

January 31, 2019

Project No. 19115432

Ms. Melinda Holland

Pickering Harbour Company Limited c/o The Biglieri Group Ltd. 20 Leslie Street, Suite 121 Toronto, Ontario M4M 3L4

PRELIMINARY HYDROGEOLOGICAL ASSESSMENT, PROPOSED MIXED USE DEVELOPMENT, 591 LIVERPOOL ROAD, PICKERING, ONTARIO

Dear Ms. Holland,

Golder Associates Ltd. ("Golder") is pleased to provide Pickering Harbour Company Limited c/o The Biglieri Group ("TBG") with this revised letter report summarizing the findings from our preliminary hydrogeological assessment for the property located at 591 Liverpool Road, Pickering, Ontario (the "Site"). It is our understanding that this assessment is to support the design of a proposed mix use development. This letter should be read in conjunction with the geotechnical investigation report completed by Haddad Geotechnical Inc. ("Haddad") entitled, "Geotechnical Investigation and Slope Stability Assessment, Proposed Residential and Commercial Development at Pickering Harbour, 591 Liverpool Road, Pickering, Ontario", dated May 15, 2017 ("Geotechnical Report").

BACKGROUND

The Site is currently used as a boat storage facility and currently contains a portable building, shed and a one storey building and is approximately 24,250 square metres ("m²") (2.4 hectares) in area. The Site is relatively flat with ground surface elevations ranging between 76.3 metres above sea level ("masl") (BH5) and 77.2 masl (BH9).

It is our understanding that the proposed development of the Site includes the construction of two buildings as well as associated parking structures. The proposed building details are as follows:

- A multi-storey building located at the northern boundary of the Site with a podium containing commercial uses at the ground floor and a 23-storey point tower (Building 1); and,
- A multi-storey building located at the southern boundary of the Site with a podium containing commercial uses at the ground floor and a 23-storey tower (Building 2).

The number of proposed underground parking levels is two based on the updated development plans provided by TBG via email received on January 16, 2019 provided as Attachment A.. Assuming that each level of underground parking is 3 m in height, the estimated depth of the excavation to allow for two levels of underground parking is approximately 6 m (20 feet) or an approximate elevation of 70.8 masl.

T: +1 905 723 2727 +1 905 723 2182

Haddad completed a geotechnical investigation between February 13, 2017 and February 16, 2017. The proposed testing program was revised during the investigation due to the shallow depth to bedrock with fewer boreholes advanced to depths shallower than that originally proposed. The geotechnical investigation included the drilling of ten boreholes with three boreholes completed as a 50 millimetre ("mm") monitoring well. One borehole (i.e., MW1) was cored into the underlying bedrock encountered at approximately 9 metres below ground surface ("mbgs") (67.97 masl). A borehole location plan is provided as Attachment B.

SCOPE OF WORK

Golder completed the following tasks in association with our preliminary hydrogeological assessment:

- Visited Site on February 15, 2017 to visually inspect soil samples collected from BH1 to identify potential water bearing zones;
- Conducted an initial field monitoring event which included the measurement of water levels from three monitoring wells installed as part of the geotechnical investigation completed by Haddad and the development of each well. Borehole logs and monitoring well details from the Haddad geotechnical investigation are provided as Attachment B;
- Completed a second field monitoring event which included the measurement of water levels from all three wells and single well response tests ("SWRT") to establish the bulk hydraulic conductivity of the soils at two of the three monitoring wells (i.e., MW1 and MW2);
- Collected one groundwater sample from monitoring well MW2 to characterize water quality with respect to the Regional Municipality of Durham's ("ROD") storm sewer use by-law (No. 55-2013);
- Completed a review of the Haddad Geotechnical Report including borehole logs and available soil gradations; and,
- Reviewed available Ministry of Environment, Conservation and Parks ("MECP") water well records within a 500 m radius of the Site.

FIELD INVESTIGATION

As described in the Geotechnical Report, ten boreholes (i.e., BH1, BH2, BH5 to BH7, BH9 to BH12 and BH14) were advanced at the Site and three locations (i.e., BH1, BH2 and BH6) were completed as 50 mm diameter groundwater monitoring wells identified as MW1, MW2 and MW3; respectively.

Following the drilling and well installations, Golder visited the Site on March 1, 2017 to collect water levels from each monitoring well. Each well was also developed using Waterra® tubing equipped with a foot valve. During development monitoring wells MW1 and MW3 were purged dry three times after removing 48 litres ("L") and 30 L; respectively. Approximately 65 L of water was removed from well MW2.

A second Site visit was conducted on March 3, 2017 and SWRTs were carried out at two of the three monitoring wells (i.e., MW1 and MW2). Hydraulic conductivity values were estimated from the SWRT data using the Bouwer and Rice (1976) slug test solution. The SWRTs were completed by lowering the water table using manual purging techniques and recording the resulting water level recovery at each well location.

One groundwater sample was collected and submitted for laboratory testing of the parameters listed under the ROD's storm sewer use by-law criteria (No. 55-2013). The groundwater sample was placed in a cooler containing ice and delivered to Maxxam Analytics Inc. ("Maxxam") for analysis.

SUMMARY OF FINDINGS

Physical Setting

A review of available published data indicates that the Site is located in close proximity to silts and clays associated with deep water deposits of glacial Lake Iroquois but also modern river deposits consisting of sand, silt and minor gravel (Sharpe, 1980).

The subsurface conditions identified and reported in the Geotechnical Report, as part of the geotechnical drilling program, indicate predominantly native deposits of sandy clayey silt, silty sand, gravelly sand, gravelly silty sand and sand and silt. Gravelly or silty sand was identified at all borehole locations; however, upon review of the available gradations, silt size particles are present between 16% and 39% in all boreholes advanced at the Site. Based on a review of soil samples during drilling, Golder noted that the silty sand deposit was likely dense glacial silty sand till. Overlying the native soils at each borehole was fill material of varying thickness (between 2.2 and 4.2 m) consisting of sand, gravel, silt and clay.

Bedrock was encountered at six boreholes (i.e., BH1, BH2, BH5, BH6, BH7 and BH9) and consisted of grey shale, as described by Haddad. Bedrock was cored at one location (i.e., BH1) with bedrock identified as grey shale with approximately 5 mm thick bands of limestone throughout. Bedrock was encountered at depths between 7.7 m (BH7) and 10.7 m (BH2) or at relative elevations of between 66.4 masl (BH2) and 69.2 masl (BH7). At each borehole where bedrock was encountered between 1.6 m (BH2) and 4.6 m (BH7) of weathered bedrock was drilled through using 100 mm diameter augers. This practice also occurred at BH1 where shale bedrock was encountered at approximately 8.8 mbgs (67.9 masl), but augered to 12.2 mbgs (64.9 masl) where the borehole was further advanced using bedrock coring techniques to a depth of 13.8 mbgs (63.27 masl).

Golder visited the Site on February 15, 2017 to visually inspect soil samples collected from BH1. Golder arrived at the Site with soil samples available for our inspection. At the time, Haddad had used augers to auger through the upper bedrock and were preparing to core approximately 3 m of bedrock at BH1. The samples consisted of fill material from surface changing to clavey silt till at approximately 3 mbgs. This was underlain by a silty sand till approximately 4.5 mbgs until shale bedrock was encountered at approximately 8.8 mbgs. As indicated, Haddad used augers to penetrate the bedrock at BH1 to a depth of 12 mbgs where they switched to bedrock coring techniques to complete the borehole. Based on geologic conditions, oxidation level of glacial till material, including field observations of borehole cave at 6 mbgs, the water table was estimated to be between 4.5 and 6 mbgs. Borehole cave at the same depth was observed at BH2 according to the borehole logs which were provided to Golder on May 1, 2017. The remaining borehole logs indicate the possible depth to water being 3.5 mbgs to 5.0 mbgs based on oxidized soil conditions and observation of water levels in the open boreholes after drilling was completed, although this could be related to the piezometric head of the shallow bedrock and/or seepage through the fill materials. However, water levels remained deep after drilling borehole BH9 (10.7 mbgs) which also penetrated the shale bedrock. As such, the overburden material, while permeable in localized areas, did not warrant the installation of a pumping well for aquifer testing purposes. It is noted; however, that once Haddad completed coring of bedrock at BH1, based on a review of the borehole logs, the water level reportedly recovered to a depth of approximately 3 mbgs within the open borehole. It is unknown whether this water depth is related to water used during coring, seepage of water from the fill material, or if this represented the piezometric head of the shale aquifer. Haddad did not install a monitoring well into the bedrock to determine this. It is noted that the upper shale was augered with no core available to review with the water level measurements mainly ranging from 3 mbgs to 6 mbgs within the open boreholes. The Rock Quality Designation ("RQD") of core retrieved below the auger depth at BH1 is considered fair to good with sections of the rock permeable. It is

possible that the shallow bedrock is under pressure, but without a shallow bedrock well installed, this determination cannot be made. It is recommended that a monitoring well be installed and sealed within the upper shale bedrock. Bedrock coring techniques are recommended to advance the borehole within the bedrock. This information would be used in conjunction with the existing shallow monitoring wells to determine the potential for uplift pressures and/or water level once overburden material has been removed for the installation of the underground parking levels. A SWRT should also be completed at this proposed location.

Borehole logs and gradations provided by Haddad are provided as Attachment B.

MECP Water Well Record Search

A desktop search of the MECP Water Well Records database was conducted to identify any wells within a 500 m radius of the Site. The desktop water well record search identified 13 wells within 500 m of the Site, all of which are located at off-Site locations. All water well locations documented within 500 m of the Site are presented on Figure 1 with well details provided in Table 1.

Based on the database search, of the 13 well records found, five wells were reported as abandoned, three reported as water supply wells (1907327, 4601886 and 46018879), and five observation and/or test holes (1914735, 1914737, 1914738, 7159903 and 7159904).

The off-Site wells, which were not abandoned, were reported with depths between 4.0 and 15.2 mbgs. Subsurface conditions described at these off-Site locations generally consisted of a layer or layers of clay, silty and sand with bedrock (i.e., black shale) encountered at two locations (i.e., 4603774 and 7159903). Six of the off-Site wells are located north of the Site with two wells (i.e., 1914737 and 1914735) located east and southeast; respectively.

During advancement of the geotechnical boreholes, the soil encountered consisted fill underlain by native soil consisting of either sandy clayey silt, silty sand, gravelly sand, gravelly silt sand and sand and silt. The conditions encountered at the Site are generally consistent with the geology described at the water well records identified within a 500 m radius of the Site. Bedrock was encountered at off-Site water well 4601886 at an approximate elevation of 72.8 masl, consistent with the on-Site conditions.

Water Level Monitoring and Single Well Response Testing

The static water level was recorded at three of the 13 MECP water well records identified within 500 m of the Site. Static water levels recorded from the three water supply wells (1907327 advanced 1985, 4601886 advanced 1961, and 4601887 advanced 1963) were 2.4 m (70.8 masl) at 1907327, 4.0 m (74.9 masl) at 4601886 and 2.4 m (75.3 masl) at 4601887. The depth of these water wells are between 6.1 m and 8.2 m below existing grade. Well 4601886 was installed within the shale bedrock; whereas, wells 4601887 and 1907327 were installed in the overburden. Well 4601886, the bedrock well, was used for domestic use and is approximately 275 m north of the Site and has a water level elevation of 74.9 masl.

The water levels recorded on the water well record search for overburden wells are consistent with water levels measured at the Site where ground surface is 77 masl, on average, and water levels were recorded at 1.54 mbgs (MW1), 1.60 mbgs (MW2) and 1.68 mbgs (MW3) corresponding to elevations between 75.46 masl and 75.32 masl. It is noted that these levels are higher than that anticipated based on geologic conditions and could be related to storm water collecting within the granular fill material during the spring monitoring events. The monitoring wells were installed in separate boreholes and not influenced by potentially high piezometric head of

MW1

MW2

MW3

Notes

75.62

76.78

NR

(mbgs)

1.45

0.32

NR

and includes	s water levels	recorded b	by Golder ar	nd Haddad.					
Borehole	Ground	March 1,	2017	March 3,	2017	March 2	22, 2017	May 10,	2017
ID	Surface Elevation	Water Level	Elevation (masl)	Water Level	Elevation (masl)	Water Level	Elevation (masl)	Water Level	Elevation (masl)

75.53

75.50

75.39

(mbgs)

74.77

75.24

75.20

2.3

1.86

1.87

(mbgs)

1.54

1.60

1.68

the underlying shale aquifer. A summary of the on-Site groundwater conditions is provided in the following table and includes water levels recorded by Golder and Haddad.

March 1, 2017 and March 3, 2017 were measured by Golder

77.07

77.10

77.07

(mbgs)

1.52

1.52

1.40

75.55

75.58

75.67

Italicized values are water levels recorded by Haddad during the geotechnical investigaton (March 22, 2017 and May10, 2017 NR - no value recorded

As reported in the Geotechnical Report borehole BH1/MW1 was advanced into the underlying shale bedrock. Upon completion the borehole caved up to a depth of approximately 11.6 m which is within the bedrock and the water level was recorded at 3 m below ground surface. No well was installed in bedrock at this or any location at the Site.

SWRTs were completed at wells MW1 and MW2 to estimate the bulk hydraulic conductivity of the surrounding soils. Well MW1 was screened straddling both a native silty sand and clayey sandy silt unit. Monitoring well MW2 was screened straddling a native silty sand unit and fill material described as silt and clay with some sand and occasional gravel.

The analysis of the SWRT data indicated that the hydraulic conductivity of the screened soils is between 1.6 x 10⁻⁶ metres per second ("m/s") (at MW2) and 2.5 x 10⁻⁶ m/s (at MW1). Based on a review of the soil samples and the determination that the material is likely glacial till, these test responses are indicative of this material. Golder did complete calculations using the Hazen method in the upper fill materials, where warranted, with estimated results in the 10⁻⁵ m/s to 10⁻⁶ m/s indicating that the upper fill material is permeable and could pose a water issue during construction. As such, positive dewatering is likely required. Further to this, it is possible that the bedrock aquifer is under pressure, although unconfirmed. As indicated, it is recommended that one monitoring well be installed and sealed within the shallow bedrock to make this determination. Should the piezometric head in the shallow bedrock extend to within 3 m of surface, the aquifer may have to be depressurized during excavation of the overburden material for underground parking. The analysis of the SWRT data has been provided as Attachment C.

One groundwater sample was collected from well MW2 once the SWRT was completed on March 3, 2017. The sample results were compared to the ROD storm sewer use by-law criteria as outlined in By-Law No. 55-2013, Table 2. Based on the results, all parameters tested met the applicable criteria with the exception of total suspended solids ("TSS") (result of 120 milligram per litre ("mg/L") compared to criteria value of 15 mg/L), total Kjeldahl nitrogen ("TKN") (result of 1.3 mg/L compared to criteria value of 1 mg/L) and total manganese (result of 6 mg/L compared to criteria value of 0.15 mg/L). Should water be discharged to a storm sewer, resampling for

the analysis of TSS, TKN and manganese is required and/or treatment will be necessary to discharge into the storm sewer.

The laboratory certificate of analysis is provided as Attachment D.

CONCLUSIONS

The geologic conditions encountered at the Site, as reported in the Geotechnical Report completed by Haddad, consisted mostly of layers of native sandy clayey silt, silty sand, gravelly sand, gravelly silty sand and sand and silt. These native soil types are consistent with soil conditions described in available water well records within 500 m of the Site. These deposits are consistent with modern river deposits. Shale bedrock was encountered at six boreholes at the Site between 7.7 m and 10.7 m (66.2 masl to 69.4 masl).

The static water level at the Site is between 74.8 masl and 75.2 masl, which corresponds to between 1.9 mbgs and 2.3 mbgs. This is consistent with measurements recorded for the available overburden water well records reviewed as part of this assessment; however, could be influenced by the wet spring. One off-Site well was identified installed in shale bedrock and the water level recorded at this well located approximately 275 m north of the Site is 4.0 m or at a relative elevation of 74.9 masl. No bedrock well was installed at the Site.

Given that the geometric mean hydraulic conductivity of the native silty sand and sandy clayey silt material is 8.9 x 10⁻⁷ m/s, it is anticipated that any groundwater that may be encountered during construction may be managed using sump pump techniques. It is noted that the monitoring wells installed at MW1 and MW2 were screened across two soil horizons. Specifically, MW1 is screened in silty sand and a finer grained material, sandy clayey silt, and MW2 is screened in silty sand and fill material consisting of silty and clay. The results of the SWRTs have been influenced based on the well screen interval being tested. However, as indicated above, the fill material is permeable with an estimated bulk hydraulic conductivity being 10⁻⁵ m/s to 10⁻⁶ m/s and will collect water during rain events which might be better managed by positive dewatering methods such as a well point or eductor system. Further to this, should the piezometeric head of the shallow bedrock aquifer lie within the overburden material, depressurization of the shallow bedrock aquifer will be required. Given Haddad was able to auger through the upper bedrock, an eductor system could be installed within the bedrock and up into the overburden serving both purposes.

Shale bedrock was cored at BH1 and the water level at this borehole recorded at 3 m below grade immediately upon borehole completion. This may indicate that groundwater is under hydrostatic pressure within the underlying bedrock. Considering that up to two levels of underground parking are proposed for the development of the Site (as per development drawing provided as Attachment A), it is recommended that one monitoring well be installed and sealed in bedrock to measure the static water level in the bedrock aquifer.

Should discharge be directed to storm sewers, a water sample should be collected and analyzed for concentrations of TSS, TKN and manganese. If resampling were to be conducted it is recommended that parameters listed under the Provincial Water Quality Objectives ("PWQO") that are not included in the ROD By-Law 55-2013 be included, such as aluminum, ammonia and oil and grease, to determine if discharge water could be directed to nearby drainage swales should they exist near the Site. Should the resample results still exceed ROD By-law 55-2013, mitigation controls will need to be applied.

Presently, it appears that a MECP Permit to Take Water ("PTTW") will be required for the Site. Once the shallow bedrock monitoring well is installed and a SWRT completed, the determination of whether a MECP Category 2 or Category 3 PTTW will be required with the latter allowing more water taking than Category 2.

CLOSURE

We trust that this summary meets your current requirements. As mentioned above, this letter should be read in conjunction with the Geotechnical Report provided under separate cover. Should you have any questions regarding the content of this letter please do not hesitate to contact our office.

Yours truly,

Golder Associates Ltd.

Chris Pons, B.Sc. Environmental Scientist

CP/SB/lb

Sharm Bonneylla

Shawn Bonneville, P.Geo., C.E.T. Associate, Senior Environmental Consultant

Attachments: Figure 1: Record of Available Water Wells Table 1: Summary of Ministry of the Environment and Climate Change Water Well Records Attachment A: Proposed Development Drawing Attachment B: Borehole Location Plan, Borehole Logs, Gradations Attachment C: Single Well Response Test Analysis Attachment D: Laboratory Certificate of Analysis

https://golderassociates.sharepoint.com/sites/102612/deliverables/letters/19115432 ltr 31jan2019 biglieri hydrogeo final.docx

FIGURE 1

Record of Available Water Wells

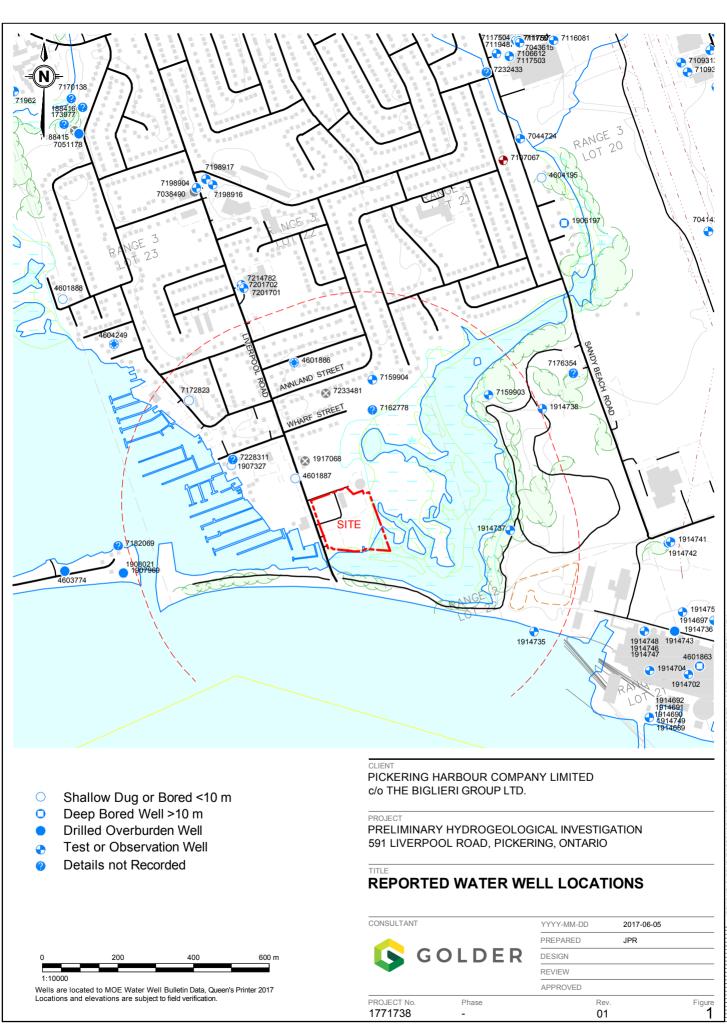


TABLE 1

Summary of Ministry of the Environment and Climate Change Water Well Records

TABLE 1 SUMMARY OF MINISTRY OF THE ENVIRONMENT AND CLIMATE CHANGE WATER WELL RECORDS 591 Liverpool Road, Pickering, Ontario

LABEL		DATE mmm-yr	EASTING NORTHING	ELEV masl	WTR FND mbgl Qu	SCR TOP LEN mbgl m	SWL mbgl	RATE L/min	TIME min		DRILLER METHOD		WELL NAME DESCRIPTION OF M
1907327	3	May-85	654135	73.2	6.7 Fr		2.4	32	30	3.7	2214	WS	MOE# 1907327
	23		4853143		4.3 Fr						BR	DO	0.0 FILL 0.6 GREY C
					2.4 Fr								SAND 3.0 GREY CLA
					2.4 Fr								SAND LYRD 6.1 GRE
					2.4 Fr								SAND LYRD 8.2
1914735		Jul-99	654935	73.8	3.0 Fr	0.9 -1.5	NR				6032	OW	MOE# 1914735
			4852703								OTH	NU	0.0 BRWN GRVL FIL
													1.5 BRWN SILT SAN
													WBRG 4.0
1914737		Jul-99	654872	78.3	4.0 Fr	0.0 -3.0	NR				6032	OW	MOE# 1914737
			4852971								OTH	NU	0.0 BRWN SILT TPS
													SHLE 0.6 BRWN CLA
													CLAY SOFT 5.5 BLC
													GRVL 6.1
1914738		Jul-99	654957	79.9	4.0 Fr	7.6 -1.5	NR				6032	OW	MOE# 1914738
			4853292		3.7 Fr						OTH	NU	0.0 BRWN SILT TPS
													SLTY 0.6 BRWN CLA
													SAND 4.6 BRWN CL
													SAND SOFT 10.7
1917068		Apr-04	654330	78.0			NR				1663	AQ	MOE# 1917068
			4853154								DG	NU	0.0
4601886	3	Nov-61	654301	78.9	6.1 Fr		4.0				5412	WS	MOE# 4601886
	22		4853414								BR	DO	0.0 BRWN CLAY ST
													SHLE 6.4
4601887	3	Jun-63	654304	77.7	4.0 Fr		2.4		60)	5412	WS	MOE# 4601887
	23		4853108								BR	DO	0.0 BRWN CLAY ST
													MSND 4.6 BLUE CLA
7159903		Feb-11	654815	NR	7.6 Fr	12.2 -3.0	NR				4102	TH	MOE# 7159903 TAG
			4853329			9.1 -3.0					RC	TH	0.0 BRWN CLAY ST
													BLCK SHLE 15.2
7159904		Feb-11	654508	NR	4.0 Fr	4.0 -9.1	NR				4102	TH	MOE# 7159904 TAG
			4853369								RC	TH	0.0 BRWN CLAY ST
7162778		Jan-11	654508	NR			NR				6607	-	MOE# 7162778 TAG
			4853289								-	-	0.0
7172823		Apr-11	654023	NR			NR				7219	AB	MOE# 7172823 TAG
			4853314								-	-	0.0
7228311		Sep-14	654139	NR			NR				7215	-	MOE# 7228311 TAG
			4853158								-	-	0.0
7233481		Nov-14	654385	NR			NR				4102	AB	MOE# 7233481
			4853333								-	-	0.0
otes:		<i>.</i>										МЕТ	
	QUALIT		14/0	TYPE:		~~	Companyial	USE:		Not Lizzat			HOD :
Fr	Fresh		WS	Water Supply	- 114	CO	Comercial		NU	Not Used		СТ	Cable Tool
Mn	Minera	aı	AQ	Abandoned Qu	•	DO	Domestic		IR	Irrigation		JT	Jetting
Sa	Salty		AS	Abandoned Sup	. ,	MU	Municipal		AL	Alteration		RC	Rotary Conventional
Su	Sulph		AB	Abandonment F		PU	Public		MO	Monitoring		RA	Rotary Air
	Unrec	orded	TH	Test Hole or Ob	servation	ST	Stock		-	Not Recorded	1	BR	Boring

Easting and Northings UTM NAD 83 Zone 17, Translated from Recorded UTM NAD, subject to Field Verified Location or Improved Location Accuracy.

Records Copyright Ministry of Environment Queen's Printer. Selected information tabulated to metric with changes and corrections subject to Driller's Records.

MATERIALS

CLAY STNS PCKD 2.4 BRWN CLAY STNS CMTD 4.3 GREY CLAY GREY CLAY PCKD 6.7 GREY CLAY

FILL 0.6 BRWN CLAY SILT FILL AND CLAY 2.1 BRWN SILT CLAY

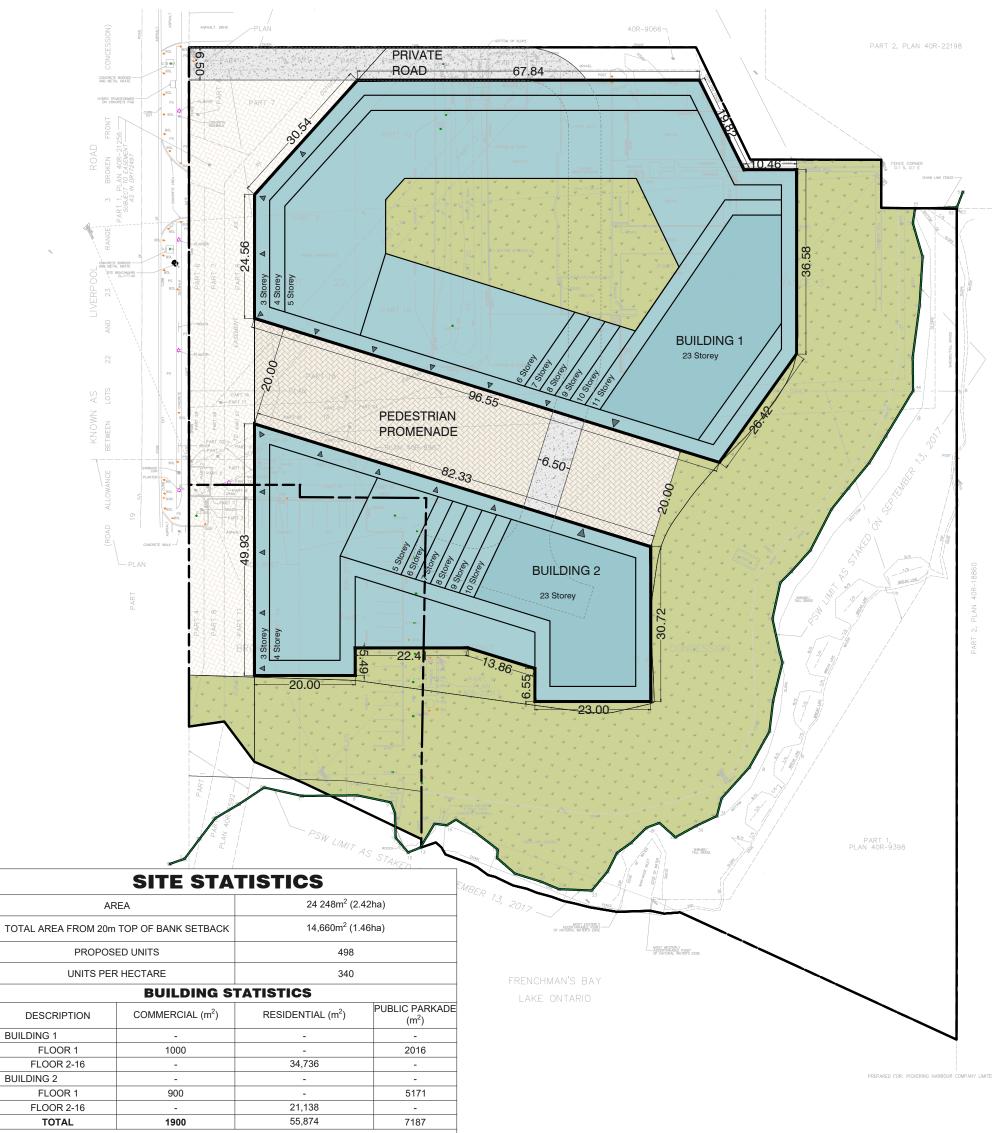
PSL SOFT 0.3 BRWN SAND GRVL CLAY SAND GRVL 1.5 GREY SILT LCK CLAY GRVL 5.8 GREY CLAY

PSL DRY 0.3 BRWN SAND SILT CLAY SILT 2.1 GREY SILT CLAY CLAY SILT SOFT 7.6 GREY SILT

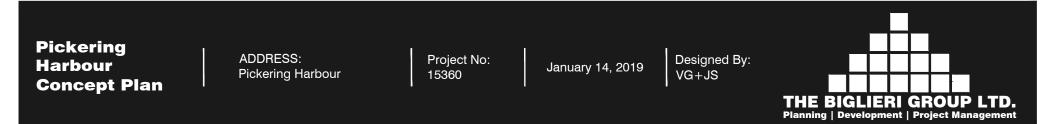
STNS 2.4 BRWN CLAY SHLE 6.1

STNS 1.5 BLUE CLAY STNS 4.0 CLAY MSND 6.1

AG#A042535 STNS 7.6 BRWN GRVL CGVL 8.5

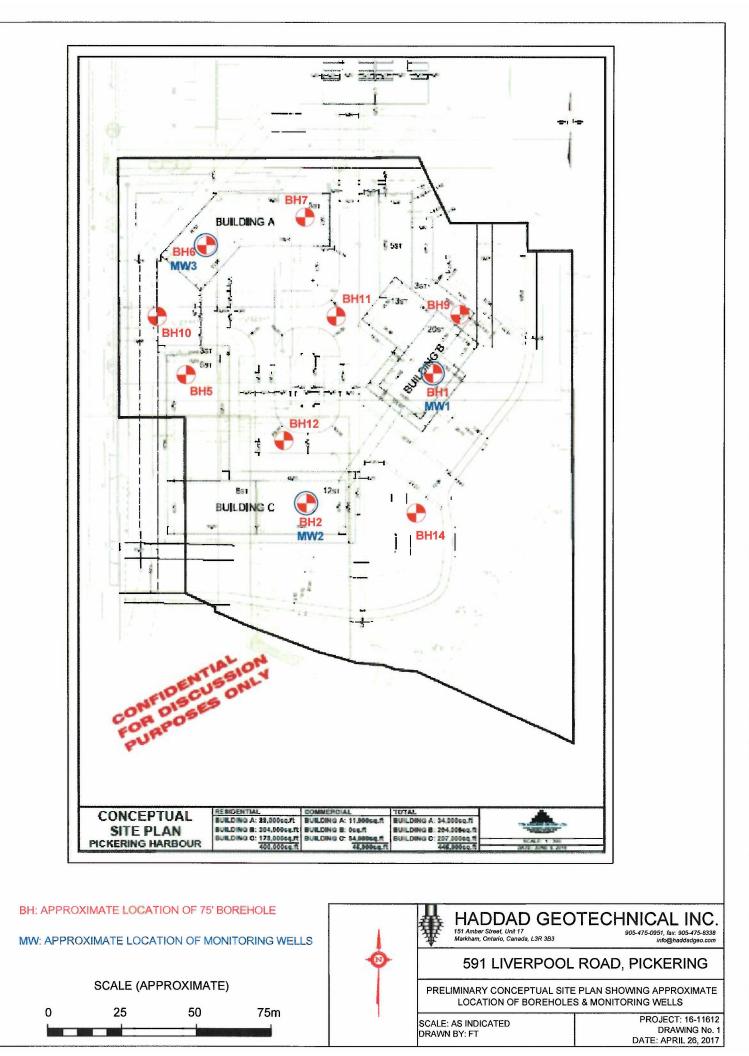

AG#A042534 STNS 4.0 BLCK SHLE 13.1 AG#A110340

AG#A107216


AG#A163837

ATTACHMENT A

Proposed Development Drawing


	PARKING S	TATISTICS	
DESCRIPTION	REQUIRED	PROPOSED UNDERGROUND (2 LEVELS)	PROPOSED ABOVEGROUND (1 LEVEL)
PUBLIC PARKING	240	-	142
PRIVATE PARKING	539	700	-
TOTAL PARKING	779	842	
PRIVATE PAR	KING BY USE		
RESIDENTIAL @ 0.95 SPACES PER UNIT	473		
COMMERCIAL @ 3 SPACES PER 100m ²	66		
TOTAL	539		

ATTACHMENT B

Borehole Location Plan, Borehole Logs, Gradations

	HADDA		EO ng Data S					٩L	IN	IC.				oject No. 1 awing No. 2	
Project	Proposed Mixed-Use Development	-	-		Split				2	Pocket	Penetro	meter		\triangle	
Locatio	n: 591 LIVERPOOL ROAD, PICKERING				Auge	-		$\overline{\mathbb{X}}$			ined Cor	mpress	ion		
Hole Lo	ocation: see Drawing No. 1				Shelb					Water				X	
Hole El	evation & Datum: 99.35±m, see Note 1				Core				Π		⁻ est, Sen dia Split	-		+ 	
Start D	Date: 15/02/2017 End Date: 15/02/2017	Field Sup	ervision:	SR/GA	51mn	n dia (Cone		_		ion Analy				
	Description	Elev.	Depth		Streng	th and	Pene	tration I	Resis	stance	Sa	ample		Moisture	Vapour
BH -1	GROUND SURFACE MW -1	±m		C N (Sta	andard 20		tration	Value) 60	В	lows/300 80		No.	"N"	Content %	Reading (ppm)
	GRAVEL SURFACE GRANULAR MATERIALS	99.35	0.0 								X	AS0	-	5.9	1.2
	FILL - medium compact sand and silt, with some gravels, occ. organic stains, brown, moist to very moist		1.0 —		0							SS1	27	5.8	0.9
	becomes clayey below 1.5±m depth		 2.0	þ								SS2	12	10.9	1.2
	Layer of dark brown to black Peat in wet condition between 2±m to 2.3±m depth	97.05 (03/22/17)	2.0		0							SS3	15	19.9	1.1
	SANDY CLAYEY SILT - trace gravels stiff to very stiff, brown, very moist	96.3 (upon borehole completion)	3.0 —		d							SS4	18	13.6	0.9
	sun to very sun, brown, very moist		 4.0									SS5	9	13.8	1.8
//// +	SILTY SAND - trace to some clay,	94.8	-	Ĭ								SS6	59	7.4	1.8
	trace gravels, very dense, brown, moist		5.0 — —					0				330		1.4	1.0
	1		6.0 — —					0			12	SS7	58	6.2	3.2
			7.0 -								+77	SS8	50	4.9	35.0
+ (14) - + (14) - + (14) - + (14) - + (14)			8.0 										50 5"	4.0	
	WEATHERED SHALE	90.2	9.0 — —								⁺œ	SS9	<u>50</u> 3"	4.2	28.1
			10.0 -												
			11.0 — —	RUN NUMBER	RUN LENGTH, m	RECOVERY, %	R.Q.D., %	CORE SIZE / CASING	JOINT SYSTEM	COMMENTS					
	START OF CORING	87.2	12.0	RUN	RUN	REC	R.C	COR CAS	VIOr	CON					
	SHALE BEDROCK, grey, fractured, limestone bands with 5±mm thickness throughout		 13.0	1	1.70	96	66.0	NXL /NW		fair					
		85.6	 14.0												

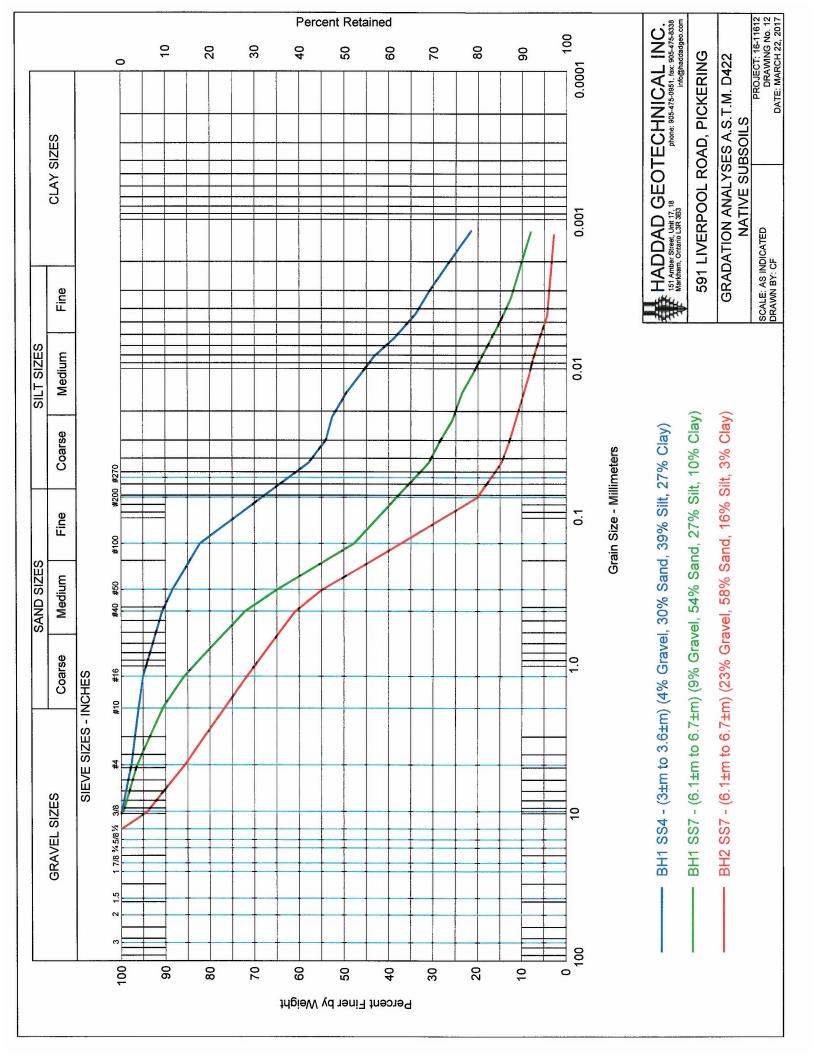
	HADDA		EO ing Data S					٩L	IN	IC.			oject No. 10 awing No. 3	
Project	t: Proposed Mixed Use Development				Split	Spoor	I		2	Pocket Pene			\bigtriangleup	
Locatio	on: 591 LIVERPOOL ROAD, PICKERING				-	r Sam		\boxtimes	Z	Unconfined	-	ion		
Hole Lo	ocation: see Drawing No. 2					y Tub				Water Level			▼ + ³	
Hole El	evation & Datum: 137.81±m (geodetic), see	Note 1				Samp			Ш	Vane Test, 3 51mm dia S	-		- 1 - 0-0 -	
Start D	Date: 15/02/2017 End Date: 15/02/2017	Field Su	pervision	SR	- 51mn	n dia (Jone			Gradation A	nalysis Co	mplet		
	Description	Elev.	Depth		ε						Sample		Moisture	Headspace
		±m	±m	BER	ĨŦ	Υ, %	%	Ε/	STEN	ALIT -	No.	"N"	Content	Vapours
	CONTINUED FROM DRAWING No. 2	85.6	14.0 —	run number	RUN LENGTH, m	RECOVERY, %	R.Q.D.,	CORE SIZE / CASING	JOINT SYSTEM	COMMENTS - ROCK QUALITY			%	ppm
	SHALE BEDROCK, grey, fractured, limestone bands with 5±mm thickness		_	2 2	 1.27	88	72.0	NXL)r	or≊ fair				
	throughout		15.0 —					/NW						
	line store hand with CE upper this page		_											
	limestone band with 65±mm thickness observed within Run Number 3		16.0	3	1.52	92	80.0	NXL /NW		good				
			17.0 —											
			-	4	1.57	98	67.8	NXL /NW		fair				
	END OF CORED HOLE	81.2	18.0											
	NOTES: 1. Elevation datum, referenced to local datum, top of the Hydrant at the east side of the Liverpool Road and south side of entrance of the subject site, El. 100.00±m (assumed local													
	 datum) for the purposes of this report only. 2. Borehole caved to 11.6±m depth, water rose to 3±m below grade upon completion. 3. Monitoring well installed by Haddad Geotechnical Inc. to depth of 6±m below grade 		20.0 —											
	adjacent to the borehole and water level rose to 2.3 ±m below grade after 34 days, as recorded.		21.0 —											
			22.0 —											
			23.0 —											
			24.0											
			 25.0 —											
			26.0 —											
			27.0											
			28.0 -	2			-							
			29.0 —											

	HADDA		IEO						AL I	NC					oject No. 1 awing No.	
Project	Proposed Mixed-Use Development				Sp	olit Sp	boon				ket Pene				\bigtriangleup	
	n: 591 Liverpool Road, Pickering				_	-	Samp	le	\boxtimes		onfined (er Level	Cor	npress	ion		
	ocation: see Drawing No. 1						Tube			1	e Test, S	Sen	sitivitv		-F	
	evation & Datum: 99.38±m, see Note 1						ample dia Co				m dia S		-		-0-0-	
Start I	Date: 13/02/2017 End Date: 13/02/2017		upervisio	n: SR							lation Ar			mple		
	Description	Elev. ±m	Depth ±m	с	Stre	ength	and F	Penel	tration R	esistance	kPa		ample No.	"N"	Moisture Content	Vapour Reading
BUD	GROUND SURFACE MW2			N (S	tanda 20		enetra 40		Value) 60	Blows/ 80					%	(ppm)
BH2	GRAVEL SURFACE	99.38	0.0									X				
	FILL - loose to medium compact gravely sand with some silt, brown, moist											\boxtimes	AS0	-	8.1	
\times			1.0									7	SS1	47	11.5	
\bigotimes	FILL - medium compact silt and clay,	97.9	1.0		0							4	551	17	11.5	1.1
	with trace to some sand, occ. gravel,		-									7	SS2	4	13.7	3.6
\otimes	occ. roots, occ. organic stains, brown to grey, moist to very moist	97.5 (03/22/17)	2.0 -									4	002	4	13.7	5.0
	Layer of dark brown to black Peat	97.1										7	SS3	7	10.7	30.2
\boxtimes	in wet condition between 2.3±m to											4	000	ŕ	10.7	50.2
\bigotimes	2.5±m depth		3.0 -	1			0					7	SS4	33	8.7	17.9
\bigotimes			-									4	004	55	0.7	17.5
		95.3	4.0 -					ł				7	SS5	61	5.6	5.4
1	SILTY SAND - trace to some clay,							ł				4	000	01	5.0	0.4
(+, -, +, -, -, -, -, -, -, -, -, -, -, -, -, -,	trace gravels, very dense, occ. oxidized seams/pockets, brown, moist	94.8 (upon borehole									+	$\overline{\mathcal{A}}$	SS6	<u>50</u> 6"	8.7	5.9
.++. .+.		completion)	5.0 -									4		6"		
·*· +		:	-													
			6.0													
X	GRAVELLY SAND - some silt, trace clay,	93.3	0.0 -									7				
RO	very dense, grey, moist to very moist		-	1					q			M	SS7	58	8.1	3.1
605			7.0 -								Í	4				
B.	occ. shale fragments below 7.5±m depth															
A	ů l											7	SS8	15	6.0	2.0
1299	Layer of stiff to very stiff wet clay between		8.0 -	1	0							4	330	15	0.0	3.6
20	8±m to 8.2±m depth		-	$\left\{ \right. \right\}$												
800			9.0 -													
X			0.0								⁺₫	2	SS9	<u>50</u> 6"	1.3	3.1
PQ-														0		
PQ0			10.0 -													
500			-								+					
	SHALE - very dense, weathered, grey,	88.7	11.0 -								↓ †¢		SS10	<u>50</u> 3"	6.1	10.8
	moist															
<i>;</i>			-	1												
			12.0 -								+			50		
	NOTES: END OF BOREHOLE	87.1	_								†	Z	SS11	<u>50</u> 3"	-	11.9
	1. Elevation datum, referenced to local datum, top of the Hydrant at the east side of the		10.0													
	Liverpool Road and south side of entrance of		13.0 -]												
	the subject site, El. 100.00±m (assumed local datum) for the purposes of this report only.		-	1												
	2. Borehole caved to 5.8±m depth, water rose to 4.6±m below grade upon completion.		14.0 -													
	3. Monitoring well installed by Haddad Geotechnical Inc. to depth of 5.8±m below grade															
	adjacent to the borehole and water level rose to															
	1.86 ±m below grade after 36 days, as recorded.		15.0 -	4				1								

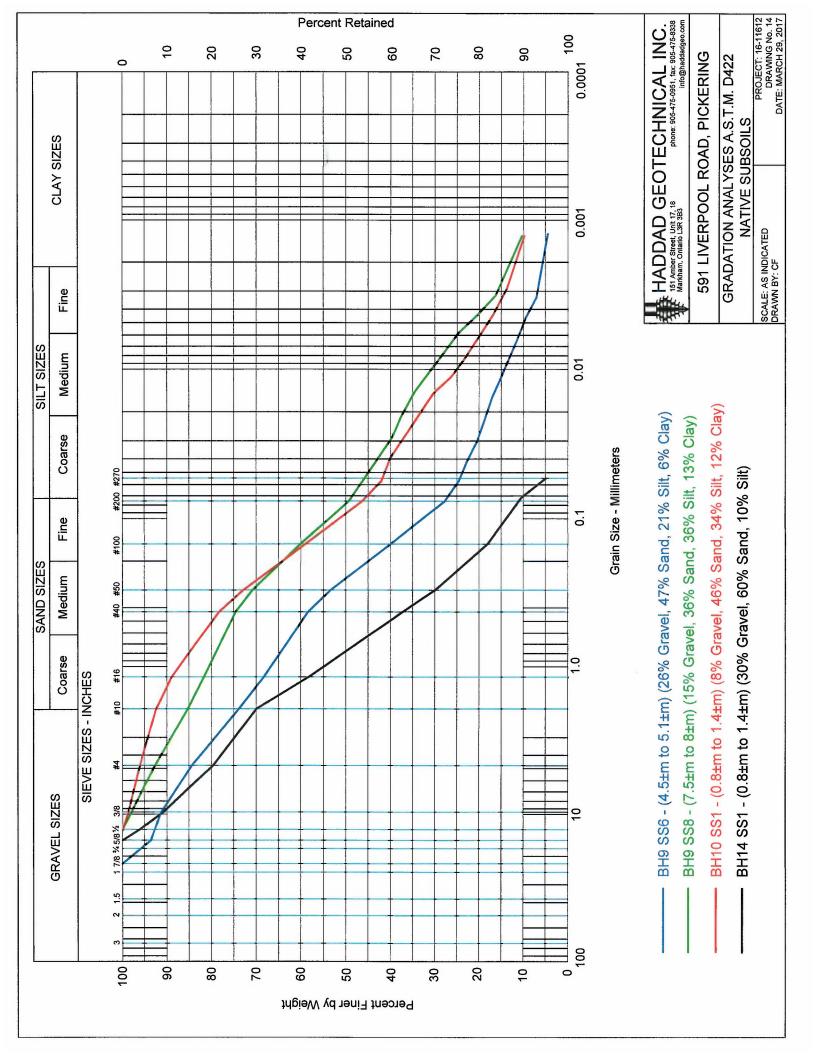
		HADDA							AL I	NC.				Project No. Drawing No	
Project	Proposed Mixed-	Use Development				Split	Spoon				et Penel			\triangle	
Locatio	n: 591 Liverpool R	Road, Pickering					r Sam		Image: State of the state of t		nfined C	ompre	ssion	•	
Hole Lo	cation: see Drawi	ng No. 1				Shell	y Tub	е			r Level			T	
Hole El	evation & Datum:	98.61 ±m, see Note 1	18 L			Core	Samp	le	$\Box \Box$		Test, S		•	4	
Start [Date: 16/02/2017	End Date: 16/02/2017	Field S	upervisio	n: SR	51m	n dia C	Cone			n dia Sp ition An			oo eted M	
	De	escription	Elev.	Depth		Streng	th and	Pene	tration Re			Sampl	e	Moisture	Vapour
			±m	±m	C						kPa	No.	"N"	Concone	Reading
	GROUN	ID SURFACE			N (St	andard 20	Penet 4	ration 0	Value) 60	Blows/30 80	Jumm			%	(ppm)
\otimes	GRAVEL SURFA		98.61	0.0 —							TR	X			
\bigotimes		ravel with some silt and		_								X AS	0 -	5.9	3.5
\bigotimes	some clay, dark b	ompact silt and clay, occ.		4.0		\sim						7			
\times		nic stains, dark brown to		1.0 —		2						ss	1 13	22.2	2.1
\boxtimes	brown, moist to ve											Ż			
\boxtimes				2.0 —								ss	2 26	5 13.9	1.9
\bigotimes			96.4	2.0 -								4			
x x x		ome gravel, some clay,	30.4	_					$ \mathbf{h} $		I I	a ss	3 60	8.5	2.3
x x x		nse, occ. oxidized seams,		3.0 —					Ť			4			
× × ×	brown, moist to ve	ery moist		5.0							Ι₫	🛛 ss	4 50 6"	7.7	2.5
× × ×												7	0		
x x x	becomes grey be	low 4+m denth		4.0			4					ss ss	5 30	70	2.0
× × ×	becomes grey be						Ψ					4 33	5 30	7.2	2.9
× × ×				_								7			
x x x x x x		alaus Etma dan Ma		5.0				р				ss	6 43	6.2	3.4
x x	occ. wet seams b	below 5±m depth									Ιŕ	4			
* * ×			92.8	-											
XXX			52.0	6.0 —											
*. × ×												ss	7 52	2 11.1	2.6
× × ×					1							4			
x x x				7.0 —											
× × ×															
x x x											+	ss	8 50	9.1	3.5
× × ×			90.6	8.0 —							ľΨ	4	8 <u>50</u> 6"		
	moist to very moi	nse, weathered, grey, st		-											
	······································														
				9.0 -							⁺ф	ss 🚽		14.4	14.2
				_							ΙΨ	1 00	9 <u>50</u> 3"		14.2
				10.0 -											
				-							+				
											φ	z ss [.]	0 50 2"	12.6	20.1
Z.,				11.0									1		
<u>,</u> ,				-											
				120-											
	END O	F BOREHOLE	86.4	12.0 -							⁺ф	z ss	11 50	14.8	19.8
	NOTES:	referenced to local datum		-									2		
	top of the Hydrant a	referenced to local datum, at the east side of the		13.0											
		south side of entrance of 100.00±m (assumed local													
	datum) for the purpo	oses of this report only.		-											
		to 11±m depth, water rose to ng grade upon completion.		14.0 -											
		C C and a series of the series													
				-	1										
				15.0											

	HADDA								٩L	. 11	NC					oject No. 1 awing No.	
Project	Proposed Mixed-Use Development				Sp	lit Sp	oon				Poc	ket Pene	etro	meter		\bigtriangleup	
Locatio	n: 591 Liverpool Road, Pickering				-		Samp	le		\propto		onfined		npress	ion		
Hole Lo	ocation: see Drawing No. 1				Sh	elby	Tube					ter Level		,		Y	
Hole El	evation & Datum: 99.35±m, see Note 1				- Co	re Sa	ample	9	Π	Π		ne Test, S nm dia S				- 1 -	
Start D	Date: 14/02/2017 End Date: 14/02/2017	Field S	upervisio	n: SR	51	mm o	dia C	one	-			dation A					
	Description	Elev.	Depth		Stre	ngth	and	Pene	tratio	n Res	sistance			ample		Moisture	Vapour
	•	±m	±m	C N (St	ondo	rd D	notr	otion	Volue		Plowed	kPa 300mm		No.	"N"	Content %	Reading
BH6	GROUND SURFACE MW3	00.05		IN (SI	anda 20		40		value 60		80	Soomm				%	(ppm)
\times	FILL - medium compact silt and clay	99.35	0.0										\boxtimes	AS0		13.3	
****	with some sand, occ. gravel, occ. oxidized pockets, brown, moist to very	98.6	-										図	ASU	-	10.0	1.4
****	moist	30.0	1.0		0								$\overline{\Lambda}$	SS1	15	11.0	1.6
****			1.0		9								4				
****	ų.	07.5	-										7	SS2	15	8.0	0.9
****		97.5 (03/22/17)	2.0 -		0									001		0.0	0.0
XXX		97.0										+	5	SS3	<u>50</u>	7.7	1.1
x x x	SILTY SAND - some gravel, trace to some clay, medium dense to dense,												4	000	6"	1.1	1.1
x x x	occ. shale fragments, occ. oxidized	000	-3.0 -														
* * ×	seams, brown, moist to very moist	96.0 (upon borehole						0					M	SS4	45	6.4	0.8
× × ×	becomes grey below 3.5±m depth	completion)															
× × ×			4.0				0						Λ	SS5	36	6.1	1.6
x x x			_										4				
× * *						d							1	SS6	29	7.0	36.1
* × × × × ×			5.0 -			1							4				
× × ×			-														
× × ×			6.0														
× × × * × ×			0.0										7	SS7	26	40.0	47.4
×××						0							1	201	20	10.9	17.4
ххх			7.0														
x x x x x x																	
* * *	becomes very dense and occ. shale											+	$\overline{\mathbf{x}}$	SS8	<u>50</u>	7.3	13.2
× × *	fragments below 7.5±m depth		8.0 -										24	000	6"	1.0	
x x x																	
x																	
x x x		90.2	9.0 -									+	z	SS9	50	11.4	5.2
' <u>, '</u>	SHALE - very dense, weathered, grey, moist to very moist		-										Π	339	<u>50</u> 3"	11.4	5.2
			10.0														
2			10.0														
<i>, ,</i>			-									+	\mathbf{z}	0040	50	10.0	
			11.0 -									4	4	SS10	<u>50</u> 2"	10.2	8.2
, ,			-														
, <u> </u>			12.0 -									+					
	NOTES:	87.2										9	≁	SS11	<u>50</u> 1"	14.9	7.1
	1. Elevation datum, referenced to local datum,														·		
	top of the Hydrant at the east side of the Liverpool Road and south side of entrance of		13.0 -														
	the subject site, El. 100.00±m (assumed local datum) for the purposes of this report only.		_														
	2. Borehole caved to 11±m depth, water rose to		110														
	3.35±m below grade upon completion.3. Monitoring well installed by Haddad		14.0 -														
	Geotechnical Inc. to depth of 6.2±m below grade adjacent to the borehole and water level rose to																
	1.87 ±m below grade after 35 days, as recorded.		15.0														

	HADDA		EO ng Data S						٩L	INC	С.				roject No. rawing No	16-11612). 6
Project	Proposed Mixed-Use Development					olit Sp					ocket	Penetro	meter		\bigtriangleup	
Locatio	n: 591 Liverpool Road, Pickering				- 1		Sampl	е	$\overline{\mathbb{X}}$	_	Inconf	ined Co	mpress	ion	•	
Hole Lo	ocation: see Drawing No. 1			-	Tube				Vater				T			
Hole El	evation & Datum: 99.14±m, see Note 1				- Co	ore S	ample		Ш	11		est, Ser			- P	
Start I	Date: 14/02/2017 End Date: 14/02/2017	Field S	upervisio	n: SR	51	mm	dia Co	one		- 5 G	1mm Gradati	dia Split on Anal	spoon	mplet	ed M	
	Description	Elev.	Depth			ength	and F	ene	tration	Resista			ample		Moisture	Vapour
		±m	±m	<u>c</u>		_						kPa	No.	"N"	Content	Reading
	GROUND SURFACE			N (5	tanda 20		enetra 40		Value) 60		vs/300 10	mm			%	(ppm)
\times	TOP SOIL	99.14	0.0									\overline{X}		1		
\bigotimes	FILL - loose to medium compact silt and		-										AS0	-	21.9	25
\bigotimes	clay with some sand, occ. gravel, occ. organic stains, occ. oxidized seams,		10													
\bigotimes	brown, very moist to wet		1.0		0								SS1	15	25.3	1.0
\bigotimes			-													
\bigotimes			2.0	q									SS2	8	7.3	1.4
\bigotimes			2.0													
\boxtimes		96.5	-			0							SS3	26	14.3	1.2
State	GRAVELY SILTY SAND - trace clay, medium dense to dense, occ.	96.1	3.0 -									Ľ				
X	oxidized seams, grey, moist					0							SS4	23	2.9	1.3
			-			Ĭ										
60			4.0 -					ol					SS5	45	5.8	1.2
X								~					000		5.0	1.2
	occ. wet seams below 4.5±m depth							_								
60			5.0 -				1	0					SS6	46	5.6	2.6
* A																
Ref 8			_													
1	becomes very dense below 6±m depth		6.0 —									+				
												B M	SS7	<u>50</u> 6"	5.1	2.4
They														0		
RO.			7.0 -			-										
A																
anges -	SHALE - very dense, weathered, grey,	91.5										†dzz	SS8	<u>50</u> 6"	4.3	3.6
	moist to very moist		8.0 -											6"		
<u> </u>			_													
É,																
É,			9.0 -									†	SS9	<u>50</u> 2"	10.7	1.2
			-									1		2"		
É			10.0-													
<i>,</i>			10.0 -											1		
			-									+	5510	50	10.3	2.3
			11.0 -									UL I	SS10	2"	10.3	2.3
/ /			1.0													
<i>, , , , , , , , , , , , , , , , , , , </i>																
			12.0 -													
	END OF BOREHOLE	86.9										Īœ	SS11	50 2"	11.5	1.6
	NOTES:															
	1. Elevation datum, referenced to local datum, top of the Hydrant at the east side of the		13.0													
	Liverpool Road and south side of entrance of															
	the subject site, EI. 100.00±m (assumed local datum) for the purposes of this report only.															
	2. Borehole open to 12.2±m depth and water		14.0													
	rose to 3±m below existing grade upon completion.		_													
			15.0													
			15.0 -								1			1		


	HADDA		EO					AL I	NC.				roject No. Prawing No	
Project	Proposed Mixed-Use Development				Split	Spoon				Penetro			\bigtriangleup	
Locatio	n: 591 Liverpool Road, Pickering				Auge	er Sampl	е	\boxtimes	Uncon	fined Co	mpress	ion	•	
Hole Lo	ocation: see Drawing No. 1				1	by Tube			Water		14114		T	
Hole E	evation & Datum: 99.47±m, see Note 1				Core	Sample		$\square \square$		l'est, Ser dia Split			+ 	
Start I	Date: 13/02/2017 End Date: 13/02/2017	Field S	upervisio	n: SR	51mi	m dia Co	ne			ion Anal				
	Description	Elev.	Depth		Streng	th and F	enetr	ation Re	esistance		ample		Moisture	Vapour
	·	±m	±m		andard	Penetra	tion		Blows/30		No.	"N"	Content %	Reading (npm)
	GROUND SURFACE			N (SI	20	40	uon v	60	80				70	(ppm)
	TOP SOIL FILL - loose to medium compact silt and clay with some sand, occ. gravel, occ. organic stains, occ. oxidized seams, dark	99.47	0.0		0						AS0	-	10.9	1.2
	brown, very moist to wet		- 1.0								SS1	13	13.2	1.5
	Layers of dark brown to black Peat in wet condition below $4.5\pm m$ depth	- - -	2.0 -		O						SS2	14	16.2	1.6
			3.0	0							SS3	7	23.7	1.8
			-	0							SS4	4	30.9	1.8
	GRAVELY SILTY SAND - trace clay, medium dense to very dense, occ. shale	95.3	4.0 -		0						SS5	27	13.9	1.5
	fragments, occ. oxidized seams, brown to grey, moist		5.0 —						0	13	SS6	79	5.7	3.8
× × × × ×	SAND & SILT - some gravel, some clay, very dense, occ. shale fragments, grey, moist	93.4	6.0							†	SS7	<u>50</u> 6"	4.3	1.7
× × × × × × × × × × × × × × × × × × ×			7.0 8.0							t	SS8	<u>50</u> 6"	7.1	4.3
	SHALE - very dense, weathered, grey, moist to very moist	90.3	9.0 -							†œ	SS9	<u>50</u> 2"	10.8	47.2
, , , , , , , , , , , , , , , , , , ,	T	88.8	10.0							tor	SS10	<u>50</u>	4.0	20.6
, , , , , , , , , , , , , , , , , , ,			11.0 -									2"		
	NOTES: 1. Elevation datum, referenced to local datum,	87.3	12.0 -							⁺⊕∞	SS11	<u>50</u> 1"	12.4	3.8
	top of the Hydrant at the east side of the Liverpool Road and south side of entrance of the subject site, El. 100.00±m (assumed local datum) for the purposes of this report only. 2. Borehole open to 12.2±m depth and water		13.0 - - 14.0 -											
	rose to 10.7±m below existing grade upon completion.		- 15.0											

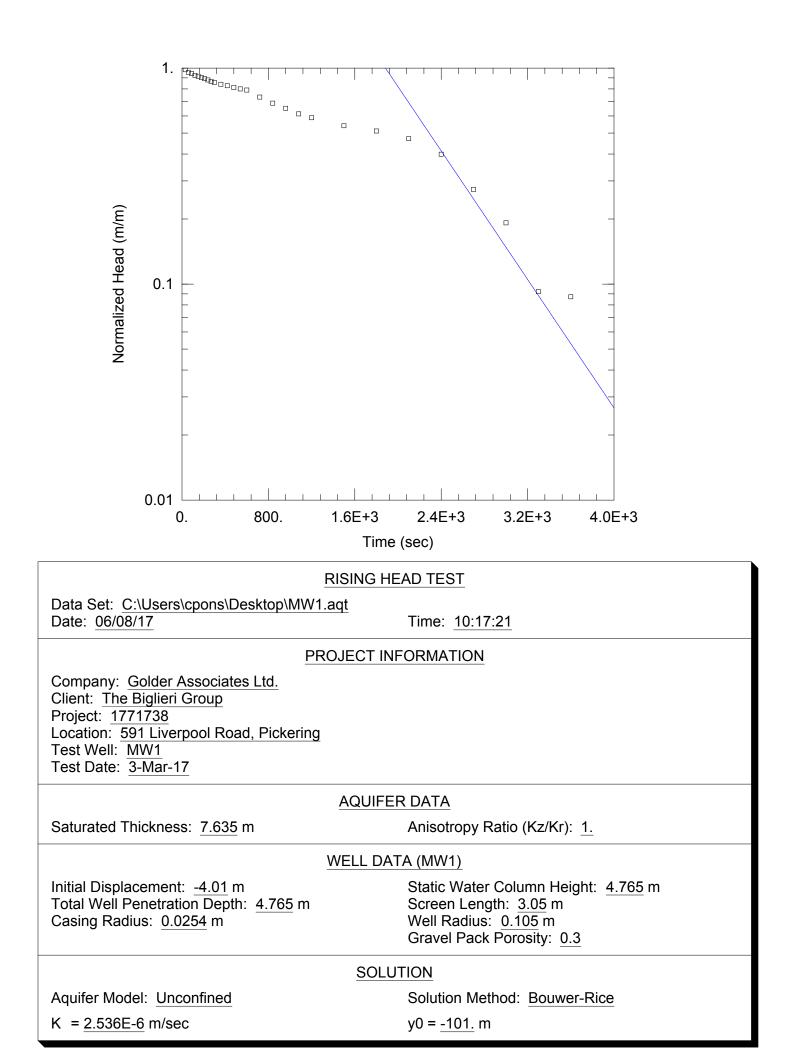

	₩ HA			BEO ng Data S	TE Sheet F	CI or Bo	HN	IIC No. 10	AL I	NC.					Project No. Prawing No	
Project	: Proposed Mixed-Use Develop	ment				Spl	it Spo	on		Pock	et Pene	etror	neter		\bigtriangleup	
	n: 591 Liverpool Road, Pickeri					_	ger Sa				onfined	Con	npress	ion	•	
	ocation: see Drawing No. 1						elby T	-		Wate	er Level				\mathbf{T}	
	levation & Datum: 99.38±m, se	e Note 1					e Sar		Ē		e Test, S				<u>₽</u>	
		16/02/2017	Field S	upervisio	n: SR	51n	nm dia	a Cone			n dia S ation Ar				ed M	
			Elev.	Depth			ath a	nd Dene	tration R	esistance			imple		Moisture	Vapour
	Description		±m	±m	c						kPa		No.	"N"	Content	Reading
	GROUND SURFAC	Ξ	99.38	0.0	N (S	tandar 20	d Per	etration 40	Value) 60	Blows/3	00mm				%	(ppm)
	GRAVEL SURFACE FILL - loose to medium compa		00.00									\bigotimes	AS0	-	11.6	2.6
	sand with some clay and trace occ. organic stains, occ. roots very moist			1.0		0							SS1	16	13.5	1.7
				2.0		0							SS2	13	14.9	2.6
				-	0								SS3	6	12.8	2.1
	SILTY SAND - some gravel, s	ome clay,	96.0	3.0 -		c							SS4	22	7.5	2.1
× * * * * *	medium dense, brown to grey			4.0 -		Q						2	SS5	18	9.8	.2.1
× * × * × ×	END OF BOREHO	.E	94.2	5.0 -			φ						SS6	31	7.7	2.1
	NOTES: 1. Elevation datum, referenced to top of the Hydrant at the east side Liverpool Road and south side of the subject site, El. 100.00±m (asi datum) for the purposes of this rep	of the entrance of sumed local		 6.0 -												
	2. Borehole open and dry to 5.2±r below existing grade upon comple	n depth, tion.		7.0												
				8.0												
-				9.0 -												
				10.0												
				11.0 -												
				12.0 -												
				13.0 -												ia.
				- 14.0 -												
				- 15.0 _												


	HADDA								NC.					Project No. Prawing No	16-11612 5. 9
Project	: Proposed Mixed-Use Development				Split S	ooon			Pock	et Pene	etro	meter		\bigtriangleup	
Locatio	on: 591 Liverpool Road, Pickering				Auger		•	\overline{XX}		onfined (npress	ion	•	
Hole L	ocation: see Drawing No. 1				Shelby	Tube				er Level				T	
Hole E	levation & Datum: 98.69±m, see Note 1				Core S	ample				e Test, S m dia Sp		-		- - - - - - - - - - - - - -	
Start	Date: 14/02/2017 End Date: 14/02/2017	Field S	upervisio	n: SR	51mm	dia Cor	ne			ation Ar					
	Description	Elev.	Depth		Strength	and Pe	enetra	ation Re	sistance		Sa	ample		Moisture	Vapour
	GROUND SURFACE	±m	<u>±m</u>	C N (Sta	andard P 20	enetrat 40	ion Va	alue) 60	Blows/3	kPa 300mm		No.	"N"	Content %	Reading (ppm)
	GRAVEL SURFACE FILL - sand with some gravels, brown very moist to wet	98.69	0.0 -								8	AS0	-	7.4	1.1
	FILL - loose to medium compact silt and clay with some sand, occ.	97.5	1.0 -	C								SS1	12	14.6	1.2
	graveis, occ. oxidized pockets, brown, wet		2.0 -	C								SS2	8	13.9	1.0
× *	SILTY SAND - some gravel, some clay, medium dense to very dense, brown,	96.1	3.0 -		φ							SS3	20	12.9	1.4
* * >	becomes grey below 4±m depth		-									SS4	85	8.3	1.4
× × >			4.0				P			+	4	SS5	53	7.4	1.0
× × > × × >	occ. shale fragments below 4.5±m depth END OF BOREHOLE	93.8	5.0 —								2	SS6	<u>50</u> 6"	4.3	1.5
	NOTES: 1. Elevation datum, referenced to local datum, top of the Hydrant at the east side of the Liverpool Road and south side of entrance of the subject site, El. 100.00±m (assumed local datum) for the purposes of this report only.		 6.0 												
	 Borehole caved to 1.2±m depth below existing grade and wet at its base upon completion. 		7.0												
			8.0												
			9.0 -												
			10.0 -												
			11.0												
			12.0 -								- - - - - - -				
			13.0												
			14.0				ŀ								
			15.0												

HADDAD GEOTECHNICAL INC. Engineering Data Sheet For Borehole No. 12 Project No. 16-11612 Drawing No. 10													
Project	: Proposed Mixed-Use Development				Split S	poon			Penetro			\bigtriangleup	
Location: 591 Liverpool Road, Pickering				Auger Sample		\boxtimes		Unconfined Compression					
Hole Location: see Drawing No. 1				Shelby Tube				Water Level Vane Test, Sensitivity			<u>↓</u> -₽		
Hole Elevation & Datum: 99.12 ±m, see Note 1				Core Sample				dia Split	-				
Start	Date: 13/02/2017 End Date: 13/02/2017	Field S	upervisio	n: SR	51mm	dia Cone		Gradati	on Anal	ysis Co	mple		
	Description	Elev. ±m	Depth ±m	6	Strength	and Pene	etration Re			ample No.	"N"	Moisture Content	Vapour Reading
	GROUND SURFACE	99.12	0.0 -	N (Sta	andard P 20	enetration 40	Value) 60	Blows/300 80		NO.		%	(ppm)
	GRAVEL SURFACE FILL - loose silt and clay with some sand, occ. gravels, occ. roots, occ. organic stains, brown to grey, moist to very moist	33.12	1.0 -							AS0	-	9.7	3.1
			- 1.0		0					SS1 SS2	15 9	11.9	7.9
	Layers of dark brown to black Peat in wet condition below 2±m depth		2.0 -							SS3	10	14.2	16.4
	T	96.1	3.0 -		0					SS4	20	11.0	1.9
× × ×	SILTY SAND - some gravel, some clay, very dense, occ. shale fragments, brown	95.3	4.0 -				φ			SS5	60	7.1	50.6
× × >	to grey, moist END OF BOREHOLE	94.2							ţ	SS6	<u>50</u> 6"	7.8	1.1
	NOTES: 1. Elevation datum, referenced to local datum, top of the Hydrant at the east side of the Liverpool Road and south side of entrance of the subject site, El. 100.00±m (assumed local datum) for the purposes of this report only. 2. Borehole open to 4.9±m depth and water		 6.0 										
	rose to 3±m below existing grade upon completion.		7.0 -										
			8.0 -										
			9.0 -										
			10.0 -										
			11.0 -										
			12.0 -										
			13.0 -										
			14.0										
			15.0 -										

							AL II	NC.					roject No. rawing No		
Project: Proposed Mixed-Use Development			Split S				Pock	et Pene	trome	ter		\bigtriangleup			
Location: 591 Liverpool Road, Pickering				Auger	-	le	Un Un		Unconfined Compression		•				
Hole Location: see Drawing No. 1				Shelby				Wate	r Level				$\mathbf{\underline{V}}$		
Hole Elevation & Datum: 99.29 ±m, see Note 1				Core S					Test, S				-p		
	Date: 13/02/2017 End Date: 13/02/2017	Field S	upervisio	n' SR	51mm	dia Co	one			n dia Sp			nnlat	oo ed M	
Jan		Elev.	Depth	r	<u>Ctronati</u>		Jonatr	otion Do	sistance	ation Ar				T	Vapour
	Description	±m	±m	с	Strengt	n and r	eneu	ation Re	sistance	kPa		Sample No.		Moisture Content	Reading
~~~~	GROUND SURFACE	99.29	0.0	N (Sta	andard F 20	Penetra 40		/alue) 60	Blows/3 80	00mm	~~~			%	(ppm)
	GRANULAR MATERIALS FILL - loose to medium compact gravely sand with some silt, occ. organic stains,		_								×	S0	-	9.8	2.7
	brown, very moist to wet		1.0	C							s s	S1	12	15.2	1.3
			2.0	d							s	S2	8	13.4	2.6
	FILL - loose silt and clay with some sand, occ. gravels, occ. roots, occ. oxidized seams, brown to grey, very moist		-	0							s	S3	6	30.4	2.4
	Layers of dark brown to black Peat in wet condition below 3±m depth		3.0 -	0							j s	S4	7	38.9	2.8
* * *	SILTY SAND - some gravel, some	95.3	4.0 -			$\left  \right $					s	S5	31	8.8	4.2
× × × * * *	clay, medium dense to very dense, brown to grey, moist END OF BOREHOLE	94.9 94.3	5.0							+	s a	S6	<u>50</u> 6"	8.1	о
	NOTES: 1. Elevation datum, referenced to local datum, top of the Hydrant at the east side of the		-										-		
	Liverpool Road and south side of entrance of the subject site, El. 100.00±m (assumed local datum) for the purposes of this report only. 2. Borehole open to 5±m depth and water		6.0 -												
	rose to 4.4±m below existing grade upon completion.		7.0 -												
			8.0												
			9.0 -												
			- 10.0												
-			-												
			11.0 -												
			12.0 -												
			13.0 -												
			 14.0												
			-												
L	L		15.0 _			1	I					1			








ATTACHMENT C

# Single Well Response Test Analysis





Data Set: C:\Users\cpons\Desktop\MW1.aqt Title: Rising Head Test Date: 06/08/17 Time: 10:17:48

### **PROJECT INFORMATION**

Company: Golder Associates Ltd. Client: The Biglieri Group Project: 1771738 Location: 591 Liverpool Road, Pickering Test Date: 3-Mar-17 Test Well: MW1

### AQUIFER DATA

Saturated Thickness: 7.635 m Anisotropy Ratio (Kz/Kr): 1.

### SLUG TEST WELL DATA

#### Test Well: MW1

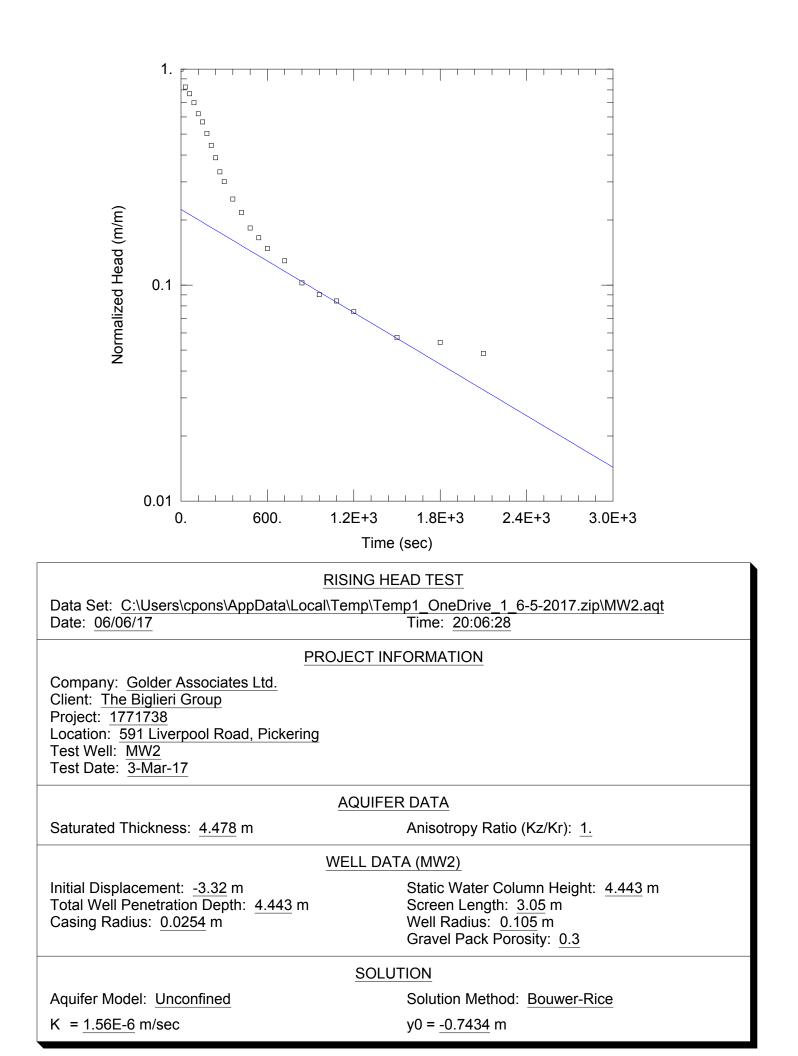
X Location: 0. m Y Location: 0. m

Initial Displacement: -4.01 m Static Water Column Height: 4.765 m Casing Radius: 0.0254 m Well Radius: 0.105 m Well Skin Radius: 0.105 m Screen Length: 3.05 m Total Well Penetration Depth: 4.765 m Corrected Casing Radius (Bouwer-Rice Method): 0.06131 m Gravel Pack Porosity: 0.3

No. of Observations: 28

Observation Data						
Time (sec)	Displacement (m)	Time (sec)	Displacement (m)			
30.	-3.94	600.	-3.17			
60.	-3.83	720.	-2.94			
90.	-3.78	840.	-2.76			
120.	-3.71	960.	-2.61			
150.	-3.67	1080.	-2.46			
180.	-3.62	1200.	-2.36			
210.	-3.58	1500.	-2.17			
240.	-3.53	1800.	-2.05			
270.	-3.48	2100.	-1.89			
300.	-3.44	2400.	-1.6			
360.	-3.37	2700.	-1.1			
420.	-3.32	3000.	-0.77			
480.	-3.26	3300.	-0.37			
540.	-3.21	3600.	-0.35			

#### SOLUTION


Slug Test Aquifer Model: Unconfined Solution Method: Bouwer-Rice In(Re/rw): 2.403

VISUAL ESTIMATION RESULTS

**Estimated Parameters** 

Parameter	Estimate	
K	2.536E-6	m/sec
y0	-101.	m

K = 0.0002536 cm/sec T = K*b = 1.936E-5 m²/sec (0.1936 sq. cm/sec)



Data Set: C:\Users\cpons\AppData\Local\Temp\Temp1_OneDrive_1_6-5-2017.zip\MW2.aqt Title: Rising Head Test Date: 06/06/17 Time: 20:06:42

### **PROJECT INFORMATION**

Company: Golder Associates Ltd. Client: The Biglieri Group Project: 1771738 Location: 591 Liverpool Road, Pickering Test Date: 3-Mar-17 Test Well: MW2

### AQUIFER DATA

Saturated Thickness: 4.478 m Anisotropy Ratio (Kz/Kr): 1.

### SLUG TEST WELL DATA

#### Test Well: MW2

X Location: 0. m Y Location: 0. m

Initial Displacement: -3.32 m Static Water Column Height: 4.443 m Casing Radius: 0.0254 m Well Radius: 0.105 m Well Skin Radius: 0.105 m Screen Length: 3.05 m Total Well Penetration Depth: 4.443 m Corrected Casing Radius (Bouwer-Rice Method): 0.06131 m Gravel Pack Porosity: 0.3

No. of Observations: 24

Observation Data						
Time (sec)	Displacement (m)	Time (sec)	Displacement (m)			
0.	-3.32	420.	-0.72			
30.	-2.74	480.	-0.61			
60.	-2.55	540.	-0.55			
90.	-2.32	600.	-0.49			
120.	-2.06	720.	-0.43			
150.	-1.89	840.	-0.34			
180.	-1.67	960.	-0.3			
210.	-1.47	1080.	-0.28			
240.	-1.29	1200.	-0.25			
270.	-1.11	1500.	-0.19			
300.	-1.	1800.	-0.18			
360.	-0.83	2100.	-0.16			

### SOLUTION

Slug Test Aquifer Model: Unconfined Solution Method: Bouwer-Rice In(Re/rw): 2.762

### VISUAL ESTIMATION RESULTS

### **Estimated Parameters**

Parameter	Estimate	
K	1.56E-6	m/sec
y0	-0.7434	m

K = 0.000156 cm/sec T = K*b =  $6.984E-6 \text{ m}^2/\text{sec} (0.06984 \text{ sq. cm/sec})$ 

ATTACHMENT D

# Laboratory Certificate of Analysis





Your Project #: 1771738 Your C.O.C. #: 600318-01-01

#### **Attention:Chris Pons**

Golder Associates Ltd 140 Renfrew Dr Suite 200 Markham, ON L3R 6B3

> Report Date: 2017/03/15 Report #: R4393289 Version: 2 - Revision

#### CERTIFICATE OF ANALYSIS – REVISED REPORT

# MAXXAM JOB #: B743930

Received: 2017/03/03, 15:49

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
ABN Compounds in Water by GC/MS	1	2017/03/06	2017/03/06	CAM SOP-00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2017/03/03	2017/03/08	CAM SOP-00427	SM 22 5210B m
Total Cyanide	1	2017/03/06	2017/03/06	CAM SOP-00457	OMOE E3015 5 m
Mercury in Water by CVAA	1	2017/03/07	2017/03/08	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by ICPMS	1	N/A	2017/03/06	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2017/03/03	CAM SOP-00552	MOE LSB E3371
Polychlorinated Biphenyl in Water	1	2017/03/06	2017/03/07	CAM SOP-00309	EPA 8082A m
рН	1	N/A	2017/03/07	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2017/03/07	CAM SOP-00444	OMOE E3179 m
Total Kjeldahl Nitrogen in Water	1	2017/03/07	2017/03/07	CAM SOP-00938	OMOE E3516 m
Total Suspended Solids	1	2017/03/06	2017/03/06	CAM SOP-00428	SM 22 2540D m
Volatile Organic Compounds in Water	1	N/A	2017/03/07	CAM SOP-00226	EPA 8260C m

#### Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.



Your Project #: 1771738 Your C.O.C. #: 600318-01-01

#### Attention:Chris Pons

Golder Associates Ltd 140 Renfrew Dr Suite 200 Markham, ON L3R 6B3

> Report Date: 2017/03/15 Report #: R4393289 Version: 2 - Revision

#### **CERTIFICATE OF ANALYSIS – REVISED REPORT**

#### MAXXAM JOB #: B743930 Received: 2017/03/03, 15:49

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: EGitej@maxxam.ca Phone# (905)817-5829

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 11



Golder Associates Ltd Client Project #: 1771738 Sampler Initials: GC

## **DURHAM STORM SEWER USE BYLAW 55-2013 (WATER)**

Maxxam ID		DZR780			
Sampling Data		2017/03/03			
Sampling Date		11:00	17/03/03 11:00       Ample State         318-01-01       CC Batch         MW2       RDL       QC Batch         5.0       2.0       4885005         1.3       0.10       488722         6.69       4888219         0.0010       0.0010       4889091         120       10       4887259         0.0050       0.0050       4887259		
COC Number		600318-01-01		2.0 4885005 0.10 4888722 4888219 .0010 4889091 10 4888412 .0050 4887259 .0001 4889099 1.0 4887182 0.10 4887182	
	UNITS	MW2	RDL	QC Batch	
Inorganics					
Total BOD	mg/L	5.0	2.0	4885005	
Total Kjeldahl Nitrogen (TKN)	mg/L	1.3	0.10	4888722	
рН	рН	6.69		4888219	
Phenols-4AAP	mg/L	<0.0010	0.0010	4889091	
Total Suspended Solids	mg/L	120	10	4888412	
Total Cyanide (CN)	mg/L	<0.0050	0.0050	4887259	
Metals				1	
Mercury (Hg)	mg/L	<0.0001	0.0001	4889099	
Total Arsenic (As)	ug/L	3.7	1.0	4887182	
Total Cadmium (Cd)	ug/L	<0.10	0.10	4887182	
Total Chromium (Cr)	ug/L	<5.0	5.0	4887182	
Total Copper (Cu)	ug/L	3.9	1.0	4887182	
Total Lead (Pb)	ug/L	1.3	0.50	4887182	
Total Manganese (Mn)	ug/L	6000	2.0	4887182	
Total Nickel (Ni)	ug/L	7.0	2.0	4887182	
Total Phosphorus (P)	ug/L	<100	100	4887182	
Total Selenium (Se)	ug/L	<2.0	2.0	4887182	
Total Silver (Ag)	ug/L	<0.10	0.10	4887182	
Total Zinc (Zn)	ug/L	6.7	5.0	4887182	
Semivolatile Organics		•			
Bis(2-ethylhexyl)phthalate	ug/L	<2.0	2.0	4887233	
Di-N-butyl phthalate	ug/L	<2.0	2.0	4887233	
Volatile Organics		•			
Benzene	ug/L	<0.25	0.25	4887396	
Chloroform	ug/L	<0.25	0.25	4887396	
1,2-Dichlorobenzene	ug/L	<0.50	0.50	4887396	
1,4-Dichlorobenzene	ug/L	<0.50	0.50	4887396	
cis-1,2-Dichloroethylene	ug/L	<0.25	0.25	4887396	
trans-1,3-Dichloropropene	ug/L	<0.50	0.50	4887396	
Ethylbenzene	ug/L	<0.25	0.25	4887396	
Methylene Chloride(Dichloromethane)	ug/L	<1.3	1.3	4887396	
RDL = Reportable Detection Limit	-	·			
QC Batch = Quality Control Batch					



Golder Associates Ltd Client Project #: 1771738 Sampler Initials: GC

## **DURHAM STORM SEWER USE BYLAW 55-2013 (WATER)**

Maxxam ID		DZR780		
Sampling Date		2017/03/03		
		11:00		
COC Number		600318-01-01		
	UNITS	MW2	RDL	QC Batch
1,1,2,2-Tetrachloroethane	ug/L	<0.50	0.50	4887396
Tetrachloroethylene	ug/L	<0.25	0.25	4887396
Toluene	ug/L	<0.50	0.50	4887396
Trichloroethylene	ug/L	<0.25	0.25	4887396
p+m-Xylene	ug/L	<0.25	0.25	4887396
o-Xylene	ug/L	<0.25	0.25	4887396
Total Xylenes	ug/L	<0.25	0.25	4887396
PCBs				
Total PCB	ug/L	<0.05	0.05	4888465
Microbiological				
Escherichia coli	CFU/100mL	<10	10	4886448
Surrogate Recovery (%)				
2,4,6-Tribromophenol	%	82		4887233
2-Fluorobiphenyl	%	46		4887233
2-Fluorophenol	%	25		4887233
D14-Terphenyl	%	100		4887233
D5-Nitrobenzene	%	46		4887233
D5-Phenol	%	21		4887233
Decachlorobiphenyl	%	82		4888465
4-Bromofluorobenzene	%	97		4887396
D4-1,2-Dichloroethane	%	100		4887396
D8-Toluene	%	98		4887396
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				



Total Cyanide

pН

Mercury in Water by CVAA

E.coli, (CFU/100mL)

Phenols (4AAP)

Total Metals Analysis by ICPMS

Polychlorinated Biphenyl in Water

Total Kjeldahl Nitrogen in Water

Volatile Organic Compounds in Water

**Total Suspended Solids** 

Golder Associates Ltd Client Project #: 1771738 Sampler Initials: GC

2017/03/06

2017/03/08

2017/03/06

2017/03/03

2017/03/07

2017/03/07

2017/03/07

2017/03/07

2017/03/06

2017/03/07

Lantian Jin

Ron Morrison

Arefa Dabhad

Riddhi Bayal

Sarah Huang

Zahid Soikot

Arpan Shah

Blair Gannon

Louise Harding

Neil Dassanayake

#### **TEST SUMMARY**

Maxxam ID: Sample ID: Matrix:	DZR780 MW2 Water					Collected: Shipped: Received:	2017/03/03 2017/03/03
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
ABN Compounds in Wate	r by GC/MS	GC/MS	4887233	2017/03/06	2017/03/06	Daniel Kim	1
Biochemical Oxygen Dem	and (BOD)	DO	4885005	2017/03/03	2017/03/08	Prakash Pi	ya

4887259

4889099

4887182

4886448

4888465

4888219

4889091

4888722

4888412

4887396

2017/03/06

2017/03/07

2017/03/06

2017/03/07

2017/03/06

N/A

N/A

N/A

N/A

N/A

SKAL/CN

CV/AA

ICP/MS

GC/ECD

TECH/PHEN

ΡL

AT

SKAL

BAL

P&T/MS

Maxxam Analytics International Corporation o/a Maxxam Analytics 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.maxxam.ca



Golder Associates Ltd Client Project #: 1771738 Sampler Initials: GC

## **GENERAL COMMENTS**

ł	Each te	emperature is the	average of up to	three cooler temperatures taken at receipt					
	[	Package 1	3.7°C						
I	Revised	d report (2016/03	/15): VOC detect	on limits for sample DZR780 adjusted for dilution, data not impacted.					
9	Sample DZR780 [MW2] : VOC Water Analysis: Due to foaming, sample required dilution. The detection limits were adjusted accordingly.								
	Results	relate only to th	e items tested.						



Golder Associates Ltd Client Project #: 1771738 Sampler Initials: GC

## **QUALITY ASSURANCE REPORT**

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4885005	PRP	QC Standard	Total BOD	2017/03/08		101	%	80 - 120
4885005	PRP	Method Blank	Total BOD	2017/03/08	<2.0		mg/L	
4885005	PRP	RPD	Total BOD	2017/03/08	22		%	25
4887182	ADA	Matrix Spike	Total Arsenic (As)	2017/03/06		104	%	80 - 120
		·	Total Cadmium (Cd)	2017/03/06		107	%	80 - 120
			Total Chromium (Cr)	2017/03/06		103	%	80 - 120
			Total Copper (Cu)	2017/03/06		110	%	80 - 120
			Total Lead (Pb)	2017/03/06		98	%	80 - 120
			Total Manganese (Mn)	2017/03/06		101	%	80 - 120
			Total Nickel (Ni)	2017/03/06		92	%	80 - 120
			Total Phosphorus (P)	2017/03/06		117	%	80 - 120
			Total Selenium (Se)	2017/03/06		100	%	80 - 120
			Total Silver (Ag)	2017/03/06		99	%	80 - 120
			Total Zinc (Zn)	2017/03/06		NC	%	80 - 120
4887182	ADA	Spiked Blank	Total Arsenic (As)	2017/03/06		101	%	80 - 120
		•	Total Cadmium (Cd)	2017/03/06		103	%	80 - 120
			Total Chromium (Cr)	2017/03/06		99	%	80 - 120
			Total Copper (Cu)	2017/03/06		103	%	80 - 120
			Total Lead (Pb)	2017/03/06		103	%	80 - 120
			Total Manganese (Mn)	2017/03/06		96	%	80 - 120
			Total Nickel (Ni)	2017/03/06		97	%	80 - 120
			Total Phosphorus (P)	2017/03/06		95	%	80 - 120
			Total Selenium (Se)	2017/03/06		105	%	80 - 120
			Total Silver (Ag)	2017/03/06		101	%	80 - 120
			Total Zinc (Zn)	2017/03/06		102	%	80 - 120
4887182	ADA	Method Blank	Total Arsenic (As)	2017/03/06	<1.0		ug/L	
			Total Cadmium (Cd)	2017/03/06	<0.10		ug/L	
			Total Chromium (Cr)	2017/03/06	<5.0		ug/L	
			Total Copper (Cu)	2017/03/06	<1.0		ug/L	
			Total Lead (Pb)	2017/03/06	<0.50		ug/L	
			Total Manganese (Mn)	2017/03/06	<2.0		ug/L	
			Total Nickel (Ni)	2017/03/06	<1.0		ug/L	
			Total Phosphorus (P)	2017/03/06	<100		ug/L	
			Total Selenium (Se)	2017/03/06	<2.0		ug/L	
			Total Silver (Ag)	2017/03/06	<0.10		ug/L	
			Total Zinc (Zn)	2017/03/06	<5.0		ug/L	
4887182	ADA	RPD	Total Cadmium (Cd)	2017/03/06	NC		%	20
			Total Chromium (Cr)	2017/03/06	0.34		%	20
			Total Copper (Cu)	2017/03/06	2.5		%	20
			Total Lead (Pb)	2017/03/06	NC		%	20
			Total Nickel (Ni)	2017/03/06	5.2		%	20
			Total Zinc (Zn)	2017/03/06	1.1		%	20
4887233	DKI	Matrix Spike	2,4,6-Tribromophenol	2017/03/06		98	%	10 - 130
			2-Fluorobiphenyl	2017/03/06		80	%	30 - 130
			2-Fluorophenol	2017/03/06		44	%	10 - 130
			D14-Terphenyl	2017/03/06		103	%	30 - 130
			D5-Nitrobenzene	2017/03/06		88	%	30 - 130
			D5-Phenol	2017/03/06		29	%	10 - 130
			Bis(2-ethylhexyl)phthalate	2017/03/06		95	%	30 - 130
			Di-N-butyl phthalate	2017/03/06		114	%	30 - 130
4887233	DKI	Spiked Blank	2,4,6-Tribromophenol	2017/03/07		78	%	10 - 130
		- 1	2-Fluorobiphenyl	2017/03/07		62	%	30 - 130
			2-Fluorophenol	2017/03/07		45	%	10 - 130



Golder Associates Ltd Client Project #: 1771738 Sampler Initials: GC

# QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			D14-Terphenyl	2017/03/07		98	%	30 - 130
			D5-Nitrobenzene	2017/03/07		74	%	30 - 130
			D5-Phenol	2017/03/07		31	%	10 - 130
			Bis(2-ethylhexyl)phthalate	2017/03/07		105	%	30 - 130
			Di-N-butyl phthalate	2017/03/07		107	%	30 - 130
4887233	DKI	Method Blank	2,4,6-Tribromophenol	2017/03/07		66	%	10 - 130
			2-Fluorobiphenyl	2017/03/07		74	%	30 - 130
			2-Fluorophenol	2017/03/07		41	%	10 - 130
			D14-Terphenyl	2017/03/07		94	%	30 - 130
			D5-Nitrobenzene	2017/03/07		74	%	30 - 130
			D5-Phenol	2017/03/07		31	%	10 - 130
			Bis(2-ethylhexyl)phthalate	2017/03/07	<2.0		ug/L	
			Di-N-butyl phthalate	2017/03/07	<2.0		ug/L	
4887259	LJN	Matrix Spike	Total Cyanide (CN)	2017/03/06		101	%	80 - 120
4887259	LJN	Spiked Blank	Total Cyanide (CN)	2017/03/06		97	%	80 - 120
4887259	LJN	Method Blank	Total Cyanide (CN)	2017/03/06	<0.0050		mg/L	
4887259	LJN	RPD	Total Cyanide (CN)	2017/03/06	NC		%	20
4887396	BG1	Matrix Spike	4-Bromofluorobenzene	2017/03/07		99	%	70 - 130
		·	D4-1,2-Dichloroethane	2017/03/07		94	%	70 - 130
			D8-Toluene	2017/03/07		100	%	70 - 130
			Benzene	2017/03/07		100	%	70 - 130
			Chloroform	2017/03/07		96	%	70 - 130
			1,2-Dichlorobenzene	2017/03/07		100	%	70 - 130
			1,4-Dichlorobenzene	2017/03/07		101	%	70 - 130
			cis-1,2-Dichloroethylene	2017/03/07		103	%	70 - 130
			trans-1,3-Dichloropropene	2017/03/07		98	%	70 - 130
			Ethylbenzene	2017/03/07		103	%	70 - 130
			Methylene Chloride(Dichloromethane)	2017/03/07		93	%	70 - 130
			1,1,2,2-Tetrachloroethane	2017/03/07		105	%	70 - 130
			Tetrachloroethylene	2017/03/07		NC	%	70 - 130
			Toluene	2017/03/07		101	%	70 - 130
			Trichloroethylene	2017/03/07		98	%	70 - 130
			p+m-Xylene	2017/03/07		100	%	70 - 130
			o-Xylene	2017/03/07		100	%	70 - 130
4887396	RG1	Spiked Blank	4-Bromofluorobenzene	2017/03/07		98	%	70 - 130
4007330	DOI	эрікса Біалк	D4-1,2-Dichloroethane	2017/03/07		94	%	70 - 130
			D8-Toluene	2017/03/07		100	%	70 - 130
			Benzene	2017/03/07		100	%	70 - 130
			Chloroform	2017/03/07		96	%	70 - 130
			1,2-Dichlorobenzene	2017/03/07		102	%	70 - 130
			1,4-Dichlorobenzene	2017/03/07		102	%	70 - 130 70 - 130
				2017/03/07		103	%	70 - 130 70 - 130
			cis-1,2-Dichloroethylene	2017/03/07		94	%	70 - 130 70 - 130
			trans-1,3-Dichloropropene Ethylbenzene				%	
			,	2017/03/07		102		70 - 130
			Methylene Chloride(Dichloromethane) 1,1,2,2-Tetrachloroethane	2017/03/07		93 101	%	70 - 130
				2017/03/07		101	%	70 - 130
			Tetrachloroethylene	2017/03/07		97 100	%	70 - 130
			Toluene	2017/03/07		100	%	70 - 130
			Trichloroethylene	2017/03/07		99	%	70 - 130
			p+m-Xylene	2017/03/07		100	%	70 - 130
			o-Xylene	2017/03/07		100	%	70 - 130
4887396	BG1	Method Blank	4-Bromofluorobenzene	2017/03/07		96	%	70 - 130
			D4-1,2-Dichloroethane	2017/03/07		94	%	70 - 130



Golder Associates Ltd Client Project #: 1771738 Sampler Initials: GC

# QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			D8-Toluene	2017/03/07		99	%	70 - 130
			Benzene	2017/03/07	<0.10		ug/L	
			Chloroform	2017/03/07	<0.10		ug/L	
			1,2-Dichlorobenzene	2017/03/07	<0.20		ug/L	
			1,4-Dichlorobenzene	2017/03/07	<0.20		ug/L	
			cis-1,2-Dichloroethylene	2017/03/07	<0.10		ug/L	
			trans-1,3-Dichloropropene	2017/03/07	<0.20		ug/L	
			Ethylbenzene	2017/03/07	<0.10		ug/L	
			Methylene Chloride(Dichloromethane)	2017/03/07	<0.50		ug/L	
			1,1,2,2-Tetrachloroethane	2017/03/07	<0.20		ug/L	
			Tetrachloroethylene	2017/03/07	<0.10		ug/L	
			Toluene	2017/03/07	<0.20		ug/L	
			Trichloroethylene	2017/03/07	<0.10		ug/L	
			p+m-Xylene	2017/03/07	<0.10		ug/L	
			o-Xylene	2017/03/07	<0.10		ug/L	
			Total Xylenes	2017/03/07	<0.10		ug/L	
4887396	BG1	RPD	Benzene	2017/03/07	NC		%	30
			Chloroform	2017/03/07	0.063		%	30
			1,2-Dichlorobenzene	2017/03/07	NC		%	30
			1,4-Dichlorobenzene	2017/03/07	1.9		%	30
			cis-1,2-Dichloroethylene	2017/03/07	NC		%	30
			trans-1,3-Dichloropropene	2017/03/07	NC		%	30
			Ethylbenzene	2017/03/07	NC		%	30
			Methylene Chloride(Dichloromethane)	2017/03/07	NC		%	30
			1,1,2,2-Tetrachloroethane	2017/03/07	NC		%	30
			Tetrachloroethylene	2017/03/07	NC		%	30
			Toluene	2017/03/07	NC		%	30
			Trichloroethylene	2017/03/07	NC		%	30
			p+m-Xylene	2017/03/07	NC		%	30
			o-Xylene	2017/03/07	NC		%	30
			Total Xylenes	2017/03/07	NC		%	30
4888219	NYS	Spiked Blank	, рН	2017/03/07		102	%	98 - 103
4888219	NYS	RPD	pH	2017/03/07	0.23		%	N/A
4888412	AS6	QC Standard	Total Suspended Solids	2017/03/06		96	%	85 - 115
4888412	AS6	Method Blank	Total Suspended Solids	2017/03/06	<10		mg/L	
4888412	AS6	RPD	Total Suspended Solids	2017/03/06	5.4		%	25
4888465	SHG	Matrix Spike	Decachlorobiphenyl	2017/03/07		83	%	60 - 130
			Total PCB	2017/03/07		90	%	60 - 130
4888465	SHG	Spiked Blank	Decachlorobiphenyl	2017/03/07		81	%	60 - 130
		•	Total PCB	2017/03/07		99	%	60 - 130
4888465	SHG	Method Blank	Decachlorobiphenyl	2017/03/07		87	%	60 - 130
			Total PCB	2017/03/07	<0.05		ug/L	
4888465	SHG	RPD	Total PCB	2017/03/07	NC		%	40
4888722	LHA	Matrix Spike	Total Kjeldahl Nitrogen (TKN)	2017/03/07		106	%	80 - 120
4888722	LHA	QC Standard	Total Kjeldahl Nitrogen (TKN)	2017/03/07		104	%	80 - 120
4888722	LHA	Spiked Blank	Total Kjeldahl Nitrogen (TKN)	2017/03/07		99	%	80 - 120
4888722	LHA	Method Blank	Total Kjeldahl Nitrogen (TKN)	2017/03/07	<0.10		mg/L	-
4888722	LHA	RPD	Total Kjeldahl Nitrogen (TKN)	2017/03/07	3.4		%	20
4889091	ZSK	Matrix Spike	Phenols-4AAP	2017/03/07		100	%	80 - 120
4889091	ZSK	Spiked Blank	Phenols-4AAP	2017/03/07		100	%	85 - 115
4889091	ZSK	Method Blank	Phenols-4AAP	2017/03/07	<0.0010		mg/L	
4889091	ZSK	RPD	Phenols-4AAP	2017/03/07	NC		%	20
4889091	RON	Matrix Spike	Mercury (Hg)	2017/03/08		104	%	75 - 125



Golder Associates Ltd Client Project #: 1771738 Sampler Initials: GC

#### QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4889099	RON	Spiked Blank	Mercury (Hg)	2017/03/08		103	%	80 - 120
4889099	RON	Method Blank	Mercury (Hg)	2017/03/08	<0.0001		mg/L	
4889099	RON	RPD	Mercury (Hg)	2017/03/08	NC		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



Golder Associates Ltd Client Project #: 1771738 Sampler Initials: GC

## VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brad Newman, Scientific Specialist

avisting Carriere

Cristina Carriere, Scientific Services

Riddhi Bayal

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.