PDF – A17 ENGINEERING PLANS PREPARED BY VALDOR ENGINEERING, MARCH 1, 2024

e: Engineering Plans for 5329 Old Brock Road, Claremont, City of Pickering

Bill Coffey <BCoffey@valdor-engineering.com>
To: Grant Morris <grantmorris246@gmail.com>
Cc: Oliver Beaudin <OBeaudin@valdor-engineering.com>

1 March 2024 at 16:00

21130

Hi Grant,

Please find the attached the revised Post-Development Storm Drainage Plan, as requested. The plan has been revised to include the key plan and seal. Thank you.

Regards,

Bill Coffey, M.Sc., P.Eng. Head of Water Resources

VALDOR ENGINEERING INC.

Head Office: Greater Toronto Area

571 Chrislea Road, Unit 4

Vaughan, Ontario, L4L 8A2

Tel: 905-264-0054 x232 Fax: 905-264-0069

Mobile: 647-404-3332

E-Mail: bcoffey@valdor-engineering.com

URL: www.valdor-engineering.com

Branch Office: Peterborough & The Kawarthas

580 The Queensway, Unit 1

Peterborough, Ontario, K9J 7H2

Valdor Engineering Inc. accepts no responsibility whatsoever for any inaccuracy or error which the attached electronic file(s) may contain, any loss of information in whole or in part during the transfer, the transmission of any virus(es) with the file(s), or for any damage or loss which any person may suffer as a result of reliance upon any information which may be contained therein. Any use of which a party makes of this information, or any reliance on decisions made based on such information, are the responsibility of such parties.

From: Grant Morris < grantmorris 246@gmail.com>

Sent: Monday, February 19, 2024 8:06 AM

To: Bill Coffey <BCoffey@Valdor-Engineering.com>

Subject: Re: Engineering Plans for 5329 Old Brock Road, Claremont, City of Pickering

Good Morning Bill:

Please note the comments from the City. The Engineer's stamp and date are missing on Figure 1, SWM Drainage Plan Post-Development. Also show the attached key plan from the site plan on all your drawings.

Thank you,

[Quoted text hidden]

21130_Post-Development Drainage Plan.pdf 886K

VALDOR ENGINEERING INC.

File: 21130

Date: August 2023 TABLE: A.1

POST-DEVELOPMENT PEAK FLOW (To Enhanced Grass Swale)

Surface Type	Area (ha)	R
Lawn	0.018	0.25
Forest	0.000	0.25
Roof	0.037	0.95
Impervious	0.145	0.95
Total:	0.200	0.89

25mm Storm

I = Rainfall Rate (mm/hr)

T

T = 10 minutes I = 41.67 mm/hr

R = 0.89 Area = A = 0.200 Ha

N = 2.778

 $Q = R \times A \times I \times N$ Q = 20.5 L/s

File: 21130 August 2023

TABLE: A2

STORMWATER QUALITY CALCULATIONS

OVERALL TSS REMOVAL

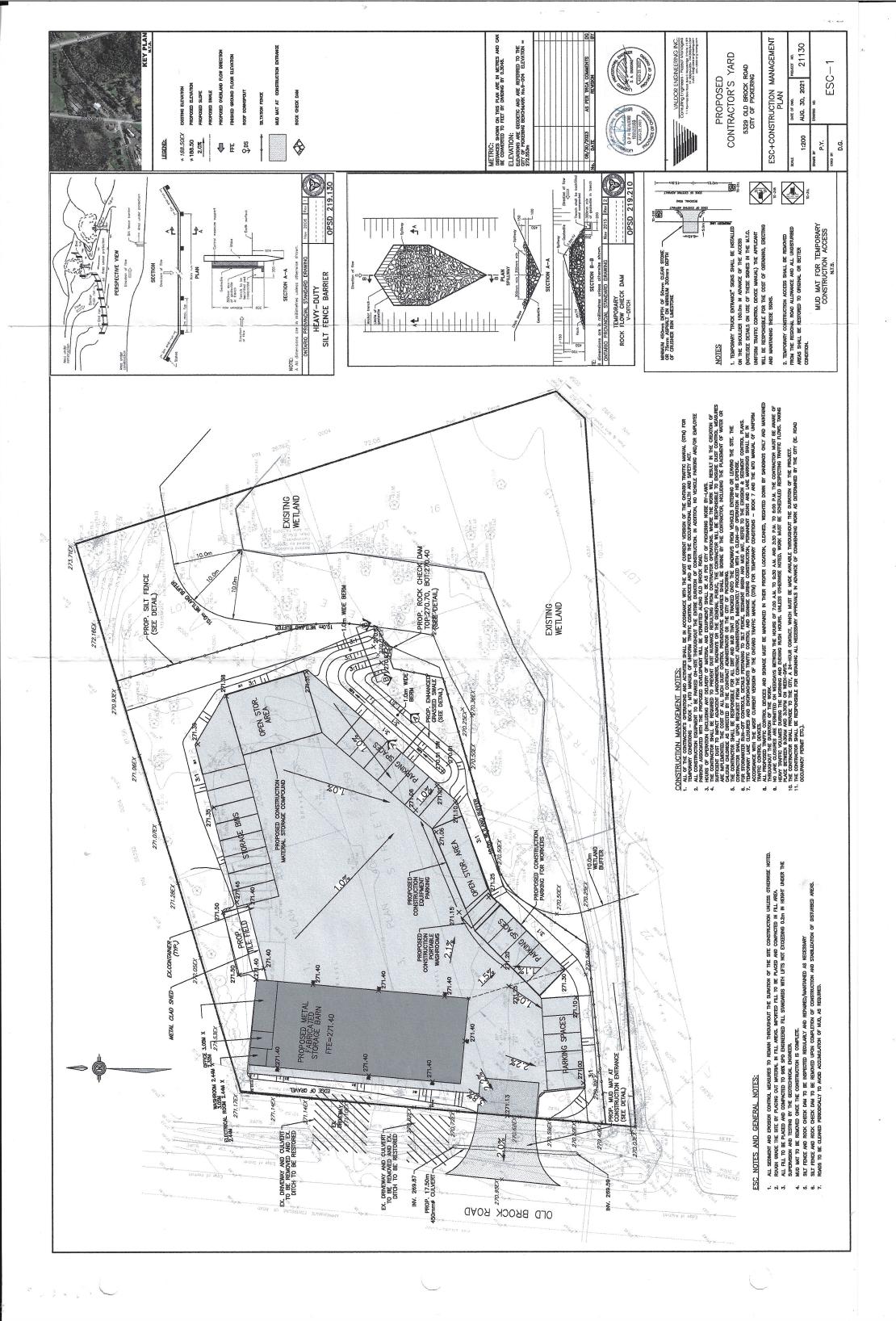
Drainage to Enhanced Grass Swale LID (Catchment 101)

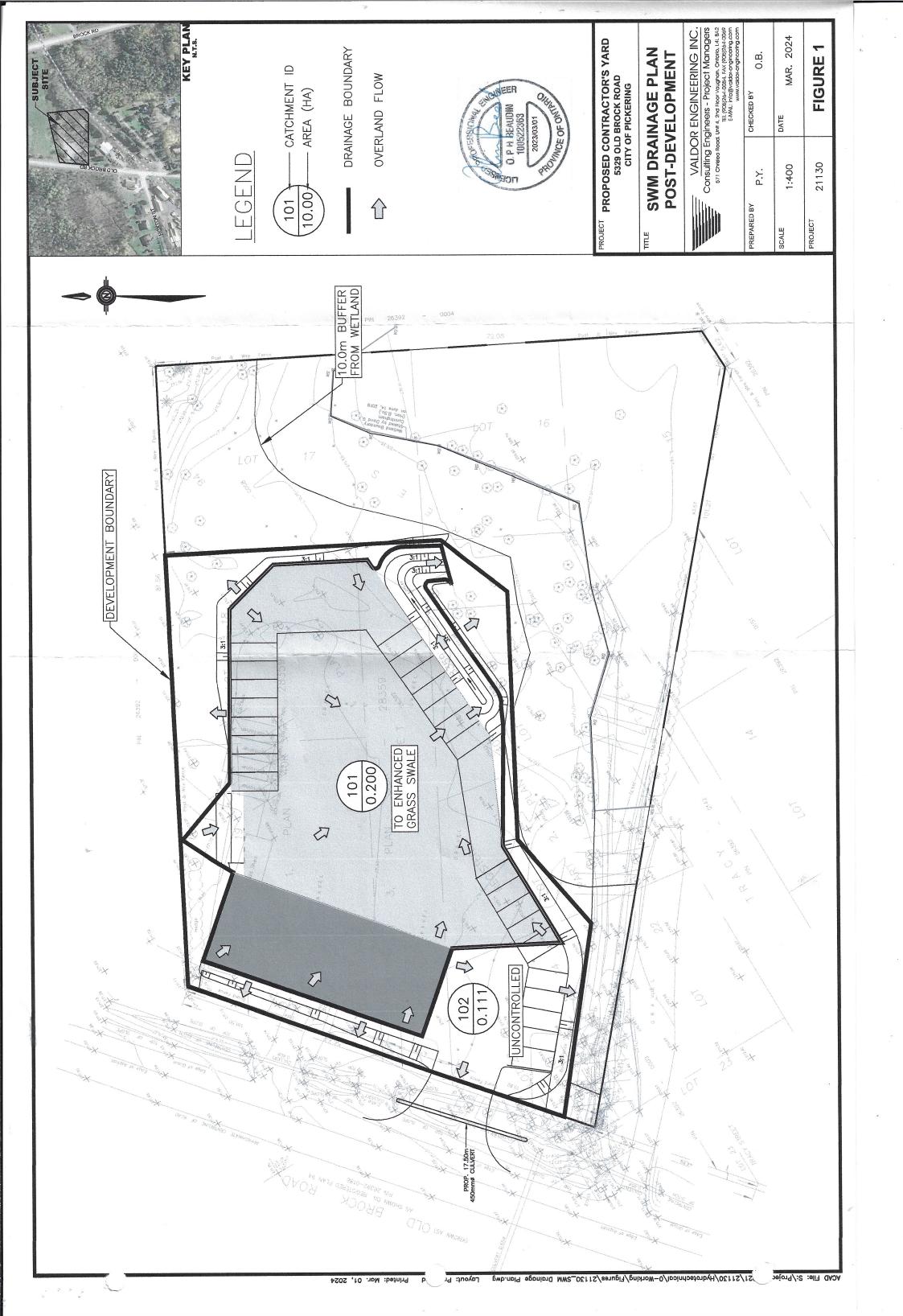
Surface Type	Area (Ha)	Effective TSS Removal	% Area	Weighted Overall TSS Removal
Roof Top (Before LID) Landscape Area (Before LID) Paved Area (Before LID)	0.037 0.018 0.145	80% 80% 0%	18.5% 9.0% 72.5%	14.8% 7,2% 0.0%
Total (Before LID)	0,200		100.0%	22.0%
Enhanced grass swale provides 76% removal rate to the remaining possible TSS removal of 78.4% (ie. 100%-21.6%) ¹		76%		59.3%
Total (After LID)	0.200		100.0%	81.3%

Total Drainage Within Development Boundary (Catchments 101 & 102)

Surface Type	Area (Ha)	Effective TSS Removal	% Area	Weighted Overall TSS Removal
Catchment 101 (After LID)	0.200	81.3%	64.3%	52.3%
Roof Top (Not to LID)	0.000	80%	0.0%	0.0%
Landscape Area (Not to LID)	0.080	80%	25.7%	20.6%
Paved Area (Not to LID)	0.031	0%	10.0%	0.0%
Total (Development Boundary)	0.311			72.8%


Notes


^{1.} Enhanced grass swales can achieve TSS removal rates of 76% (median) as per TRCA manual (Low Development Stormwater Management Planning and Design Guide V.1.0 2010)


	Worksheet f	or 25mn	n_EGS
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.00500	m/m
Left Side Slope		3.00	m/m (H:V)
Right Side Slope		3.00	m/m (H:V)
Bottom Width		0.75	m
Discharge		0.021	m³/s
Results			
Normal Depth		0.07	m
Flow Area		0.07	m²
Wetted Perimeter		1.21	m
Hydraulic Radius		0.06	m
Top Width		1.18	m
Critical Depth		0.04	m
Critical Slope		0.03712	m/m
Velocity		0.30	m/s
Velocity Head		0.00	m
Specific Energy		0.08	m
Froude Number		0.40	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	m
Length		0.00	m
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	m
Profile Description			
Profile Headloss		0.00	m
Downstream Velocity		Infinity	m/s
Upstream Velocity		Infinity	m/s
Normal Depth		0.07	m
Critical Depth		0.04	m
		0.00500	

0.00500 m/m

Channel Slope

