston Road, Pickering SAMPLE TYPE AUGER DRIVEN		CORI				EAST NAM					SHI				D.: 18-204
		ELEVATION (m)	She	ear Str (kPa) 80 12	ength) • 20 16	0		Wate Conter (%)			SAMPLE NO.	SAMPLE TYPE		Well	
	DEPTH (m)	ELEVA	(Blo	N-Valu ws/30	0mm)			W.C.			SAMPL	SAMPL	SPT(N)	Cons	
150 mm Asphaltic Concrete	0	88.5	20	40 6	0 80)	20 2	40 6	080	,	0)		0)		Groundwater measured
450 mm Granular Base	- 0.5	88 -			76 •	g	19				1A 1B		76		at 3.75 m below ground surface on February 15, 2019.
sandy silty clay		87.5	\$ 5	1			21				2		5		Bentonite
	-	-													Dentonite
Varve brov	wn	87 -	▲ 7								3		7		
-gre mo	ey,	86.5					26								
	- 2.5	86 -	▲ 5				26				4		5		
 brov -gra		85.5 -	▲ 6				27				5		6		
	^{vet} - 3.5	85 -													
SILTY CLAY trace sand trace gravel	- 4 	84.5 -	3				31				6		3		
	- 4.5	84 -					18								
gre v	ey, [/et - 5	83.5 -	1								7		1		
	- - - - 5.5	83-													
	- 6	82.5 -													
		82 -	2			1	•				8		2		
	- - - - 7	81.5													
		-													
	- 7.5 - -	81 -		69		6					9		69		
grey SILTY SAND	- 8	80.5													
some gravel		80 -												•	Sand
(TILL)	- 9 	79.5 -													Sand and Screen
	- - - 9.5	79 -		57		7					10		57		
	-	-							<u> </u>		- • □		7 1	L:E	2010
alston associates				iged Iewe		Y: VN	1	_	age 1				1 12	anua	ary, 2019

CLIENT: Altona Group PROJECT: Liverpool House Condos	METHO PROJE						er an ELE'			-	n		RI			.: MW3
LOCATION: 1294 Kingston Road, Pickering	NORTH				VI	-	EAS		-	5.52						D.: 18-204
SAMPLE TYPE AUGER DRIVEN	M	CORII	NG							=		SH				
	DEPTH (m)	ELEVATION (m)	4 	0 8(N- Blow	0 12 -Valu s/30	ength 20 16 1e (0mm) 0 80	i0	PL	Wat Cont (%	ier ent		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	
grey SILTY SAND some gravel some clay (TILL)	- 10.5	78.5		/150				8				11		50/ 150		Sand and Screen
grey to dark grey SANDY SILT wet to moist	- 12 - 12.5 - 12.5	76.5	50	/125	5 🔺			8				12		50/ 125		
grey SILTY SAND some gravel some clay (TILL) grey weathered SHALE	13.5 - 13.5 - 14.5 - 14.5 - 15.5 - 15.5 - 16.5	74.5	50	//150 //150) 🛦			7 7				13		50/ 150 50/ 150		
END OF BOREHOLE					:=D	RV	DM							50/		pr 2010
alston associates	5 ×		-				DM Y: V			PRILL			IE:	/ Ja	anua	ary, 2019


CLIENT: Altona Group			low Stem Aug					
PROJECT: Liverpool House Condos			INEER: VN	ELEV. (m)	89.15			b.: MW4
LOCATION: 1294 Kingston Road, Pickering		HING:		EASTING:				0.: 18-204
SAMPLE TYPE AUGER DRIVE		-	NG C Shear Streng		NE S		BY	
GWL MAN TO SOIL (m) ST TO DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kPa) ● <u>40 80 120 1</u> N-Value (Blows/300mr 20 40 60	Cc 160 n) PL \	ontent	SAMPLE NO. SAMPLE TYPE	SPT(N) Well	REMARKS
200 mm Asphaltic Concrete (FILL) brown gravelly sand base brown clayey silt	0.5	89 -	12	1	1	A B	12	Groundwater at 3.32 m below ground surface on February 15, 2019.
SILTY CLAY	varved, brown, 	87.5 - 87 - 86.5 -	 € 14 9 	22 23 20 •	:	2A 2B 33	6 14 9	Bentonite
	- 3.5	85.5	25	15 9 7	5	а II в III 6	25	
	moist - 4.5	84.5	40	8		7	40	
grey SILTY SAND some gravel some clay (TILL)	wet 6.5	83.5 - 83 - 83 - 82.5 - 82.5 -	56 ♠	10		8	56	
	- - 7.5 - - - - - - - - - - - - - - - - - - -	81.5	25	18	,	9	25	
	- - 9 - - - - - - - - - - - - - - - - -	80 -	37 🔺	15 ●	1	0	37	
alston associat	es		LOGGED BY	: DM	DRILLING D	ATE:	2 Janua	ary, 2019
geotechnical division of 🟹 TER	RAPEX		REVIEWED I	BY: VN	Page 1 of 2			

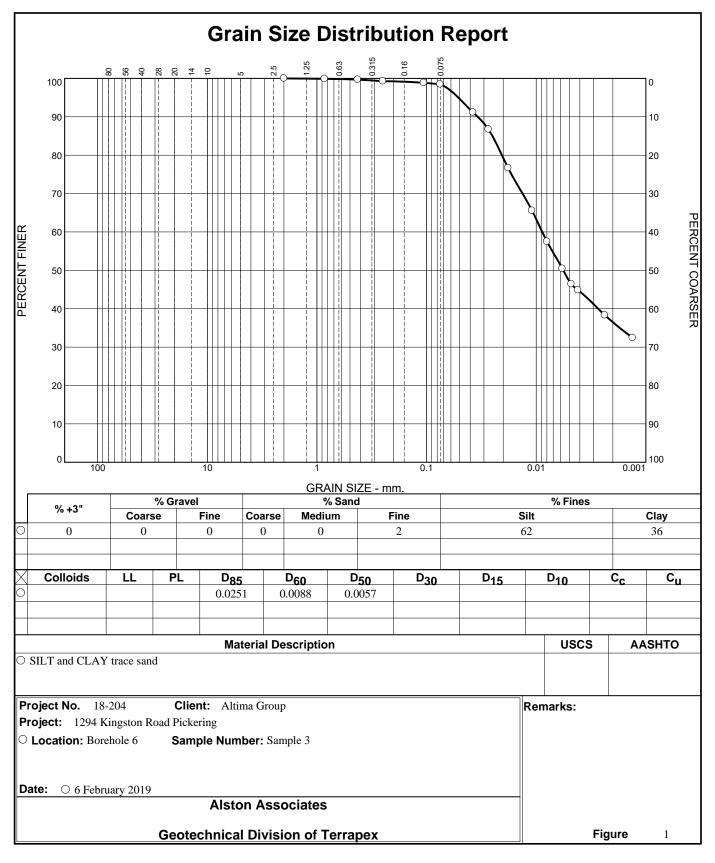
		METHO										۱					
		PROJEC		SINE	ER:	VN	-+		V. (m)		15						.: MW4
		NORTH				_			TING							T NO	0.: 18-204
SAMPLE	TYPE AUGER DRIVEN		CORI		Shear	r Stre			/IC C	ONE Wate	r	L.	SH		Y		
TORWAS TIOS GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4) 10 80	(kPa) 0 12 -Valu /s/300) ● 20 16 Je _ 0mm)	50)	PL	Wate Conter (%) W.C.	nt	0	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	grey SILTY SAND some gravel some clay (TILL) wet	- 10 - 10.5 - 11 - 11.5	78.5	-	43 (14				11		43		Sand Sand and Screen
	grey CLAYEY SILT trace sand trace gravel moist	- 12 - 12.5 - 13	76.5 -		48				14				12		48		Bentonite
	(TILL)	- 13.5 - 14 - 14 - 14.5	75.5 -	50)/125	5			7				13		50/ 125		
	dark brown SANDY SILTY CLAY some gravel	- 15.5 - 15.5 - 16 - 16 - 16.5	73.5			62			9				14		62		
	grey weathered SHALE	+	72.5 -	-5	0/25	₅▲			15				<u>15</u>		۱50/r		
	END OF BOREHOLE														50/ 25		
	alston associates				CGG	;ED	BY:	DM		DF	RILL	ING	DAT	E:	2 Ja	anua	ry, 2019
	geotechnical division of TERRAPEX			R	EVIE	WE	D B	Y: V	N	Pa	ige 2	2 of 2	2				

CLI	ENT:	Altona Group	METHC	D: Ho	llow	/ Ste	m A	uger	and	Split	Sp	oon					
PRO	DJECT	: Liverpool House Condos	PROJE	CT ENG	SINE	EER:	٧N	E	LEV.	(m)	89.1	15		BI	<u> </u>	<u> No</u>	.: MW4A
LOC	CATIO	N: 1294 Kingston Road, Pickering	NORTH					E	ASTI	NG:				PRC	JEC	TNC	D.: 18-204
SAM	/PLE -	TYPE AUGER DRIVEN		CORI		*			IAMIC				S⊦	IELB	Y		
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	40 8 N- (Blow	(kPa) 0 12 -Valu s/300	● 0 160 e ▲ 0mm)		Cc (PL V		t LL	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
Ţ		For stratigraphy please refer to MW4	- 0.5 - 0.5 - 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 3 - 3.5 - 4 - 4.5	88.5 - 88.5 - 88.5 - 87.5 - 87.5 - 86.5 - 86.5 - 885.5 - 885.5 -													Concrete Groundwater at 2.34 m below ground surface on February 15, 2019. Bentonite Sand Sand and Screen
		END OF BOREHOLE	- 4.5														
		alston associates			L	ogg	ED	BY: [DM		DR	ILLIN	G DA	TE:	2/3	Jan	uary, 2019
		geotechnical division of 🟹 TERRAPEX			R	EVIE	WE	D BY:	VN		Pa	ge 1 d	of 1				

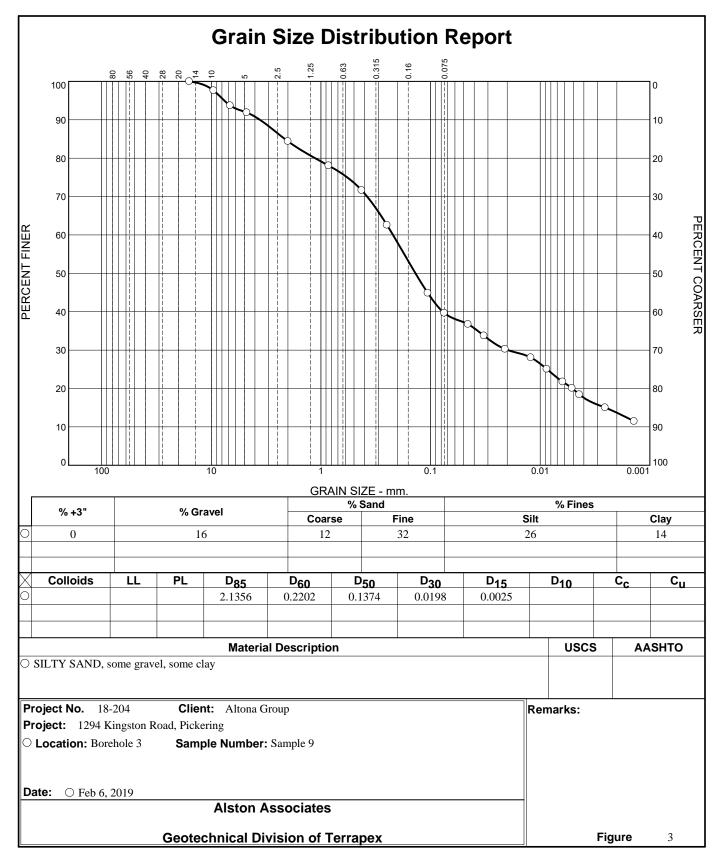
CLIENT: Altona Group					d Split Spoon	┤┏			
PROJECT: Liverpool House Condos			SINEER: VN		/. (m) 88.42			No.	
LOCATION: 1294 Kingston Road, Pickering	NORTH			EAST				CT NO.	: 18-204
SAMPLE TYPE AUGER DRIVEN		CORI	NG L Shear Streng		UIC CONE	SHE	LBY	<u> </u>	SPLIT SPOON
	DEPTH (m)	ELEVATION (m)	(kPa) ● 40 80 120 1 N-Value (Blows/300mr	160 ▲ n)	Content (%) PL W.C. LL	SAMPLE NO.	SAMPLE TYPE SPT(N)	Well Construction	REMARKS
150 mm Asphaltic Concrete	0		20 40 60	80	20 40 60 80	_	0 0		
450 mm Granular Base	- 0.5	88 -	15 ≜			1A 1B	15		
(FILL) dark brown silty clay some organics	-1	87.5-							
	- - - 1.5	87 -				2	7 7		
	ved, [own - - 2	86.5	▲ 6			3	6		
n to	wet – 2.5	86 -	10			4A 4B	10		
SILTY CLAY trace to some sand trace gravel	3	85.5 -	4			5	4		
	grey	84.5 -	79+ 4			6A 6B	4		
	- - 4.5 - - - 5 -	84 -	1 35 (6)			7	1		
dark grey SANDY SILTY CLAY trace gravel (TILL)	- 5.5 - 6 - 6.5	83 - 82.5 - 82 -	36 ▲			8	36		
dark grey dasc GRAVELLY SAND dasc GRAVELLY SAND some silt some clay dasc (TILL) dasc moist to wet	7.5	81.5 - 81 - 80.5 - 80.5 - 80 -	56 ▲			9	56		
dark grey SILTY SAND trace to some clay trace to some gravel (TILL), moist	- 8.5 - 9 - 9 - 9.5	79.5 -	50/100 ▲			10	50/ 100		
alston associates	S		LOGGED BY		DRILLING		E: 3/4	Janua	ary, 2019
geotechnical division of 🟹 TERRAPE	EX		REVIEWED	BY: VN	N Page 1 of 2	2			

	Altona Group	METHO					er an	ıd Spli	it Sp	oon		_			_
	: Liverpool House Condos	PROJE		SINEE	R: VI	N	ELE	V. (m)	88.4	12					.: 5
LOCATIO	N: 1294 Kingston Road, Pickering	NORTH					EAS	TING:						T NO	.: 18-204
SAMPLE	TYPE AUGER DRIVEN		CORI					AIC CO			s	HELE	3Y		SPLIT SPOON
GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (B	hear Str (kPa 80 1 N-Val lows/30 40 6) • 20 10 ue _ 00mm	60 •)	C	Water conten (%) W.C.	t LL	SAMPLE NO	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	grey medium to coarse SAND and gravel trace silt wet	- 10 - 10.5 - 11	78.5		0/75						1'	I	50/ - 75		
	grey SILTY SAND some gravel some clay (TILL)	- 11.5 - 12 - 12.5 - 13 - 13.5	76.5 - 75.	50/	100 🔺						12	2	50/ 100		
		- 14 - 14.5 - 15 - 15.5	74.5		150 ▲						1; 14 14	β Ⅲ Β	50/ 150 50/ 25		
	grey weathered SHALE	- 	72.5 -	50	0/25 ▲						1	5	50/ 25		
	END OF BOREHOLE														
	alston associates			LO	GGED	BY:	DM		DR	ILLIN	IG D/	ATE:	3/4	Janu	iary, 2019
	geotechnical division of 🟹 TERRAPEX			RE	VIEW	ED B	Y: V	N	Pa	ge 2 (of 2				

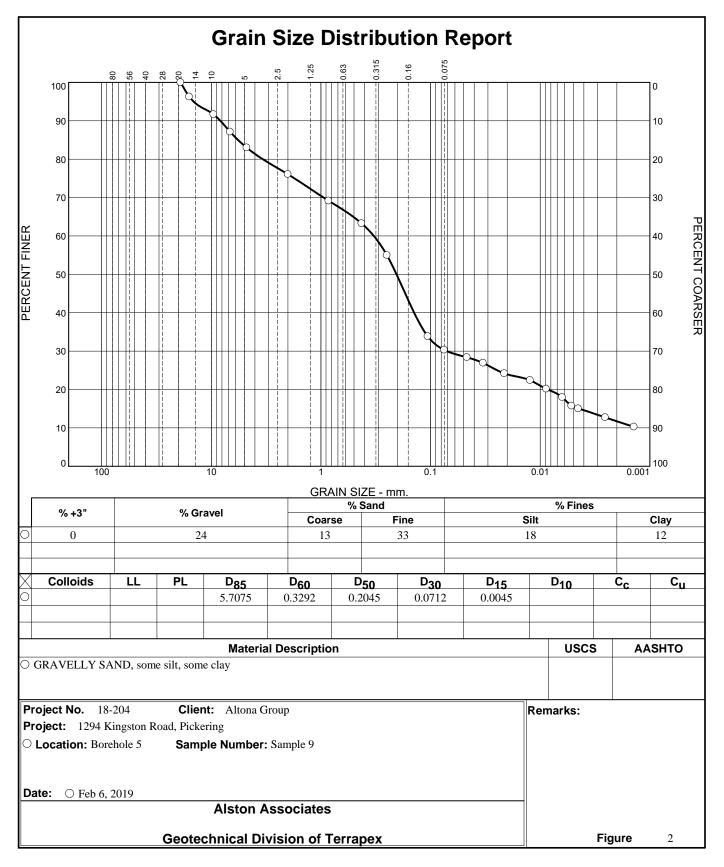
CLIENT: Altona Group						and Spli	it Spoon	1_			
PROJECT: Liverpool House Condos	PROJE		SINEER	: VN	_	EV. (m)	88.66				.: MW6
LOCATION: 1294 Kingston Road, Pickering	NORTH					ASTING:	F J			T NO	.: 18-204
SAMPLE TYPE AUGER DRIVEN		CORI		ar Stre			NE Mater	SHELI	3Y T	-	
GWL (m) SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 8	(kPa) 30 12 1-Valu vs/300	0 160 le ▲ 0mm)	 	content (%) W.C. LL	SAMPLE NO. SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
G DESCRIPTION	- 10 ind - 10.5 ind - 10.5 ind - 11 - 11.5 - 12 vet - 12.5 - 13 - 13.5	78.5 - 78 - 77.5 - 77.5 - 76.5 - 76.5 -	(Blov	vs/300 40 6 84/	88 •				84/		Bentonite Sand Sand and Screen
					BY: J				25		
alston associates	,		L		D BY: J/		DRILLING		2 F	ebrua	aiy 2019
georechnical alvision of VTERRAPEX			KEVI		יזם ט:	VIN	Page 2 of 2				


			METHC										n	_				
		· · · · · · · · · · · · · · · · · · ·	PROJE		SINE	ER:	VN			(m)	88.	.02						.: MW7
			NORTH						ASTI								I NO	D.: 18-204
SAN	IPLE T	TYPE AUGER DRIVEN		CORI		Shear	Strer	DYN			NE Wate		Ш,	SH	ELE	SY T		
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	4) 08 04	(Pa) 120 Value /300r	• <u>160</u> : • mm)	-		onte (%) W.C	nt . LL		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well	REMARKS
	××××	100 mm Asphaltic Concrete	0	88						<u> </u>			Ĭ		-			Groundwater at 1.77 m
		(FILL) dark brown to brown clayey silt some sand, trace gravel trace brick fragments	- 0.5	87.5 -		30								1		30		below ground surface on completion. Bentonite
▼		yellow	- - - 1.5	86.5 -												-	•	.] Sand
Ŧ		-brown oxidizec lenses varved mois SILTY	1 – 2	86 -	▲ 5									3		5		Sand and Screen
		CLAY	- 2.5 - - 	85.5 -	3									4		3		
		we	- - 3.5	84.5 -	4									5		4		
		brown-grey CLAYEY SILT wet	- 4	84 -	4									6		4		
		grey	- 4.5 - - - 5	83.5 -	0									7		0		Weight of hammer/450
		SILTY CLAY some gravel wet	- 5.5	82.5 -	0									8		0		Weight of hammer/450
			- 6.5	82 - 81.5 -	5									9		5		
		grey	- 7 - 7 - 7.5	81 - 80.5 -	- \													
		SILTY SAND some clay some gravel (TILL) wet	- - 8 - - - - 8.5	80 -		42								10		42		
			- 9	79.5 -		5	8							11		58		
		alston associates	<u> </u>			OGGI	ED B	BY: J	A		DF	' RILL	ING	DA	r TE:	7 F	ebru	uary 2019
		geotechnical division of TERRAPEX						BY:			-		1 of 2					-

	Altona Group	METHO									_				
	: Liverpool House Condos	PROJE		SINE	ER: V	'N	ELE	EV. (m)	88.02						.: MW7
	N: 1294 Kingston Road, Pickering	NORTH						STING:		_				TNO	.: 18-204
SAMPLE	TYPE AUGER DRIVEN		CORII							<u> </u>	SH	ELB	Y		SPLIT SPOON
TOBMAS TIOS G (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4(0 80	a)	60 ▲ n)	C PL	Vater ontent (%) W.C. L 0 60		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	grey SILTY SAND some clay some gravel (TILL) wet	- 10 - 10.5 - 11 - 11.5 - 12 - 12.5 - 13	77		58	74					12		74		
	grey GRAVELLY coarse to fine SAND some silt (TILL)	- 13.5 - 13.5 - 14 - 14.5 - 15	74		54						14		54		
	END OF BOREHOLE												725		
	alston associates			-	DGGEI EVIEW				-	LING		ΓE:	7 Fe	ebrua	ary 2019


CLIENT: Altona Group	METHO	D: Ho	llow Stem A	uger a	and Split Spoon		_			
PROJECT: Liverpool House Condos	PROJE	CT ENG	SINEER: VN	EL	EV. (m) 88.15		В	HI	No	.: MW8
LOCATION: 1294 Kingston Road, Pickering	NORTH			EA	STING:	-	PR	OJEC	T NC	D.: 18-204
SAMPLE TYPE AUGER DRIVEN		CORI				s	HELI	BY		
	DEPTH (m)	ELEVATION (m)	Shear Stre (kPa) 40 80 120 N-Value (Blows/300 20 40 60	● 0 160 e ▲ mm)	Water Content (%) PL W.C. LL 20 40 60 80		SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
50 mm Asphaltic Concrete (FILL) 100 mm brown sand and gravel base (FILL) brown clayey silt, moist	0.5	88 -	8			,		8		Groundwater at 2.08 m below ground surface on February 15, 2019.
(FILL) brown silty sand trace clay, moist		87 -	▲8			2	2	8		Bentonite
varve brow oxidiz lens	'n,	86.5 -	▲ 7			3	3	7		
gr -brow		85.5 -	▲ 5			2	•	5		Sand
SILTY		85 - 85 - 84.5 -	4			Ę	5	4		Sand and Screen
CLAY gr -brow	ret	84 -	3			e	\$ 	3		
gre	-	83.5 -	2			7	,	2		
	5.5	82.5 -	2			8	3	2		
END OF BOREHOLE						\top	\top			
alston associates			LOGGED E				ATE:	7 F	ebru	ary 2019
geotechnical division of TERRAPEX			REVIEWE	DBY:	VN Page 1	of 1				

CLIENT: Altona Group	METHC	D: Ma	nua	l Spl	lit S	poc	on Sa	ampli	ing						_	
PROJECT: Liverpool House Condos	PROJE	CT ENG	SINE	ER:	VN	1	ELE\	V. (m)) 86	.7			B	<u> </u>	<u>No</u>	.: MW9
LOCATION: 1294 Kingston Road, Pickering	NORTH	IING:					EAS	TING	:			F	PRC	JEC	T NC	D.: 18-204
SAMPLE TYPE AUGER DRIVEN		CORI					YNAN	IIC C				SH	ELB	Υ		SPLIT SPOON
	DEPTH (m)	ELEVATION (m)	4	0 80 N-' Blows	kPa)) 12 Valu s/300	20 16 le	i0	PL	Wate Conte (%) W.C	ent :. LL		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
150 mm Concrete	_ 0			0 40		0 80	<u> </u>		40 0			0,	1			Interior borehole
ISULTY CLAY	- 0 - 0.5 - 0.5 - 1 1 1 1 	VA 86.5 86.5 85.5 85.5 84.5 83.5 83.5	-	N-1-1 Blows 0 40	s/300)mm))		W.C			1 2 3 4 5	SAMPL			
alston associates				DGGG	ED	BY:	ALP	<u>.</u> Ж	D	RILL	ING	DAT		31.	Janu	ary 2019
geotechnical division of TERRAPEX							Y: VI				1 of					


CLIENT: Altona Group			low Stem							
PROJECT: Liverpool House Condos			INEER: VI		.EV. (m) 8	88.50				.: MW10
LOCATION: 1294 Kingston Road, Pickering	NORTH				ASTING:				T NC	D.: 18-204
SAMPLE TYPE AUGER DRIVEN			NG Shear Str			NE	SHELI	3Y T		
GWL OR SOIL (m) S I DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kPa 40 80 1 N-Val (Blows/30) ● 20 160 ue ▲ 0mm)	Co (PL V	ontent (%) V.C. LL	SAMPLE NO. SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
50 mm Asphaltic CONCRETE	_ 0	88.5	20 40 6			0 60 80		0,		Groundwater at 2.11 m
(FILL) brown sand and gravel trace silt, trace brick fragments	- 0.5	88 -	5				1	55		below ground surface on February 15, 2019.
(FILL) brown clayey silt trace organics, moist	- - 	87.5	7				2	7		Bentonite
varve brow mo		87 -	3				3	3		Sand Sand and Screen
gr -brow W		86 - 85.5 -	4				4	4		
SILTY CLAY		85 -	4				5	4		
gre	-4 	84.5 - 84.5 - 84 -	1				6	1		
	- - - - - - - - - - - - - -	83.5	1				7	1		
	- 5.5	83-	1				8	1		
END OF BOREHOLE										
alston associates			LOGGED	BY: AI	LPK	DRILLING D	DATE:	7 F	ebrua	ary 2019
geotechnical division of TERRAPEX			REVIEWE			Page 1 of 1	-			

Checked By: DM

Tested By: ND/VP

Tested By: ND/VP

	FORMATION				SILT SNDY 0010 CLAY SLTY 0015			BRWN SAND GRVL SOFT 0004 GREY CLAY SILT SOFT 0015		BRWN FILL PCKD 0005 BRWN SILT DNSE 0010 GREY SILT SAND DNSE 0015	BRWN FILL PCKD 0004 BRWN CLAY SILT HARD 0015	BRWN FILL PCKD 0004 BRWN CLAY SILT HARD 0015	BRWN SILT SNDY 0007 GREY SILT SAND 0017 GREY SAND SILT 0020	BRWN LOAM SAND SOFT 0002 GREY CLAY SILT DNSE 0008 GREY CLAY SILT SOFT 0012	
	WELL	7194742 (C19399) A139600 P	7125844 (289154) A	7127684 (M05177) A	7130872 (M05611) A088152	7161801 (M08456) A110392 P	7162148 (Z107834) A088152 A	7162506 (Z121232) A106859	7164076 (M00645) A110392 P	7172558 (2121371) A106836	7172587 (2121285) A106836	7172593 E (Z121333) A106836 A	1918487 (Z41843) A044714	7185175 (2131715) A106836	7200758 (C21155) P
19 VM	SCREEN							0005 5		0005 10	0005 10	0005 10	0002 4	0005 7	
April 1, 2019 8:57:36 AM	WELL USE		MO	MO	MO			MO		OW	MO	MO		OM	
	PUMP TEST														
	WATER				UK 0010										
	CASING DIA		1.97		2.00			2		1.79	1.79	1.79	5.09	2	
	DATE CNTR	2012-10 7215	2009-06 7303	2009-06 6607	2009-08 6607	2011-03 6607	7303	2011-03 6032	2011-04 6607	2011-11 6032	2011-07 6032	2011-09 6032	2006-10 7190	2012-03 6032	2013-02 7215
Records	UTM	17 653617 4855025 W	17 653802 4855654 W	17 653787 4855401 W	17 653812 4855670 W	17 653817 4855662 W	17 653812 4855670 W	17 653654 4855219 W	17 653817 4855667 W	17 653572 4855214 W	17 653608 4855187 W	17 653590 4855182 W	17 653648 4855250 W	17 653604 4855180 W	17 653659 4854975 W
Water Well Records	TOWNSHIP CON LOT	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN

Page 1 of 4

FORMATION			BLCK 0004 BRWN SILT SAND 0008 GREY CLAY SILT WBRG 0020		BLCK 0004 BRWN SILT SAND 0005 GREY CLAY SILT WBRG 0020	0004 FILL 0015	BRWN FILL GRVL 0002 BRWN SILT GRVL 0007 BRWN SILT SAND SOFT 0035 GREY SILT SHLE HARD 0043 GREY SHLE DNSE 0045	BRWN SAND SILT LOOS 0005 GREY CLAY SILT SOFT 0018	BRWN SAND SILT LOOS 0004 GREY CLAY SILT SOFT 0015	BRWN SAND SILT LOOS 0004 GREY CLAY SILT SOFT 0017		BLCK 0002 LOAM 0002 GREY CLAY SLTY 0022	BLCK 0004 BRWN SILT SAND 0008 GREY CLAY SILT WBRG 0020		BRWN SAND GRVL PCKD 0002 BRWN SILT CLAY SOFT 0010 GREY SILT CLAY SOFT 0015
WELL	7200759 (C21094) P	7261650 (C23948) P	7265182 (Z233298) A179287	7184714 (Z115803) A100215 A	7265180 (Z233288) A172945	7215927 (Z166177) A151147	7261550 (Z214122) A199725	7260305 (Z226170) A195368	7260304 (Z226168) A195367	7260303 (Z226171) A195366	7229250 (C26789) A157284 P	7228643 (Z190436) A166557	7265181 (Z233297) A184850	7229612 (C23949) A157284 P	7275633 (Z240203) A209794
SCREEN			0010 10		0010 10	0010 5	0035 10	0008 10	0005 10	0007 10		0012 10	0010 10		0005 10
WELL USE						Q	MT	MT	MT	МТ					Q
PUMP TEST															
WATER						0010	UT 0022					0016			UT 0010
CASING DIA			2		1.5	2	2	1.5	1.5	1.5		2	2		2.00
DATE CNTR	2013-02 7215	2014-06 6607	2016-05 7241	2011-10 6853	2016-05 7241	2013-11 7383	2016-02 7247	2016-02 7241	2016-02 7241	2016-02 7241	2014-09 7215	2014-08 7383	2016-05 7241	2014-06 6607	2016-10 6607
UTM	17 653598 4854994 W	17 653597 4855231 W	17 653671 4855197 W	17 653370 4855745 W	17 653618 4855210 W	17 653203 4854969 W	17 653760 4855322 W	17 653912 4855309 W	17 653900 4855302 W	17 653909 4855287 W	17 653607 4855235 W	17 653485 4855332 W	17 653627 4855177 W	17 653607 4855235 W	17 653972 4855471 W
TOWNSHIP CON LOT	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN CON 01 021

Page 2 of 4

FORMATION	BRWN CLAY 0009 BLUE CLAY 0038 HPAN 0045 GREY SHLE 0075	LOAM 0001 BRWN CLAY 0009 BLUE CLAY 0020 BLUE CLAY MSND 0028	LOAM CLAY 0004 CLAY 0009 BLUE CLAY 0013 MSND 0016 CLAY 0018 GRVL CLAY 0022	LOAM 0001 SILT CLAY 0022 GRVL CLAY 0063 BLCK SHLE 0116	LOAM 0001 CLAY BLDR SILT 0022 CLAY GRVL 0063 BLCK SHLE 0116	YLLW CLAY 0018 BRWN CLAY MSND 0029 BRWN MSND CLAY SILT 0045 BRWN SHLE 0090 GREY SHLE 0123 GREY GRNT 0145 LMSN 0250			LOAM 0001 BRWN CLAY 0017 BLUE CLAY 0022 CSND 0026 BLUE CLAY STNS 0027	BLUE CLAY 0068	LOAM 0001 BRW N CLAY 0010 BLUE CLAY 0018 CSND 0019 BLUE CLAY STNS 0024	BRWN FILL 0004 GREY 0016	BRWN FILL 0004 GREY 0020	BRWN FILL 0004 GREY 0016	BRWN FILL 0004 GREY 0016	LOAM 0001 BRWN CLAY 0008 CLAY 0022 GRVL MSND 0024
WELL	4601177 ()	4601178 ()	4601179 ()	4601181 ()	4601182 ()	4604667 () A	7226679 (C26889) A157284 P	7279497 (C35701) P	4601191 ()	4601190() A	4601188 ()	7200619 (Z161082) A	7200618 (Z161081) A	7200617 (Z161080) A	7200616 (2161079) A	4601195 ()
SCREEN																
WELL USE	03	Oq	Oq	0	8	N			O		Oq	NU	NU	NU	NU	Q
PUMP TEST	7/75/3/8:0	11//1/:	13///:	18/80/3/6:0	18/75/4/5:0				20///:		10//1/:	8///:	8///:	3///:		10///:
WATER	FR 0046	SU 0025	FR 0013 FR 0018	FR 0063	FR 0063	FR 0029 SU 0090			FR 0022		FR 0019	LT	L		LT	FR 0023
CASING DIA	7 7	30	36	4	4	Q			30	9	30	36	36	30	36	34
DATE CNTR	1961-08 4610	1960-08 5412	1959-05 2615	1964-08 3414	1964-08 3414	1970-09 5459	2014-08 7147	2016-01 7147	1967-07 3102	1958-10 2501	1963-07 5412	2013-01 1663	2013-01 1663	2013-01 1663	2013-01 1663	1964-12 5420
UTM	17 653992 4855377 W	17 653560 4855325 W	17 653509 4855539 W	17 653589 4855351 W	17 653564 4855345 W	17 653655 4855143 W	17 653633 4855240 W	17 653768 4855329 W	17 653350 4855850 W	17 653238 4855707 W	17 653351 4855537 W	17 653297 4855683 W	17 653388 4855709 W	17 653394 4855683 W	17 653392 4855629 W	17 653113 4854921 W
TOWNSHIP CON LOT	PICKERING TOWN CON 01 021	PICKERING TOWN CON 01 022	PICKERING TOWN CON 01 022	PICKERING TOWN CON 01 022	PICKERING TOWN CON 01 022	PICKERING TOWN CON 01 022	PICKERING TOWN CON 01 022	PICKERING TOWN CON 01 022	PICKERING TOWN CON 01 023	PICKERING TOWN CON 01 023	PICKERING TOWN CON 01 023	PICKERING TOWN CON 01 023	PICKERING TOWN CON 01 023	PICKERING TOWN CON 01 023	PICKERING TOWN CON 01 023	PICKERING TOWN CON 01 024

Page 3 of 4

FORMATION	
WELL	
SCREEN	
WELL USE	
PUMP TEST	
WATER	
CASING DIA	
DATE CNTR	
UTM	
TOWNSHIP CON LOT	

Notes: UTM: UTM in Zone, Easting, Northing and Datum is NAD83; L: UTM estimated from Centroid of Lot; W: UTM not from Lot Centroid DATE CNTR: Date Work Completedand Well Contractor Licence Number

CASING DIA: .Casing diameter in inches

WATER: Unit of Depth in Fee. See Table 4 for Meaning of Code

1. Core Material and Descriptive terms

Code Description	T SOFT	T SOAPSTONE	Y STICKY	S STONES	Y STONEY	K THICK	NIHI N	L TILL	N UNKNOWN TYPE	Y VERY	G WATER-BEARING	R WOOD FRAGMENTS	D WEATHERED				
Cod	SOFT	SPST	STKY	SUTS	ZNTS	THIK	NIHT	TILL	UNIKN	VERY	WBRG	WDFR	WTHD				
Code Description	PORS POROUS	PREVIOUSLY DUG	PREV. DRILLED	QUARTZITE	QUICKSAND	QUARTZ	ROCK	SAND	SHALE	SHALY	SHARP	SCHIST	SILT	SLATE	SILTY	SANDSTONE	SANDYOAPSTONE
Code	PORS	PRDG	PRDR	QRTZ	QSND	QTZ	ROCK	SAND	SHLE	SHLY	SHRP	SHST	SILT	SLTE	SLTY	SNDS	SNDY
Code Description	I IRON FORMATION	L LIMY	I LIMESTONE	I TOPSOIL	5 LOOSE	LIGHT-COLOURED	D LAYERED	. MARL	D MEDIUM-GRAINED	MEDIUM GRAVEL	. MARBLE	D MEDIUM SAND	C MUCK	V OVERBURDEN	D PACKED	r peat	DEA GRAVEL
Code	IRFM	LIMY	L MSN	LOAM	LOOS	LTCL	LYRD	MARL	MGRD	MGVL	MRBL	MSND	MUCK	OBDN	PCKD	PEAT	PGVL
Description	FRACTURED	FINE-GRAINED	FINE GRAVEL	FILL	FELDSPAR	FLINT	FOSILIFEROUS	FINE SAND	GNEISS	GRANITE	GREENSTONE	GRAVEL	GREYWACKE	GRAVELLY	GYPSUM	HARD	HPAN HARDPAN
Code	FCRD	FGRD	FGVL	FILL	FLDS	FLNT	FOSS	FSND	GNIS	GRNT	GRSN	GRVL	GRWK	GVLY	GYPS	HARD	HPAN
Code Description	BLDR BOULDERS	T BASALT	CGRD COARSE-GRAINED	L COARSE GRAVEL	T CHERT	CLAY CLAY	CLN CLEAN	CLYY CLAYEY	D CEMENTED	CONG CONGLOMERATE	CRYS CRYSTALLINE	D COARSE SAND	L DARK-COLOURED	T DOLOMITE	E DENSE	Y DIRTY	DRY
Code	BLDE	BSLT	CGRI	CGVL	CHRT	CLAJ	CLN	CLYN	CMTD	CONC	CRY5	CSND	DKCL	DLMT	DNSE	DRTY	DRY

PUMP TEST: Static Water Level in Feet / Water Level After Pumping in Feet / Pump Test Rate in GPM / Pump Test Duration in Hour : Minutes WELL USE: See Table 3 for Meaning of Code SCREEN: Screen Depth and Length in feet

SCREEN: Screen Depth and Length in feet WELL: WEL (AUDIT #) Well Tag . A: Abandonment; P: Partial Data Entry Only FORMATION: See Table 1 and 2 for Meaning of Code

2. Core Color	e Color	3. Well Use	
Code I	Code Description	ption	Code Description
V TIHW	WHITE	DO Domestic	OT Other
GREY (GREY	ST Livestock	TH Test Hole
BLUE	BLUE	IR Irrigation	DE Dewatering
GREN (GREEN	IN Industrial	MO Monitoring
ALLW 3	YELLOW	CO Commercial	MT Monitoring TestHole
BRWN	BROWN	MN Municipal	
RED	RED	PS Public	
BLCK	BLACK	AC Cooling And A/C	G
BLGY	BLGY BLUE-GREY	NU Not Used	

4. Water Detail

Code		Code	Description
FR	Fresh	0 N	Gas
SA	Salty	IR	Iron
SU	Sulphur		
MM	Mineral		

Unknown

UK

Appendix IV

Laboratory Record of Groundwater Quality

TERRAPEX ENVIRONMENTAL LTD. (Toronto) ATTN: Brian Theimer 90 Scarsdale Road Toronto ON M3B 2R7

Date Received:15-MAR-19Report Date:22-MAR-19 14:15 (MT)Version:FINAL

Client Phone: 416-245-0011

Certificate of Analysis

Lab Work Order #: L2245008

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED CT2817.00 17-724722

Mathy Mahadeva Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

L2245008 CONT'D.... Job Reference: CT2817.00 PAGE 2 of 16 22-MAR-19 14:15 (MT)

Summary of Guideline Exceedances

Guideline ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
	wer Use Bylaws - Du arameter exceedances)	urham Sanitary Sewer (55-2013)				
· ·	,	urham Storm Sewer - (55-2013)				
L2245008-1	MW8	Physical Tests	Total Suspended Solids	15.4	15	mg/L

L2245008 CONT'D.... Job Reference: CT2817.00 PAGE 3 of 16 22-MAR-19 14:15 (MT)

Physical Tests - WATER

	Ş	Sampl	Lab ID e Date ple ID	L2245008-1 15-MAR-19 MW8
Analyte	Unit	Guide #1	Limits #2	
рН	pH units	6.00- 10.5	6.0-9.0	7.11
Total Suspended Solids	mg/L	350	15	15.4

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

L2245008 CONT'D.... Job Reference: CT2817.00 PAGE 4 of 16 22-MAR-19 14:15 (MT)

Anions and Nutrients - WATER

		L	.ab ID	L2245008-1
		Sample	e Date	15-MAR-19
		Sam	ple ID	MW8
Analyte	Unit	Guide #1	Limits #2	
Fluoride (F)	mg/L	10	-	<0.10 ^{DLDS}
Total Kjeldahl Nitrogen	mg/L	100	1	0.24
Phosphorus, Total	mg/L	10	0.4	0.0052
Sulfate (SO4)	mg/L	1500	-	63.0 DLDS

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

L2245008 CONT'D Job Reference: CT2817.00 PAGE 5 of 16 22-MAR-19 14:15 (MT)

Cyanides - WATER

	Lab ID Sample Date Sample ID		L2245008-1 15-MAR-19 MW8	
Analyte	Unit	Guide #1	Limits #2	
Cyanide, Total	mg/L	2	0.02	<0.0020

Guide Limit #1: Durham Sanitary Sewer (55-2013) Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2245008 CONT'D.... Job Reference: CT2817.00 PAGE 6 of 16 22-MAR-19 14:15 (MT)

Bacteriological Tests - WATER

	s	ampl	Lab ID e Date ple ID	L2245008-1 15-MAR-19 MW8
Analyte	G Unit	Guide #1	Limits #2	
E. Coli	CFU/100m L	-	200	0

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

L2245008 CONT'D Job Reference: CT2817.00 PAGE 7 of 16 22-MAR-19 14:15 (MT)

Total Metals - WATER

		Sampl Sam	L2245008-1 15-MAR-19 MW8	
Analyte	Unit	Guide #1	Limits #2	
Aluminum (Al)-Total	mg/L	50	-	< 0.050 ^{DLHC}
Antimony (Sb)-Total	mg/L	5	-	<0.0010
Arsenic (As)-Total	mg/L	1	0.02	<0.0010
Cadmium (Cd)-Total	mg/L	0.7	0.008	<0.000050
Chromium (Cr)-Total	mg/L	2	0.08	<0.0050
Cobalt (Co)-Total	mg/L	5	-	<0.0010
Copper (Cu)-Total	mg/L	3	0.05	< 0.010 ^{DLHC}
Lead (Pb)-Total	mg/L	1	0.12	< 0.00050
Manganese (Mn)-Total	mg/L	5	0.15	0.0877 ^{DLHC}
Mercury (Hg)-Total	mg/L	0.01	0.0004	<0.000010
Molybdenum (Mo)-Total	mg/L	5	-	< 0.00050
Nickel (Ni)-Total	mg/L	2	0.08	< 0.0050 DLHC
Selenium (Se)-Total	mg/L	1	0.02	<0.00050
Silver (Ag)-Total	mg/L	5	0.12	< 0.00050
Tin (Sn)-Total	mg/L	5	-	<0.0010
Titanium (Ti)-Total	mg/L	5	-	< 0.0030 ^{DLHC}
Zinc (Zn)-Total	mg/L	2	0.04	<0.030 ^{DLHC}

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2245008 CONT'D Job Reference: CT2817.00 PAGE 8 of 16 22-MAR-19 14:15 (MT)

Aggregate Organics - WATER

	-		Lab ID	L2245008-1
		Sample Date		15-MAR-19 MW8
		Sample ID		
			Limits	
Analyte	Unit	#1	#2	
BOD	mg/L	300	15	<3.0 ^{BODL}
Oil and Grease, Total	mg/L	-	-	<2.0
Animal/Veg Oil & Grease	mg/L	150	-	<2.0
Mineral Oil and Grease	mg/L	15	-	<1.0
Phenols (4AAP)	mg/L	1	0.008	<0.0010

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2245008 CONT'D Job Reference: CT2817.00 PAGE 9 of 16 22-MAR-19 14:15 (MT)

Volatile Organic Compounds - WATER

		Sample	ab ID Date ple ID	L2245008-1 15-MAR-19 MW8
Analyte	Unit	Guide #1	Limits #2	
Benzene	ug/L	10	2	<0.50
Chloroform	ug/L	40	2	<1.0
1,2-Dichlorobenzene	ug/L	50	5.6	<0.50
1,4-Dichlorobenzene	ug/L	80	6.8	<0.50
cis-1,2-Dichloroethylene	ug/L	4000	5.6	<0.50
Dichloromethane	ug/L	2000	5.2	<2.0
trans-1,3-Dichloropropene	ug/L	140	5.6	<0.50
Ethylbenzene	ug/L	160	2	<0.50
Methyl Ethyl Ketone	ug/L	8000	-	<20
Styrene	ug/L	200	-	<0.50
1,1,2,2-Tetrachloroethane	ug/L	1400	17	<0.50
Tetrachloroethylene	ug/L	1000	4.4	<0.50
Toluene	ug/L	270	2	<0.50
Trichloroethylene	ug/L	400	8	<0.50
o-Xylene	ug/L	-	-	<0.50
m+p-Xylenes	ug/L	-	-	<1.0
Xylenes (Total)	ug/L	1400	4.4	<1.1
Surrogate: 4-Bromofluorobenzene	%	-	-	95.7
Surrogate: 1,4-Difluorobenzene	%	-	-	100.5

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2245008 CONT'D Job Reference: CT2817.00 PAGE 10 of 16 22-MAR-19 14:15 (MT)

Phthalate Esters - WATER

	Lab ID Sample Date Sample ID			L2245008-1 15-MAR-19 MW8
Analyte	Guide Limits Unit #1 #2			
Bis(2-ethylhexyl)phthalate	ug/L	12	8.8	<2.0
Surrogate: 2-fluorobiphenyl	%	-	-	93.7
Surrogate: p-Terphenyl d14	%	-	-	112.9

Guide Limit #1: Durham Sanitary Sewer (55-2013) Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

L2245008 CONT'D Job Reference: CT2817.00 PAGE 11 of 16 22-MAR-19 14:15 (MT)

Semi-Volatile Organics - WATER

	Lab ID Sample Date Sample ID Guide Limits Unit #1 #2		L2245008-1 15-MAR-19 MW8	
Analyte				
Di-n-butylphthalate	ug/L	80	15	<1.0
Surrogate: 2-Fluorobiphenyl	%	-	-	93.7
Surrogate: p-Terphenyl d14	%	-	-	112.9

Guide Limit #1: Durham Sanitary Sewer (55-2013) Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2245008 CONT'D.... Job Reference: CT2817.00 PAGE 12 of 16 22-MAR-19 14:15 (MT)

Polychlorinated Biphenyls - WATER

			Lab ID	L2245008-1
		Sampl	e Date	15-MAR-19
		Sample ID		MW8
Analyte	Unit	Guide #1	Limits #2	
Aroclor 1242	ug/L	-	-	<0.020
Aroclor 1248	ug/L	-	-	<0.020
Aroclor 1254	ug/L	-	-	<0.020
Aroclor 1260	ug/L	-	-	<0.020
Total PCBs	ug/L	1	0.4	<0.040
Surrogate: 2-Fluorobiphenyl	%	-	-	99.0

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

* Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2245008 CONT'D.... Job Reference: CT2817.00 PAGE 13 of 16 22-MAR-19 14:15 (MT)

Organic Parameters - WATER

<u>- jan</u>				
			Lab ID	L2245008-1
		Sample	e Date	15-MAR-19
	Sample ID		MW8	
Analyte	Unit	Guide #1	Limits #2	
Nonylphenol	ug/L	20	-	<1.0
Nonylphenol Diethoxylates	ug/L	-	-	0.16
Total Nonylphenol Ethoxylates	ug/L	200	-	<2.0

Guide Limit #1: Durham Sanitary Sewer (55-2013)

Guide Limit #2: Durham Storm Sewer - (55-2013)

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Reference Information

Qualifiers for Individual Parameters Listed:

wuanners for Individ	dual Parameters Lis	steu:	
Qualifier Des	cription		
DLDS Dete	ection Limit Raised: [Dilution required due to high Dissolved So	olids / Electrical Conductivity.
BODL Limi	t of Reporting for BC	DD was increased to account for the large	est volume of sample tested.
DLHC Dete	ection Limit Raised: [Dilution required due to high concentration	n of test analyte(s).
lethods Listed (if a	pplicable):		
ALS Test Code	Matrix	Test Description	Method Reference**
625-BIS-2-PHTH-V	WT Water	Bis(2-ethylhexyl)phthalate	SW846 8270
Aqueous samples	are extracted and ex	xtracts are analyzed on GC/MSD.	
625-DNB-PHTH-W	/T Water	Di-n-Butyl Phthalate	SW846 8270
Aqueous samples	are extracted and ex	xtracts are analyzed on GC/MSD.	
BOD-WT	Water	BOD	APHA 5210 B
and incubating a s	sample for a specifie	d time period, and measuring the oxygen	DB - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting a depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a adding a nitrification inhibitor to the diluted sample prior to incubation.
CN-TOT-WT	Water	Cyanide, Total	ISO 14403-2
		nbination of UV digestion and distillation. icotinic acid to form a highly colored com	. Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a nplex.
		f thiocyanate in samples can cause false nate to check for this potential interference	positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, ce
EC-WW-MF-WT	Water	E. Coli	SM 9222D
A 100 mL volume	of sample is filtered	through a membrane, the membrane is p	placed on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200
F-IC-N-WT	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions a	are analyzed by Ion (Chromatography with conductivity and/or	UV detection.
HG-T-CVAA-WT	Water	Total Mercury in Water by CVAAS	EPA 1631E (mod)
Water samples ur	ndergo a cold-oxidatio	on using bromine monochloride prior to re	eduction with stannous chloride, and analyzed by CVAAS.
MET-T-CCMS-WT	Water	Total Metals in Water by CRC ICPN	1S EPA 200.2/6020A (mod)
Water samples ar	e digested with nitric	and hydrochloric acids, and analyzed by	CRC ICPMS.
Method Limitation	(re: Sulfur): Sulfide a	and volatile sulfur species may not be rec	covered by this method.
Analysis conducte	ed in accordance with	n the Protocol for Analytical Methods Use	ed in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
NP,NPE-LCMS-W	T Water	Nonylphenols and Ethoxylates by LC/MS-MS	J. Chrom A849 (1999) p.467-482
Water samples ar	e filtered and analyz	zed on LCMS/MS by direct injection.	
	-		

Reference Information

_S Test Code	Matrix	Test Description	Method Reference**
Sample is extracted with	th hexane, sam	ple speciation into mineral and animal/	vegetable fractions is achieved via silica gel separation and is then determined gravimetrically.
OGG-SPEC-WT	Water	Speciated Oil and Grease-Gravin	netric APHA 5520 B
The procedure involves determined gravimetric	s an extraction ally.	of the entire water sample with hexane	. Sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then
P-T-COL-WT	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried	out using proc	edures adapted from APHA Method 45	i00-P "Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.
PCB-WT	Water	Polychlorinated Biphenyls	EPA 8082
PCBs are extracted fro	m an aqueous	sample at neutral pH with aliquots of di	ichloromethane using a modified separatory funnel technique. The extracts are analyzed by GC/MSD.
PH-WT	Water	рН	APHA 4500 H-Electrode
Water samples are ana	alyzed directly b	by a calibrated pH meter.	
Analysis conducted in a samples under this reg			Ised in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for
PHENOLS-4AAP-WT	Water	Phenol (4AAP)	EPA 9066
An automated method colorimetrically.	is used to distil	I the sample. The distillate is then buffe	ered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured
SO4-IC-N-WT	Water	Sulfate in Water by IC	EPA 300.1 (mod)
Inorganic anions are ar	nalyzed by lon (Chromatography with conductivity and/	or UV detection.
SOLIDS-TSS-WT	Water	Suspended solids	APHA 2540 D-Gravimetric
A well-mixed sample is	filtered through	n a weighed standard glass fibre filter a	and the residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achiev
TKN-WT	Water	Total Kjeldahl Nitrogen	APHA 4500-Norg D
This analysis is carried an automated colorime		edures adapted from APHA Method 45	i00-Norg "Nitrogen (Organic)". Total Kjeldahl Nitrogen is determined by sample digestion at 380 Celsius with analysis u
VOC-ROU-HS-WT	Water	Volatile Organic Compounds	SW846 8260
Aqueous samples are a	analyzed by he	adspace-GC/MS.	
XYLENES-SUM-CALC	-WT Water	Sum of Xylene Isomer Concentra	tions CALCULATION

**ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody Numbers:

Reference Information

17-724722

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SÁMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

			Qualit	y Contr	of Report			
		Workorder:	L224500	8	Report Date:	22-MAR-19		Page 1 of 10
Client:	TERRAPEX ENVIRONME 90 Scarsdale Road Toronto ON M3B 2R7	ENTAL LTD. (Tor	onto)					
Contact:	Brian Theimer							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-BIS-2-PHTH	H-WT Water							
Batch WG3009223- Bis(2-ethylhe	R4570797 -2 CVS exyl)phthalate		112.3		%		70-130	20-MAR-19
WG3008485- Bis(2-ethylhe	-2 LCS exyl)phthalate		117.2		%		50-140	19-MAR-19
WG3008485- Bis(2-ethylhe	-1 MB exyl)phthalate		<2.0		ug/L		2	19-MAR-19
Surrogate: 2	2-fluorobiphenyl		85.4		%		40-130	19-MAR-19
Surrogate: p	o-Terphenyl d14		108.9		%		40-130	19-MAR-19
625-DNB-PHTH	-WT Water							
Batch	R4570797							
WG3008485- Di-n-butylph			112.4		%		50-150	19-MAR-19
WG3008485- Di-n-butylph			<1.0		ug/L		1	19-MAR-19
Surrogate: 2	2-Fluorobiphenyl		85.4		%		40-130	19-MAR-19
Surrogate: p	o-Terphenyl d14		108.9		%		40-130	19-MAR-19
BOD-WT	Water							
Batch	R4575848							
WG3007949- BOD	-6 DUP	L2245008-1 <3.0	<3.0	RPD-NA	mg/L	N/A	20	21-MAR-19
WG3007949 - BOD	-7 LCS		91.4		%			
WG3007949	-5 MB		91.4		70		85-115	21-MAR-19
BOD			<2.0		mg/L		2	21-MAR-19
CN-TOT-WT	Water							
Batch	R4570657							
WG3008550- Cyanide, To		L2244585-4 0.0020	<0.0020	RPD-NA	mg/L	N/A	20	18-MAR-19
WG3008550- Cyanide, To			85.4		%		80-120	18-MAR-19
WG3008550- Cyanide, To			<0.0020		mg/L		0.002	18-MAR-19
WG3008550- Cyanide, To		L2244585-4	82.6		%		70-130	18-MAR-19
EC-WW-MF-WT	Water							

				Quality	y Contr	ol Report			
			Workorder:	L2245008	3	Report Date: 22-	-MAR-19		Page 2 of 10
Client:	90 Scarso		NTAL LTD. (Toro	nto)					
Contact:	Brian The	eimer							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
EC-WW-MF-WT		Water							
Batch I	R4568202								
WG3007759-3 E. Coli	B DUP		L2245008-1 0	0		CFU/100mL	0.0	65	17-MAR-19
WG3007759-1 E. Coli	MB			0		CFU/100mL		1	17-MAR-19
F-IC-N-WT		Water							
Batch I	R4570912								
WG3008460-9 Fluoride (F)	DUP		WG3008460-8 0.226	0.223		mg/L	1.4	20	18-MAR-19
WG3008460-7 Fluoride (F)	LCS			98.1		%		90-110	18-MAR-19
WG3008460-6 Fluoride (F)	6 MB			<0.020		mg/L		0.02	18-MAR-19
WG3008460-1 Fluoride (F)	0 MS		WG3008460-8	100.3		%		75-125	18-MAR-19
HG-T-CVAA-WT		Water							
Batch I	R4568585								
WG3008209-4 Mercury (Hg)			WG3008209-3 <0.000010	<0.000010	RPD-NA	mg/L	N/A	20	18-MAR-19
WG3008209-2 Mercury (Hg)				94.4		%		80-120	18-MAR-19
WG3008209-1				0 000040				0.00004	
Mercury (Hg)			WC2008200 F	<0.000010		mg/L		0.00001	18-MAR-19
WG3008209-6 Mercury (Hg)			WG3008209-5	92.2		%		70-130	18-MAR-19
MET-T-CCMS-W	т	Water							
	R4568437								
WG3008134-4 Aluminum (Al	-		WG3008134-3 0.0162	0.0066	J	mg/L	0.0096	0.01	18-MAR-19
Antimony (Sb			0.00011	0.00010	0	mg/L	9.7	20	18-MAR-19
Arsenic (As)-			0.00026	0.00025		mg/L	4.0	20	18-MAR-19
Cadmium (Co			<0.0000050	0.0000060	RPD-NA	mg/L	N/A	20	18-MAR-19
Chromium (C	r)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	18-MAR-19
Cobalt (Co)-T	otal		<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	18-MAR-19
Copper (Cu)-	Total		0.0482	0.0470		mg/L	2.6	20	18-MAR-19
Lead (Pb)-To	tal		<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	18-MAR-19
Manganese (Mn)-Total		0.00068	0.00089	J	mg/L	0.00022	0.001	18-MAR-19

Test

Lead (Pb)-Total

Manganese (Mn)-Total

Quality Control Report

Workorder: L2245008 Report Date: 22-MAR-19 Page 3 of 10 TERRAPEX ENVIRONMENTAL LTD. (Toronto) Client: 90 Scarsdale Road Toronto ON M3B 2R7 Contact: Brian Theimer Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-T-CCMS-WT Water R4568437 Batch WG3008134-4 DUP WG3008134-3 Molybdenum (Mo)-Total 0.000553 0.000559 mg/L 1.2 20 18-MAR-19 Nickel (Ni)-Total < 0.00050 < 0.00050 **RPD-NA** mg/L N/A 20 18-MAR-19 Selenium (Se)-Total 0.000104 0.000089 mg/L 15 20 18-MAR-19 Silver (Ag)-Total < 0.000050 < 0.000050 **RPD-NA** mg/L N/A 20 18-MAR-19 Tin (Sn)-Total < 0.00010 < 0.00010 mg/L N/A **RPD-NA** 20 18-MAR-19 Titanium (Ti)-Total < 0.00030 < 0.00030 **RPD-NA** mg/L N/A 20 18-MAR-19 Zinc (Zn)-Total 0.0539 0.0538 mg/L 0.2 20 18-MAR-19 WG3008134-2 LCS Aluminum (Al)-Total 98.7 % 80-120 18-MAR-19 Antimony (Sb)-Total 108.3 % 80-120 18-MAR-19 Arsenic (As)-Total 95.6 % 80-120 18-MAR-19 Cadmium (Cd)-Total 97.1 % 80-120 18-MAR-19 Chromium (Cr)-Total 97.6 % 80-120 18-MAR-19 Cobalt (Co)-Total % 95.1 80-120 18-MAR-19 Copper (Cu)-Total 95.0 % 80-120 18-MAR-19 Lead (Pb)-Total 102.8 % 80-120 18-MAR-19 Manganese (Mn)-Total 97.9 % 80-120 18-MAR-19 Molybdenum (Mo)-Total 102.2 % 80-120 18-MAR-19 Nickel (Ni)-Total 96.2 % 80-120 18-MAR-19 Selenium (Se)-Total 95.0 % 80-120 18-MAR-19 Silver (Ag)-Total 106.1 % 80-120 18-MAR-19 Tin (Sn)-Total 100.0 % 80-120 18-MAR-19 95.2 Titanium (Ti)-Total % 80-120 18-MAR-19 Zinc (Zn)-Total 93.5 % 80-120 18-MAR-19 WG3008134-1 MB < 0.0050 0.005 Aluminum (Al)-Total mg/L 18-MAR-19 Antimony (Sb)-Total 0.0001 < 0.00010 mg/L 18-MAR-19 Arsenic (As)-Total < 0.00010 mg/L 0.0001 18-MAR-19 Cadmium (Cd)-Total 0.000005 < 0.0000050 mg/L 18-MAR-19 Chromium (Cr)-Total < 0.00050 0.0005 mg/L 18-MAR-19 Cobalt (Co)-Total < 0.00010 mg/L 0.0001 18-MAR-19 0.001 Copper (Cu)-Total mg/L < 0.0010 18-MAR-19

< 0.000050

< 0.00050

mg/L

mg/L

0.00005

0.0005

18-MAR-19

18-MAR-19

			quant	,	ontopolit			
		Workorder:	L2245008	3	Report Date: 22	-MAR-19		Page 4 of 10
Client:	TERRAPEX ENVIRONM 90 Scarsdale Road Toronto ON M3B 2R7	IENTAL LTD. (Toro	nto)					
Contact:	Brian Theimer							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-W	/T Water							
Batch	R4568437							
WG3008134-							0 00005	
Molybdenum			<0.000050		mg/L		0.00005	18-MAR-19
Nickel (Ni)-T			<0.00050		mg/L		0.0005	18-MAR-19
Selenium (Se			<0.000050		mg/L		0.00005	18-MAR-19
Silver (Ag)-T			<0.000050		mg/L		0.00005	18-MAR-19
Tin (Sn)-Tota			<0.00010		mg/L		0.0001	18-MAR-19
Titanium (Ti)			<0.00030		mg/L		0.0003	18-MAR-19
Zinc (Zn)-To			<0.0030		mg/L		0.003	18-MAR-19
WG3008134- Aluminum (A		WG3008134-6	95.0		%		70-130	18-MAR-19
Antimony (SI			100.5		%		70-130	18-MAR-19
Arsenic (As)			92.5		%		70-130	18-MAR-19
Cadmium (C			95.5		%		70-130	18-MAR-19
Chromium (0			93.4		%		70-130	18-MAR-19
Cobalt (Co)-			91.2		%		70-130	18-MAR-19
Copper (Cu)			N/A	MS-B	%		-	18-MAR-19
Lead (Pb)-To			95.4		%		70-130	18-MAR-19
Manganese			92.7		%		70-130	18-MAR-19
Molybdenum			98.4		%		70-130	18-MAR-19
Nickel (Ni)-T			91.4		%		70-130	18-MAR-19
Selenium (Se			92.9		%		70-130	18-MAR-19
Silver (Ag)-T			98.6		%		70-130	18-MAR-19
Tin (Sn)-Tota			97.8		%		70-130	18-MAR-19
Titanium (Ti)			92.6		%		70-130	18-MAR-19
Zinc (Zn)-To			N/A	MS-B	%		-	18-MAR-19
NP,NPE-LCMS-	WT Water							
Batch	R4579356							
WG3008172- Nonylphenol		L2245008-1 <1.0	<1.0	RPD-NA	ug/L	N/A	30	22-MAR-19
	Monoethoxylates	<2.0	<2.0	RPD-NA		N/A	30	22-MAR-19
	Diethoxylates	0.16	0.14		ug/L	13	30	22-MAR-19
WG3008172-		0.10	0.17		~9/ L	15	50	22-1VIAR-19
Nonylphenol			82.8		%		75-125	22-MAR-19
Nonylphenol	Monoethoxylates		92.0		%		75-125	22-MAR-19
Nonylphenol	Diethoxylates		102.0		%		75-125	22-MAR-19

			Qualit	ty Cont	rol Report			
		Workorder:	L224500	8	Report Date: 2	2-MAR-19		Page 5 of 10
Client:	TERRAPEX ENVIRONME 90 Scarsdale Road Toronto ON M3B 2R7	ENTAL LTD. (Tor	onto)					
Contact:	Brian Theimer							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NP,NPE-LCMS-	WT Water							
Batch WG3008172- Nonylphenol			<1.0		ug/L		1	22-MAR-19
	Monoethoxylates		<2.0		ug/L		2	22-MAR-19 22-MAR-19
	Diethoxylates		<0.10		ug/L		- 0.1	22-MAR-19
WG3008172- Nonylphenol	4 MS	L2245008-1	94.1		~ <u>3</u> , _		50-150	22-MAR-19
	Monoethoxylates		144.8		%		50-150	22-MAR-19
	Diethoxylates		89.0		%		50-150	22-MAR-19
OGG-SPEC-WT	Water							
WG3008115-								
Oil and Grea			91.7		%		70-130	17-MAR-19
Mineral Oil a			81.3		%		70-130	17-MAR-19
WG3008115- Oil and Grea			<2.0		mg/L		2	17-MAR-19
Mineral Oil a	nd Grease		<1.0		mg/L		1	17-MAR-19
P-T-COL-WT	Water							
	R4578468							
WG3010605- Phosphorus,		L2245008-1 0.0052	0.0050		mg/L	3.7	20	22-MAR-19
WG3010605- Phosphorus,			93.9		%		80-120	22-MAR-19
WG3010605- Phosphorus,			<0.0030		mg/L		0.003	22-MAR-19
WG3010605- Phosphorus,		L2245008-1	89.0		%		70-130	22-MAR-19
PCB-WT	Water							
Batch	R4570035							
WG3008478- Aroclor 1242			109 5		%		05 400	
Aroclor 1242 Aroclor 1248			128.5 126.0		%		65-130	18-MAR-19
Aroclor 1240 Aroclor 1254			126.8		%		65-130	18-MAR-19
Aroclor 1254 Aroclor 1260			120.8		%		65-130 65-130	18-MAR-19 18-MAR-19
WG3008478-			110.0		70		00-100	10-101/07-19
Aroclor 1242			<0.020		ug/L		0.02	18-MAR-19
Aroclor 1248	3		<0.020		ug/L		0.02	18-MAR-19

				Qualit	y Conti	о кероп			
			Workorder:	L2245008	8	Report Date:	22-MAR-19		Page 6 of 10
Client:	90 Scarsd		NTAL LTD. (Torol	nto)					
Contact:	Brian Thei								
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PCB-WT		Water							
Batch	R4570035								
WG3008478- Aroclor 1254				<0.020		.ug/l		0.02	
Aroclor 1254 Aroclor 1260				<0.020		ug/L		0.02	18-MAR-19
Surrogate: 2-		and a		<0.020 99.7		ug/L %		0.02 50-150	18-MAR-19
_	Fluoropiphe	-		99.7		70		50-150	18-MAR-19
PH-WT	D 4500500	Water							
Batch WG3007742-	R4568568 B DUP		WG3007742-7						
pH	5 501		8.05	7.98	J	pH units	0.07	0.2	16-MAR-19
WG3007742-	6 LCS								
рН				7.00		pH units		6.9-7.1	16-MAR-19
PHENOLS-4AAF	P-WT	Water							
Batch	R4568507								
WG3008305- Phenols (4AA			L2244461-15 0.0021	0.0019		mg/L	8.9	20	18-MAR-19
WG3008305-						Ū		-	
Phenols (4A	AP)			99.9		%		85-115	18-MAR-19
WG3008305-9 Phenols (4A/				<0.0010		mg/L		0.001	18-MAR-19
WG3008305- Phenols (4A/	-		L2244461-15	95.1		%		75-125	18-MAR-19
SO4-IC-N-WT		Water							
Batch	R4570912								
WG3008460-9 Sulfate (SO4			WG3008460-8 60.2	59.4		mg/L	1.5	20	18-MAR-19
WG3008460-									
Sulfate (SO4				98.1		%		90-110	18-MAR-19
WG3008460- Sulfate (SO4				<0.30		mg/L		0.3	18-MAR-19
WG3008460- Sulfate (SO4			WG3008460-8	97.7		%		75-125	18-MAR-19
SOLIDS-TSS-W	г	Water							
Batch	R4575087								
WG3009949- Total Susper			L2244899-7 5810	5840		mg/L	0.5	20	21-MAR-19
WG3009949- Total Susper				100.6		%		85-115	21-MAR-19
WG3009949-	1 MB								

			Quain		Report			
		Workorder:	L224500)8 F	Report Date: 22	2-MAR-19		Page 7 of 10
90 Sca	APEX ENVIRONM arsdale Road to ON M3B 2R7	ENTAL LTD. (Toro	nto)					
Contact: Brian	Theimer							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SOLIDS-TSS-WT	Water							
Batch R45750	87							
WG3009949-1 MB Total Suspended Sol			<2.0		mg/L		2	21-MAR-19
TKN-WT	Water							
Batch R45737	69							
WG3009913-3 DU Total Kjeldahl Nitrog		L2245000-1 2.08	1.83		mg/L	13	20	20-MAR-19
WG3009913-2 LC Total Kjeldahl Nitrog			115.3		%		75-125	20-MAR-19
WG3009913-1 MB Total Kjeldahl Nitrog			<0.15		mg/L		0.15	20-MAR-19
WG3009913-4 MS Total Kjeldahl Nitroge		L2245000-1	101.3		%		70-130	20-MAR-19
VOC-ROU-HS-WT	Water							
Batch R45683	54							
WG3005238-4 DU 1,1,2,2-Tetrachloroet		WG3005238-3 <0.50	<0.50		ug/l	N1/A	20	
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L ug/L	N/A N/A	30	18-MAR-19
1,4-Dichlorobenzene		<0.50	< 0.50	RPD-NA RPD-NA	ug/L	N/A N/A	30 30	18-MAR-19 18-MAR-19
Benzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30 30	18-MAR-19
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30 30	18-MAR-19
cis-1,2-Dichloroethyle	ene	<0.50	<0.50	RPD-NA	ug/L	N/A	30 30	18-MAR-19
Dichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	18-MAR-19
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAR-19
m+p-Xylenes		<1.0	<1.0	RPD-NA	ug/L	N/A	30	18-MAR-19
Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	18-MAR-19
o-Xylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAR-19
Styrene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAR-19
Tetrachloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAR-19
Toluene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAR-19
trans-1,3-Dichloropro	opene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAR-19
Trichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	18-MAR-19
WG3005238-1 LC	s				č			
1,1,2,2-Tetrachloroet			109.6		%		70-130	18-MAR-19
1,2-Dichlorobenzene	•		108.6		%		70-130	18-MAR-19

Workorder: L2245008

Report Date: 22-MAR-19

Page 8 of 10

Client: TERRAPEX ENVIRONMENTAL LTD. (Toronto) 90 Scarsdale Road Toronto ON M3B 2R7

Contact: Brian Theimer

VOC-ROU-HS-WT N Batch R4568354 WG3005238-1 LCS 1,4-Dichlorobenzene Benzene Chloroform cis-1,2-Dichloroethylene Dichloromethane Ethylbenzene m+p-Xylenes Methyl Ethyl Ketone o-Xylene	Water	107.6 113.1 112.3 103.8 109.1 97.5	% % %	70-130 70-130 70-130	18-MAR-19 18-MAR-19
WG3005238-1 LCS 1,4-Dichlorobenzene Benzene Chloroform cis-1,2-Dichloroethylene Dichloromethane Ethylbenzene m+p-Xylenes Methyl Ethyl Ketone		113.1 112.3 103.8 109.1	% %	70-130	18-MAR-19
1,4-Dichlorobenzene Benzene Chloroform cis-1,2-Dichloroethylene Dichloromethane Ethylbenzene m+p-Xylenes Methyl Ethyl Ketone		113.1 112.3 103.8 109.1	% %	70-130	18-MAR-19
Benzene Chloroform cis-1,2-Dichloroethylene Dichloromethane Ethylbenzene m+p-Xylenes Methyl Ethyl Ketone		113.1 112.3 103.8 109.1	% %	70-130	18-MAR-19
Chloroform cis-1,2-Dichloroethylene Dichloromethane Ethylbenzene m+p-Xylenes Methyl Ethyl Ketone		112.3 103.8 109.1	%		
cis-1,2-Dichloroethylene Dichloromethane Ethylbenzene m+p-Xylenes Methyl Ethyl Ketone		103.8 109.1		70-130	
Dichloromethane Ethylbenzene m+p-Xylenes Methyl Ethyl Ketone		109.1	%		18-MAR-19
Ethylbenzene m+p-Xylenes Methyl Ethyl Ketone				70-130	18-MAR-19
m+p-Xylenes Methyl Ethyl Ketone		97.5	%	70-130	18-MAR-19
Methyl Ethyl Ketone			%	70-130	18-MAR-19
		99.8	%	70-130	18-MAR-19
o-Xvlene		117.8	%	60-140	18-MAR-19
		98.2	%	70-130	18-MAR-19
Styrene		104.4	%	70-130	18-MAR-19
Tetrachloroethylene		102.5	%	70-130	18-MAR-19
Toluene		100.2	%	70-130	18-MAR-19
trans-1,3-Dichloropropene		101.0	%	70-130	18-MAR-19
Trichloroethylene		113.0	%	70-130	18-MAR-19
WG3005238-2 MB			_		
1,1,2,2-Tetrachloroethane		<0.50	ug/L	0.5	18-MAR-19
1,2-Dichlorobenzene		<0.50	ug/L	0.5	18-MAR-19
1,4-Dichlorobenzene		<0.50	ug/L	0.5	18-MAR-19
Benzene		<0.50	ug/L	0.5	18-MAR-19
Chloroform		<1.0	ug/L	1	18-MAR-19
cis-1,2-Dichloroethylene		<0.50	ug/L	0.5	18-MAR-19
Dichloromethane		<2.0	ug/L	2	18-MAR-19
Ethylbenzene		<0.50	ug/L	0.5	18-MAR-19
m+p-Xylenes		<1.0	ug/L	1	18-MAR-19
Methyl Ethyl Ketone		<20	ug/L	20	18-MAR-19
o-Xylene		<0.50	ug/L	0.5	18-MAR-19
Styrene		<0.50	ug/L	0.5	18-MAR-19
Tetrachloroethylene		<0.50	ug/L	0.5	18-MAR-19
Toluene		<0.50	ug/L	0.5	18-MAR-19
trans-1,3-Dichloropropene		<0.50	ug/L	0.5	18-MAR-19
Trichloroethylene		<0.50	ug/L	0.5	18-MAR-19
Surrogate: 1,4-Difluoroben	zene	99.2	%	70-130	18-MAR-19
Surrogate: 4-Bromofluorob	enzene	95.9	%	70-130	18-MAR-19

 Workorder:
 L2245008
 Report Date:
 22-MAR-19
 Page
 9
 of
 10

 Client:
 TERRAPEX ENVIRONMENTAL LTD. (Toronto) 90 Scarsdale Road Toronto ON M3B 2R7
 Scarsdale Road
 <

Test	Matrix	Reference Res	ult Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water						
Batch R456835	54						
WG3005238-5 MS		WG3005238-3					
1,1,2,2-Tetrachloroetl	nane	110	.8	%		50-150	18-MAR-19
1,2-Dichlorobenzene		108	.7	%		50-150	18-MAR-19
1,4-Dichlorobenzene		108	.6	%		50-150	18-MAR-19
Benzene		112	.5	%		50-150	18-MAR-19
Chloroform		112	.4	%		50-150	18-MAR-19
cis-1,2-Dichloroethyle	ne	103	.6	%		50-150	18-MAR-19
Dichloromethane		107	.9	%		50-150	18-MAR-19
Ethylbenzene		97.3	3	%		50-150	18-MAR-19
m+p-Xylenes		100	.0	%		50-150	18-MAR-19
Methyl Ethyl Ketone		101	.1	%		50-150	18-MAR-19
o-Xylene		97.7	,	%		50-150	18-MAR-19
Styrene		103	.3	%		50-150	18-MAR-19
Tetrachloroethylene		102	.9	%		50-150	18-MAR-19
Toluene		99.9	99	%		50-150	18-MAR-19
trans-1,3-Dichloropro	pene	102	.4	%		50-150	18-MAR-19
Trichloroethylene		112	.1	%		50-150	18-MAR-19

Workorder: L2245008

Report Date: 22-MAR-19

Client:	TERRAPEX ENVIRONMENTAL LTD. (Toronto)
	90 Scarsdale Road
	Toronto ON M3B 2R7
Contact:	Brian Theimer

Contact:

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

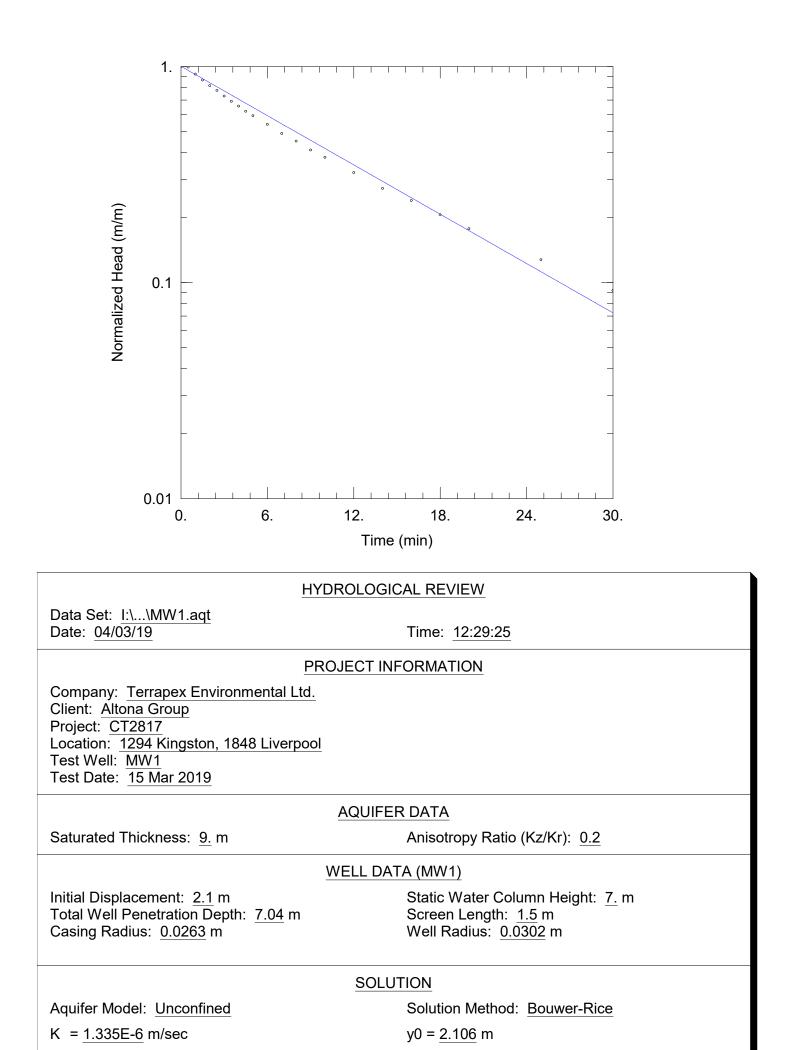
All test results reported with this submission were conducted within ALS recommended hold times.

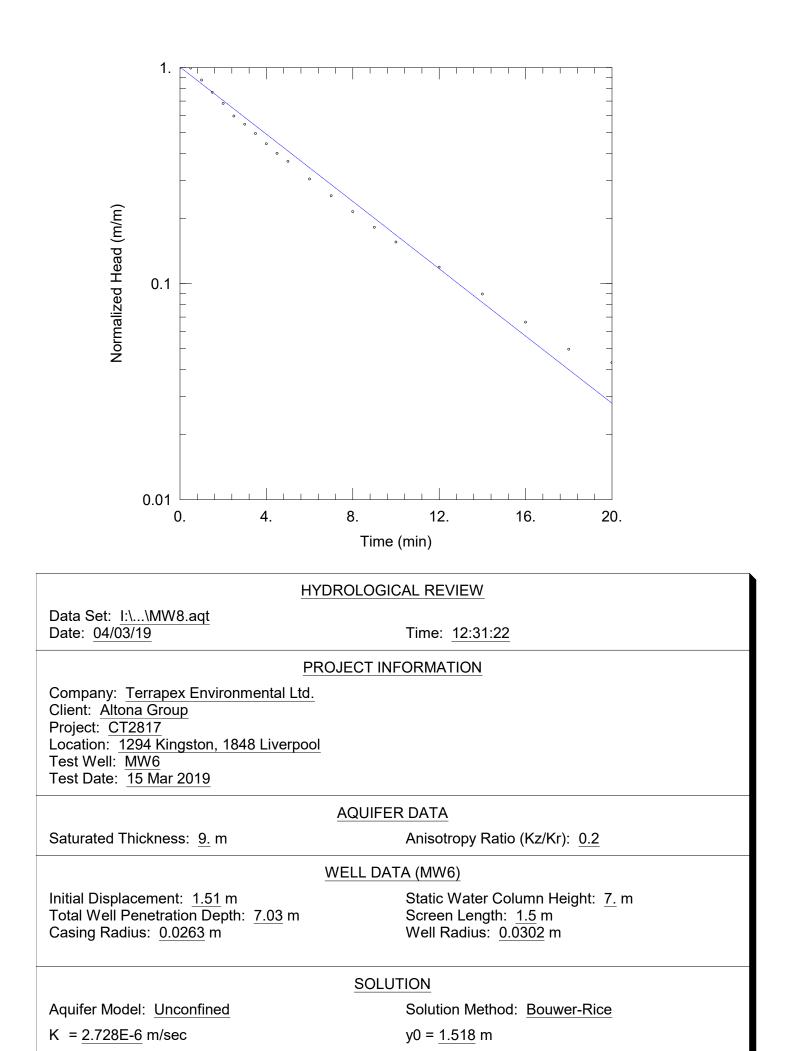
ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

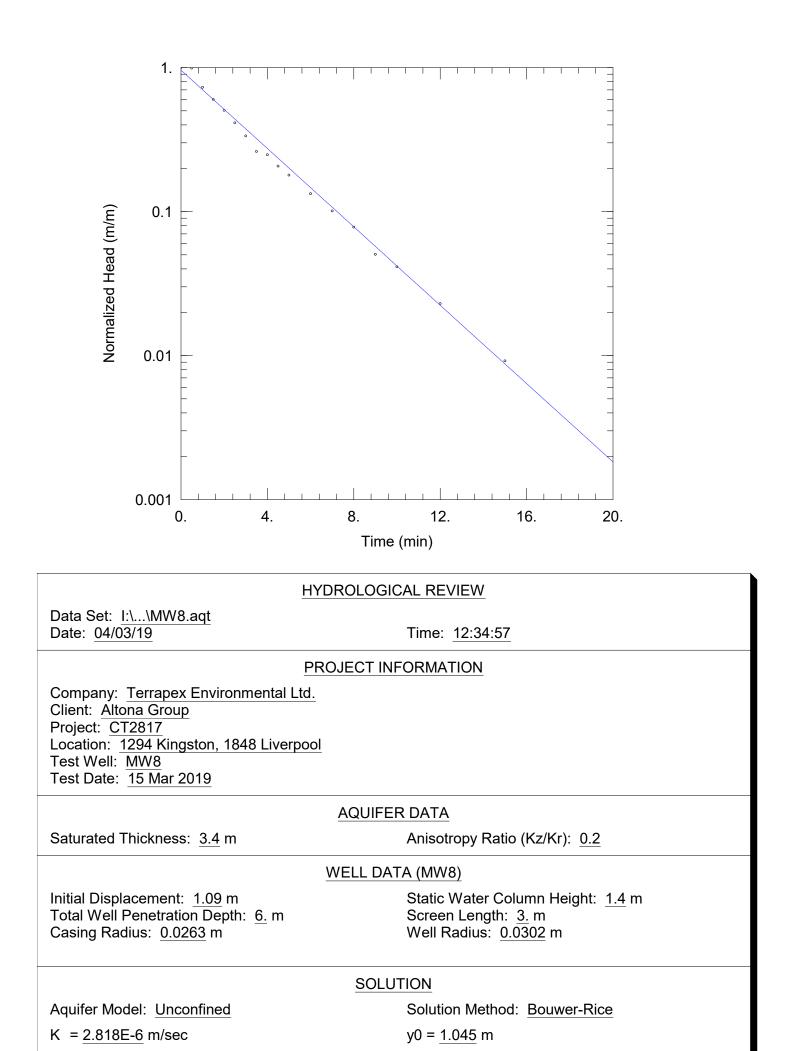
The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Chain of Custody (COC) / Analytical Request Form


coc Number: 17 - 724722


of
Page


	(A)									sliet	r de	ецн	nj ə	pivo	e bu						-	91	_				 	 -	F		ב				
	oviect Service Level Below - Contact your AM to confirm all E&P TATs (surcharges may apply)	ar [R] 🏋 Standard TAT if received by 3 pm - business days - no surcharges apply	┢─	3-25%] g Same Day, Weekend or Statutory holiday [E2-200%		Date and Time Required for all E&P TATs:	and the second	for tests that can not be performed according to the service level selected, you will be contacted.	Analysis Request	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below							-				_								KECEIVED (lab use only)	I Pre-Cribbe 1 Tetrative ceal intent Vec 1 Mo		INITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES °C	0.3	FINAL SHIPMENT RECEPTION (lab use only)	Received by 🔨 / Date
L2245008-CUFU	108IBC .	(GTTAL) Regular [R]		hecked 5 3 day [P3-25%]	۲q		5		€. €			pot	5-	×,,	ष्	U	5	; u	v ØY.	1	Sample Type	QW X						 _		Frozen Ire Davke	filat	LINI	5-4		Time
	Report Format / L	Referrance (Digital)		Compare Results to Criteria on Report - provide details below if box checked	email mail 🗍 fax	2 the mer at to to race is	-	2	Bhaseni (a terapera	Invoice Distribution	【 EMAIL 🗌 MAIL 🗍 FAX			Oil and Gas Required Fields (client use)	₽0#	Routing Code:			Sampler	Time	(hh:mm)	B 11:30							ia to add on report by clicking on the drop-down list below /electronic COC only/	(Auto				INITIAL SHIPMENT RECEPTION (Iab use only)	Date
Canada Toll Free: 1 800 668 9878	Report	Select Report Format:	8	Compare Results to Criteria on	Select Distribution:	Email 1 or Eav		Ĵ-	Email 3 L- Gr	Inv	Select Invoice Distribution:	Email 1 or Fax	Email 2	Oil and Gas F	AFE/Cost Center:	Major/Minor Code:	Requisitioner:	Location:	ALS Contact: LAA	Date	(dd-mmm-bp)	Mar 15/	-						Special Instructions / Specify Criteria to add on repor /electronic COC -	האלי שוויט אין				INITIAL SH	Received by
Canada To	l appear on the final report	martal LAD		237	e final report					Yes No	YES 🗌 NO								2) ILTAND	Samule Identification and/or Coordinates	(This description will appear on the report)	MW 8							Special Instructions					use)	Time:
	www.cisylouder.com Contact and company name below will appear on the final report	Torradex Environmental LAD	Brian Theimer	×	ar on the	an eracedal Rang	2000	U	č	Same as Report To	Copy of Invoice with Report			Project Information	uota #:	00-112	2		ALS Lab Work Order # (lab use only):	Samule Identifics	(This description	A set and a set							Drinking Water (DW) Samples ¹ (client use)	Are samiles faten from a Regulated DW System?		Are samples for human consumption/ use?	I YES I NO	SHIPMENT RELEASE (client use)	l Data:
(ALS)E	Report To	Company:				Street				Involce To Sa	Ŭ	Company:	Contact:		ALS Account # / Quote #:	Job # CTOS	PO / AFE:	LSD:	ALS Lab Work	AI & Comolo #	(lab use only)								Drinking	Ara camilas fakan fi		Are samples for hum	YES	-	Released by:

Falture to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water camples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorizad DW COC form.

Appendix V Hydraulic Conductivity Testing

