

HYDROGEOLOGICAL REVIEW- UPDATE

Townhouse Developments 2660 to 2680 Brock Road, and Part of Lot 19, Concession 3; Part 3 and Part 4 on Plan 40R-27228 Pickering, Ontario

Terrapex Project: CT2694.03

FINAL REPORT 26 May 2022

<u>Distribution</u> The Brock Zents Partnership, 1 copy Terrapex Environmental Ltd., 1 copy

Terrapex Environmental Ltd.

90 Scarsdale Road Toronto, Ontario, M3B 2R7 Telephone: (416) 245-0011 Facsimile: (416) 245-0012 Email: toronto@terrapex.com Website: www.terrapex.com

EXECUTIVE SUMMARY

Terrapex Environmental Ltd. (Terrapex) was retained by The Brock Zents Partnership to prepare a hydrogeological review in support of the development of a property on lots addressed as 2660, 2670 and 2680 Brock Road, and Part of Lot 19, Concession 3; Part 3 and Part 4 on Plan 40R-27228 (site) in the south-central part of the City of Pickering. The proposed development will consist of thirteen blocks of 3-storey above ground townhouses constructed as slab-on grade structures. Parts 3 and 4 of Plan 40R-27228 are currently owned by the City of Pickering, and are being considered for purchase by The Brock Zents Partnership. The whole of Part 4, and the northeast corner of Part 3 would then be subsequently conveyed to the municipality for a road right-of-way and daylight triangle, respectively.

Fourteen groundwater monitoring wells were installed at ten locations, broadly distributed across the site. One groundwater sample was obtained and analysed for water quality parameters listed by the Durham Region sewers bylaw criteria. One suite of groundwater levels was observed in April 2021, and a further three suites were measured in October 2021. Eight rounds of groundwater levels were measured in 2018 and 2019, and single well response falling head tests were performed in 2018.

The water table was encountered at an average depth of 1.7 metres below ground and an average elevation of 129.2 metres above sea level. The shallowest water table depth encountered was 0.19 metres below grade. Foundation excavations and utility trenches will likely intercept the water table. It is recommended that foundation plans and servicing plans be provided for Terrapex's review when they become available so that the need for Ministry of Environment, Conservation and Parks permitting (Environmental Activities and Sector Registry (EASR) or Permit to Take Water (PTTW)) can be evaluated.

The reported concentrations of the groundwater complied with the chemical criteria specified under the Region of Durham bylaw for sanitary sewer discharge. Total suspended solids exceeded the chemical criteria for storm sewer discharge, therefore construction dewatering would need treatment before discharging to storm. Durham Region approval would be required to discharge to their sewers.

The site in pre-construction conditions is covered by pervious surfaces of open soil and grass. The site in post-construction will be dominantly covered by impervious surfaces of the proposed buildings, roadways and laneways. Low impact development infiltration systems should be considered to offset the reduction in post-development groundwater recharge.

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1.0	BACKGROUND	1
2.0	LOCATION AND SETTING	2
2.1 2.2 2.3 2.4 2.5 2.6	LOCATION AND PROPERTY DIMENSIONS PRESENT LAND USE PROPOSED DEVELOPMENT SITE TOPOGRAPHY DRAINAGE REGIONAL GEOLOGY	2 3 3 3 3
2.7 2.8	SENSITIVE ECOLOGICAL RECEIVERS GROUNDWATER SUPPLY WELLS	4 4
3.0	FIELD PROGRAM	5
3.1 3.2 3.3 3.4 3.5	DRILLING AND BOREHOLES MONITORING WELLS GROUNDWATER LEVEL MEASUREMENTS GROUNDWATER SAMPLING SINGLE WELL HYDRAULIC TESTS.	5 5 6 6
4.0	OBSERVATIONS	7
4.0 4.1 4.2	OBSERVATIONS SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY GROUNDWATER LEVELS AND TEMPERATURES	7 7 7
4.0 4.1 4.2 5.0	OBSERVATIONS SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY GROUNDWATER LEVELS AND TEMPERATURES ANALYSIS	7 7 7
4.0 4.1 4.2 5.0 5.1 5.2 5.3	OBSERVATIONS	7 7 8 8 8
4.0 4.1 4.2 5.0 5.1 5.2 5.3 6.0	OBSERVATIONS SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY GROUNDWATER LEVELS AND TEMPERATURES ANALYSIS HYDRAULIC CONDUCTIVITY HYDRAULIC GRADIENTS GROUNDWATER QUALITY DEWATERING RATES	7 7 8 8 8 8 8
4.0 4.1 4.2 5.0 5.1 5.2 5.3 6.0 6.1 6.2 6.3	OBSERVATIONS SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY GROUNDWATER LEVELS AND TEMPERATURES ANALYSIS HYDRAULIC CONDUCTIVITY HYDRAULIC GRADIENTS GROUNDWATER QUALITY DEWATERING RATES SEEPAGE RATES TO CONSTRUCTION EXCAVATION AND FOUNDATION RADIUS OF INFLUENCE AND SENSITIVE RECEIVERS WATER QUALITY OF DISCHARGE	7 7 8 8 8 8 8 8 8 10 11 11
4.0 4.1 4.2 5.0 5.1 5.2 5.3 6.0 6.1 6.2 6.3 7.0	OBSERVATIONS SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY GROUNDWATER LEVELS AND TEMPERATURES ANALYSIS HYDRAULIC CONDUCTIVITY HYDRAULIC GRADIENTS GROUNDWATER QUALITY DEWATERING RATES SEEPAGE RATES TO CONSTRUCTION EXCAVATION AND FOUNDATION RADIUS OF INFLUENCE AND SENSITIVE RECEIVERS WATER QUALITY OF DISCHARGE WATER BALANCE ASPECTS	7 7 8 8 8 8 8 8 8 10 11 11 11
4.0 4.1 4.2 5.0 5.1 5.2 5.3 6.0 6.1 6.2 6.3 7.0 8.0	OBSERVATIONS SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY GROUNDWATER LEVELS AND TEMPERATURES ANALYSIS HYDRAULIC CONDUCTIVITY HYDRAULIC GRADIENTS GROUNDWATER QUALITY DEWATERING RATES SEEPAGE RATES TO CONSTRUCTION EXCAVATION AND FOUNDATION RADIUS OF INFLUENCE AND SENSITIVE RECEIVERS WATER QUALITY OF DISCHARGE WATER BALANCE ASPECTS. CLOSURE	7 7 8 8 8 8 8 8 10 11 11 11 11 11

TABLE OF CONTENTS (CONT'D)

FIGURES

Figure 1	Site Location Map
Figure 2	General Site Layout
Figure 3	Groundwater Flow Direction

TABLES

Table 1	Monitoring Well Construction Details
Table 2	Observed Groundwater Levels
Table 3	Summary of Groundwater Quality
Table 4	Summary of Grain Size Analysis
Table 5	Construction Dewatering Rate Calculation

APPENDICES

Appendix I	Figures
Appendix II	Tables
Appendix III	Borehole Records
Appendix IV	MECP Water Well Records
Appendix V	Grain Size Analyses Distributions
Appendix VI	Hydraulic Conductivity Tests
Appendix VII	Laboratory Report

1.0 BACKGROUND

Terrapex Environmental Ltd. (Terrapex) was retained by The Brock Zents Partnership to prepare a hydrogeological review for development of the property on lots addressed as 2660, 2670 and 2680 Brock Road, and Part of Lot 19, Concession 3; Part 3 and Part 4 on Plan 40R-27228 (site) in the south-central part of the City of Pickering. Parts 3 and 4 of Plan 40R-27228 are currently owned by the City of Pickering, and are being considered for purchase by The Brock Zents Partnership. The whole of Part 4, and the northeast corner of Part 3 would then be subsequently conveyed to the municipality for a road right-of-way and daylight triangle, respectively. The site location is presented on Figure 1. The locations of the conveyances are presented on Figure 2.

We understand that this report will be submitted to the Regional Municipality of Durham in support of the development application process.

A companion geotechnical assessment for the same site was concurrently undertaken by Terrapex. The geotechnical report is being submitted under separate cover.

2.0 LOCATION AND SETTING

2.1 LOCATION AND PROPERTY DIMENSIONS

The site consists of the three adjoining lots with addresses of 2660, 2670 and 2680 Brock Road, which is in the centre of the City of Pickering. The northern portion of the site, which extends to Zents Street, is a City-owned parcel designated as Part of Lot 19, Concession 3; Part 3 and Part 4 on Plan 40R-27228. The site fronts on the west side of Brock Road, with the northern property line fronting on Zents Drive. The location is shown on Figure 1. The UTM location is approximately 17T 653575 m easting, 4860160 m northing.

The site spans an L-shaped area, as shown on Figure 2. The approximate dimensions in the eastwest orientation are 120 m in the northern portion and 160 m in the southern portion, and the northsouth orientation is 180 m, covering an area of 2.59 hectares.

2.2 PRESENT LAND USE

The current land use consists of the following features.

- 2660 Brock Road lot. Hosts an unoccupied single family dwelling and garage building. Mostly open soil or grass with a few trees on the east side, with forest dominating the west side.
- 2670 Brock Road lot. Currently hosts no structures. Mostly open soil or grass with a few trees.
- 2680 Brock Road lot. Hosts an unoccupied single family dwelling and garage, with minor structures and storage of several boats. Mostly open soil or grass with a few trees on the east side, with forest along the west property line.
- Part of Lot 19, Concession 3; Part 3 and Part 4 on Plan 40R-27228. Currently hosts no structures. Mostly vegetated with grass and trees.

Land use in the 500 m vicinity is variable. The following is a summary.

- **North:** Residential dwellings on large lots, along with vacant lots with forest and cleared open soil areas. A railway track line that trends southwest to northeast.
- **East:** A subdivision neighbourhood of single-family dwellings and townhouses. Residential subdivisions under construction. Pickering Golf Club with large club building and fairways. Forested areas and vacant lots.
- **South:** Forest, a Hindu Temple, vacant lots with open soil and grass, single family residential dwellings on large lots.
- West: Forest / wood lot, with a subdivision neighbourhood of single-family dwellings and townhouses west of Tillings Road. A City of Pickering Operations Centre with salt domes is located approximately 350 m to the southwest.

2.3 PROPOSED DEVELOPMENT

The proposed development portion will cover most of the 2.59 ha lot. Thirteen (13) blocks of 3storey townhouses are proposed. The development area will be constructed with slab-on grade foundation. The spaces between townhouse blocks will consist of driving lanes, parking slots, walking areas and landscaped areas. The undeveloped portion will consist of the western 38 m wide area of the 2660 and 2670 Brock Road lots, which will include strips for a road allowance and for forest (18 m wide).

2.4 SITE TOPOGRAPHY

Relief in the site vicinity consists of a broad north-south trending ridge (Vumap, 2018) that forms a regional watershed divide, with the site on the eastern flank. The lowest part of the vicinity is a ravine for Urfe Creek that is approximately 450 m to the east, which is at an elevation of approximately 110 metres above sea level (masl). The highest part of the vicinity is a broad ridge to the north that is at approximately 136 masl.

Relief on the site itself consists of a sloping plain to the east. The highest elevation is approximately 133 masl at a mound in the west central side. Generally, the west side ranges from about 131 to 132 masl and the east side elevation ranges from 129 to 130 masl (Krcmar, 2018).

The ground at points adjacent to monitoring wells were surveyed by Terrapex using a Topcon HiPEr V instrument with <u>+</u> 0.1 centimetre level accuracy.

2.5 DRAINAGE

There are no watercourses, ponds, or other surface water features on the site.

A tributary of Urfe Creek is located approximately 300 m to the southeast with several ponds further south. The main branch of Urfe Creek is located approximately 450 m to the east. This watercourse ultimately drains to Lake Ontario.

2.6 REGIONAL GEOLOGY

A surficial geological map prepared by Geology Ontario (2018) shows the site as being set on coarse-textured glacial lake deposits of sand and gravel, along with minor silt and clay.

A bedrock geological map prepared by Geology Ontario (2018) shows that the site is underlain by the Blue Mountain Formation, which is comprised of shale with minor limestone interbeds. Shale bedrock was encountered in several local wells in the MOECC well records at depths ranging from 15 to 44 metres below ground (mbg), with the range of 24 to 27 mbg being more common. Bedrock is likely too deep to affect the shallow groundwater regime at the site.

Additional information on subsurface conditions of the site vicinity is also available from reports of wells and boreholes in the database maintained by the Ministry of the Environmental and Climate Change (MOECC, 2021). The database listings for wells within approximately 500 m of the site are provided in Appendix IV.

2.7 SENSITIVE ECOLOGICAL RECEIVERS

Designated sensitive ecological areas such as Areas of Natural and Scientific Interest (ANSI), Provincially Significant Wetlands (PSW) or Environmentally Significant Areas (ESA's) are absent within 500 m of the site (MNRF 2018). Several wetlands without special designation are mapped as being 350 m to the west, but the area is now a residential subdivision. Woodlands without special designation are mapped within the site, and along the Urfe Creek corridor which is approximately 450 m East of the site. The site is not situated on a designated Source Protection groundwater classification area (MOECC, 2018a)

2.8 GROUNDWATER SUPPLY WELLS

The area is partially urbanized and is provided with piped municipal water supplies sourced from Lake Ontario. The MOECC water well database lists 25 wells as having domestic supply purpose within 500 m of the site. Some of these wells may be historic and since abandoned.

The existing lots of the site have a rural character and were likely serviced by private supply wells. The existing residential dwellings are abandoned, so wells are not in active use. The location of the water wells observed in the field are shown on Figure 2. The wells mapped as being located at the site are at the following UTM coordinates on the indicated lots.

- 2680 Brock Road. 2 wells. (a) 653601 m easting, 4861066 m northing. (b) 653608 m easting, 4860186 m northing.
- 2670 Brock Road. 1 well. 653615 m easting, 4860127 m northing.
- 2660 Brock Road. 1 well. 653625 m easting, 4860088 m northing.

The MOECC water well database indicates well IDs 4604136, 4601378, and 4601379 as being on or near the site. These are large diameter dug wells with depths between 8 and 10 mbg. Prior to construction, these wells must be abandoned in accordance with Regulation 903 and its amendments by a licensed water well contractor.

The site is not located within a designated well head protection area for any municipal well (Durham Region, 2017).

3.0 FIELD PROGRAM

3.1 DRILLING AND BOREHOLES

Drilling programs were conducted from April 30th 2018 to May 7th 2018, July 12th 2019, and from October 4th to October 5th 2021. The drilling program served the purposes of this hydrogeological review and update, the geotechnical assessment (Alston, 2018; Alston 2019), and the Phase Two environmental site assessment (Terrapex, 2021). Boreholes without monitoring wells were drilled at eight locations (BH designations). Fourteen monitoring wells (MW designations) were installed at ten locations. The locations drilled in 2018 and 2019 were selected to provide broad areal coverage, and the locations drilled in 2021 were also selected to serve the purpose for the Phase Two assessment completed under separate cover (Terrapex, 2021).

Soils were logged in the field by a qualified geotechnical technician and then confirmed by a Professional Engineer at Terrapex's Toronto facilities.

3.2 MONITORING WELLS

Fourteen monitoring wells were installed at the ten locations designated MW1, MW3, MW4, MW5 MW8, MW10, MW101, MW102, MW203, and MW206. Four locations (MW1, MW3, MW8, and MW102) were constructed as a cluster of two adjacent monitoring wells with screens at separated depths. The well components and their relationships to adjacent stratigraphy are shown in the borehole records of Appendix III and dimensions are reported in Table 1. UTM locations were measured using a Topcon-500 with centimetre scale accuracy.

The monitoring wells were constructed using environmental grade, 50 mm diameter, Schedule 40, PVC piping with machine slotted (10 slot) screens at the bottom that were open for a 1.5 m length. The wells are completed with monument-style above-grade casing. The tops of pipe are plugged with removable J-caps.

Monitoring wells, when no longer useful, must be abandoned by a licensed water well contractor. Abandonment must proceed in accordance with Regulation 903 and amendments issued under the Ontario Water Resources Act. The monitoring wells should remain until substantial construction is completed to be available for observing future seasonal conditions and for monitoring of potential effects due to dewatering, if ever required.

3.3 GROUNDWATER LEVEL MEASUREMENTS

Groundwater level measurement events occurred on the 13th, 18th and 27th of October 2021. Groundwater level measurement events also occurred in April 2021, April to July 2019, and May 2018, to fulfill earlier hydrogeological investigations at this site, which were based on the previously proposed development plans. Water levels were measured using an electric tape sounder device. The reported elevations for the monitoring well rims, from which levels are referenced, are based on the ground elevation plus stick up of the PVC pipe.

3.4 GROUNDWATER SAMPLING

A groundwater sample was obtained from the monitoring well MW206 on October 18, 2021 for the purpose of evaluating suitability for discharge to the Region of Durham sewers. The well was purged one week prior to sampling. The sample was collected using low-flow sampling techniques, including a peristaltic pump and quarter-inch tubing. Samples were discharged directly to precleaned bottles supplied by the laboratory with preservatives as appropriate for parameters. These bottles were iced and held in a cooler prior to delivery.

The sample was submitted to Paracel Laboratories Ltd. (Paracel) of Hamilton, Ontario, which is an independent laboratory and is certified by the Canadian Association for Laboratory Accreditation (CALA). Paracel completed analysis for the suite of parameters specified under the Region of Durham bylaw 55-2013 for sanitary and storm sewer discharges.

3.5 SINGLE WELL HYDRAULIC TESTS

Single well response tests to assess the hydraulic conductivity of adjacent formations were performed on five monitoring wells: MW1D, MW3D, and MW4 in May 2018 and MW101 and MW102D in June 2019. The monitoring wells were selected for having a screen interval being set dominantly within a single dominant soil texture, for having a water level above the screen top and for representing different soil types. The hydraulic response tests employed the bail method, which is a rapid removal of a volume of water using an elongated bailer. The ensuing rising recovery to static level is observed over time. Data were analysed using the Aqtesolv software package by the Bouwer and Rice method.

Solinst levelogger brand dataloggers were installed to measure groundwater levels. The levelloggers recorded data at an interval of 5 minutes for MW1D, MW3D, and MW4, and an interval of 30 seconds for MW101 and MW102D. A barometric logger was installed on site to allow correct for effects of atmospheric presssure on the levelogger water values.

4.0 OBSERVATIONS

4.1 SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY

The subsurface conditions that were encountered are shown on the borehole records of Appendix III.

A fill layer is present at most drilled locations, which is predominantly the eastern portion of the site, with a thickness range from 0.3 to 1.5 m. A topsoil layer with thickness of less than 0.6 m is present at most areas throughout the site.

Below the topsoil and fill across most of the site, soils are predominantly (clayey) sandy silt till. Layers of silty sand to sandy silt were encountered between the till soil, with no particular sequence pattern throughout the locations.

Layers of gravelly sand to sandy gravel occur at depths below 8.5 mbg to 12 mbg at several boreholes locations. These granular layers, ranging in thickness from 1 to 3 m, may be isolated lenses or may be hydraulically interconnected. These granular zones occur below the anticipated depth of excavation so would not contribute water directly to the excavation.

Past approximately 12 mbg, both silty sand layers and (clayey) silt till layers are observed again.

The conditions described above are known at borehole locations only. Texture, thickness and presence of layer may vary between boreholes. Lenses of alternate textures may be present between boreholes.

4.2 GROUNDWATER LEVELS AND TEMPERATURES

Groundwater level observations are presented as depth and as elevation on Table 2. Only 2021 monitoring data will be referred to for this section of the hydrogeological review, however, all monitoring data collected by Terrapex to date is presented on Table 2. Elevations of the water table observations of October 27, 2021 are posted on the map of Figure 3.

The average depth to shallow water level was 1.7 mbg. The shallowest depth to groundwater observed was in MW1(S) at 0.7 mbg. The deepest depth to groundwater observed was at MW5 at 8.0 mbg. As observed, the average elevation of shallow groundwater was 129.24 masl, with the highest elevation in MW1(S) at 131.33 masl and the lowest in MW5 at 123.62 masl.

Groundwater elevations from the shallow water table saw a relatively large decrease of approximately 1.25 meters from the first monitoring event (October 13, 2021) to the second (October 18, 2021). Groundwater elevations from the shallow water table saw an increase of the same magnitude from the second monitoring event to the third monitoring event (October 27, 2021). This may have been due to a particularly dry period, and suggests the water table in this area can vary to such magnitudes depending on rain events.

Groundwater levels naturally fluctuate in response to seasons, to annual variations and to major storm events. The shallowest groundwater level was observed in a spring monitoring event (April 2019).

5.0 ANALYSIS

5.1 HYDRAULIC CONDUCTIVITY

Hydraulic conductivity, relates to the relative ability of a soil unit to transmit water. Values for this parameter are necessary for formula used in predicting the rates of groundwater seepage. In general, coarser soils (e.g. sand, gravel, and with low fines) have higher hydraulic conductivity than do fine-grained soils (e.g. silt, clay). Other factors can influence hydraulic conductivity beyond grain size distribution.

The hydraulic conductivity interpreted from single well response tests are presented in the analysis curves in Appendix VI. The software analysis considered the wells as being screened in an unconfined aquifer. The interpreted hydraulic conductivity values for MW1(D), MW3(D), MW4, MW101 and MW102D are: $9x10^{-9}$, $3x10^{-7}$, $7x10^{-6}$, $1x10^{-8}$, and $4x10^{-8}$ respectively.

The hydraulic conductivity values interpreted from grain size analysis and the Hazen formula are presented Table 4. Grain size distribution curves are presented in Appendix V. The Hazen formula uses the d_{10} value, which is the particle radius with 10% finer by weight, to predict the hydraulic conductivity. The hydraulic conductivity range for tested samples ranged from $3x10^{-7}$ m/s to $3x10^{-4}$ m/s. Only the sample with hydraulic conductivity of $3x10^{-7}$ m/s was in the depth range (3.3 m bgs) representative of soil that would be encountered during excavations for the proposed development.

5.2 HYDRAULIC GRADIENTS

The water table surface is commonly a subdued reflection of the overlying ground surface. Shallow groundwater will follow the general ground surface grade, with preferential movement toward watercourses. Based on this interpretation, shallow groundwater in the vicinity of the site is anticipated to move generally eastward.

The groundwater level measurements for October 27, 2021 are posted on Figure 3, which are based on observations from wells shallower than 8 mbg. Groundwater contours were interpreted using Surfer software. The estimated magnitude of the gradient in the northern part of the site is 0.06 m/m (southerly) towards the centre of the site. Measurements in wells of shallow groundwater in the southern part of the site indicate gradients ranging from 0.02 to 0.09 m/m (northerly) towards the centre of the site.

The two monitoring well clusters indicated a downward vertical hydraulic gradient at MW1 and MW3 with magnitudes of 1.04 m/m and 0.15 m/m, respectively. These results indicate that the site functions as a groundwater recharge area. The steeper gradient at MW1 reflects the relatively lower permeability soils.

5.3 GROUNDWATER QUALITY

Concentrations of tested parameters as reported for the groundwater sample obtained from MW206 on October 18, 2021, are provided in the attached Certificate of Analysis in Appendix VII and are summarized on Table 3. The reported concentrations of the groundwater complied with the chemical criteria specified under the Region of Durham bylaw for sanitary sewers. The reported

concentrations of the groundwater complied with the chemical criteria specified under the Region of Durham bylaw for storm sewers, with exception of total suspended solids (TSS).

The TSS result was 17 mg/L, which exceeds the storm sewer criteria of 15 mg/L but is acceptable under the sanitary/combined sewer criteria of 350 mg/L.

6.0 DEWATERING RATES

The water table was observed at an average depth of 1.6 mbg, with some locations deeper and others locations shallower by up to 1.4 m (i.e. 0.19 mbg). The proposed construction will be at grade, however, foundation excavations may extend below the water table, depending upon the season of construction. Piped infrastructure is likely to require trenches with depth of 3.0 mbg or more. Thus, the building excavation and utility pipe installation trenches will likely experience seepage during construction that will need to be controlled by pumping from adjacent soils or the interior of the excavation. Because the buildings are to be constructed as slab-on-grade, they will not require foundation drains in post-construction.

6.1 SEEPAGE RATES TO CONSTRUCTION EXCAVATION AND FOUNDATION

The Ministry of the Environment Conservation and Parks (MECP) requires a Permit to Take Water (PTTW) or an Environmental Activity and Sector Registry (EASR) for groundwater takings exceeding 50,000 litres per day (L/day). For the purpose of construction, a PTTW is required for dewatering extraction rates that exceed 400,000 L/day. An EASR is required for a rate between 50,000 and 400,000 L/day. A PTTW for managing foundation drainage may also be required for amount exceeding 50,000 L/day.

Estimation of the rate of dewatering to counteract groundwater inflows is based on simplification to analogy of a linear trench (Powers et al, 2007) with a width of 1 m. The calculations anticipate that conditions similar to an unconfined aquifer will likely prevail. The formula anticipated geometric conditions and input values are specified on Table 5. A hydraulic conductivity value of 7x10⁻⁶ m/s was input which is representative of the highest hydraulic conductivity observed in the anticipated depth horizon of the foundation excavations and utility trenches. The calculations predict that the dewatering rate of approximately 31,500 L/day to counteract groundwater seepage in a 20 m long trench excavated 1.9 m into the water table. This rate would not require MECP permitting. However, when a factor of safety of 2.0 is added, the dewatering rate is estimated to be 63,000 L/day, which would require an EASR.

It is recommended that foundation plans and servicing plans be provided for Terrapex's review when they become available so that the need for MECP permitting (EASR or PTTW) can be evaluated.

Approval will have to be obtained from the Region of Durham to allow construction dewatering discharge to the storm sewer or sanitary sewer if this type of outlet is proposed. Discharge to the storm sewer would require pre-treatment. The Central Lake Ontario Conservation Authority should be consulted about the possibility of discharging dewatering to the adjacent offsite forests, but the adjacent local slope is back toward the site so excess waters would return to the site.

Because the proposed buildings are to be constructed at grade, there are no long-term (i.e. postconstruction) dewatering requirements.

6.2 RADIUS OF INFLUENCE AND SENSITIVE RECEIVERS

The radius of influence is the distance range beyond which the drawdown on groundwater caused by dewatering is practically undetectable. The radius of influence is predicted using the common formula of Sichart and Kryieleis (Powers et al 2007), as noted on Table 5. The predicted radius of influence is approximately 15 m for the construction excavation beyond the excavation boundary.

No off-site ecologically sensitive receivers or private water supply wells are known to be located within the radius of influence that could be negatively affected by construction dewatering.

There are no known zones of groundwater contamination on-site or off-site that could be shifted or collected on-site by dewatering activity. Also, there are no adjacent structures that would be affected by possible settlement induced by dewatering.

6.3 WATER QUALITY OF DISCHARGE

In reference to Region of Durham bylaw 55-2013 and as noted in Section 5.3, the water quality is considered suitable for discharge to sanitary sewers and is suitable for discharge to storm sewers with the exception of TSS.

The elevated total suspended solids concentration is likely due to the sample being obtained from a well screen completed in silty soils. Most mineral soils here have a fine-grained component so dewatering should be anticipated to produce elevated suspended solids that will need to be filtered and / or settled to meet storm sewers criterion. Dewatering extraction systems should be thoroughly developed prior to connection to sewers to reduce the production of particulates.

7.0 WATER BALANCE ASPECTS

Nominally, infiltration of incident precipitation through a pervious soil surface moves through the unsaturated zone and recharges the shallow groundwater. In turn, this shallow groundwater moves toward local or regional watercourses to contribute to baseflow. Infiltration does not occur through impervious surfaces of buildings or paving because runoff is directed to storm sewers.

The pre-construction land uses consists entirely of open soil and vegetation surfaces that permit infiltration without obstruction. Minor impervious surfaces such as the existing dwellings and driveways will mostly runoff to adjacent ground to infiltrate. In the post-construction configuration, the majority of the property will be covered by impervious features such as buildings, roadways and laneways that would permit no infiltration.

There are potential opportunities for Low Impact Development (LID) systems to offset reductions in groundwater recharge. Consideration should be given to directing roof drainage or clean runoff from paved terraces or walkways toward LID infiltration features or to the adjacent forest to the west (if permissible; and where grading permits).

8.0 CLOSURE

This hydrogeological review was prepared in accordance with the terms of reference for this project as agreed upon by The Brock Zents Partnership and generally accepted engineering or environmental consulting practices in this area. The reported information is believed to provide a reasonable representation of the general hydrogeological conditions at the site, however, the data were collected at specific locations and conditions may vary at other locations and with the passage of time.

This report has been prepared for the sole uses of The Brock Zents Partnership. Terrapex Environmental Ltd. accepts no liability for claims arising from the use of this report, or from actions taken or decisions made as a result of this report, by parties other than The Brock Zents Partnership.

Respectfully submitted, TERRAPEX ENVIRONMEN RUMINSKY ISING MEMBER Steven Ruminsky, P.E Manager, Hydrogeology

9.0 REFERENCES

Alston Associates. June 15, 2018. Draft Geotechnical Investigation Report. Proposed Residential Development; 2660, 2670 and 2680 Brock Road, Pickering. Project 18-041.

R. Allan Freeze and John A. Cherry. 1979. Groundwater.

Geology Ontario. 2018. Surficial and bedrock geological mapping referenced to Google Earth.

KRCMAR. March 6, 2018. Survey Plan Drawing 18-011BT01. Job 18-011.

Ministry of the Environment and Climate Change. 2018a. Water Wells Database.

Ministry of the Environment and Climate Change. 2018b. Source Protection Information Atlas.

Ministry of Natural Resources and Forestry. 2018. Interactive mapping application on Internet.

Zents Conceptual Development Plan. 02/08/2020.

J. Patrick Powers, Arthur Corwin, Paul Schmall, Walter Kaeck. 2007. Construction Dewatering and Groundwater Control. Third Edition.

Region of Durham. June 2018. Wellhead Protection Area Map. Linked on website.

Vumap. 2017. Interactive mapping application on Internet.

APPENDIX I

FIGURES

abell W:\PROJECTS\Toronto\CT2694.03 2660-2680 Brock Rd, PickeringMXD\Hydrog\CT2694.03 FIG1 SITE LOCATION.mxd

abell W:\PROJECTS\Toronto\C72694.03 2860-2880 Brock Rd. Pickering\MXD\Hydrog\C72694.03 FIG2 GENERAL SITE LAYOUT.mxd

APPENDIX II

TABLES

TABLE 1 Monitoring Woll C

Monitoring Well Construction Details 2660 to 2680 Brock Road and Part of Lot 19, Concession 3; Part 3 and Part 4 on Plan 40R-27228, Pickering, Ontario

Position and Depth

Well Desig.	UTM	UTM	Date of	Stick Up	Depth of	Depth to	Screen	Depth to	Depth to	Depth to
)	Easting	Northing	Construct		Borehole	Well	Length	Screen	Screen	Top Sand
						Bottom		Bottom	Top	
(m)	(m)	(m)		(m)	(bq m)	(m bg)	(m)	(m bg)	(m bg)	(m bg)
MW1(S)	653520	4860199	07-May-18	1.09	4.70	4.70	1.52	4.60	3.08	2.48
MW1(D)	653521	4860200	04-May-18	0.85	14.00	9.10	1.52	9.00	7.48	7.18
MW3(S)	653602	4860237	07-May-18	0.95	3.10	3.10	1.52	3.00	1.48	1.18
MW3(D)	653604	4860238	03-May-18	1.01	14.00	7.40	1.52	7.30	5.78	5.48
MW4	653615	4860188	03-May-18	0.97	14.00	7.60	1.52	7.50	5.98	5.68
MW5	653532	4860108	01-May-18	0.93	9.30	9.00	1.52	8.90	7.38	7.08
MW8(D)	653546	4860063	02-May-18	0.93	15.40	11.00	1.52	10.90	9.38	8.38
MW8(S)	653542	4860076	12-Jun-19	1.02	4.27	3.96	1.52	3.86	2.34	9.86
MW10	653642	4860074	07-May-18	0.99	13.80	3.90	1.52	3.80	2.28	1.98
MW101	653533	4860236	12-Jun-19	0.99	8.80	4.11	1.52	4.01	2.49	2.19
MW102(D)	653595	4860262	12-Jun-19	0.96	8.70	7.62	1.52	7.52	6.00	5.70
MW102(S)	653596	4860261	12-Jun-19	0.95	3.70	3.66	1.52	3.56	2.04	1.74
MW203	653584	4860130	05-Oct-21	0.95	6.70	6.10	3.05	6.00	2.95	2.65
MW206	653631	4860163	05-Oct-21	0.87	6.10	5.85	3.05	5.75	2.70	2.40

Key Elevations

Well Desig.	Ground	End of	Top of Pipe	Screen	Screen
	Elev.	Borehole	Elev.	Bottom	Top Elev.
		Elev.		Elev.	
	(m asl)	(m asl)	(m asl)	(m asl)	(m asl)
MW1(S)	132.03	127.33	133.12	127.43	128.95
MW1(D)	132.03	118.03	132.88	123.03	124.55
MW3(S)	130.34	127.24	131.29	127.34	128.86
MW3(D)	130.37	116.37	131.38	123.07	124.59
MW4	129.77	115.77	130.74	122.27	123.79
MW5	131.59	122.29	132.52	122.69	124.21
MW8(D)	131.64	116.24	132.57	120.74	122.26
MW8(S)	131.03	126.76	132.06	127.17	128.69
MW10	129.29	115.49	130.28	125.49	127.01
MW101	131.24	122.44	132.23	127.23	128.75
MW102(D)	130.70	122.00	131.65	123.18	124.70
MW102(S)	130.68	126.98	131.63	127.12	128.64
MW203	130.65	123.95	131.61	124.65	127.70
MW206	129.69	123.59	130.56	123.94	126.99

<u>Notes:</u> 1. m asl =

 m asl = metres above sea level
 m bg = metres below ground (or grade)
 UTM locations obtained from GPS survey, with 2 cm accuracy

TABLE 2Observed Groundwater Levels2660 to 2680 Brock Road and Part of Lot 19, Concession 3;Part 3 and Part 4 on Plan 40R-27228, Pickering, Ontario

Well	Date	Ground	Top Pipe	Well	Ground	lwater	Groundwater
Desig.		Elev.	Elev.	Depth	Dep	oth	Elev.
_		(m asl)	(m asl)	(m bg)	(m bmp)	(m bg)	(m asl)
MW1(S)	17-May-18	132.03	133.12	4.70	1.58	0.49	131.54
Shallow	23-May-18				1.76	0.67	131.36
	29-May-18				2.06	0.96	131.06
	23-Apr-19				1.29	0.19	131.84
	16-May-19				1.34	0.25	131.78
	19-Jun-19				1.83	0.73	131.30
	26-Jun-19				1.98	0.89	131.14
	02-Jul-19				2.19	1.10	130.93
	26-Apr-21				1.74	0.65	131.38
	13-Oct-21				1.94	0.84	131.18
	18-Oct-21				2.15	1.06	130.97
	27-Oct-21				1.80	0.70	131.33
MW1(D)	17-May-18	132.03	132.88	9.10	5.35	4.50	127.53
Deep	23-May-18				5.19	4.34	127.69
	29-May-18				5.36	4.51	127.53
	23-Apr-19				4.95	4.10	127.94
	16-May-19				4.81	3.96	128.07
	19-Jun-19				5.07	4.22	127.82
	26-Jun-19				5.16	4.31	127.73
	02-Jul-19				5.23	4.38	127.65
	26-Apr-21				6.11	5.26	126.77
	13-Oct-21				6.13	5.28	126.75
	18-Oct-21				6.11	5.26	126.78
	27-Oct-21				6.13	5.28	126.75
MW3(S)	17-May-18	130.34	131.29	3.10	2.15	1.20	129.15
Shallow	23-May-18				2.47	1.52	128.82
	29-May-18				2.72	1.77	128.57
	23-Apr-19					not mon	itored
	16-May-19				2.87	1.92	128.42
	19-Jun-19				2.73	1.78	128.56
	26-Jun-19				2.91	1.96	128.39
	02-Jul-19				3.02	2.07	128.27
	26-Apr-21				Dry	>3.10	<127.24
	13-Oct-21				Dry	>3.10	<127.24
	18-Oct-21				Dry	>3.10	<127.24
	27-Oct-21				Dry	>3.10	<127.24
MW3(D)	17-May-18	130.37	131.38	7.40	3.53	2.52	127.85
Deep	23-May-18				3.64	2.63	127.74
	29-May-18				3.78	2.77	127.60
	23-Apr-19					not moni	itored
	16-May-19				3.24	2.23	128.14
	19-Jun-19				3.61	2.60	127.78
	26-Jun-19				3.69	2.68	127.70
	02-Jul-19				3.75	2.74	127.64
	26-Apr-21				4.02	3.01	127.36
	13-Oct-21				5.04	4.03	126.34
	18-Oct-21				6.35	5.34	125.04
	27-Oct-21				5.02	4.01	126.36

TABLE 2Observed Groundwater Levels2660 to 2680 Brock Road and Part of Lot 19, Concession 3;Part 3 and Part 4 on Plan 40R-27228, Pickering, Ontario

Well	Date	Ground	Top Pipe	Well	Groun	dwater	Groundwater
Desig.		Elev.	Elev.	Depth	Dej	oth	Elev.
		(m asl)	(m asl)	(m bg)	(m bmp)	(m bg)	(m asl)
MW4	17-May-18	129.77	130.74	7.60	3.29	2.32	127.45
	23-May-18				3.38	2.41	127.37
	29-May-18				3.51	2.54	127.23
	23-Apr-19				3.11	2.14	127.64
	16-May-19				3.04	2.07	127.71
	19-Jun-19				3.32	2.35	127.42
	26-Jun-19				3.41	2.44	127.34
	02-Jul-19				3.48	2.51	127.27
	26-Apr-21				4.34	3.37	126.40
	13-Oct-21				4.52	3.55	126.22
	18-Oct-21				5.85	4.88	124.90
	27-Oct-21				4.51	3.54	126.23
MW5	17-May-18	131.59	132.52	9.00	6.31	5.37	126.22
	23-May-18				6.45	5.52	126.07
	29-May-18				6.69	5.76	125.83
	23-Apr-19				6.05	5.11	126.48
	16-May-19				6.20	5.26	126.33
	19-Jun-19				6.43	5.50	126.09
	26-Jun-19				6.59	5.65	125.94
	02-Jul-19				6.70	5.76	125.83
	26-Apr-21				7.52	6.59	125.00
	13-Oct-21				7.42	6.48	125.11
	18-Oct-21				8.90	7.97	123.62
	27-Oct-21				7.50	6.57	125.02
MW8(D)	17-May-18	131.64	132.57	11.00	5.80	4.87	126.77
Deep	23-May-18				5.94	5.01	126.63
	29-May-18				6.18	5.25	126.39
	23-Apr-19				5.58	4.64	127.00
	16-May-19				5.70	4.76	126.88
	19-Jun-19				5.93	5.00	126.64
	26-Jun-19				6.09	5.15	126.49
	02-Jul-19				6.20	5.26	126.38
	26-Apr-21				6.99	6.06	125.58
	13-Oct-21				6.93	5.99	125.65
	18-Oct-21				8.31	7.37	124.27
	27-Oct-21				6.94	6.01	125.63
MW8(S)	19-Jun-19	131.03	132.06	3.96	4.39	3.36	127.67
Shallow	26-Jun-19				3.74	2.72	128.32
	02-Jul-19				3.41	2.39	128.65
	26-Apr-21				Dry	>3.96	<127.07
	27-Oct-21				2.51	1.49	129.55
L	1	I					1

TABLE 2Observed Groundwater Levels2660 to 2680 Brock Road and Part of Lot 19, Concession 3;Part 3 and Part 4 on Plan 40R-27228, Pickering, Ontario

Well	Date	Ground	Top Pipe	Well	Ground	dwater	Groundwater
Desig.		Elev.	Elev.	Depth	Dep	oth	Elev.
		(m asl)	(m asl)	(m bg)	(m bmp)	(m bg)	(m asl)
MW10	17-May-18	129.29	130.28	3.90	2.06	1.08	128.22
	23-May-18				2.25	1.26	128.03
	29-May-18				2.50	1.51	127.79
	23-Apr-19				1.40	0.41	128.89
	16-May-19				1.34	0.35	128.94
	19-Jun-19				1.84	0.85	128.44
	26-Jun-19				1.89	0.90	128.39
	02-Jul-19				2.00	1.01	128.28
	26-Apr-21				1.86	0.87	128.42
	13-Oct-21					inacces	sible
	18-Oct-21				Dry	>3.90	<125.49
	27-Oct-21				3.37	2.38	126.91
MW101	19-Jun-19	131.24	132.23	4.11	1.35	0.36	130.88
	26-Jun-19				1.50	0.50	130.73
	02-Jul-19				1.73	0.74	130.50
	26-Apr-21				1.28	0.29	130.95
	13-Oct-21				1.93	0.94	130.30
	18-Oct-21				3.55	2.56	128.68
	27-Oct-21				1.82	0.83	130.41
MW102(D)	19-Jun-19	130.70	131.65	7.62	3.84	2.88	127.82
Deep	26-Jun-19				3.90	2.94	127.75
	02-Jul-19				3.97	3.01	127.69
	26-Apr-21				5.21	4.25	126.45
	13-Oct-21				5.26	4.30	126.39
	18-Oct-21				6.62	5.66	125.04
	27-Oct-21				5.24	4.28	126.41
MW102(S)	19-Jun-19	130.68	131.63	3.66	3.39	2.44	128.24
Shallow	26-Jun-19				3.48	2.53	128.15
	02-Jul-19				3.55	2.60	128.08
	26-Apr-21				Dry	>3.66	<127.02
	13-Oct-21				Dry	>3.66	<127.02
	18-Oct-21				Dry	>3.66	<127.02
	27-Oct-21				Dry	>3.66	<127.02
MW203	13-Oct-21	130.65	131.61	6.10	5.96	5.01	125.65
	18-Oct-21				Dry	>6.10	<125.51
	27-Oct-21				5.98	5.03	125.63
MW206	13-Oct-21	129.69	130.56	5.85	4.62	3.75	125.94
	18-Oct-21				4.52	3.65	126.04
	27-Oct-21				4.59	3.72	125.97

Notes

1. Ground elevation interpolated between points on earlier site survey

2. Tops of pipe elevation based on stick up elevation in relation to ground elevation

3. m asl = metres above sea level

4. m bmp = metres below measurement point (Top of pipe)

5. m bg = metres below ground

6. >, < values are based on screen bottom depth and elevation

TABLE 3Summary of Groundwater Quality2660 to 2680 Brock Road and Part of Lot 19, Concession 3;Part 3 and Part 4 on Plan 40R-27228, Pickering, Ontario

		Sewers	s Bylaw	MW206
	Units	Table 1	Table 2	18-Oct-21
MISCELLANEOUS INORGANIC PA	ARAMETERS			-
Fluoride	mg/L	10	-	<0.10
рН	pH units	6.0 - 11.5	6.0 - 9.5	7.50
Total Suspended Solids	mg/L	350	15	17
Cyanide - Total (CN)	mg/L	2	0.02	<0.01
METALS (Total)				
Aluminium (Al)	mg/L	50	-	0.50
Antimony (Sb)	mg/L	5	-	<0.0010
Arsenic (As)	mg/L	1	0.02	<0.01
Cadmium (Cd)	mg/L	0.7	0.008	<0.001
Chromium (Cr)	mg/L	2	0.08	<0.05
Cobalt (Co)	mg/L	5	-	<0.001
Copper (Cu)	mg/L	3	0.05	<0.005
Lead (Pb)	mg/L	1	0.12	0.001
Manganese (Mn)	mg/L	5	0.15	0.07
Mercury (Hg)	mg/L	0.01	0.0004	<0.0001
Molybdenum (Mo)	mg/L	5	-	<0.005
Nickel (N)	mg/L	2	0.08	<0.005
Selenium (Se)	mg/L	1	0.02	<0.005
Silver (Ag)	mg/L	5	0.12	<0.001
Tin (Sn)	mg/L	5	-	<0.01
Titanium (Ti)	mg/L	5	-	0.02
Zinc (Zn)	mg/L	2	0.04	<0.02
MICROBIOLOGICAL AND NUTRIE	NTS			
Escherichia coli	CFU/100 mL	-	200	40
Oil & Grease: Animal and Vegetable	mg/L	150	-	<0.500
Oil & Grease: Mineral and Synthetic	mg/L	15	-	<0.5
Biological Oxygen Demand (BOD)	mg/L	300	15	<2.0
Phenols (4AAP)	mg/L	1	0.008	<0.001
Sulfate (SO4)	mg/L	1500	-	44
Total Kjeldahl Nitrogen (TKN)	mg/L	100	1	0.2

Notes

1. Table 1 is the specified criteria for sanitary and combined sewers

- 2. Table 2 is the specified criteria for storm sewer
- 3. Values based on Durham sanitary sewer bylaw (55-2013).
- 4. Bold and italic values at least exceed either Table 1 or Table 2, as highlighted
- 5. mg/L = milligrams per litre
- 6. CFU/100mL = colony forming units per 100 millilitres
- 8. "-" indicates no established criteria for the parameter

TABLE 3Summary of Groundwater Quality2660 to 2680 Brock Road and Part of Lot 19, Concession 3;Part 3 and Part 4 on Plan 40R-27228, Pickering, Ontario

		Sewers	s Bylaw	MW206
	Units	Table 1	Table 2	18-Oct-21
VOLATILE ORGANIC COMPOUND)S			
Benzene	ug/L	10	2	<0.5
Chloroform	ug/L	40	2	<0.5
Dichlorobenzene, 1,2-	ug/L	50	5.6	<0.5
Dichlorobenzene,1,4-	ug/L	80	6.8	<0.5
Dichloroethylene, cis-1,2-	ug/L	4000	5.6	<0.5
Dichloropropene, trans-1,3-	ug/L	140	5.6	<0.5
Ethylbenzene	ug/L	160	2	<0.5
Methyl Ethyl Ketone	ug/L	8000	-	<5.0
Styrene	ug/L	200	-	<0.5
Tetrachloroethane, 1,1,2,2-	ug/L	1400	17	<0.5
Tetrachloroethylene	ug/L	1000	4.4	<0.5
Toluene	ug/L	270	2	<0.5
Trichloroethylene	ug/L	400	8	<0.5
o-Xylenes	ug/L	-	-	<0.5
m+p-Xylenes	ug/L	-	-	-
Xylenes (Total)	ug/L	1400	4.4	<0.5
Surrogate :2-Fluorobiphenyl	%			-
Surrogate :p-Terphenyl d14	%			101%
SEMIVOLATILE ORGANIC COMPO	DUNDS			
Bis (2-ethylexyl) phthalate	ug/L	12	8.8	<1.0
Di-N-Butyl phthalate	ug/L	80	15	<1.0
MISCELLANEOUS ORGANIC PAR	AMETERS			
Nonylphenols (Total)	ug/L	20	-	<1.0
Nonylphenol Ethoxylate (Total)	ug/L	200	-	<10.0
PCBs	ug/L	1	0.4	<0.1

Notes

1. Table 1 is the specified criteria for sanitary and combined sewers

2. Table 2 is the specified criteria for storm sewer

3. Values based on Chapter 681 sewers bylaw of the Toronto Municipal Code

4. Bold and italic values at least exceed either Table 1 or Table 2, as highlighted

5. mg/L = milligrams per litre

6. CFU/100mL = colony forming units per 100 millilitres

7. ND = below laboratory reported detection limits. See laboratory report for detailed values.

8. "-" indicates no established criteria for the parameter

TABLE 4

Summary of Hydraulic Conductivity by Grain Size 2660 to 2680 Brock Road and P art of Lot 19, Concession 3; Part 3 and Part 4 on Plan 40R-27228, Pickering, Ontario

	Sample				Hydraulic	
	Depth	Grain Si	ize Distribution		Conductivity	
Designation	(m bg)	D50 (mm)	D10 (mm)	Cu	(m/s)	Textural description
MW1, Sa4	2.5	0.0512	<0.002	n/a	<1e-08	Clayey silt and sand, trace gravel
MW4, Sa5	3.3	0.665	0.0054	14.2	3E-07	Silt and fine sand, trace clay
MW5, Sa6	4.8	0.1052	<0.002	n/a	<1e-08	Silty fine to co sand, some clay, trace gravel
MW6, Sa7	5.8	0.1401	0.0034	n/a	1E-07	Silty fine to co sand, some clay, trace gravel
MW8, Sa9	9.2	0.1393	0.0547	3.1	3E-05	Fine sand, some silt, some gravel
BH7, Sa7	6.4	0.1064	0.0557	2.1	3E-05	Silty fine sand
BH9, Sa8	6.4	0.0676	<0.002	n/a	<1e-08	Sand and silt, some clay, tr gravel

Note

m bg = metres below ground

2. Hydraulic conductivity for grain size determined using Hazen formula that applies d10 value

3. d10, d50 = grain size where, by weight, 10% and 50% of sample pass through

4. Cu = coefficient of uniformity = d60/d10

TABLE 5

Example Construction Dewatering Rate - 20m Trench 2660 to 2680 Brock Road and Part of Lot 19, Concession 3; Part 3 and Part 4 on Plan 40R-27228, Pickering, Ontario

Parameter	Value	Units	Symbol	Origin of Value
Aquifer Hydraulic Conditions				
Hvdraulic conductivity	7E-06	m/s	к	Highest observed in field tests
Hydraulically connected to water table		_		Unconfined is anticipated
Analogous Dewatering Array Dimensi	ons			
Analogous shape	Trench	_		
Long axis along excavation	20.0	m	X	Example trench or footing excavation
Short axis along exavation	1.0	m	J	= A / X (ie average length)
I rench area to be dewatered	20	m²	A	Example trench or footing excavation
Radius of equivalent wells at short sides	0.5	m	R _W	= J / 2
Subsurface Vertical Dimensions				
Surface grade (general average)	130.8	masl	Fo	Site Survey
Excavation	1	maon	N	
Depth of excavation	1.5	m	С	Estimated
Excavation base, depth	1.5	mbg	D _F	Estimated
Excavation base, elevation	129.3	masl	E _F	= E _G - N * C
	0.0	7		- -
Over-excavation, depth	0.3	m		Assumed
Excavation base (bases of footings),	120.0	mael	F	Assumed 0.3 m lower than foundation slab surface
elevation	129.0	masi	LEX	Assumed 0.5 milliower than foundation stab sufface
Excavation base (bases of footings),	18	mba	Dev	Assumed 0.3 m deeper than foundation slab surface
depth	1.0	mbg	PEX	
Assumed elevation difference between	3.0	m		
excavation base and reference datum	400.0		-	Cat at 2 m halow have af avery stime
Reference datum (for calculation)	126.0	masi	⊏RD	Set at 3 m below base of excavation
Devertarian Laurale and Dimensions				
Water table observed alovation	120.6	maal	E\//	Highest of field managements
	130.6	masi		
Average water table observed, depth	0.19	m	DVVSHALL	- E _G - EWHIGH
Buffer for seasonal fluctuation	0.19	m	В	Based on water levels mostly observed in late winter
Water table elevation (pre-pumping level)	130.8	masl	EW _{HIGHEST}	= EW _{HIGH} + B. Allows for seasonal fluctuation
Height of water table above reference	4.0			
datum	4.8	m	Н	= EW _{HIGHEST} - E _{RD}
Target dewatering level, elevation	128.9	m asl	EW_{TARG}	Target is 1 m lower than excavation base. = E_{EX} - 1.0
Target dewatering level, depth	1.9	mba		Target is 1 m deeper than excavation base. = D_{Fx} + 1
Height of target water level above datum	2.9	m	h-	
Theight of target water level above datam	2.0			
Radius of Influence				
Applied equation	Ro = 3000 * (H – hr) * (K) 0.5		Sichart and Krvieleis (1930)
Padius of Influence	15	, m	P.	As measured from execution edge
	15	m	к ₀	As measured nom excavation edge
Equivalent line source	8	m	L	Half of radius of influence
Incident Stormwater				
	20	2	^	Evenuation design
Excavation open area	20	m	A	Excavation design
Typical large storm	25	mm/day	PT	Assumed. Typically 4-5 events/year. Larger is possible.
Stormwater (i.e. from precipitation)	1	m ³ /dav	Q _{STORM}	= A * P _T
Change of units (rounded)	500	litres/day	QSTORM	
			oronal	
Estimated Flows to be Managed				
Applied equation for trench long sides	Q _{GW} = 2 * X * K* (H ² – h _T	²) / (3.34 x 10 ⁻	⁻⁵ * L)	Powers et. al, 2007
Applied equation for trench short sides	$Q_{GW} = K * (H^2 - h_T^2) / (5.3)$	31 x 10 ⁻⁶ * In ((R ₀ +R _W /R _{W)})	Powers et. al, 2007
Groundwater seepage from long sides	16.3	litres/min	Q _{GW-LS}	Calculated from values in this sheet.
Groundwater seepage from short sides	5.6	litres/min	Q _{GW-ShS}	Calculated from values in this sheet.
Groundwater seepage from all sides	21.9	litres/min	GW-ShS + QGW	45
Change of units	31,497	litres/day		
Safety factor	2.0	` ۲		Allow for unknown conditions between boreholes or
	2.0			beyond the excavation walls
Groundwater seepage, with safety factor	62,995	litres/day		= Safety Factor x Q _{GW}
Groundwater seepage plus storm water	63,495	litres/day		= Safety Factor x Q _{GW} + Q _{STORM}
Applicable Regulatory Instrument	E/	ASR		MECP, O.Reg 245/11, O.Reg 387/04; OWRA S.41
Value to specify in regulatory instrument	63	,500	litres/day	Value includes stormwater.

Notes.

1 Patrick Powers, Arthur Corwin, Paul Schmall, Walter Kaeck. 2007. Construction Dewatering and Groundwater Control. Third Edition.

2 mbg = metres below ground level

3 masl = metres above sea level

Terrapex Environmental Ltd.

APPENDIX III

BOREHOLE RECORDS

PROJECT: Proposed Residential Development LOCATION: 2660 - 2680 Brock Road, Pickering	PROJECT ENG	INEER: VN	ELEV. (m)	132.03	вн					
LOCATION: 2660 - 2680 Brock Road, Pickering	NORTHING:									
			EASTING:		PROJECT NO.: 18-041					
SAMPLE TYPE AUGER DRIVEN		IG [NE S	SHELBY SPLIT SPOON					
	DEPTH (m) ELEVATION (m)	(kPa) 40 80 120 N-Value (Blows/300mi 20 40 60	(11 V 160 ▲ m) PL V 80 20 4(Vale pontent (%) Q W.C. LL 0 60	SAMPLE TYPE SPT(N)	Nell Construction CO				
0 very dense, wet, grey SAND AND SILT trace gravel, trace clay (TILL) with sand seams and layers very dense, wet, grey SANDY GRAVEL hard, damp, grey CLAYEY SILT END OF BOREHOLE END OF BOREHOLE	Image: state of the state	50/150 ▲ 50/100 ▲			5 <u>3</u> <u>5</u> 0 <u> </u>	Augering through rock/ boulder Augering through rock/ boulder				
TERRAPEX		LOGGED BY	* SA	DRILLING D	ATE: Ma	y 4, 2018				

	ENT:	The Brock Zents Partnership	METHOD: Solid Stem Auger a					r and Split Spoon						BH No.: MW1S				
LOCATION: 2660 - 2680 Brock Road. Pickering			NORTHING:			•	ELEV. (III) 132.03						PROJECT NO.: 18-041					
SAMPLE TYPE AUGER DRIVEN											SH							
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)		Shea 40 8 (Blov	ar Stre (kPa) 30 12 I-Valu vs/30	20 10 Dmm	n <u>≩0</u> I)	P	Wa Con (% PL W.	ter tent 6) C. L		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
ų.		Straight auger to install the monitoring well	- 0.5 - 1.5 - 2.5 - 3.5 - 3.5 - 4.5	132 - 131.5 - 131.5 - 130.5 - 130.5 - 130.5 - 129.5 - 129.5 - 128.5 - 128.5 - 128.5 -				0 8		20			50		0	5		Groundwater measured at 0.81 mbgs on May 23, 2018. Bentonite Sand Sand + Screen
		END OF BOREHOLE		-		+												
1	TERRAPEX			L	LOGGED BY: SA DRILLING DATE: May 7, 2018						2018							
				1 F	KE V I	EVVE	υB	۲: ۱	/IN	11	∽age	1 Of	1					
CLIENT:	The Brock Zents Partnership)	METHC	D: Sol	id St	tem	Aug	ger a	nd S	Split S	Spo	on			D	ш		
---	---	--	------------------	---------------	----------	------------------------------------	--	-----------------------	----------	---------	----------------------	---------------	------------	-----------------	-------------	------------	----------------------	---
PROJECT	Proposed Residential Deve	elopment I	PROJE		SINE	ER:	VN	E	LEV.	. (m)	131	.44		+	D	Π		<u>) DNZ</u>
LOCATION	N: 2660 - 2680 Brock Road, I	Pickering	NORTH	ING:				E	AST	ING:					PRC	DJEC	T NO	.: 18-041
SAMPLE	YPE AUGER	DRIVEN		CORI	NG	hear	Stre	DYN			NE Nate	r		SH	ELE	3Y		
JOBINY AND LINE	SOIL DESCRIPT	ION	DEPTH (m)	ELEVATION (m)	40 (E	(k <u>80 80</u> N-\ Blows	(Pa)) <u>12(</u> Value s/300	0 160 0 160 mm)		PL	onter (%) W.C.	LL		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Topsoil (300 m	m)	0		20	4		80		20 4	0 0		,	1A		0,		Borehole cave-in at 7.6 mbgs and the
	compact, moist, b SANDY SILT	prown -	- 0.5	131 -		\backslash								1B		24		groundwater measured at 6.7 mbgs on complition.
	hard, damp, bro	own	- 1	130.5 -		e	50							2		60		
	SANDY CLAYEY trace gravel (TILL)	SILT	- 1.5	130 -	50/	/150								3		50/ 150		
			-2	129.5 -														
		brown damp to moist with oxidization	- 2.5	129 -	50/	/125								4		50/ 125		
			- 3	128.5 -	50/	/100								5		50/ 100		
			- - - -	128 -														
			-4	127.5														
	very dense	moist to wet	- 4.5	126.5		52	*							6		52		
	trace gravel trace to some c (TILL)	lay	- 5.5	126 -												-		Augoring through rook/
	with sand seams an	d layers	-6	125.5 -														boulder
			- 6.5	125 -	50/	/100								7		50/ 100		
			- - - 7	124.5 -														
			- 7.5	124 -	50	/150								8		50/		
			- 8	123.5	50/									U		150		Augering refusal due to a boulder
	END OF BOREHOLE								1									
	TERRA	PEX			LO			3Y: 5	SA VN		DF	RILLI ge 1	NG of 1	DA ⁻	ΓE:	Ma	, y 4, 2	2018

CLIENT	The Brock Zents Partnership	METHO	DD: Sol	id Stem Auge	er and Split	Spoon	D			
PROJE	CT: Proposed Residential Development	PROJE	CT ENG	SINEER: VN	ELEV. (m)	130.37	D	Π	NO	5.: IVIVV3D
LOCAT	ON: 2660 - 2680 Brock Road, Pickering	NORT	IING:		EASTING:			DIFC	TNC	
SAMPL	AUGER DRIVEN			NG L Shear Streng	DYNAMIC CO	DNE S	HELI	3Y	1	
GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kPa) <u>40 80 120</u> N-Value (Blows/300m 20 40 60	m) PL 80 20 4	W.C. LL	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	Topsoil (600 mm)	0.5	130 -	3			1	3		Borehole cave-in at 4.3 mbgs and the groundwater measured at 2.4 mbgs on complition.
	compact to dense, moist, brown silty sand, trace gravel, trace clay (Probable FILL)	- - - - - - 1.5	129.5 - - - 129 - - - - - - - - - - - - - - - - - - -	25			2	25		Groundwater measured at 2.67 mbgs on May 23, 2018.
	very dense, brown, moist SANDY SILT with slight cohesion intermixed with TILL layers	-2.5	128 - 	52 ▲ 57 ▲			5	52		
		-4.5 -5 -5 -5.5	126	50/125 ▲		6	3	50/ 125		Bentonite sand
	brov w very dense SANDY SILT to	vn - 6 ret - 6 - 6.5 7	124.0	71/275			7	71/ 275		sand + screen
	SILTY SAND trace gravel gr w	ey - 7.5 et - 8 et - 8	123 - 	50/125		8	3 💷	50/ 125		Straight auger to install the monitoring well.
		-99.5	121.5 	50/150			9	50/ 150		
	TERRAPEX			LOGGED BY REVIEWED	r: SA by: VN	DRILLING D Page 1 of 2	ATE:	Ma	y 3, 2	2018

CLIENT:	The Brock Zents Partnersh	nip	METHO	D: Sol	id St	tem	Au	ger an	ıd Split	Spo	on								
PROJECT	: Proposed Residential De	velopment	PROJE	CT ENG	SINE	ER:	VN	EL	.EV. (m)) 130).37			B	H	N	0.:	MW:	<u>3D</u>
LOCATIO	N: 2660 - 2680 Brock Road	I, Pickering	NORTH	ING:			_	EA	STING	:		-	P	RO	JEC	T NO	0.: 18-0	41	
SAMPLE 1	TYPE AUGER	DRIVEN		CORII	NG			DYNA	AMIC C	ONE		1	SHE	ELB	Y			SPLIT	SPOON
Soll Symbol (m)	SOIL DESCRIP	TION	DEPTH (m)	ELEVATION (m)	40 (E 20	6hear (<u>8(</u> N- Blows	- Stre kPa) 0 12 Valu s/300 0 60	0 160 e ▲ 0mm) 0 80	PL 20	Water Conter (%) W.C.	r ht LL 0 80		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction		REMARK	S
	very dense, we SILTY SAN	et, grey ND	- 10 - 11.5 - 11.5 - 12.5 - 13.5	120.5	50// 50/	/125	9	6/250					10		96/ 250 50/ 125 50/				
	END OF BOREHOLE													-	123				
		ADEV			LO	GG	ED I	BY: SA	4	DF	RILLI	NG	DAT	E:	May	/ 3, 2	2018		
	TERR.	APEX			RE	VIE	WE	D BY:	VN	Pa	ige 2	of 2							

CLI	ENT:	The Brock Zents Partnership	METHC	D: Sol	lid S	Stem	N Au	iger	and	d Spl	lit Sp	oon			D	ш		
PR	DJECT	Proposed Residential Development	PROJE		SINE	ER:	VN	1	ELE	EV. (r	n) 1:	30.3	4		D	Π		<u>).: IVI VV 35</u>
LOC		N: 2660 - 2680 Brock Road, Pickering	NORTH	IING:					EAS	STIN	G:		-	F	PRC	JEC	TNO	.: 18-041
SAI	/PLE 1	TYPE AUGER DRIVEN		CORI	NG	Shea	r Stre	D	YNA	MIC	CON	E ter	Ш	SH	ELB	iY I		
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4	(0 8 N- (Blow	(kPa) 0 12 -Valu s/300	20 16 1e 2 0 mm	50)	P 20	Coni (% PL W.	tent 6) C. Ll	L	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
Ā		Straight auger to install the monitoring well	- 0.5	130 - 129.5 - 129 - 128.5 - 128 - 128 - 128 - 128 -					~									Groundwater measured at 1.62 mbgs on May 23, 2018. Sand Sand + Screen Bentonite
			_ 3								-	+					<u>:⊟:</u>	
\vdash			1		L	цці ЭGG	ED	BY:	SA			DRILI		DAT	IE:	Mar	v 7. 2	2018
		TERRAPEX			R	EVIE	WE	DB	Y: \	/N	F	Page	1 of	1			, . , 2	

CLIENT:	The Brock Zents Partnersh	ip	METHO	D: Hol	low \$	Stem	Aug	jer a	nd Sp	lit Sp	oor	ı				NL	
PROJECT	: Proposed Residential Dev	velopment	PROJE		SINEE	R: V	N	ELE	EV. (m)	129	9.77			B			<u>D.: IVI VV4</u>
LOCATIO			NORTH						STING:			п	1			TNO	
GWL GWL (m)	SOIL DESCRIP		DEPTH (m)	ELEVATION (m)	40 (B 20	near St (kPa 80 1 N-Val lows/30	20 1 20 1 ue 00mn	60 ▲ n)	PL 20	Wate Conter (%) W.C.	r nt		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	very dense, we SAND trace to some o trace silt	t, grey gravel	- 10 - 10.5 - 11 - 11.5 - 12 - 12.5 - 13	119.5 	50/	77						0	10		71 50/ 125		Augering through rock/ boulder
	hard, grey, m CLAYEY SI	ioist LT	- - - - - - - - - - - - - - - - - - -	116.5 - - - - - - - - - - -	50/	150 🔺							12		50/ 150		
	TERRA	APEX			LO RE	gged View	BY ED E	: SA BY: N	VN	DF Pa	RILL ige 2	ING 2 of	DAT 2	ΓE:	Ма	y 2 &	3, 2018

CLIENT: The Brock Zents Partnership	METHO	D: Hol	low	Ste	m A	uge	er an	d Spl	t Sp	boon		_	D	Ц	NL	
PROJECT: Proposed Residential Development	PROJE		SINE	ER:	VN		ELE	/. (m)	13	1.59		+				
LOCATION: 2660 - 2680 Brock Road, Pickering	NORT						EAS	TING:		-	1			JEC		
SAMPLE TYPE AUGER DRIVEN				Shear	r Stre	ום nath			VNE Wate	r	-	5н	ELB	i Y		
GWL SOIL (m) SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m	4((E	(0 80 N- Blow: 0 40	kPa) 0 12 Valu s/300 0 60	● 0 16 e ▲ (mm) 0 8(60) 0	C PL 20 4	onte (%) W.C	nt . LL 0 80		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well	REMARKS
black, moist, sand and gravel (FILL)	- 0.5	131.5	8									1		8		Groundwater measured at 5.56 mbgs on May 23, 2018.
	- - - - - 1		30) \								2		30		
	- 1.5	130 -			66	<u>+</u>						3		66		
bro bro da	wn - 2.5	129.5 - - - - 129 -	50	/150								4		50/ 150		
	-3				72							5		72		
	3.5	128 -														
gi Girigi Girigi Girigi Girigi Girigi Girigi Girigi Girigi Girigi Matha	rey pist4.5	127.5														
very dense SAND and SILT trace gravel, trace clay (TILL)	- - 	126.5		52	2							6		52		
	- 5.5	126 -														
	- 6 - - - 6.5	125.5 -		46								7		46		Bentonite
	-7	125 – - - 124.5 –														boulder
	- 7.5	124 -	50	/150								8		50/		sand
	- 8	123.5 - 												150		
	- 8.5 - - - - 9	123														Augering through rock/ boulde
END OF BOREHOLE			50	/125	5 🛦							9		50/ 125		
TERRAPEX		1	LC	DGG	ED I	BY: DB	SA Y: VI	N	DF Pa	RILLI age 1	NG of 1	DA	ΓE:	Ma	y 1, :	2018

CLIENT:	The Brock Zents Partnership	METHC	D: Sol	id Stem Auge	er and Spl	lit Spoon	D		
PROJECT:	Proposed Residential Development	PROJE		SINEER: VN	ELEV. (n	m) 130.94	D		
	1: 2660 - 2680 Brock Road, Pickering	NORTH	ING:		EASTIN	G:	PRO		D.: 18-041
SAMPLE I	YPE AUGER DRIVEN			NG L Shear Streng	DYNAMIC (Water S	HELB	Y I	
GWL GWL STIOS	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kPa) <u>40 80 120</u> N-Value (Blows/300mi 20 40 60	1 <u>60</u> m) Pi	Content (%) PL W.C. LL	SAMPLE TYPE	SPT(N) Well Construction	REMARKS
¥ (1000000000000000000000000000000000000	Topsoil (600 mm)	0	130.5 -	8		1		8	Borehole cave-in at 11.3 mbgs and the groundwater measured at 0.6 mbgs on complition
	compact to dense	- - - - - - -	130 -	17		2	2	17	
		- 1.5 - - - 2	129.5	40		3	3	40	
	brov mo	vn - 2.5	- - 128.5 - - - -	51 ▲		4	,	51	
		- 3	128 – - - 127.5 –	50/125		5	;	50/ 125	
	gr moist to w very dense	ey - 4 /et - 4	127 -	75/275		6	;	75/ 275	
	SAND AND SIL I trace gravel, trace clay (TILL) with sand layers and seams	- 4.5 - - - - 5	126.5 - - - 126 -	70		7	,	70	
		- - - - - - - - - - - - - - - - - - -	125.5 — - - - 125 — - - - - -	50/125		8	;	50/ 125	
		- - - - - - - 7	124.5 - - - 124 - - -						
		- - - - - - - - - - - - - - - - - - -	123.5 — - - 123 —	50/125		g)	50/ 125	
		8.5	- - 122.5 - - -						
	very dense, wet, grey GRAVELLY SAND	- - 9 - - - - - 9.5	122	91/2	75	11	р Ш	91/ 275	
	TERRAPEX			LOGGED BY REVIEWED	: SA BY: VN	DRILLING D	ATE:	April 30	, 2018

CLIENT:	The Brock Zents Partnersh	nip	METHO	D: Sol	id S	tem	Au	ger a	nd Sp	lit Spo	on						
PROJECT	: Proposed Residential De	velopment	PROJE	CT ENG	SINE	ER:	VN	E	_EV. (r	n) 13	0.94			B	H	N	<u>o.: BH6</u>
LOCATION	N: 2660 - 2680 Brock Road	I, Pickering	NORTH	ING:				E,	ASTIN	G:		_	P	RO	JEC	TNO	.: 18-041
SAMPLE 1	TYPE AUGER	DRIVEN		CORII	NG			DYN	AMIC	CONE			SHE	ELB	Y		SPLIT SPOON
UDBINY SUILS CMB CMB CMB CMB CMB CMB CMB CMB CMB CMB	SOIL DESCRIP	TION	DEPTH (m)	ELEVATION (m)	4((E 2	Sheai (<u>8(</u> N- Blow:) 4(r Stre kPa) 0 120 Value s/300 0 60	0 160 e ▲ 0mm) 0 80	- - 20	Wate Conte (%) L W.C	er ent 5. LL 60 80		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
	very dense, we SAND AND trace gravel, tra (TILL) with sand seams a very dense, we SANDY GRA hard, damp, SAND AND trace gravel, tra (TILL) with shale pi END OF BOREHOLE	et, grey SILT ace clay and layers et, grey VEL grey SILT ace clay eces	- 10 - 10.5 - 11 - 11.5 - 12.5 - 13.5 - 13.5	ш 121- 120.5- 119.5- 119.5- 119.5- 118.5- 118.5- 117.5- 117.5-	50.) 4 /150							11 12		50/ 150 50/ 275		(Possible BEDROCK)
	TERR	APEX			LC RE)GG EVIE	ed e Wei	BY: S D BY:	A VN	D P	RILLI age 2	NG [of 2	DAT	E:	Apr	il 30,	2018

	ENT: DJECT	The Brock Zents Partnership	METHO	D: Ho	low SINE	Sterr ER: \	ι Αι /N	iger a	and Sp EV (m)	lit Spo 129 9	on 1	-	В	н	No	D.: BH7
LOC	CATIO	N: 2660 - 2680 Brock Road, Pickering	NORTH	IING:				EA	STING:					JEC		.: 18-041
SAN	IPLE 1		H	CORI	NG			DYN/		ONE	Π	SH	ELB	Y		SPLIT SPOON
GWL (m)	SOIL SYMBOL	SOIL DESCRIPTION	ОЕРТН (m)	ELEVATION (m)	4((E	Shear S (kF 0 80 N-V Blows/3	Stren Pa) 120 alue 300n	gth 160 nm)	PL	Water Content (%) W.C. I		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
		Topsoil (150 mm)	_ 0			0 40	00			40 60	80			0,		Borehole cave-in at 4.5
		firm, dark brown , moist clayey silt (FILL) with sandy gravell layer	- 0.5 - 1 - 1 - 1.5	129.5 - 129 - 129 -	7 ▲ 6				18			1		7		mbgs and the groundwater measured at 1.8 mbgs on complition.
▼ I∵		compact moist, brown	- - - - - - -	128 -	20				15			3		20		south due to an existing concrete foundation
		SANDY SILT trace gravel, trace clay (TILL) with oxidization	- 2.5 - - - 3	127.5 -	26	┥			10			4		26		
		very dense	- - - - - 3.5	126.5 -		55			8			5		55		
		brov mo with clayey silt sear	- 4 st - 4.5 st - 5 - 5 - 5.5	126 - 125.5 - 125 - 125 -	50,	/250 4			12			6		50/ 250		
		very dense, wet SILTY SAND 	- 6.5 - 6.5 - 7	124 - 123.5 - 123 -	3	4			19			7		34		
		gr moist to w	et - 7.5 et - 7.5 - 8 - 8 - 8.5	122.5 - 122 - 122 -	50	/125			18			8		50/ 125		
			- - - - - - 9.5	121 -	50.	/125			16			9		50/ 125		
		TERRADEY			LC	GGE	DB	Y: SA	4	DRIL	LING	DA	TE:	Apr	il 30,	2018
					RE	EVIEV	VED	BY:	VN	Page	e 1 of	2				

CLIENT: The Brock Zents Partnership	METHOD: Ho	llow Stem Aug	ger and Split	Spoon		
PROJECT: Proposed Residential Development	PROJECT ENG	SINEER: VN	ELEV. (m) 1	129.91	BHN	<u>IO.: BH7</u>
LOCATION: 2660 - 2680 Brock Road, Pickering	NORTHING:		EASTING:		PROJECT N	NO.: 18-041
SAMPLE TYPE AUGER DRIVEN				NE S	HELBY	SPLIT SPOON
GWL TO SOIL DESCRIPTION	DEPTH (m) ELEVATION (m)	Shear Strengt (kPa) 40 80 120 1 N-Value (Blows/300mr 20 40 60 5	th W Co 160 (▲ n) PL W 80 20 40	Vater ontent (%) 22 W.C. LL 22 0 60 80 20	SAMPLE TYPE SAMPLE TYPE SPT(N) Well	REMARKS
END OF BOREHOLE	-10 120 - -10.5 119.5 - -11 119 - -11.5 118.5 - -12 118 - -12.5 117.5 - -13.5 116.5 - -14 116 -	(Blows/300mr 20 40 60 1 50/125 A 68 A				
TERRAPEX		LOGGED BY REVIEWED E	: SA BY: VN	DRILLING D	ATE: April 3	0, 2018

CLIENT: The Brock PROJECT: Proposed	Zents Partnership	METHO	D: Sol	id Ste	em A R:V	uge N	r and FIF	Split S	Spoon 131 64	_	B	н	N	o.: MW8D
LOCATION: 2660 - 2	2680 Brock Road, Pickering	NORTH	ING:		-		EAS	STING:			PRO	JEC		D.: 18-041
SAMPLE TYPE	AUGER DRIVEN	H	CORI	NG		D	YNA	MIC CC	DNE	SF	IELE	3Y		SPLIT SPOON
GWL (m) SIIOS	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	Sr 40 (Bl 20	near Si (kP 80 N-Va lows/3 40	trengt a) 1 <u>20 1</u> lue 00mm 60 8	h 60 ▲ 1) 30	PL 20 4	Water content (%) W.C. LL 0 60 80	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
61100000000000000000000000000000000000	Topsoil (600 mm)	- 0.5	131.5 -	3				30		1		3		Borehole cave-in at 12.2 mbgs and the groundwater measured at 2.7 mbgs on complition.
h:	ard, damp to moist, brown	-1 -1.5 	130.5 - - - 130 - - - - - - - - - - - - - - - - - - -	3!	3			11 ● 9		2		13		Groundwater measured at 5.11 mbgs on May 23, 2018.
	trace gravel (TILL)		129 -		6	7		10		4		67		
		- 3 - - - - - - - - - - - - - - - - - -	128.5 – 128.7 – 128 –			84		9		5		84		
ver	ry dense, moist to wet, grey SAND AND SILT trace gravel, trace clay (TILL)	- 4.5 - 5.5 - 6.5	127.5 - 127 - 126.5 - 126.5 - 125.5 - 125.5 -	50/1	150	73		8●		6		50/ 150		
	very dense, wet, grey SILTY SAND trace gravel	- 7.5 - 7.5 - 8.5 - 9 - 9.5	124.5 - 124 - 123.5 - 123 - 122.5 - 122.5 - 122 -	50/^ 50	125 ▲			8 12		8		50/ 125 50/ 75		Bentonite sand
	TERRAPEX			LO	GGE	BY:	SA	/N	DRILLIN Page 1	IG DA	TE:	Ma	y 2, 2	2018
	¥								l'age i	. 2				

CLIENT: The Brock Zents Partnership	METHOD: Sol	id Stem Auge	er and Split S	Spoon	БШ	
PROJECT: Proposed Residential Development	PROJECT ENG	SINEER: VN	ELEV. (m)	131.64	ВН	
LOCATION: 2660 - 2680 Brock Road, Pickering	NORTHING:		EASTING:		PROJEC	TNO.: 18-041
SAMPLE TYPE AUGER DRIVEN		NG [Shear Strepg		NE S	HELBY	
GWL SOIL DESCRIPTION	DEPTH (m) ELEVATION (m)	(kPa) <u>40 80 120</u> N-Value (Blows/300ml <u>20 40 60</u>	160 ▲ m) PL W 80 20 40	V.C. LL	SAMPLE TYPE SPT(N)	Construction Construction Construction
Q very dense, wet, grey QRAVELLY SAND Very dense, wet, grey SAND AND SILT trace gravel, trace clay (TIL) with occasional sand semas and layers END OF BOREHOLE	Image: second	20 40 60 50/100 ▲ 50/150 ▲ 50/125 ▲			5	Sand + Screen Augering through rock/ Noulder POSSIBLE BEDROCK
TERRAPEX		LOGGED BY REVIEWED	/: SA BY: VN	DRILLING D Page 2 of 2	ATE: Ma	y 2, 2018

CLI	ENT:	The Brock Zents Partnership		METHC	D: Sol	id S	tem	Au	gerii	ng a	nd Sp	olit S	poor	1	D	ш	Ν	0 · WW/88
PRO	JJECT	Proposed Residential Developmen	t	PROJE		SINE	ER:	VN			V. (m)	131	.033					
													-		РК(UE''		>1 N(
- SAN		AUGER DRIV				NG S	Shear	Stre	ngth			Water		∎ °		1		
GWI	1BOL	SOIL		Ê	JN (m	1	() 1 80	kPa) ג ו	•		C	onten (%)	t		Z PE			
(m)	SYN.	DESCRIPTION		TH (r	VATIO	+	N-'	Valu	e ≬					Ī		ź	We	REMARKS
	SOIL			DEP	E T E	(E 20	Blows	s/300) 60	mm)) 80		PL 20 4	W.C. 0 60	LL) 80	NV O	SAN	SPT		5
				0	131													Borehole open and dry on completion
				-	-													Creunductor was
				- 0.5	130.5 -													measured at 2.72 m on
				-	-													June 26, 2019.
		Straight auger to 2.28 m		- 1 -	130 -													
				-	-													
				- 1.5	129.5 -													
				-	-													
				-2	129 -													Bentonite
				_	-		50)/12	5						Т	50/	ŀ	Sand
				- 2.5	128.5 -											125	1:	
÷				_	-												li⊟	
		hard, damp	brown	- 3	128 -											-	l	
		trace gravel		_	-			7	:▲					2	:	72	E	
		(TILL)		- 3.5	127.5 -												lE	Sand and Screen
					-											-	lE	•
			grey	-4	127 -			71						3	;	71	\mathbb{K}	
	STARS -	END OF BOREHOLE			-				+									×
		TEDDADEV				LC	GG	ED I	3Y:	LG		DR		G D	ATE:	Jur	ne 12	2, 2019
		V IEKKAPEX				RE	EVIE	WE	D BY	': V	N	Pa	ge 1 d	of 1				

	ENT:	The Brock Zents Partnership	METHO	D: SO	id St	em A	\uo	ger a	ind	Spli	t Spo	on	,	_	R	н	Nc	· BH9
		2660 2680 Brock Road Dickoring				<u>-</u> R. 1	/11			v. (m) 13 N	0.22	<u> </u>					
														'				
- SAI		AUGER			S	hear S	Stre	ngth			Wate	er		30				
GWL (m)	SYMBOL	SOIL	(m) H	ATION (m	40	(kF	Pa) 120	• <u>0 160</u>			Conte (%)	ent)		LE NO.	LE TYPE	(7	Well	REMARKS
	SOIL	DESCRIPTION	DEPT	ELEV	(B 20	Blows/3	300 60	mm) 80		PL 20	W.C). LL 60 8	- 80	SAMP	SAMP	SPT(h	Co	
		Topsoil (300 mm)	0	130 -	3									1		3		Borehole cave-in at 3.35 mbgs and the
		soft, dark brown, moist clayey silt, trace gravel	- 0.5	129.5 -												Ū		groundwater measured at 1.5 mbgs on complition.
			-1	-		19								2A 2B		19		
		hard, damp, brown SANDY CLAYEY SILT trace gravel	- 1.5	129 -														
-		(TILL) with sand seams and layers	-	128.5	32									3		32		
	3262			128 -														
		very dense, wet, brown	- 2.5	127.5		46								4		46		
		SILTY SAND with occasional clay layers	- 3	127 -		50								5		50		
			- 3.5			Jz										52		
			- 4	120.5		6	4							6		64		
		hard, moist, grey SANDY CLAYEY SILT		126 -			Å											
		trace gravel (TILL) with wet sand seams and lavers	-	125.5 -		47								7		47		
			- 5	125 -														
			5.5	124.5 -														
			- 6	124 -														
			- 6.5			52 4								8		52		
			- 7	123.5 -														
		very dense, moist to wet, grey	-	123 -														
		trace gravel, trace clay (TILL)	- 7.5	122.5			69							9		69		
			-8	122 -														
			- 8.5	101 F														
			- 9	- 0.1 2 - - -														
				121 -			7	8						10		78		
\vdash	1312315	END OF BOREHOI F	- 9.5		\vdash		+	+	+	-	-	-	-	\vdash			-	
\vdash												 				<u></u>	1 20	2018
		TERRAPEX			RE	VIEW	/E[D BY:	: V	N	P	age	1 of	1	· C.	Ahi	11 30,	2010

CLIENT:	The Brock Zents Partners	hip	METHO	D: Sol	id St	em /	Aug	er an	d Split	Spoo	on							40
PROJECT	Proposed Residential Desidential Desidential	evelopment	PROJE	CT ENG	SINE	ER: \	VN	EL	EV. (m)) 129	.29		В	H	N	D.:	VIVV	10
LOCATIO	N: 2660 - 2680 Brock Roa	d, Pickering	NORTH	ING:				EA	STING	:		F	PRC	JEC	TNO	.: 18-0	41	
SAMPLE	TYPE AUGER	DRIVEN		CORII	NG	boar	Strop		MIC C			SH	ELB	ΪΥ			SPLIT	SPOON
TOBINAS TIOS	SOIL DESCRIP	TION	DEPTH (m)	ELEVATION (m)	40 (B 20	(kl (kl <u>80</u> N-V Blows/ 0 40	Pa) 120 /alue 300m 60	160 ▲ 1m) 80	PL 20	Water Conten (%) W.C. 40 60	t LL) 80	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction		REMARK	S
	very dense, w SANDY S SAND AND trace gravel, tr (TILL) with sand la	et, grey ILT SILT ace clay iyers	- 10 - 10.5 - 11 - 11.5 - 12.5 - 13.5 - 13.5	119 	50// 50//	1150 /			9 9			10 11 12		50/ 150 50/ 100				
																018		
	TERR TERR	APEX			RE	VIEV	VED	BY:	VN	Pa	ge 2 of	2		way	y 1, Z	010		

CLIENT: The Brock Zents Partnership	METHO	D: Sol	id Stem Auge	ring and S	Split Spoon	БЦ	
PROJECT: Proposed Residential Development	PROJE	CT ENG	INEER: VN	ELEV. (m)) 131.238	БП	
LOCATION: 2660-2680 Brock Road, Pickering, ON	NORTH	ING:		EASTING:		PROJEC	T NO.: CA18-041
SAMPLE TYPE AUGER DRIVEN		CORIN	NG C		Water	SHELBY	
GWL GWL SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kPa) <u>40 80 120 1</u> N-Value (Blows/300mm 20 40 60	160 ▲ n) PL 80 20 4	W.C. LL	SAMPLE NO. SAMPLE TYPE SPT(N)	Construction Vell
Topsoil (250 mm)	0	131 -	32	ĪĪ	1.	A 32	Borehole open and groundwater measured
Topsoil (250 mm)	- 0.5 - 0.5 - 1.5 - 2.5 - 3 	131 - 131	20 40 00 4 32 54 82/150 81/150 66 70 71 48 48 55 78/125			A 32 B 32 B 32 C 54 3 82/ 150 4 81/ 150 5 66 6 70 7 71 8 48 9 55 0 78/ 125	Borehole open and groundwater measured at 1.83 mbgs on completion. Groundwater was measured at 0.5 m on June 26, 2019. Bentonite Sand Sand and Screen
		122.3 -					
TERRAPEX			LOGGED BY REVIEWED B	LG SY: VN	DRILLING D	ATE: Jun	e 12, 2019

CLIENT: The Brock Zents Partnership	METHO	D: SO	id S	tem		gerin	ng a	and S	plit S	Spoo	on F	-		BH	I N	o.: MW102D
LOCATION: 2660-2680 Brock Road Pickering ON	NORTH				VI			V. (M)	13	0.69	5	╞	RO	JEC		CA18-041
SAMPLE TYPE AUGER DRIVEN		CORII	NG			DY			ONE			SHE	ELB	Y		
	DEPTH (m)	ELEVATION (m)	4((I	Shear (0 80 N- Blow	r Stre kPa) 0 12 Valu s/300	ength 20 160 e a 0mm))	PL	Wate Conte (%) W.C	ent		SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well	REMARKS
Topsoil (230 mm)	0		20	. 40	0 6	<u> </u>		20 /	40 6			1A		18		Borehole open and
compact moist to wet, brown	- 0.5	130.3 	22	41								1B 2 3		22 41		groundwater measured at 5.7 mbgs oncompletion. Groundwater was measured at 2.94 m on June 26, 2019.
Image: Sandy Silt	-2 -2.5 -3 	128.5 - 128 - 128 - 127.5 - 127.5 -		47 41								4		47 41		Bentonite
hard, moist of CLAYEY SANDY SILT	own - 4 4 4.5 	126.5 - 126.5 - 126 - 126 - 125.5 -	50	/150	69							6		69 50/ 150		
Very dense, wet, grey GRAVELLY SAND	- 6.5 - 6.5 - 7 - 7.5 - 8 - 8.5	125 - 124.5 - 124 - 123.5 - 123 - 123 - 123 - 123 - 123 -	50	/150	7	85					1	8 9 0A 0B		85 74 50/ 150		Sand
TERRAPEX	I	<u> </u>	LC RE) GG EVIE	ED	BY: D BY	LG ': V	N	Di Pa	I RILL age 1	ING I	L DAT	E:	Jun	e 12	l 2, 2019

	ENT:	The Brock Zents Partnership	elopment	METHO	D: Sol	id St	tem ER:	Aug VN	ering	and	Split	Spo 30.68	on 33	-		BH	N	o.: MW102S
LO	CATIO	N: 2660-2680 Brock Road, F	Pickering, ON	NORTH	ING:				EA		G:			F	PRO	JEC	T NC	D.: CA18-041
SA	/PLE '	TYPE AUGER	DRIVEN	M	CORI	NG			DYN/	AMIC	CON	E	Π	SHE	ELB	Y		SPLIT SPOON
GWL (m)	SOIL SYMBOL	SOIL DESCRIPT	ΓΙΟΝ	DEPTH (m)	ELEVATION (m)	S 40 (E 20	hear (k) 80 N-\ Blows/	Stren Pa) 120 /alue /300m 60	gth 160 1m) 80		Wa Cont (% PL W.	ter tent 5) C. LL	-	SAMPLE NO.	SAMPLE TYPE	SPT(N)	Well Construction	REMARKS
		Straight auger to 3.66 m monitoring w	n to install the ell	- 0.5 - 1.5 - 2.5 - 3.5	130.5 - 													Borehole open and groundwater measured at 2.53 mbgs on completion. Groundwater was measured at 2.53 m on June 26, 2019. Bentonite Sand
		END OF BOREHOLE																
		TERRA	PEX			LO	GGE EVIE\	ED B'	Y: L(BY:	G VN	F	DRILL Page	.ING 1 of ²	DAT I	E:	Jun	e 12	, 2019

CLIEN	IT: Patheon Developers(Ontario) Inc.						PR	OJE	CTN	10.:	СТ	269	94.0	3			F	RECO	RD	OF:	
ADDR	ESS: 2660-2680 Brock Rd, Pickering Ol	N																BH	20	1	
CITY/I	PROVINCE: 2660-2680 Brock Rd, Picker	ing ON	NO NO	RTH	ING (r	m):	4860	008	0.93			EAS	TIN	G (m):	65362	26.84	ELEV.	(m)	129.65	
CONT	RACTOR: Pontil				ME	THO	DD: S	Soli	d Ste	em A	٩ug	er a	nd	Spi	lt S	poon					
BORE	HOLE DIAMETER (cm): 16.51 WELL DIA	METER	(cm):	_	SCF	REE	EN SL	OT.	#:	SA	ND	TYP	:				SEA		YPE	:	
SAMP	LE TYPE AUGER DRIV	EN				IG	NOTU		<u>ר</u> ם <u>-</u>			COI	NE		<u> </u>	SHELB	Y		T SP	OON	
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (E	(kP) 80 N-VA Blows/3	Pa)● 120 120 100 100 100 100 100	160 nm)		PL 20 4	W.C.	NT LL D 8		SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	ق LABORATORY TESTING	WELL INSTALLATION		REMAR	RKS
	FILL moist, brown clayey silt, trace sand trace rootlets stiff to hard moist, brown CLAYEY SANDY SILT trace gravel	- 0.5 - 0.5 - 1	129.5 - 	5	. 19								1 2A 2B		37 100 100	<5p/0p <5p/0p <5p/0p	PAHs, M&I, PHCs, VOCs Boron	-			
	(TIĽL)	- 1.5	128 -		13								3		100	<5p/0p <5p/0p					
		- - - - - - - - - - - - - - - - - - -	127 - 		44								5		100	<5p/0p					
	very dense, wet, grey SILTY SAND	-4	- - 125.5 - - -		6	57							6		100	<5p/0p					
	very dense, wet, grey SANDY SILT	- 5	125 - - - - - - - - - - - - - - - - - - -			75							7		100	<5p/0p					
		- 5.5 	124 – - - 123.5 –	-		75	85						8 9		100 100	<5p/0p <5p/0p					
	END OF BOREHOLE		123																2021		
	TERRADEX					┢	INPI	IGEI	ש BY BY: N	: S. /W	J					LING [NG DAT	24-Oct-2 E:	2021		
					F	REV	IEW	/ED E	3Y:	VN			F	PAG	E 1 OF	1					

CLIEN	IT: Patheon Developers(Ontario) Inc.						PRC	DJEC	T NO	.: C	T26	94.0)3			F	RECO	RD OF:
ADDR	ESS: 2660-2680 Brock Rd, Pickering O															<u>_BH</u>	202	
CITY/F	PROVINCE: 2660-2680 Brock Rd, Picker	NO	RTHI	NG (n	n):					EAS	STIN	IG (m):			ELEV.	(m)	
CONT	RACTOR: Pontil				MET	HOE):											
BORE	HOLE DIAMETER (cm): WELL DIA	METER ((cm):		SCR	REEN	SLC	DT #:		SANE	D TYP	E:		П		SEA		TYPE:
SAMP	LE TYPE AUGER DRIV	EN I I			ORIN	G RENG	STH		DYN WAT	AMIC FER	c co	NE			SHELB (new titl	Y		T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (B 20	(kPa 80 N-VAI lows/31	a) P 120 10 UE 00mm 60 8	60 1) ▲ 30	P 20	CONT (% L W. <u>40</u>	FENT 6) C. L <u>60</u>	L 80	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
	FILL moist, brown clayey silt, trace sand, trace rootlets layer of crushed limestone	- 0.5		12								1		70	<5p/0p	M&I, PAHs		
	moist, light brown silty sand, trace gravel layer of crushed limestone	- 1		4	43							2		66	<5p/0p			
	hard, moist, brown CLAYEY SANDY SILT	-		4	12							ЗA		100	<5p/0p	BTEX F1-F4		
	trace gravel (TILL)	2										3B		100	<5p/1p			
	()			34								4		100	<5p/0p			
		-3																
		- 3.5			64							5		100	<5p/0p			
		-4			44							6		100	<5p/0p	pH, VOCs, PHCs, PAHs		
V	dense to very dense wet, brown SAND	- 4.5 - - - - - - - - - - - - - - - - - - -		4	12							7		100	<5p/0p			
		- 5.5				94/	6" ▲					8		100	<5p/0p			
	very dense, wet, grey SANDY SILT					90/6						9		100	<5p/0p			
	END OF BOREHOLE												1.					
	TEDDADEV								⊐Y: MN	5J N							14-UC[-]	2021
						REVI	EWE	D BY	: VN	١			PAG	E 1 OF	- 1	L.		

CLIEN	IT: Patheon Developers(Ontario) Inc.				PRC)JEC1	「 NO.:	CT2	694	.03			F	RECC	ORD OF:
ADDR	ESS: 2660-2680 Brock Rd, Pickering Of	N												<u>_MV</u>	V203
CITY/	PROVINCE: 2660-2680 Brock Rd, Picker	ing ON	NO NO	RTHING (m)	4860	130.0)2	E	ASTI	NG	(m):	65358	34.45	ELEV	′. (m) 131.61
CONT	RACTOR: Pontil			METH	OD: S	olid S	Stem A	uge	rano	l Sp	ilt S	poon			
BORE	HOLE DIAMETER (cm): 12.7 WELL DIAM	IETER	(cm):	5.08 SCRE	EN SLO	DT #:	10 sa	ND T	YPE:	Silio	ca #	2	SEA		TYPE: bentonite
SAMF	PLE TYPE AUGER DRIVI	EN		CORING	NGTH		DYNAN WATEI		ONE	-		SHELB	Y	I SPL	IT SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kPa) 40 80 12 	2_160 E ▲ mm)	(PL 20	CONTEI (%) - W.C.	LL NT	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
	TOPSOIL 70mm SAND AND GRAVEL 100mm FILL moist, brown clayey sandy silt, trace gravel	- 0 0.5	131.5 - 131 -	13 ▲ 13					1 <i>4</i> 1E	× 3	65 100	<5p/1p <5p/1p	PAHs		Borehole dry at completion
	very stiff to hard moist, brown CLAYEY SANDY SILT trace gravel	-1-1	130.5 -	16					2		100	<5p/1p	M&I		
	(TILL)	-2	130 – 129.5 –	35 🔺					3		100	<5p/0p			
		- 2.5	129 -	36 ▲					4		100	<5p/1p	BTEX, PHCs		
	dense to very dense	- 3	128.5 -	39					5		100	<5p/0p			
R PAR	SILTY SAND	- - - - - 4	128 - - - - - 127.5 -	87	7/6" 🛦				64	↓ ↓ ↓	100	<5p/1p			
	very dense to dense moist, grey SANDY SILT trace clay, trace gravel	- 	127 -						68	3	100	<5p/1p	PAHs, PHCs.		
	(1122)	-5	126.5 –	50 🔺					7		100	<5p/0p	VOCs, pH		
		- 5.5 - - - - - -	126 -	46					8		100	<5p/1p			
		- 6.5	125 -	48					9		100	<5p/1p			
	END OF BOREHOLE														
														1	
		L	I		LOGO	GED E	BY: SJ			╎	DRII	LING [DATE: ()5-Oct-	-2021
	TFRRAPFX				INPU	T BY:	MW			\top	MON	ITORI	NG DAT	E: 27-	Oct-21
					REVI	EWED	BY:	VN		╞	PAG	E 1 OF	1		

CLIEN	NT: Patheon Developers(Ontario) Inc.				PRC	DJEC	T NO	.: C	T269	94.0	3		-	F	RECO	RD OF:
ADDF	RESS: 2660-2680 Brock Rd, Pick	ering ON						~ .								BH	1204
CITY/	PROVINCE: 2660-2680 Brock Rd	, Pickering ON	NO NO	KTHING ((m): 4	860	198.	21		EAS	STIN	IG (m):	05356	00.49	ELEV	. (m) 131.08
CON			(am);			0: 30 01 (Stem	Aug	jer a	ina E	Spi	te s	spoon			
SAME			. (cm):			SLU	JT #:								V 5EF		
	AUGER			SHEAR S		TΗ		WAT	ER	, 00		_		(new titl	e)		
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(ki 40 80 • N-V/ (Blows/ 20 40	Pa) 120 10 ALUE 300mm 60 8	30)▲	P 20	CONI (% L W. 40	EN I 5) C. LL 60 8	-	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	TOPSOIL 100mm FILL loose, moist, brown sandy silt	- 0.5	131 – - 130.5 –	4		0					1		98	<5p/0p	PAHs, M&I, PHCs, VOCs	-	Borehole dry at completion
	very stiff to hard moist, brown CLAYEY SANDY SILT trace gravel (TILL)	- 	130 -	27							2		98	<5p/1p			
		- 2	129.5 – - - 129 –	33							3		98	<5p/1p			
		- 2.5	128.5	57							4		98	<5p/1p			
	verv dense moist grev	- 3.5	128 – 	43	/						5		98	<5p/1p			
	SANDY SILT trace clay, trace gravel (TILL)	- 	127 -		77						6		100	<5p/1p			
		- 4.5 - - - - 5 -	126.5 - - 126 -		88/6'						7		100	<5p/1p			
		- - 5.5 -	- - 125.5 — -		85/6"						8		100	<5p/1p			
		- 6 - - - 6.5	125 - 124.5 -		88/6'						9		100	<5p/1p			
нити	END OF BOREHOLE																
					 .					1				1.010	^		2021
	TEDDA	DEV					JED I	∃Y: ξ	5J V								-2021
			 	NFU EVI	EWE		• : VN					E 1 OF	1	<u>.</u> .			

CLIEN	IT: Patheon Developers(Ontario) Inc.							PRC	OJEC	T N	0.:	СТ	269	94.0)3			F	RECO	RD OF:
ADDF	ESS: 2660-2680 Brock Rd, Pickering ON	N																	BH	205
CITY/	PROVINCE: 2660-2680 Brock Rd, Picker	ing ON	NO NO	RTH	ING	(m)	: 48	860	175	.78			EAS	STIN	IG (m):	65359	92.76	ELEV	. (m) 130.07
CONT	RACTOR: Pontil				м	ETH	IOD	: S	olid	Ste	m A	۱ug	er a	nd	Spi	lt S	poon			
BORE	HOLE DIAMETER (cm): 16.51 WELL DIAM	/ETER	(cm):		so	CRE	EN	SLC	DT #		SA	ND	TYP	E:		_		SEA	LANT	TYPE:
SAMF	PLE TYPE AUGER DRIVE	EN			COR	ING	}	T 11		DY	NAN	<u>AIC</u>	CO	NE			SHELB	Y	SPL	T SPOON
GWL (m) GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	41 (I	=AR 3 (F 0 80 N-V Blows	(Pa) (Pa) (ALt) (300)	• • • • • • • • • • • •	0 0	- 1	VV. COI	NTEN (%) W.C.	NT LL	0	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	⊕ LABORATORY TESTING	WELL INSTALLATION	REMARKS
	TOPSOIL 100mm	0	130 -			Ĩ		<u> </u>		,		<u>, , , , , , , , , , , , , , , , , , , </u>			-				-	
	FILL firm, moist, dark brown sandy clayey silt FILL	- 0.5	- - 129.5 — - - -	7										1		49	5p/0p	PHCs, VOCs	-	Borehole dry at completion
	sand, trace gravel	-	129 -		16									2		65	<5p/0p	M&I	-	
	hard, moist, brown CLAYEY SANDY SILT, tr. gravel (TILL)	- 1.5 - -	128.5 -	3	5									3A		98	<5p/1p			
	moist, brown GRAVELLY SAND	-2	128 -											3B			<5p/1p			
	very dense, moist, brown SANDY SII T	- 2.5	127.5 -			7	6							4		92	5p/1p			
	trace clay, trace gravel (TILL)	-3	127 -				/							-	Π	50	- 4			
		- 3.5	126.5 -		52									Э		50	5p/1p			
	hard, moist, grey CLAYEY SANDY SILT trace gravel (TILL)	- 4	126 -			84	1/6"							6		100	<5p/1p			
	dense to very dense wet, grey SANDY SILT	- 4.5 - - - 	125.5 -	-			92/6							7		100	<5p/0p			
	trace clay, trace gravel (TILL)	- - - - 55	125																	
		-	124.5		43									8		100	<5p/0p			
		-65	124			7								9		100	5p/1p			
			123.5 -		-				\square		-									
																		^		4 2024
	TEDDADEY	ł	(JED	ВY:	5J	1							04/5-00 ⊏∙	2021				
	V IEKKAPEX		ŀ	IN R	EVI		. IV	Y: 1	VN							Ľ.				

CLIENT: Patheon Developers(Ontario) Inc.				PRC	JECT I	NO.:	CT26	94.0)3		-	F	RECO	RD OF	:
ADDRESS: 2660-2680 Brock Rd, Pickering ON	۱				107 -						L			1206	
CITY/PROVINCE: 2660-2680 Brock Rd, Picker	ing ON	N NO	RTHING (m):	4860	163.27	-	EA	STIN	IG (I	m):	65363	1.28	ELEV.	(m) 130	.56
CONTRACTOR: Pontil			METH	OD: S	olid Ste	em A	uger a	and	Spi	lt Sp	boon				
BOREHOLE DIAMETER (cm): 12.7 WELL DIAM	/ETER	(cm):	5.08 SCRE	EN SLO	DT #: 1	0 SAI	ND TYF	PE: S	Silica	a #2	2	SEA		TYPE: Be	entonite
SAMPLE TYPE AUGER DRIVE	EN		CORING	NGTH		YNAN VATER		DNE		s		<u> </u>		T SPOON	
IN THE SOIL SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kPa) 40 80 12(+ N-VALU (Blows/300) 20 40 60	0_160 E ▲ mm) 80	CC PL 20 4	0NTEN (%) W.C.	IT LL 80	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	RE	MARKS
8 FILL, moist, brown, sand and gravel FILL, moist, brown, clayey silty sand trace rootlets compact, moist, brown SANDY SILT Very stiff, moist, brown CLAYEY SANDY SILT trace gravel (TILL) very dense, moist, grey SANDY SILT occasional layers of clayey silt END OF BOREHOLE	-0.5 -0.5 -1.5 -2.5 -3.5 -4.5 -4.5 -5.5 -6	ш 130.5 - 130.5 - 129.5 - 129.5 - 128.5 - 128.5 - 127.5 - 126.5 - 126.5 - 126.5 - 125.5 -	20 40 60 12 21 28 21 70/6" 72 58				80	S 1A 1B 2 3 4 5 6 7 8		₩ 98 < 100 66 < 83 < 100 100 100	<u>⊼ </u> <5p/1p <5p/1p <5p/1p <5p/1p <5p/1p <5p/1p <5p/1p <5p/1p	Y E PHCs, VOCs M&I, PAHs			
TERRAPEX)5-Oct- E: 27-0	2021 Dct-21	
V	TERRAPEX									PAGI	E 1 OF	1			

APPENDIX IV

MECP WATER WELL RECORDS

		FORMATION	LOAM 0001 FSND GRVL 0006 BRWN CLAY GRVL STNS 0013 GREY CLAY SLTY GRVL 0035 GREY CLAY SLTY GRVL 0054 GREY CLAY DNSE STNS 0072	LOAM 0001 FSND GRVL 0004 BRWN CLAY GRVL STNS 0037 GREY CLAY GRVL STNS 0094 BRWN FSND SLTY 0108 GREY CLAY DNSE 0133 GREY SAND CLAY SLTY 0147	LOAM 0001 FSND STNS 0008 FGVL STNS 0012 GREY MGVL CLAY SAND 0023 CGVL SAND 0049 SAND 0051	BRWN SAND STNS 0002 CSND 0008 FSND MSND FGVL 0036 SAND SLTY FSND 0041 GREY SAND FSND SLTY 0047	BRWN CLAY SILT LOOS 0007 GREY CLAY PCKD 0012 GREY FSND CLAY PCKD 0025			BRWN FILL 0002 BRWN LOAM 0004 BRWN TILL SILT WBRG 0013	BRWN FILL 0003 BRWN TILL SILT 0008 BRWN SAND SILT 0010 BRWN SAND 0012 GREY SAND SILT WBRG 0015	BRWN TILL 0005 GREY TILL SILT 0012		BRWN FILL LOOS 0005 BRWN SILT GRVL DNSE 0015 GREY GRVL DNSE 0030		BRWN CLAY SILT LOOS 0007 GREY FSND PCKD 0012 GREY CLAY PCKD 0020
		WELL	1909056 (10074)	1909057 (10073)	1909058 (10090) A	1909054 (10066)	7230444 (Z195420) A168405	7178977 (Z117524) A091044 A	7178978 (Z117523) A	7186323 (Z154507) A135020	7186324 (Z154508) A109845	7186325 (Z154506) A135023	7164019 (Z126670) A	7218791 (Z183812) A161395	7164015 (Z126674) A	7230445 (Z195419) A168404
	019 AM	SCREEN		0001		0032 15	0015 10			0003 10	0005 10	0003 9		0020 10		0010 10
	July 23, 20 9:50:30 /	WELL USE	N	N	N	N	OW			ТМ	MT	MT	от	Ø	ОТ	MO
		PUMP TEST				20//2/4:0										
		WATER				FR 0030 FR 0050										
		CASING DIA				Q	2.04			2	2	2		2.04	4.5	2.04
		DATE CNTR	1987-11 2662	1987-10 2662	1987-11 2662	1987-11 2662	2014-07 7472	6490	6490	2012-08 7241	2012-08 7241	2012-08 7241	2011-05 4011	2013-12 7472	2011-05 4011	2014-07 7472
	Records	UTM	17 653136 4859608 W	17 653186 4859600 W	17 653188 4859684 W	17 653309 4859589 W	17 653753 4860416 W	17 653785 4860448 W	17 653786 4860447 W	17 653786 4860404 W	17 653643 4860450 W	17 653758 4860640 W	17 653681 4860616 W	17 653814 4859711 W	17 653677 4860458 W	17 653641 4860382 W
	Water Well	TOWNSHIP CON LOT	AJAX TOWN CON 04 015	AJAX TOWN CON 04 015	AJAX TOWN CON 04 015	AJAX TOWN CON 04 016	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN

Page 1 of 9

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	MELL	FORMATION	
PICKERING TOWN	17 653709 4860353 W	2014-07 7472	2.04			OM	0008 4	7230446 (Z195418) A168401	BRWN CLAY SILT LOOS 0007 GREY FSND PCKD 0012	
PICKERING TOWN	17 653794 4860648 W	2012-08 7241	2			MT	0003 10	7186326 (Z154505) A135025	BRWN SILT SAND WBRG 0005 GREV SILT SAND WBRG 0010 GREY SILT CLAY 0013	
PICKERING TOWN	17 653784 4860645 W	2011-05 4011	1.76			OT		7164018 (Z126671) A085577 A		
PICKERING TOWN	17 653777 4860385 W	2014-07 7472	2.04			QM	6 8000	7230447 (Z195421) A168406	BRWN CLAY SILT LOOS 0007 GREY FSND CLAY PCKD 0017	
PICKERING TOWN	17 653612 4860520 W	2011-05 4011	1.97			от		7164016 (Z126673) A	0008 SAND 0012	
PICKERING TOWN	17 653797 4860631 W	2010-02 7241	1.5			МТ	0009 5	7142121 (Z100137) A091035	BRWN SAND SILT LOOS 0008 GREY SILT CLAY DNSE 0014	
PICKERING TOWN	17 653865 4860525 W	2011-05 4011	1.97			OT		7164014 (Z126682) A		
PICKERING TOWN	17 653864 4860525 W	2011-05 4011	1.97			от		7164013 (Z126681) A		
PICKERING TOWN	17 653876 4860538 W	2011-05 4011	1.97			OT		7164012 (Z126675) A	0020 SAND 0025	
PICKERING TOWN	17 653784 4860437 W	2010-02 7241	1.5			MT	5 6000	7142123 (Z100138) A091045	BRWN SAND SILT LOOS 0008 GREY SILT CLAY DNSE 0014	
PICKERING TOWN	17 653801 4860631 W	2010-02 7241	4.03			μT	0010 5	7142122 (Z100136) A085577	BRWN SAND SILT SOFT 0008 GREY SILT DNSE 0015	
PICKERING TOWN	17 653789 4859585 W	2017-08 7215						7294555 (C38956) A232297 P		
PICKERING TOWN	17 653229 4859574 W	2009-07 7247	1.97	UT 0007		OM UN	0005 5	7130476 (294005) A087578	BRWN LOAM SAND SLTY 0002 BRWN TILL SAND GRVL 0007 GREY SILT TILL SNDY 0010 BRWN SAND TILL GRVL 0013 BRWN SAND DNSE 0016	
PICKERING TOWN	17 653041 4859945 W	2006-06 6809	2				0030 5	1918341 (Z45789) A031420	BRWN LOAM 0001 BRWN SILT SAND 0020 GREY CLAY SILT SAND 0035	
PICKERING TOWN	17 653808 4860651 W	2011-05 4011	1.97			ОТ		7164017 (Z126672) A		

Page 2 of 9

FORMATION	BRWN CLAY SLTY HARD 0040	SAND GRVL SHLE 0055							BRWN SILT CLAY LOOS 0002 GREY SILT SAND 0025	BRWN LOAM SOFT 0003 BRWN SAND SOFT 0012 GREY CLAY SILT SOFT 0025	BRWN SAND GRVL SILT 0013	BRWN SILT SAND GRVL 0010 GREY SILT SAND GRVL 0013	BRWN SILT SAND 0010 GREY SILT SAND ROCK 0013	BRWN SAND 0010 GREY SILT SAND GRVL 0013	
WELL	7281320 (Z228879) A178968	7290301 (2257766) A226526	7282153 (C35896) A203340 P	7271724 (Z236437) A	7290302 (2257765) A226527	7271723 (Z236436) A	7267980 (C33913) A203340 P	7263270 (C32458) A168401 P	7261559 (Z214121) A187628	7258995 (Z224066) A196850	7242048 (2208069) A180506	7242047 (Z208068) A180504	7242046 (2208067) A180350	7242045 (2208070) A180319	7231822 (C08462) P
SCREEN	0020 20	0045 10			0015 10				0015 10	0015 10	0003 10	0003 10	0003 10	0003 10	
WELL USE	тн мо	Ŧ			Ŧ				Ψ	Q	μ	M	MT	M	
PUMP TEST				15///:		:///2									
WATER															
CASING DIA	2	7		36	2				7	7	7	5	7	7	
DATE CNTR	2016-02 7247	2017-05 7383	2016-06 7230	2016-09 7523	2017-05 7383	2016-09 7523	2016-06 7230	2016-05 7147	2016-02 7247	2016-01 7501	2015-04 7241	2015-04 7241	2015-04 7241	2015-04 7241	2013-01 6490
UTM	17 653823 4859820 W	17 653695 4860132 W	17 653570 4860334 W	17 653504 4860301 W	17 653688 4860243 W	17 653492 4860308 W	17 653564 4860330 W	17 653714 4860352 W	17 653892 4859890 W	17 653539 4860078 W	17 653595 4860472 W	17 653627 4860481 W	17 653649 4860450 W	17 653624 4860452 W	17 653786 4860407 W
TOWNSHIP CON LOT	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN	PICKERING TOWN

Page 3 of 9

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION	
PICKERING TOWN	17 653733 4860370 W	2014-12 7241	2			MT	0010 10	7236455 (Z201946) A176523	BRWN SAND CLAY 0003 BRWN CLAY 0016 GREY CLAY 0020	
PICKERING TOWN	17 653733 4860370 W	2014-12 7241	2			MT	0024 10	7236454 (Z201945) A176556	BRWN SAND CLAY 0003 BRWN CLAY 0016 GREY CLAY 0034	
PICKERING TOWN	17 653671 4860323 W	2014-12 7241	2			μ	0010 10	7236453 (Z201944) A176555	BRWN SAND SILT 0020	
PICKERING TOWN	17 653617 4860345 W	2017-05 7383	2			T	0020 10	7290303 (2257763) A226246	SAND WBRG 0030	
PICKERING TOWN	17 653600 4860360 W	2017-05 7383	2			Ħ	0020 10	7290304 (Z257764) A226247	SAND WBRG 0050	
PICKERING TOWN	17 653594 4860413 W	2017-05 7383	2			TH	0030 10	7290305 (Z257762) A226250	SAND WBRG 0044	
PICKERING TOWN	17 653597 4860434 W	2015-04 7241	2			μ	0003 10	7242044 (Z208066) A180318	BRWN SAND 0011 GREY SILT SAND WBRG 0013	
PICKERING TOWN 03 019	17 653735 4859843 W	1992-09 3129	ω	FR 0150	5/150/4/2:30	PS		1911577 (119132)	LOAM 0001 CLAY GRVL 0025 BLDR 0027 GRVL CLAY 0037 BLDR 0039 GRVL CLAY 0053 SAND 0058 SHLE SOFT 0150	
PICKERING TOWN 03 019	17 653732 4860078 W	2006-12 3406						7040465 (Z56845) A		
PICKERING TOWN 03 020	17 653027 4860476 W	2006-12 3406						7040464 (Z56846) A		
PICKERING TOWN CON 03 017	17 654027 4860619 W	2010-02 7067	6.26 6.26	GS 0150	42/183/8/1:0	R		7147452 (Z107441) A067899	BRWN LOAM 0002 BRWN SAND SOFT 0012 GREY CLAY GRVL STNS 0023 GREY CLAY SOFT 0055 GREY CLAY GRVL HARD 0092 BLCK SHLE SOFT 0215 GREY LMSN HARD 0234	
PICKERING TOWN CON 03 018	17 653949 4859949 L	2001-01 2662				Q		1914932 (216699) A	BRWN LOAM 0001 BRWN CLAY SNDY 0004 BRWN CLAY BLDR 0016 GREY HPAN 0026 GREY HPAN GRU. STNS 0042 GREY CLAY GRVL SLTY 0056 GREY SILT WBRG DRTY 0066 GREY CLAY 0080 GREY SILT WBRG 0088 BLCK SHLE 0145	
PICKERING TOWN CON 03 018	17 653949 4859949 L	2002-01 2662						1915902 (236760) A		
PICKERING TOWN CON 03 018	17 653949 4859949 L	2001-01 2662	9	FR 0050	21/33/4/3:	D	0046 4	1914931 (228234)	BRWN LOAM 0001 BRWN CLAY SNDY 0004 BRWN CLAY STNS 0006 BRWN CLAY BLDR 0020 GREY HPAN 0040 BRWN SAND GRVL WBRG 0050	
PICKERING TOWN CON 03 018	17 653949 4859949 L	2000-12 2662	6 6	FR 0066	6/18/6/2:	OQ	0063 3	1914965 (216689)	BLCK LOAM 0001 BRWN SAND CLAY GRVL 0009 GREY CLAY SLTY GRVL 0029 GREY SAND SLTY 0042 GREY SAND SLTY GRVL 0062 GREY SAND GRVL 0066	

Page 4 of 9

WNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION	
RING TOWN CON 03	17 653949 4859949 L	2003-01 6974				DO		1916257 (250276) A		
RING TOWN CON 03	17 653650 4860322 W	2014-08 4645	36			٦N		7230704 (Z193415) A		
RING TOWN CON 03	17 653949 4859949 L	2002-10 6874	30	FR 0029	29/43/25/2:0	DO		1916160 (252933)	BLUE CLAY 0043	
RING TOWN CON 03	17 653949 4859949 L	2002-09 5459						1916076 (248694) A	BRWN FILL 0002 BRWN CLAY SNDS 0014 GREY CLAY STNY HARD 0020 GREY CLAY SNDY 0049 BLCK SHLE 0055	
RING TOWN CON 03	17 653737 4860096 W	2014-08 4645	Q			Ŋ		7230705 (Z193411) A		
RING TOWN CON 03	17 653949 4859949 L	2002-02 2662						1915903 (236759) A	BRWN CLAY GRVL SNDY 0001 BLCK LOAM 0002 BRWN CLAY GRVL SNDY 0009 GREY CLAY GRVL 0015 GREY CLAY 0082 GREY SHLE 0116	
RING TOWN CON 03	17 653691 4860264 W	6874	30	FR	17/17/3/1:0	DO		1912381 (158021)	CHRT 0013 CHRT 0017	
RING TOWN CON 03	17 653949 4859949 L	2001-02 2662	ω ω	FR 0086 FR 0154	49/100/3/3:10	Q		1915273 (228260)	BRWN LOAM SOFT 0002 BRWN SAND GRVL CLAY 0015 GREY CLAY GRVL BLDR 0030 GREY SAND GRVL SILT 0054 GREY SAND SILT 0064 GREY CLAY GRVL LOOS 0086 BLCK SHLE SOFT 0125 BLCK LMSN SOFT 0165	
RING TOWN CON 03	17 653949 4859949 L	2001-06 2662				Ŋ		1915291 (228320) A		
RING TOWN CON 03	17 653949 4859949 L	2001-05 2662						1915300 (228795) A		
RING TOWN CON 03	17 653949 4859949 L	2002-03 3136						1915680 (242093) A		
RING TOWN CON 03	17 653949 4859949 L	2002-02 2662						1915905 (236758) A	BRWN SAND GRVL 0001 BLCK LOAM 0002 BRWN CLAY GRVL SNDY 0009 GREY CLAY GRVL 0014 GREY SAND GRVL SLTY 0040 GREY CLAY 0083 GREY SHLE 0050	
RING TOWN CON 03	17 653724 4860085 W	1991-10 5459				DO		1911297 (85088)	BRWN CLAY 0003 BRWN GRVL 0009 GREY CLAY 0024 GREY SILT CLAY 0035	
RING TOWN CON 03	17 653650 4860322 W	2014-10 4645	36					7234107 (Z183974) A		
RING TOWN CON 03	17 653753 4860416 W	7147						7270829 (C34011) A168405 P		
RING TOWN CON 03	17 653737 4860096 W	2014-08 4645	36			Ŋ		7230708 (Z193413) A		
RING TOWN CON 03	17 653783 4860044 W	1991-10 5459				DO		1911296 (85089)	BRWN CLAY 0012 GREY CLAY 0026 GREY SAND CLAY 0033 GREY CLAY HARD 0075	

Page 5 of 9

LUTM	DATE CNTR 2014-08 4645	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
	2014-08 4645	ñ D			N		/230/0/ (Z193414) A	
	7147						7271771 (C34017) A176323 P	
~	1963-05 2801				R		4601376 ()	CLAY GRVL BLDR 0004 BLUE CLAY 0011 BLUE CLAY MSND 0014 SILT FSND 0025 GRVL CLAY 0028 GRVL 0030 CLAY 0092 SHLE 0095
• •	2001-12 3136	۵	FR 0103	11/15/15/1:0	DO	0106 3	1915533 (229182)	BRWN LOAM 0001 BRWN SAND CLAY STNS 0012 GREY CLAY STNS 0033 GREY CLAY SOFT 0103 GREY MSND CSND 0109 GREY CLAY 0109
~ ≥	1974-11 1413	S S	FR 0043	14/17/6/2:0	DO		4606020 ()	BRWN CLAY 0008 BRWN SAND CLAY 0016 BLUE CLAY 0042 GREY SAND 0043 GREY CLAY STNS 0085 BLCK SHLE 0136
ഹ്>	1968-06 5420	Q	FR 0028	0/28/7/2:0	R	0029 4	4603768 ()	LOAM 0002 CLAY GRVL STNS 0028 MSND 0033
75 3 W	1985-12 2214			0/3/7/15:0	DO		1907556 ()	BRWN CLAY PCKD 0006 BRWN SAND 0008 GREY CLAY SILT PCKD 0016 BRWN GRVL 0018
5 W	1998-07 6874				DQ		1913702 (187690)	
421 9 W	1998-09 6463	48		9/20//:			1913844 (108722)	
526 0 W	2014-08 4645	ß			N		7230706 (Z193412) A	
551 1 L	2000-11 6874	36	UK 0041	16/40/25/3:	DO		1914879 (222390)	UNKN CMTD 0015 GREY SAND 0041
77 W 0	1995-09 6874	30	FR 0027	0/27//:	DQ		1912561 (160730)	BRWN SAND 0028
551 1 L	2000-12 2662	U	FR 0054	11/15/6/3:	DO		1914966 (216681)	BRWN SAND GRVL 0001 BRWN CLAY SNDY 0012 GREY CLAY GRVL 0026 GREY SILT SNDY GRVL 0043 GREY SAND GRVL SILT 0053 GREY GRVL WBRG 0054
92 9 W	1998-09 6463	36		9/25//:			1913843 (196721)	
44 V	1966-06 5412	30	FR 0025	15//5/:	DO		4601381 ()	BRWN CLAY 0010 BLUE CLAY 0025 FSND 0028
⁴⁰ W	2010-07 2662						7156177 (Z117968) A062241 A	
03 3 W	2010-07 2662						7156176 (Z117967) A062241 A	

Page 6 of 9

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
PICKERING TOWN CON 03 019	17 653310 4860693 W	1971-11 1556	30	FR 0020	11/25/6/1:0	DQ		4605069 ()	BRWN MSND FILL 0001 BRWN LOAM 0002 BRWN MSND STNS 0009 GREY CLAY STNS 0020 GREY MSND GRVL 0026
PICKERING TOWN CON 03 019	17 653485 4860543 W	1970-10 5459	34	FR 0020	15///:	DO		4604690 ()	LOAM 0001 BRWN CLAY STNS 0010 BLUE CLAY STNS 0020 BLCK MSND 0023 BLUE CLAY STNS 0028
PICKERING TOWN CON 03 019	17 653685 4859983 W	1969-06 2214	30	FR 0024	2/20/4/1:0	DO		4604136 ()	BLCK LOAM 0001 BRWN CLAY 0010 GREY CLAY STNS 0024
PICKERING TOWN CON 03 019	17 653638 4860202 W	1955-12 2615	36	FR 0020	15///:	DO		4601378 ()	LOAM CLAY 0002 GREY CLAY STNS 0020 GRVL 0024
PICKERING TOWN CON 03 019	17 653497 4859673 W	1967-09 3102	30					4601383 () A	LOAM 0001 BRWN CLAY 0020 BLUE CLAY 0062
PICKERING TOWN CON 03 019	17 653596 4859888 W	1966-10 5412	30	FR 0020	10//10/:	DO		4601380 ()	LOAM 0001 BRWN CLAY 0008 BRWN CLAY MSND 0015 BLUE CLAY 0020 GRVL 0022
PICKERING TOWN CON 03 019	17 653619 4860005 W	1954-08 2615	36	FR 0028	26///:	DO		4601379 ()	FILL 0003 LOAM GRVL 0006 CLAY MSND 0029 MSND 0032
PICKERING TOWN CON 03 019	17 653551 4859811 L	2003-11 6974				DO		1916807 (265421) A	
PICKERING TOWN CON 03 019	17 653551 4859811 L	2003-01 6974				DO		1916258 (250277) A	
PICKERING TOWN CON 03 019	17 653551 4859811 L	2003-11 6974				DO		1916808 (265420) A	
PICKERING TOWN CON 03 020	17 653162 4859679 L	2002-03 7099				DO		1915728 (231645) A	
PICKERING TOWN CON 03 020	17 653210 4859965 W	2011-11 7219	7.86			NN		7190520 (Z144175) A116518 A	
PICKERING TOWN CON 03 020	17 653162 4859679 L	2002-01 3367	υ	UK 0073	13/55/4/2:10	Q	0070 3	1915513 (241021)	BRWN LOAM LOOS 0002 BRWN SAND GRVL CLAY 0012 GREY CLAY SAND STNS 0030 GREY SAND GRVL PCKD 0055 GREY CLAY SAND GRVL 0060 GREY FSND LOOS 0070 GREY GRVL SAND LOOS 0073
PICKERING TOWN CON 03 020	17 653162 4859679 L	2002-03 3367						1915695 (241052)	
PICKERING TOWN CON 03 020	17 653275 4859623 W	1975-04 2104	Q	FR 0078	2/72/5/8:0	NM	0073 4	4606580 ()	BRWN BLDR CLAY GRVL 0035 GREY CLAY GRVL 0078 GREY SAND GRVL 0081 GREY SHLE 0082
PICKERING TOWN CON 03 020	17 653182 4860155 W	1998-10 6874	30	FR 0012	3/30//:	DO		1913810 (187702)	BRWN SAND 0030
PICKERING TOWN CON 03 020	17 653162 4859679 L	2001-05 2662						1915279 (228793) A	
PICKERING TOWN CON 03 020	17 653228 4860058 W	1996-11 6874	16 36	FR 0026	7/30/25/2:0	DO		1913052 (174465)	BRWN SAND 0030

Page 7 of 9

TOWNSHIP CON LOT	UTM	DATE CNTR	CASING DIA	WATER	PUMP TEST	WELL USE	SCREEN	WELL	FORMATION
PICKERING TOWN CON 03 020	17 653162 4859679 L	2001-03 2662	ω u	FR 0084	12/17/5/2:0	Od	0081 3	1915263 (228270)	BRWN LOAM SOFT 0002 BRWN SAND STNS PCKD 0010 GREY SAND CLAY PCKD 0020 GREY CLAY GRUL PCKD 0035 GREY CLAY SAND PCKD 0078 GREY GRVL SAND LOOS 0080 GREY GRVL STNS LOOS 0084
PICKERING TOWN CON 03 020	17 653162 4859679 L	2001-11 7099	9	FR 0068	18/58/5/2:0	DQ	0069 4	1915523 (231652)	BRWN CLAY SAND 0015 BLUE CLAY 0024 GREY SAND GRVL CLAY 0068 GREY SAND GRVL 0073
PICKERING TOWN CON 03 020	17 653162 4859679 L	2002-03 3367						1915696 (241053)	
PICKERING TOWN CON 04 018	17 653835 4860703 W	1964-10 5412	30	FR 0015 FR 0018	10//1/:	O		4601431 ()	LOAM 0001 FSND 0006 BLUE CLAY STNS 0018 FSND 0025
PICKERING TOWN CON 04 019	17 653614 4859757 W	2012-11 4102						7193231 (2154818) A	
PICKERING TOWN CON 04 019	17 653683 4859807 W	2012-11 4102						7193232 (Z154817) A	
PICKERING TOWN CON 08 018	17 653665 4860692 W	1998-11 6874	30	FR 0027	19/27/25/2:30	DO		1913889 (187726)	BRWN GRVL 0027

Page 8 of 9

	Hour : Minutes			υ
	ate in GPM / Pump Test Duration in		on Code Description OT Other	TH Test Hole MD Monitoring TestHol M7 Monitoring TestHol
ATION	nping in Feet / Pump Test R: I Data Entry Only	3. Well Use	Code Descriptic DO Domestic	ST Livestock IR Irigation IN Industrial CO Commercial MM Municipal PS Public AC Cooling And NU Not Used NU Not Used NU Not Used SS Gas IR Iron
FORMA	er Level After Pun onment; P: Partia of Code	olor	scription ITE	UEX UEX EUEN LILOW LILOW ACK D ACK D SCR D SCR D SCR D SCR D SCR D C D SCR D C C SCR D C C SCR C C C C C C C C C C C C C C C C
WELL	vel in Feet / Wate 1eaning of Code .ength in feet Ill Tag . A: Abandd d 2 for Meaning	2. Core C	Code De WHIT WH	CREY GR BLUE BL GRUE BL GRUE BL BRMN PER BRNN BE BLCK BL BLCK BL BLCK BL BLCK BL BLGY BL COde DE FR FR SA Sa SU MU MI
SCREEN	r: Static Water Le [,] See Table 3 for N rreen Depth and I L (AUDIT #) We N: See Table 1 an			20 ⁵⁰
WELL USE	pulmp TEST WELL USE: SCREEN: SC WELL: WE FORMATIO		ode Description	DET SOFT BET SOFT FET SOAPSTONE FET SOAPSTONE TINS STONES HIK THICK HIK THICK HIK THICK HIK THICK HIK THICK NEN UNKNOWN TYPE KRY UERY BRG WATER-BEARING DER WOOD FRAGMENT
R PUMP TEST	ot; W: UTM not from Lot Centra		de Description C	RS POROUS DB FREYLOUGIY DUG 5 DB FREYL DHILLED 5 DB PREYL DHILLED 5 S QUARTZITE 5 CUARTZ THE 5 CUARTZ THE 7 CR ROCK 7 T 7 T 7 T 7 T 7 T 8 CR ROCK 7 T 7 T 7 T 7 T 8 CR ROCK 7 T
WATEF	m Centroid of L		Co	TION PO PRR PR PRR PR PR PR PR PR PR PR PR PR PR P
-R CASING DIA	.: UTM estimated fro ce Number ie		de Descriptior	FM IRON FORMAN MY LIMY INI LIMY SN LIMY OS LOOSE AM TOPSOIL OS LOOSE CLI LIGHT-COLOI CLI LATRED RI LATRED RI MARL RI MARL RI MARL RI MARLE RI MARLE
DATE CN1	d Datum is NAD83; I ell Contractor Licen for Meaning of Cod	ve terms	ription Co	TURED IN GRAVEL LL CRANTED LL LL CRANEL LL LL LL LL LL LL LL LL LL LL LL LL LL
UTM	g, Northing and mpletedand W eter in inches ee. See Table 4	d Descripti	Code Desc	FCRD FRAC FCRD FIAS FCRD FIAS FILL FILL FILL FILL FLDS FELLOF FLDS FELLOF FLDS FELLOF FLDS FELLOF FLDS FLDS FRDS FOLL FLDS FLDS FLDS FRDS FLDS FLDS FLDS FLDS FLDS FLDS FLDS FL
TOWNSHIP CON LOT	Notes: UTM: UTM in Zone, Eastir DATE CNTR: Date Work Cc CASING DIA: Casing diam WATER: Unit of Depth in F	1. Core Material an	Code Description	BIDR BOULDERS BELT BASALT CGRD COARSE GRAVEL CGRU COARSE GRAVEL CHRT CHERT CLAY CLAX CLAY CLAX CLAY CLAX CLAY CLAX CLAY CLAX CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY

Code Description Code Description FR Fresh GS Gas SA Salty IR Iron SU Sulbhur MN Mineral UK Unknown

Page 9 of 9
APPENDIX V

GRAIN SIZE ANALYSES DISTRIBUTIONS

APPENDIX VI

HYDRAULIC CONDUCTIVITY TESTS

HYDROGEOLOGICAL REVIEW

 Data Set:
 I:\Projects_Open\CT2694 2680 Brock Rd Pickering\Analysis\Bail Test\MW1D Test.aqt

 Date:
 07/03/18
 Time:
 13:06:49

PROJECT INFORMATION

Company: <u>Terrapex Environmental Ltd</u> Client: <u>The Brock Zents Partnership</u> Project: <u>CT2694.00</u> Location: <u>2660-2680 Brock Rd, Pickering</u> Test Well: <u>MW1(D)</u> Test Date: May 23, 2018

AQUIFER DATA

Saturated Thickness: 4.9 m

Anisotropy Ratio (Kz/Kr): 0.2

WELL DATA (MW1(D))

Initial Displacement: <u>0.83</u> m Total Well Penetration Depth: <u>5.36</u> m Casing Radius: <u>0.0263</u> m Static Water Column Height: <u>5.4</u> m Screen Length: <u>1.5</u> m Well Radius: <u>0.0302</u> m

SOLUTION

Aquifer Model: Unconfined

K = 8.638E-9 m/sec

Solution Method: Bouwer-Rice

y0 = 0.6754 m

HYDROGEOLOGICAL REVIEW

 Data Set:
 I:\Projects_Open\CT2694 2680 Brock Rd Pickering\Analysis\Bail Test\MW3D Test.aqt

 Date:
 07/03/18
 Time:
 13:01:03

PROJECT INFORMATION

Company: <u>Terrapex Environmental Ltd</u> Client: <u>The Brock Zents Partnership</u> Project: <u>CT2694.00</u> Location: <u>2660-2680 Brock Rd, Pickering</u> Test Well: <u>MW3(D)</u> Test Date: May 17, 2018

AQUIFER DATA

Saturated Thickness: 5.1 m

Anisotropy Ratio (Kz/Kr): 0.2

WELL DATA (MW3(D))

Initial Displacement: <u>0.34</u> m Total Well Penetration Depth: <u>5.62</u> m Casing Radius: <u>0.0263</u> m Static Water Column Height: <u>5.6</u> m Screen Length: <u>1.5</u> m Well Radius: 0.0302 m

SOLUTION

Aquifer Model: <u>Unconfined</u>

K = 3.372E-7 m/sec

Solution Method: Bouwer-Rice

y0 = 0.0644 m

 Data Set:
 I:\Projects_Open\CT2694 2680 Brock Rd Pickering\Analysis\Bail Test\MW4 Test.aqt

 Date:
 07/03/18
 Time:
 13:01:23

PROJECT INFORMATION

Company: <u>Terrapex Environmental Ltd</u> Client: <u>The Brock Zents Partnership</u> Project: <u>CT2694.00</u> Location: <u>2660-2680 Brock Rd, Pickering</u> Test Well: <u>MW4</u> Test Date: May 23, 2018

AQUIFER DATA

Saturated Thickness: 5.4 m

Anisotropy Ratio (Kz/Kr): 0.2

WELL DATA (MW4)

Initial Displacement: <u>0.31</u> m Total Well Penetration Depth: <u>5.94</u> m Casing Radius: <u>0.0263</u> m Static Water Column Height: <u>6.</u> m Screen Length: <u>1.5</u> m Well Radius: <u>0.0302</u> m

SOLUTION

Aquifer Model: <u>Unconfined</u>

Solution Method: Bouwer-Rice

K = 7.204E-6 m/sec

y0 = 0.3205 m

APPENDIX VII

LABORATORY REPORT

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Terrapex Environmental Ltd. (Toronto)

90 Scarsdale Road Toronto, ON M3B 2R7 Attn: Sara Sutherland

Client PO: Project: CT2694.03 Custody: 53224

Report Date: 25-Oct-2021 Order Date: 18-Oct-2021

Order #: 2143090

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2143090-01

Client ID MW206

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 25-Oct-2021 Order Date: 18-Oct-2021

Project Description: CT2694.03

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC	22-Oct-21	23-Oct-21
Biochemical Oxygen Demand	SM 5210B - DO Probe	20-Oct-21	25-Oct-21
Cyanide, total	MOE E3015 - Auto Colour	21-Oct-21	21-Oct-21
Oil & Grease, animal/vegetable	SM5520 - Gravimetric	25-Oct-21	25-Oct-21
Durham - Sanitary: VOCs	EPA 624 - P&T GC-MS	20-Oct-21	20-Oct-21
E. coli	MOE E3407	19-Oct-21	19-Oct-21
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	19-Oct-21	20-Oct-21
Metals, ICP-MS	EPA 200.8 - ICP-MS	19-Oct-21	19-Oct-21
Oil & Grease, mineral/synthetic	SM5520F - Gravimetric	25-Oct-21	25-Oct-21
Oil & Grease, total	SM5520B - Gravimetric, hexane soluble	25-Oct-21	25-Oct-21
PCBs, total	EPA 608 - GC-ECD	20-Oct-21	21-Oct-21
pH	EPA 150.1 - pH probe @25 °C	19-Oct-21	19-Oct-21
Phenolics	EPA 420.2 - Auto Colour, 4AAP	22-Oct-21	22-Oct-21
Phosphorus, total, water	EPA 365.4 - Auto Colour, digestion	20-Oct-21	21-Oct-21
Sewer Use By Law - Phthalates	EPA 625	19-Oct-21	19-Oct-21
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	20-Oct-21	21-Oct-21
Total Suspended Solids	SM 2540D - Gravimetric	20-Oct-21	20-Oct-21

PARACEL LABORATORIES LTD.

Certificate of Analysis

Client: Terrapex Environmental Ltd. (Toronto)

Client PO:

Report Date: 25-Oct-2021

Order Date: 18-Oct-2021

Project Description: CT2694.03

	Client ID:	MW206	-	-	-
	Sample Date:	18-Oct-21 11:45	-	-	-
	Sample ID:	2143090-01	-	-	-
	MDL/Units	Ground Water	-	-	-
Microbiological Parameters	1 1			1	1
E. coli	1 CFU/100 mL	40 [1]	-	-	-
General Inorganics			-		
BOD	2 mg/L	<2	-	-	-
Cyanide, total	0.01 mg/L	<0.01	-	-	-
рН	0.1 pH Units	7.5	-	-	-
Phenolics	0.001 mg/L	<0.001	-	-	-
Phosphorus, total	0.01 mg/L	0.04	-	-	-
Total Suspended Solids	2 mg/L	17	-	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.2	-	-	-
Anions					
Fluoride	0.1 mg/L	<0.1	-	-	-
Sulphate	1 mg/L	44	-	-	-
Metals - Total					
Aluminum	0.01 mg/L	0.50	-	-	-
Antimony	0.001 mg/L	<0.001	-	-	-
Arsenic	0.01 mg/L	<0.01	-	-	-
Cadmium	0.001 mg/L	<0.001	-	-	-
Chromium	0.05 mg/L	<0.05	-	-	-
Cobalt	0.001 mg/L	<0.001	-	-	-
Copper	0.005 mg/L	<0.005	-	-	-
Lead	0.001 mg/L	0.001	-	-	-
Manganese	0.05 mg/L	0.07	-	-	-
Mercury	0.0001 mg/L	<0.0001	-	-	-
Molybdenum	0.005 mg/L	<0.005	-	-	-
Nickel	0.005 mg/L	<0.005	-	-	-
Selenium	0.005 mg/L	<0.005	-	-	-
Silver	0.001 mg/L	<0.001	-	-	-
Tin	0.01 mg/L	<0.01	-	-	-
Titanium	0.01 mg/L	0.02	-	-	-
Zinc	0.02 mg/L	<0.02	-	-	-
Volatiles			-		
Benzene	0.0005 mg/L	<0.0005	-	-	-
Chloroform	0.0005 mg/L	<0.0005	-	-	-
1,2-Dichlorobenzene	0.0005 mg/L	<0.0005	-	-	-
1,4-Dichlorobenzene	0.0005 mg/L	<0.0005	-	-	-

PARACEL LABORATORIES LTD.

Certificate of Analysis Client: Terrapex Environmental Ltd. (Toronto)

Report Date: 25-Oct-2021 Order Date: 18-Oct-2021

Project Description: CT2694.03

		N/14/000			
	Client ID:	MW206	-	-	-
	Sample Date:	2142000 01	-	-	-
	Sample ID:	2143090-01	-	-	-
r	MDL/Units	Ground Water	-	-	-
cis-1,2-Dichloroethylene	0.0005 mg/L	<0.0005	-	-	-
trans-1,3-Dichloropropylene	0.0005 mg/L	<0.0005	-	-	-
Ethylbenzene	0.0005 mg/L	<0.0005	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.0050 mg/L	<0.0050	-	-	-
Methylene Chloride	0.0050 mg/L	<0.0050	-	-	-
Styrene	0.0005 mg/L	<0.0005	-	-	-
1,1,2,2-Tetrachloroethane	0.0005 mg/L	<0.0005	-	-	-
Tetrachloroethylene	0.0005 mg/L	<0.0005	-	-	-
Toluene	0.0005 mg/L	<0.0005	-	-	-
Trichloroethylene	0.0005 mg/L	<0.0005	-	-	-
Xylenes, total	0.0005 mg/L	<0.0005	-	-	-
4-Bromofluorobenzene	Surrogate	107%	-	-	-
Dibromofluoromethane	Surrogate	102%	-	-	-
Toluene-d8	Surrogate	85.0%	-	-	-
Hydrocarbons					
Oil & Grease, animal/vegetable	0.500 mg/L	<0.500	-	-	-
Oil & Grease, mineral/synthetic	0.5 mg/L	<0.5	-	-	-
Oil & Grease, total	0.5 mg/L	<0.5	-	-	-
Semi-Volatiles					
Bis(2-ethylhexyl)phthalate	0.001 mg/L	<0.001	-	-	-
Di-n-butylphthalate	0.001 mg/L	<0.001	-	-	-
Terphenyl-d14	Surrogate	101%	-	-	-
PCBs					
PCBs, total	0.0001 mg/L	<0.0001	-	-	-
Decachlorobiphenyl	Surrogate	67.4%	-	-	-

Order #: 2143090

Report Date: 25-Oct-2021

Order Date: 18-Oct-2021

Project Description: CT2694.03

Method Quality Control: Blank

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Fluoride	ND	0.1	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics									
BOD	ND	2	mg/L						
Cyanide, total	ND	0.01	mg/L						
Phenolics	ND	0.001	mg/L						
Phosphorus, total Total Suspended Solids		0.01	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Hydrocarbons			U						
Oil & Grease, mineral/synthetic	ND	0.5	ma/L						
Oil & Grease, total	ND	0.5	mg/L						
Metals - Total									
Aluminum	ND	0.01	mg/L						
Antimony	ND	0.001	mg/L						
Arsenic	ND	0.01	mg/L						
Cadmium	ND	0.001	mg/L						
Cobalt	ND	0.05	mg/L						
Copper	ND	0.005	mg/L						
Lead	ND	0.001	mg/L						
Mercury	ND	0.0001	mg/L						
Manganese	ND	0.05	mg/L						
Nickel		0.005	mg/L						
Selenium	ND	0.005	mg/L						
Silver	ND	0.001	mg/L						
Tin	ND	0.01	mg/L						
Titanium	ND	0.01	mg/L						
	ND	0.02	mg/L						
E. coli	ND	1	CFU/100 mL						
PCBs									
PCBs, total	ND	0.0001	mg/L		101	60 4 40			
Surrogate: Decachiorobiphenyi	1.000507		mg/L		101	60-140			
Semi-volatiles									
Bis(2-ethylhexyl)phthalate	ND	0.001	mg/L						
Surrogate: 2-Eluorobinhenvl	0.0208	0.001	mg/L		104	76-125			
Surrogate: Nitrobenzene-d5	0.0156		ma/L		78.2	68-125			
Surrogate: Terphenyl-d14	0.0169		mg/L		84.6	70-125			
Volatiles									
Benzene	ND	0.0005	ma/L						
Chloroform	ND	0.0005	mg/L						
1,2-Dichlorobenzene	ND	0.0005	mg/L						
1,4-Dichlorobenzene	ND	0.0005	mg/L						
cis-1,2-Dichloroethylene		0.0005	mg/L mg/l						
Ethylbenzene	ND	0.0005	mg/L						
Methyl Ethyl Ketone (2-Butanone)	ND	0.0050	mg/L						
Methylene Chloride	ND	0.0050	mg/L						
Styrene	ND	0.0005	mg/L						
1,1,2,2- letrachloroethane	ND	0.0005	mg/L						
Toluene		0.0005	ma/L						
		0.0000	<u></u> g, –						

Report Date: 25-Oct-2021

Order Date: 18-Oct-2021

Project Description: CT2694.03

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Trichloroethylene Xylenes, total Surrogate: 4-Bromofluorobenzene Surrogate: Dibromofluoromethane Surrogate: Toluene-d8	ND ND 0.0864 0.0792 0.0677	0.0005 0.0005	mg/L mg/L <i>mg/L</i> <i>mg/L</i>		108 99.0 84.6	50-140 50-140 50-140			

Method Quality Control: Duplicate

Report Date: 25-Oct-2021

Order Date: 18-Oct-2021

Project Description: CT2694.03

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Fluoride	ND	0.1	mg/L	ND			NC	10	
Sulphate	36.6	1	mg/L	35.9			1.9	10	
General Inorganics									
BOD	62	2	ma/l	62			0.0	20	
Cvanide total		0.01	mg/L				NC	11	
nH	7.9	0.1	nH Units	7.9			0.4	33	
Phenolics	ND	0.001	ma/l	ND			NC	10	
Phosphorus, total	ND	0.01	ma/L	0.013			NC	15	
Total Suspended Solids	37.0	2	mg/L	39.0			5.3	10	
Total Kjeldahl Nitrogen	0.22	0.1	mg/L	0.24			7.8	16	
Metals - Total			Ū						
Aluminum	0.50	0.01	ma/l	0.47			5.0	20	
Antimony	0.50	0.01	mg/L	0.47			0.9	20	
Anumony	0.009	0.001	mg/L	0.009			2.3 NC	20	
Cadmium		0.01	mg/L				NC	20	
Chromium		0.001	mg/L				NC	20	
Cobalt	0.002	0.001	mg/L	0.002			15.1	20	
Copper	ND	0.001	mg/L	ND			NC	20	
Lead	0.003	0.000	mg/L	0.002			14.5	20	
Mercury	ND	0.0001	ma/L	ND			NC	20	
Manganese	0.081	0.05	ma/L	0.076			6.2	20	
Molybdenum	0.011	0.005	mg/L	0.010			9.3	20	
Nickel	0.007	0.005	mg/L	0.007			8.6	20	
Selenium	ND	0.005	mg/L	ND			NC	20	
Silver	ND	0.001	mg/L	ND			NC	20	
Tin	ND	0.01	mg/L	ND			NC	20	
Titanium	0.012	0.01	mg/L	ND			NC	20	
Zinc	ND	0.02	mg/L	ND			NC	20	
Microbiological Parameters									
E. coli	720	10	CFU/100 mL	760			5.4	30	BAC12
Volatiles									
Benzene	ND	0.0005	mg/L	ND			NC	30	
Chloroform	ND	0.0005	mg/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.0005	mg/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.0005	mg/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.0005	mg/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.0005	mg/L	ND			NC	30	
Ethylbenzene	ND	0.0005	mg/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	0.0050	mg/L	ND			NC	30	
Methylene Chloride	ND	0.0050	mg/L	ND			NC	30	
Styrene	ND	0.0005	mg/L	ND			NC	30	
1,1,2,2- letrachloroethane	ND	0.0005	mg/L	ND			NC	30	
Tetrachloroethylene	0.137	0.0005	mg/L	0.134			2.1	30	
Toluene	ND	0.0005	mg/L	ND			NC	30	
	0.316	0.0005	mg/∟	0.307			2.9	30	
	ND	0.0005	mg/L				NC	30	
U-Ayicile Surrogate: A Bromofluorobenzenc	UNI 0.0220	0.0005	mg/L	IND	102	50 140	INC	30	
Surrogate: Dibromofluoromethanc	0.0020		mg/L		08.6	50 140			
Surrogate: Toluene d8	0.0709		mg/L		90.0 85.2	50 140			
Sundyale. IOlucite-uo	0.0002		IIIg/L		00.2	50-140			

Method Quality Control: Spike

Report Date: 25-Oct-2021

Order Date: 18-Oct-2021

Project Description: CT2694.03

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Fluoride	0.92	0.1	mg/L	ND	91.8	79-121			
Sulphate	45.4	1	mg/L	35.9	95.2	74-126			
General Inorganics									
BOD	213	2	ma/L	ND	107	71-121			
Cvanide, total	0.098	0.01	ma/L	ND	98.0	53-130			
Phenolics	0.024	0.001	mg/L	ND	97.2	69-132			
Phosphorus, total	0.501	0.01	mg/L	0.013	97.7	80-120			
Total Suspended Solids	23.0	2	mg/L	ND	115	75-125			
Total Kjeldahl Nitrogen	2.30	0.1	mg/L	0.24	103	81-126			
Hydrocarbons									
Oil & Grease, mineral/synthetic	8.10	0.5	ma/L	ND	81.0	65-110			
Oil & Grease, total	20.0	0.5	ma/L	ND	100	85-110			
Metals - Total									
	61.0	0.01	ma/l	ND	124	80 120		c	02
Antimony	53.4	0.01	ma/L	0.01/	105	80-120			23-02
Arsonic	58.6	0.001	ma/l	0.314	117	80-120			
Cadmium	53.7	0.001	ma/l	0.140	107	80-120			
Chromium	58.6	0.05	ma/l	ND	117	80-120			
Cobalt	58.4	0.001	ma/l	0 192	117	80-120			
Copper	57.3	0.005	ma/l	0.216	114	80-120			
Lead	52.6	0.001	ma/L	0.233	105	80-120			
Mercury	0.0032	0.0001	ma/L	ND	108	70-130			
Manganese	57.6	0.05	ma/L	ND	115	80-120			
Molybdenum	56.2	0.005	mg/L	0.983	110	80-120			
Nickel	58.9	0.005	mg/L	0.685	116	80-120			
Selenium	52.6	0.005	mg/L	0.180	105	80-120			
Silver	49.1	0.001	mg/L	0.057	98.1	80-120			
Tin	54.9	0.01	mg/L	0.220	109	80-120			
Titanium	60.6	0.01	mg/L	0.968	119	80-120			
Zinc	55.2	0.02	mg/L	0.859	109	80-120			
PCBs									
PCBs. total	0.0009	0.0001	ma/L	ND	85.5	60-140			
Surrogate: Decachlorobiphenyl	0.000552		mg/L		110	60-140			
Semi-Volatiles			-						
Bis(2-ethylhexyl)phthalate	0.0130	0.001	ma/L	ND	130	50-140			
Di-n-butylphthalate	0.0094	0.001	ma/L	ND	93.9	50-140			
Surrogate: 2-Fluorobiphenyl	0.0237		mg/L		118	76-125			
Surrogate: Nitrobenzene-d5	0.0171		mg/L		85.3	68-125			
Surrogate: Terphenyl-d14	0.0208		mg/L		104	70-125			
Volatiles									
Benzene	0.0310	0.0005	mg/L	ND	77.5	60-130			
Chloroform	0.0310	0.0005	mg/L	ND	77.4	60-130			
1,2-Dichlorobenzene	0.0393	0.0005	mg/L	ND	98.3	60-130			
1,4-Dichlorobenzene	0.0385	0.0005	mg/L	ND	96.2	60-130			
cis-1,2-Dichloroethylene	0.0414	0.0005	mg/L	ND	104	60-130			
trans-1,3-Dichloropropylene	0.0332	0.0005	mg/L	ND	83.0	60-130			
Ethylbenzene	0.0292	0.0005	mg/L	ND	73.0	60-130			

Method Quality Control: Spike

Order #: 2143090		
	Order #: 2143090	

Report Date: 25-Oct-2021

Order Date: 18-Oct-2021

Project Description: CT2694.03

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methyl Ethyl Ketone (2-Butanone)	0.0952	0.0050	mg/L	ND	95.2	50-140			
Methylene Chloride	0.0352	0.0050	mg/L	ND	87.9	60-130			
Styrene	0.0324	0.0005	mg/L	ND	80.9	60-130			
1,1,2,2-Tetrachloroethane	0.0294	0.0005	mg/L	ND	73.5	60-130			
Tetrachloroethylene	0.0356	0.0005	mg/L	ND	89.0	60-130			
Toluene	0.0332	0.0005	mg/L	ND	83.0	60-130			
Trichloroethylene	0.0410	0.0005	mg/L	ND	102	60-130			
m,p-Xylenes	0.0525	0.0005	mg/L	ND	65.6	60-130			
o-Xylene	0.0328	0.0005	mg/L	ND	82.0	60-130			
Surrogate: 4-Bromofluorobenzene	0.0608		mg/L		76.0	50-140			
Surrogate: Dibromofluoromethane	0.0760		mg/L		95.0	50-140			
Surrogate: Toluene-d8	0.0596		ma/L		74.4	50-140			

Qualifier Notes:

Sample Qualifiers :

1: Confluent background colonies on filter: may interfere with target reactions and the analysts' ability to count E. coli & Total Coliform. The target colonies may be under-represented.

QC Qualifiers :

- BAC12 : Confluent background colonies on filter: may interfere with target reactions and the analysts' ability to count E. coli & Total Coliform. The target colonies may be under-represented.
- QS-02: Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

	Paracel ID: 2	2143	090		ce St. Lau Intario '49-194 @parac	rent Blvd. K1G 4J8 7 rellabs.com .com	Paracel Order Numl (Lab Use Only)	per	d Nº	hain Of (Lab Use 532	Custody : only) 24
Client Name: Terrapex	Environmental Lto	1	Project	Ref:	(72694.6	03				Page	of
Contact Name: Sara Si	utherland	i.	Quote	#:	510		111	×.		Turnarou	nd Time
Address: 90 Sc	arstale Pd Turne	6	PO #:	÷.	0.15	Y.a.	1100	â	🗆 1 da	Ŷ	🗆 3 day
МЗЕ	3 2R7	0	E-mail:		csutheria	m @ten	rubex cam		🗆 2 da	Ŷ	🕱 Regula
Telephone: 416	259 9215				3. 3011 0 10	in Ola	of a second		Date Req	uired:	
Regulation 153/04	Other Regulation	M	atrix T	vpe: S	(Soil/Sed.) GW (G	round Water)	(SAMUTANA	P	ocuired An	alveis	Second Second
Table 1 Res/Park Med/Fine	REG 558 PWQO	5	W (Su	rface W	/ater) SS (Storm/Sa	nitary Sewer)			cdan ca Min	aiyasa	State 1
Table 2 Ind/Comm Coarse	CCME MISA		_	P (P)	aint) A (Air) O (Oti	ner)	525				
Table 3 Agri/Other	🞗 SU-Sani 🗶 SU-Storm			ners			600 S		ΠT		
Table	Mun: Durham Region	2	a in Sample			Taken	CC CC	1.00	i rođele	-10	100
Sample ID/Locatio	on Name	Matrib	Vir Vo	t of C	Date	Time	- trad				
1 1/1/200		1-10	1	16	ALHEIDI	11:40-	X II	-			
2		1410	/	12	UNID/ 21	n nogh	\uparrow	-			
3											
4											
5								1			
6											
7											
8											
9											
10											
Comments:								Met	hod of Deliver	x lr	J
Relinquished By (Sign): Mira I	Wang Received By C	river/D	epot:	5	è	Received to be	2	Ver	fied By	20	
Belinquished By (Print): Mira V	Nong Date/Time	202	1	15;	20	Date Time	922/1000	Dat	e/mile: 2	ets	921/0
Oct 18 2021	3:18		4.6	2	L.	3	. 7	pri	- en maior - cu	t	- 11