
603-643 & 645-699 KINGSTON ROAD MIXED-USE DEVELOPMENT

City of Pickering Urban Transportation Considerations Update

Prepared For: Director Industrial Holdings Limited
October 2023

AUTHORSHIP

Date	Revision	Update
13/04/2020	Version 1 – Final Report	Initial OPA / ZBA Submission
23/10/2023	Version 2 – Final Report	OPA / ZBA Re-Submission #1

PREPARED BY REVIEWED BY

Lead Author

Tony Chao-Wei Shih, P.Eng.

Associate

Project Manager

Steve Krossey, P.Eng. Principal

TABLE OF CONTENTS

FORE\	WORD AND RESPONSE TO COMMENTS	I
1.0	INTRODUCTION	1
	1.1 This Study	
	1.2 Existing Site	1
2.0	PROPOSED DEVELOPMENT CONCEPT	4
	2.1 Overview	4
	2.2 Building Summary	5
3.0	PLANNING & POLICY CONTEXT	7
	3.1 Provincial and Regional Policy Framework and Directives	7
	3.2 Local Area and Site-Specific Planning Policy	9
4.0	EVOLVING AREA TRANSPORTATION CONTEXT	11
	4.1 Area Road Context	11
	4.2 Area Transit Context	15
	4.3 Area Pedestrian Context	
	4.4 Area Cycling Context	33
5.0	TRANSPORTATION DEMAND MANAGEMENT STRATEGY	
	5.1 TDM Approach	
	5.2 TDM Objectives	
	5.3 TDM Measures	35
6.0	VEHICULAR PARKING CONSIDERATIONS	
	6.1 Zoning By-law Parking Requirements	
	6.2 Proposed Parking Requirements	
	6.3 Appropriateness of Reduced Residential Parking Supply	
	6.4 Appropriateness of Reduced Non-Residential Parking Supply	
7.0	BICYCLE PARKING CONSIDERATIONS	
	7.1 Zoning By-law Bicycle Parking Requirements	
	7.2 Recommended Bicycle Parking Requirements	
8.0	LOADING CONSIDERATIONS	62
9.0	MULTI-MODAL TRAVEL DEMAND FORECASTING	64
	9.1 Forecasting Approach	64
	9.2 Residential Site Travel Demands	
	9.3 Office Site Travel Demands	
	9.4 Retail Site Travel Demands	
	9.5 Summary of Site Travel Demand	69
10.0	VEHICLE TRAVEL DEMANDS	
	10.1 Traffic Analysis Scenarios and Design Periods	
	10.2 Existing Traffic Volumes	
	10.3 Future Background Traffic Volumes	
	10.4 Site Traffic Volumes	
	20.0 Tatale fotal frame volumes	

11.0	TRAFFI	C OPERATIONS ANALYSIS	. 88
	11.1	Analysis Methodology	88
	11.2	Network-Wide Parameters	
	11.3	Traffic Operations Results	91
12.0	MICRO	SIMULATION ANALYSIS	. 104
	12.1	Vissim Model Development	104
	12.2	Existing Conditions Model Calibration	105
	12.3	Future Conditions Model Analysis	108
	12.4	Vissim Conclusions and Recommendations	114
13.0	SUMM	ARY AND CONCLUSIONS	. 115

TABLE OF APPENDICES

Appendix A: Reduced Scale Architectural Plans Appendix B: Transit Reach & Impact Analysis Appendix C: Turning Movements Counts

Appendix D: Signal Timing Plans

Appendix E: Synchro Analysis Worksheets

Appendix F: Vissim Model

Appendix G: Functional Road Plan

LIST OF TABLES

Table 1	Project Summary	
Table 2	Area Road Network	11
Table 3	Area Transit Network	16
Table 4	Potential TDM Plan Strategies	36
Table 5	Site-Specific By-laws No. 1810-84 & 2471-87 Parking Requirements	39
Table 6	City of Pickering By-law 7553-17 Parking Requirements	42
Table 7	Recommended Minimum Parking Requirements	43
Table 8	Area Peak Period Travel Mode Distribution	49
Table 9	Residential Parking Supply Ratio Requirements – Comparable Ontario Municipalities	50
Table 10	Reductions in Residential Parking Supply Requirements (City of Pickering)	52
Table 11	Parking Supply Reductions Across GTHA with Comparable Transportation Contexts	53
Table 12	Universal City Condominiums Parking Sales Data Summary	56
Table 13	Comparison of Municipal Parking Standards for Residential Visitor	59
Table 14	Recommended (Zoning By-law 7553-17) Bicycle Parking Requirements	60
Table 15	Recommended (City of Toronto Zoning By-law 569-2013) Loading Requirements	62
Table 16	Existing Residential Modal Split	64
Table 17	Residential Person-Based Trip Generation	65
Table 18	Residential Proxy Site Trip Generation	66
Table 19	Office Site Trip Generation	67
Table 20	Non-Residential Parking Availability	68
Table 21	Retail Vehicle Trip Generation	68
Table 22	Site Multi-Modal Trip Summary	69
Table 23	Existing Traffic Data Resources	70
Table 24	Existing Site Traffic Volumes	72
Table 25	Area Background Developments	76
Table 26	Proposed Site Vehicle Traffic (Scenario 1)	79
Table 27	Revised Site Trip Generation Forecast	82
Table 28	Site Traffic Assignment	82
Table 29	Peak Hour Factors	90
Table 30	Signalized Intersection Analysis Summary – Scenario 1	94
Table 31	Unsignalized Traffic Analysis Intersection Summary – Scenario 1	97
Table 32	Signalized Intersection Analysis Summary – Scenario 2	100
Table 33	Unsignalized Traffic Analysis Intersection Summary – Scenario 2	103

LIST OF FIGURES

Figure 1:	Site Location	2
Figure 2:	Site Context	3
Figure 3:	Site Plan	6
Figure 4:	Whites - Recommended Intensification Scenario	10
Figure 5:	Existing Area Road Network	13
Figure 6:	Potential Expansion of the 401 Eastbound Off-Ramp at Whites Road	14
Figure 7:	Existing Area Transit Network	20
Figure 8:	Durham-Scarborough BRT Proposed Design	21
Figure 9:	BRT Connectivity - Key Designations	
Figure 10:	Existing vs Future BRT "Guaranteed" 30 Minute Transit Reach	23
Figure 11:	Private Vehicle and BRT Speed Comparison	24
Figure 12:	Existing 60 Minute Transit Reach Frequency	25
Figure 13:	BRT & RER Future 60 Minute Transit Reach Frequency	26
Figure 14:	Future Whites GO Station	27
Figure 15:	Business Case Review of Density Served by Whites GO Station	28
Figure 16:	Intensification Study Review of Density Served by Whites GO Station	29
Figure 17:	Whites GO Station Future 60 Minute Transit Reach Frequency	30
Figure 18:	Existing Area Pedestrian Destinations	32
Figure 19:	Existing and Future Area Cycling Network	34
Figure 20:	Existing Lane Configurations	72
Figure 21:	Future Lane Configurations	73
Figure 22:	Existing Traffic Volumes	74
Figure 23:	Existing Site Traffic Removal	
Figure 24:	Future Background Traffic Volumes	78
Figure 25:	Forecast Net-New Site Traffic Volumes (Scenario 1)	84
Figure 26:	Future Total Traffic Volumes (5-Year Study Horizon) – Scenario 1	85
Figure 27:	Future Total Traffic Volumes (10-Year Study Horizon) – Scenario 1	86
Figure 28:	Future Total Traffic Volumes (15-Year Study Horizon) – Scenario 1	87
Figure 29: 6	503-643 & 645-699 Kingston Road <i>Vissim</i> Microsimulation Model Study Area	.104
Figure 30: k	(ingston Road Eastbound and Westbound - Existing Model Calibration Travel Times (AM/PM)	.107
	Ourham-Scarborough BRT at Kingston Road and Whites Road	
Figure 32: k	(ingston Road Eastbound - Travel Time Comparison Plots (AM and PM)	.110
Figure 33: k	(ingston Road Westbound - Travel Time Comparison Plots (AM and PM)	.110
Figure 34: \	/ehicle Average Travel Speed Plots (AM)	.113
Figure 35: \	/ehicle Average Speed Plots (PM)	.114

FOREWORD AND RESPONSE TO COMMENTS

BA Group submitted an Urban Transportation Considerations Report entitled 603-643 & 645-699 Kingston Road, Mixed-Use Development, dated April 2020, in support of an Official Plan Amendment (OPA) and Zoning By-law Amendment (ZBA) applications for the development proposal located at 603-643 & 645-699 Kingston Road in the City of Pickering.

BA Group is retained by the client – Director Industrial Holdings Limited – to provide an update to the aforementioned Urban Transportation Considerations Report given updates to the development proposal and to address comments provided by the City of Pickering, Durham Region, and Ministry of Transportation Ontario (MTO) in response to the application and to provide further review of the Site Plan.

The Urban Transportation Considerations Update Report contained herein is based upon the report submitted in April 2020, updated where appropriate to reflect changes to the development programme. At this time, the development considers in the order of 3,460 residential units, 2,474 m² of retail space GFA, and 3,475 m² of office space GFA.

Response to Comments

This section contains comments provided by the City of Pickering, the Durham Region and the MTO, and responses to the comments.

City of Pickering | Fire Department, September 23, 2020

Comment #1

I will need bit more information on the proposed fire route to tower 8. It appears as though it might be dead end that would not meet our development guidelines. Could you have the applicant illustrate the proposed fire route for that tower.

Response

The site plan has been revised, Tower 8 is now considered Tower 7. Fire route access to Tower 7 will be provided along Kingston Road and the CAFC room will be located within a 15 metre radius of the fire route access. The fire route access will be reviewed in further detail as part of the future SPA application process.

City of Pickering | Engineering Services, September 28, 2020

Comment #6 - Traffic Comments

In Figure 3 – Site Plan, the plan recommends a private condominium road from Steeple Hill Road to the new proposed access. The Kingston Road Intensification Study, recommends a public road from Steeple Hill Road to the new proposed access to the site.

Response

The site plan has been revised to provide a new north-south and east-west road extension from Kingston Road into the site. A new public road requested through this comment is still under discussion with City Planning. A functional road plan of the proposed road network is provided in **Appendix G**.

Comment #7 - Traffic Comments

A traffic analysis has been completed for AM and PM peak hours. Please confirm why Saturday traffic analysis has not been completed for the proposed site.

Response

The proposed development plan generally consists of residential and office uses which typically generate traffic during the weekday morning and afternoon peak hours. The proposed retail use will generally function and operate similarly to that of an at-grade ancillary retail use. Given the nature of the proposed retail, it is expected to primarily service residents and employees of the proposed development and residents within the surrounding neighbourhood. Therefore, it will generate primarily internal trips. It is not a big box retail or destination retail where significant amount of new external primary trips will be generated. It is anticipated that majority of the trips to / from the retail are expected to be pass-by trips.

Comment #8 – Traffic Comments

The proposed access on the west side of the site has been recommended as a right in – right out access. Please show it on the site plan.

Response

The site plan has been revised to illustrate the secondary site access along the western boundary of the property as a right-in / right-out access.

Comment #9 – Traffic Comments

A sightline review analysis should be included for both accesses.

Response

A sightline review analysis will be conducted in a subsequent submission to the City as part of the on-going approval process.

Comment #10 - Traffic Comments

All proposed road widths, access widths and their radii should be shown on Figure 3 – Site Plan.

Response

The site plan figure provided in the report is for illustrative and narrative purposes for the report, it is not intended to illustrate design details. The design details of the site plan have been illustrated in the architectural plans and are provided in **Appendix A** of this report.

Comment #11 - Traffic Comments

Figure 3 – Site Plan shows only through lane directional arrows at Steeple Hill Road. There should also be a north bound left turn arrow/lane at this intersection.

Response

The site plan figure provided in the report is for illustrative and narrative purposes for the report, it is not intended to illustrate design details. The design details of the site plan have been illustrated in the architectural plans and are provided in **Appendix A** of this report.

Comment #12 - Traffic Comments

An Autoturn diagram for the fire truck and the delivery vehicles should be included.

Response

Vehicle manoeuvring diagrams will be provided in a subsequent submission as part of the on-going application process.

Comment #13 – Traffic Comments

Show the signalized intersections on the site plan.

Response

The site plan figure has been revised to illustrate the signalized intersections. Please refer to Figure 3 of this report.

Comment #14 - Traffic Comments

Add a Conclusion section at the end of the report.

Response

BA Group's April 2020 report provided an executive summary section at the beginning of the report that summarized the key findings of the transportation related aspects for the site. This section served as the Conclusion section for the report. The updated report has been revised to provide the Conclusion section at the end of the report. Please see **Section 13.0** of this report.

City of Pickering | City Development Department, December 21, 2020

Comment #6 - Traffic, Parking and Street Network and Design

As noted in the Region of Durham's comments, dated November 13, 2020, and the e-mails from the Ministry of Transportation, the submitted Transportation Impact Study (TIS) is required to be revised to address a number of deficiencies noted in their correspondence. The revised TIS shall be prepared in accordance with the City's and Durham Region's terms of reference. Please submit a copy of the terms of reference for the TIS to be reviewed and approved by the Region and the City. The submitted TIS may be peer reviewed. In accordance with the City's User Fee By-law, the applicant is responsible for reimbursing the City's full cost of the peer review.

Response

Noted. This report serves as an update to BA Group's April 2020 report.

Comment #7 - Traffic, Parking and Street Network and Design

This TIS shall include an analysis of whether the proposal will result in any significant traffic impacts and/or operational issues on Kingston Road, Whites Road, Whites Road/401 interchange, Steeple Hill/Kingston Road intersection and any other roads/intersections within the neighbourhood. Furthermore, the TIS shall include current traffic counts and historical data to ensure the Study reflects appropriate traffic counts given the recent changes in travel due to COVID-19. The study shall also provide recommendations of any road improvements that are required to implement the development along with the timing of those improvements. Any improvements to an existing roads and/or intersection to facilitate the development will be the responsibility of the applicant and will need to be appropriately secured prior to the issuance of any approvals.

Response

New traffic counts have been conducted and surveyed at the key intersections within the study area on Tuesday, May 16, 2023. The traffic forecasting and traffic analysis operations provided in this report has been revised and updated to reflect these new traffic count survey.

Comment #8 - Traffic, Parking and Street Network and Design

The Intensification Plan and the draft Urban Design Guidelines illustrate a public road travelling south from Steeple Hill and bending to the west through the subject lands to connect back to Kingston Road through the future redevelopment of the lands to the west of the subject properties. All public and private streets within the site are to be designed in accordance with the Intensification Plan and Draft Urban Design Guidelines. As illustrated in the Intensification Plan on Figure 90, Whites Precinct Streetscape Cross Section, the proposed future east-west street is identified as a Public Street having a right-of-way width ranging between 17.0 metres and 19.0 metres. Based on the volume of traffic to be accommodated on this street, the revised TIS shall provide a recommendation as to the ultimate right-of-way width. The right-of-way for the proposed public east-west street is to be designed as a complete street including cycling facilities and other elements such as enhanced landscaped boulevards, seating areas and street trees, possibly including on-street parking, and be designed as illustrated in the Draft Urban Design Guidelines.

The rationale for the proposed public street stems from the fact that the Intensification Plan seeks the provision of a new and improved road network for multiple modes of transportation, consolidation of driveways and accesses onto Kingston Road, providing access to multiple development blocks, and serving as right-of-ways (conduits) for underground municipal infrastructure, integrated with a secondary network of private roads and laneways. Further, upon discussion with the City's Engineering staff, this proposed public street would provide necessary relief for Kingston Road, serve as access to the proposed public park, support greater volumes of traffic, which are anticipated to be generated by a development of this

size, and support greater public access for non-residents and visitors coming to the area for the public park, office and commercial uses.

Also, depending on the revised site configuration, if there are still to be a number of different buildings and uses proposed east of the proposed public street, consideration should be given to designing this portion of the road to a public road standard such that it could be conveyed to the City at a future date. Public roads provide logical and easy to follow addressing and numbering.

Please demonstrate that the redevelopment of the site will not preclude the ability to dedicate the primary access street as a municipal road. Further discussion is required regarding the design, construction and conveyance of this street to the City as a public street. Staff do not consider it to be appropriate for this development to be served solely by the proposed private street network.

Response

The site plan has been revised to provide a new north-south and east-west road extension from Kingston Road into the site. A new public road requested through this comment is still under discussion with City Planning. A functional road plan of the proposed road network is provided in **Appendix G**.

Comment #9 - Traffic, Parking and Street Network and Design

Staff are concerned that the parking supply proposed for resident, visitor and commercial uses may not be sufficient to support the development. The submitted TIS states that the City Centre Zoning By-law provisions are appropriate, including incorporating a shared parking formula. However, the parking ratios within the City Centre by-law provisions may not be appropriate for the proposed development given that the lands are located outside the City Centre and are not within convenient walking distance to higher-order transit services such as the GO station.

Please submit a Parking Justification Study with the next submission to support the proposed parking rates and shared parking formula. Please submit a copy of the Terms of Reference to be reviewed and approved by the City. The Parking Justification Study may be peer reviewed. In accordance with the City's User Fee By-law, the applicant is responsible for reimbursing the City's full cost of the peer review.

To support the proposed grade-related commercial uses, an appropriate amount of surface parking should be incorporated.

Response

The proposed parking supply rates have been revised to provide residents parking at a rate of 0.65 spaces per unit and residential visitors parking at a rate of 0.15 spaces per unit. Please refer to **Sections 6.3** and **6.4** of this report for the justification of the proposed parking supply rates.

Comment #10 - Traffic, Parking and Street Network and Design

Ensure accessible paths of travel throughout the site including pedestrian connections to street networks, public transit, parks and POPS.

Response

Durham Region | Regional Works Department, October 30, 2020

Comment #1 - Urban Transportation Considerations

As discussed in the detailed comments that follow, there are several areas of the study that are not in compliance with the Region's Traffic Impact Study Guidelines. These include the apparent lack of field observations and use of non-standard and/or incorrect Synchro analysis parameters.

Response

The Synchro analysis parameters were adopted in accordance with the Region of Durham's standards in Chapter 9 of the *Design Specifications for Traffic Control Devices, Pavement Marking, Signage and Roadside Protection* guidelines, dated April 2017. These parameters generally included: lane widths, base ideal saturation flow rate, peak hour factors, heavy vehicles and signal timings. Lost time adjustment factor was the only parameter inconsistent with Durham Region's standards. A lost time adjustment factor of -1.0 seconds was adopted for the purposes of this assessment. To account for vehicles that complete a turning movement during amber or all-red times, a lost time adjustment of -1.0 seconds is applied for all movements at all signalized intersections. This is reflective of busy, urban intersections that operate at or near capacity, where drivers take advantage of as much of the green and amber time as possible to clear the intersection.

Comment #2 – Urban Transportation Considerations

The consultant did not follow the direction received from Region staff during pre-consultation to submit background growth rates related to traffic forecasting and Vissim modelling information for Region review prior to their application in the study.

Response

Noted.

Comment #3 – Urban Transportation Considerations

The consultant provides an outline of a Transportation Demand Management plan that includes measures that could reduce the vehicle trip-making associated with the development, and the Region will be seeking commitments from the proponent to follow through with implementing the components of the plan that are under their control.

Response

Noted. The TDM plan will be reviewed in detail as part of the future Site Plan Approval (SPA) application process.

Comment #4 – Urban Transportation Considerations

In the forecasting and Synchro operational analysis, the consultant omits a signalized intersection along the Kingston Road corridor within the study area - i.e. the Kingston Road/Delta Boulevard intersection. It is also omitted in the discussion of mid-block pedestrian crossing opportunities along the study area section of the Kingston Road corridor.

This omission should be addressed to provide the most accurate representation of the road network for the Synchro analysis and to correct the discussion of mid-block pedestrian crossing opportunities.

Response

The Kingston Road / Delta Boulevard intersection is a signalized intersection that provides primary access to two retail parcels. It is not anticipated site-related traffic volumes will travel to / from these retail parcels, majority of trips will be through volumes along Kingston Road and will have minimal impacts to the intersection. Notwithstanding, the traffic analysis conducted for this project has been revised and updated to include the Kingston Road / Delta Boulevard intersection.

Comment #5 – Urban Transportation Considerations

The consultant should review cycle lengths used for the analysis of future conditions to ensure that a common background cycle is being used for the Kingston Road corridor.

Response

Noted.

Comment #6 – Urban Transportation Considerations

The consultant has not presented the Synchro queue analysis results (other than providing the raw Synchro reports in the appendices) or assessed the design implications of the queuing associated with the proposed development. This omission should be addressed.

Response

Synchro queue analysis results were not presented in the report due to a full VISSIM model of the study area was provided that summarizes the queue analysis results. The VISSIM model provides a better representation of the queueing analysis results than a Synchro model. VISSIM is a microsimulation model that observes the queueing based on each individual vehicle travel behaviours, similar to real-life travel behaviours and experiences. Synchro is a macrosimulation model that calculates queueing based on constant parameter assumptions which is not representative of a person's travel behaviour. Therefore, the Synchro queue analysis results were not reported in detail as part of this report.

Comment #7 – Urban Transportation Considerations

There are omissions in the Vissim modelling and microsimulation analysis including identifying the horizon year that the modelling was carried out for, clarifying whether any field work was done as related to modelling existing conditions, clearly stating the criteria being used to define "significant" or "excessive" changes to the travel time performance metric, clarifying conclusions related to the impact of the proposed development, and providing comparisons of microsimulation analysis results with Synchro analysis results to demonstrate that the two analysis methodologies are compatible in terms of assessing impacts.

Response

The future background and future total scenarios horizon year has been clarified in Section 3.0 of the Microsimulation Model Calibration and Analysis Report provided in Appendix F. Existing conditions field work or sources of field data have been clarified in Section 2.0 of the Microsimulation Model Calibration and Analysis Report provided in Appendix F, and analysis conclusions have been clarified in Section 3.0 and Section 4.0 of the Microsimulation Model Calibration and Analysis Report provided in Appendix F.

The Vissim microsimulation model-based analysis is complimentary to the Synchro, Highway Capacity Manual based. The Synchro analysis provided in the Urban Transportation Considerations report focuses on future projected impacts at the intersection turning movement level, while the Vissim microsimulation analysis provides future projected impacts both network wide and on specific intersection operations (focusing on metrics that are not available with standard traffic capacity analysis methods).

Comment #2c) - Evolving Area Transportation Context (Section 4.0)

Note that there have been significant changes to existing DRT services since the study was completed. This should be reflected in the revised study.

Response

Noted.

Comment #2e) – Evolving Area Transportation Context (Section 4.0)

The description of the existing pedestrian network identifies the lack of mid-block crossing opportunities of Kingston Road and notes that a new controlled intersection between Steeple Hill and Rosebank Road should be subject to further study in conjunction with future development to the west of the subject site as per the Kingston Road Corridor and Specialty Retailing Node Intensification Study (and not specifically related to the subject development). We note that Figure 19 is used to highlight the walking distances between signalized intersections along Kingston Road, but it omits the existing traffic signal control at the Kingston Road/Delta Boulevard intersection to the east of Whites Road. As described, the enhancement of the sidewalk network, at-grade retail uses along Kingston Road, and the removal of the existing large surface parking areas should all improve opportunities for pedestrian travel within and adjacent to the subject site.

Response

Noted.

Comment #2f) – Evolving Area Transportation Context (Section 4.0)

The description of the future cycling network, which references the Durham Transportation Master Plan (2017), shows a number of improvements along the Kingston Road and Whites Road corridors that would be beneficial for cycling trips generated by the proposed development. The consultant should also refer to the City of Pickering Integrated Transportation Master Plan (ITMP), which makes recommendations for additional cycling connections in the City. Information on the proposed additional cycling facilities should be obtained from City staff.

Response

Comment #3h) - Transportation Demand Management Strategy (Section 5.0, "TDM")

The use of current services such as Smart Commute Durham was noticeably absent from the list. Smart Commute Durham, as an employee-based program, would apply to workplaces that want to be members with 50+ employees. There is the potential for the office component of the development to have workplaces large enough to become members, but the retail and residential components would not be part of the program. TDM measures such as dissemination of information on Cycle Durham, DRT routes, preloaded Presto Cards and carpool lot mapping would be beneficial to residents and should be noted as part of the communication and promotion measures.

Response

Noted. The TDM plan will be reviewed in detail as part of the future Site Plan Approval (SPA) application process.

Comment #3i) - Transportation Demand Management Strategy (Section 5.0, "TDM")

There are no costs identified for the various TDM strategies, and responsibilities for implementation and on-going operation should be identified.

Response

Noted. The TDM plan will be reviewed in detail as part of the future Site Plan Approval (SPA) application process.

Comment #4c) - Vehicular Parking Considerations (Section 6.0)

While the parking rationale appears reasonable, it is assumed that City staff will review the proposed parking supply in more detail as this is primarily a City responsibility.

Response

Noted.

Comment #5b) - Bicycle Parking Considerations (Section 7.0)

As noted above, it is assumed that City staff will review the proposed bike parking supply in more detail as this is primarily a City responsibility.

Response

Noted.

Comment #6e) - Multi-Modal Travel-Demand Forecasting (Section 8.0)

There is no comparison provided by the consultant of the calculated trip rates versus other sources such as the ITE Trip Generation Manual or with proxy sites in Durham Region that are well-served by public transit. We find that the resultant trip rates are approximately 10 to 15% lower than general urban/suburban high-rise residential trip rates in the ITE manual, which demonstrates that there will be a significant reliance on TDM measures to achieve the lower vehicle trip generation for the proposed residential uses.

Response

Residential proxies provided are located in York Region, primarily Vaughan and Richmond Hill, in areas with similar transportation context as Kingston Road / Whites Road area. As requested by Durham Region, new residential proxy sites have recently been surveyed in Durham Region. Based on comparison of the York Region and Durham Region surveys, the Durham Region surveys resulted in a lower trip rates than the York Region trip rates. Therefore, the analysis conducted as part of the April 2020 Report was considered more conservative.

The ITE Trip Generation Manual is not considered an appropriate source for generating trips for development located in a context with access to significant transit. ITE Trip Generation Manual trip rates are based on proxy sites primarily surveyed in the United States where there are minimal transit and active transportation infrastructure provided and located in very auto-oriented areas. ITE also mentions that the auto mode split in their manual represents approximately 96%. Based on 2016 TTS data, the auto modal split for the site area represents approximately 80% to 85% which is approximately equivalent to the 10% to 15% reduction specified in the comments.

The residential trip generation rates have been revised and updated since the April 2020 Report to reflect recent travel patterns and behaviour. The residential trip generation rates are outlined in **Section 10.4** of this report.

Comment #6f) - Multi-Modal Travel-Demand Forecasting (Section 8.0)

The consultant develops office trip generation rates based on the average trip rates at three proxy sites, all presumed to be in Toronto since no municipality is listed in Table 16. The proxy site data showed that one of the sites had considerably lower trip rates (about 50%) than the other two sites and brought the average trip rate down. The selected rates are approximately 10 to 15% less than the ITE general office trip rate, and while the consultant states that the office trips will be generated primarily by automobile, it appears that there will be some significant reliance on other modes as well as internal synergies.

Response

The ITE Trip Generation Manual is not considered an appropriate source for generating trips for development located in a context with access to significant transit. ITE Trip Generation Manual trip rates are based on proxy sites primarily surveyed in the United States where there are minimal transit and active transportation infrastructure provided and located in very auto-oriented areas. ITE also mentions that the auto mode split in their manual represents approximately 96%. Based on 2016 TTS data, the auto modal split for the site area represents approximately 80% to 85% which is approximately equivalent to the 10% to 15% reduction specified in the comments.

Comment #6g) - Multi-Modal Travel-Demand Forecasting (Section 8.0)

The consultant develops retail trip generation rates based first on a reasonable assumption that the retail will primarily serve the other on-site uses and second by undertaking a first principles approach based on the anticipated use of the 78 parking spaces by the retail uses (typo in report also refers to 90 retail parking spaces). The resultant peak hour trip estimates appear reasonable given the development context.

Response

Comment #7a) - Vehicle Travel Demands (Section 9.0)

In this section, the consultant develops background and total traffic estimates for 2024, 2029, and 2034 horizon years. It should be noted that the consultant did not follow the direction provided by Region staff during pre-consultation, as they did not submit proposed background growth rates for review and approval by Region staff prior to applying them in the study.

Response

Noted.

Comment #7c) - Vehicle Travel Demands (Section 9.0)

Field observations of peak hour traffic operations and documentation of same are a requirement of the Region's TIS Guidelines. The consultant has not included documentation of any field observations. For future studies, the Region will expect that this type of omission will be addressed.

Response

The Synchro analysis parameters were adopted in accordance with the Region of Durham's standards in Chapter 9 of the *Design Specifications for Traffic Control Devices, Pavement Marking, Signage and Roadside Protection* guidelines, dated April 2017. These parameters generally included: lane widths, base ideal saturation flow rate, peak hour factors, heavy vehicles and signal timings. Lost time adjustment factor was the only parameter inconsistent with Durham Region's standards. A lost time adjustment factor of -1.0 seconds was adopted for the purposes of this assessment. To account for vehicles that complete a turning movement during amber or all-red times, a lost time adjustment of -1.0 seconds is applied for all movements at all signalized intersections. This is reflective of busy, urban intersections that operate at or near capacity, where drivers take advantage of as much of the green and amber time as possible to clear the intersection.

Comment #7d) – Vehicle Travel Demands (Section 9.0)

We note that the Kingston Road/Delta Boulevard signalized intersection that is located between Whites Road and the Highway 401 westbound on/off ramps was not counted. There is no acknowledgment in the study of this omission. We also noted that Figure 21, which depicts existing lane configurations and traffic controls, does not include the Kingston Road/Delta Boulevard intersection.

Response

The Kingston Road / Delta Boulevard intersection is a signalized intersection that provides primary access to two retail parcels. It is not anticipated site-related traffic volumes will travel to / from these retail parcels, majority of trips will be through volumes along Kingston Road and will have minimal impacts to the intersection. Notwithstanding, the traffic analysis conducted for this project has been revised and updated to include the Kingston Road / Delta Boulevard intersection.

Comment #7e) - Vehicle Travel Demands (Section 9.0)

The background forecasts included two other developments – a car wash/convenience store/fast-food restaurant complex at 682 and 698 Kingston Road and an 82-unit residential development at 760-770 Kingston Road. While the consultant refers to these as "substantive area background developments", they are relatively low traffic generators.

Consistent with the terms of reference established with Region staff, the background traffic forecast did not include any assumptions for intensification on other nearby lands in the Kingston Road or Whites Road corridors.

Response

Noted. The area background developments have been revised.

Comment #7f) - Vehicle Travel Demands (Section 9.0)

The background forecasts also included estimated growth rates, which comprised 1.0% per year for the 2019-2024 period, and 0.5% per year for the 2024-2029 and 2029-2034 time periods. These are reasonable estimates considering the local context where intensification of development is planned but key intersections have existing capacity constraints, and there are no plans to increase their capacity.

Response

Noted.

Comment #7g) – Vehicle Travel Demands (Section 9.0)

Figure 24 shows the future background traffic volumes and again it is notable that the Kingston Road/Delta Boulevard signalized intersection is not included.

Response

The Kingston Road / Delta Boulevard intersection is a signalized intersection that provides primary access to two retail parcels. It is not anticipated site-related traffic volumes will travel to / from these retail parcels, majority of trips will be through volumes along Kingston Road and will have minimal impacts to the intersection. Notwithstanding, the traffic analysis conducted for this project has been revised and updated to include the Kingston Road / Delta Boulevard intersection.

Comment #7i) – Vehicle Travel Demands (Section 9.0)

Figures 26, 27, and 28 show the future total traffic volumes for 2024, 2029, and 2034, respectively. As noted previously, there are no forecasts shown for the Kingston Road/Delta Boulevard intersection. Figure 28 is missing the northbound AM and PM traffic volumes on Whites Road north of Bayly Street.

Response

The Kingston Road / Delta Boulevard intersection is a signalized intersection that provides primary access to two retail parcels. It is not anticipated site-related traffic volumes will travel to / from these retail parcels, majority of trips will be through volumes along Kingston Road and will have minimal impacts to the intersection. Notwithstanding, the traffic analysis conducted for this project has been revised and updated to include the Kingston Road / Delta Boulevard intersection.

Comment #8a) - Traffic Operations (Section 10.0)

The consultant lists the study area intersections that were analyzed as part of the study. Synchro software was used for the analysis and it is typical to build a model of the study area road network. In section 10.3, the consultant states that traffic analysis was undertaken at all signalized intersections within the study area. For this to be accurate, the Synchro model should have included the Kingston Road/Delta Boulevard intersection to provide the best representation of the network. This omission should be addressed.

Response

The Kingston Road / Delta Boulevard intersection is a signalized intersection that provides primary access to two retail parcels. It is not anticipated site-related traffic volumes will travel to / from these retail parcels, majority of trips will be through volumes along Kingston Road and will have minimal impacts to the intersection. Notwithstanding, the traffic analysis conducted for this project has been revised and updated to include the Kingston Road / Delta Boulevard intersection.

Comment #8b) – Traffic Operations (Section 10.0)

The consultant should review the cycle lengths used for future scenarios to ensure that a common background cycle is being used for the Kingston Road corridor, since there appear to be some anomalies.

Response

Noted.

Comment #8c) - Traffic Operations (Section 10.0)

The network parameters as listed are generally acceptable; however, the lost time adjustment of -1.0 second is not part of the Region's TIS Guidelines and supporting references. Any deviation from the Region's standard parameters must be justified and noted in the report.

Response

Noted.

Comment #8d) – Traffic Operations (Section 10.0)

There is a minor error in the section on signal timings where the consultant indicates that existing signal timings were obtained from the City of Pickering. The signal timing plans contained in Appendix D were provided by Durham Region staff.

Response

Comment #8e) - Traffic Operations (Section 10.0)

Field observations of peak hour traffic operations and documentation of same are a requirement of the Region's TIS Guidelines. The consultant has not included documentation of any field observations, which are useful in interpreting analysis results, ensuring that all signalized intersections are included in an analysis, and confirming that the counted traffic volumes reasonably represent the demand volumes. For future studies, the Region will expect that this type of omission will be addressed.

Response

The Synchro analysis parameters were adopted in accordance with the Region of Durham's standards in Chapter 9 of the *Design Specifications for Traffic Control Devices, Pavement Marking, Signage and Roadside Protection* guidelines, dated April 2017. These parameters generally included: lane widths, base ideal saturation flow rate, peak hour factors, heavy vehicles and signal timings. Lost time adjustment factor was the only parameter inconsistent with Durham Region's standards. A lost time adjustment factor of -1.0 seconds was adopted for the purposes of this assessment. To account for vehicles that complete a turning movement during amber or all-red times, a lost time adjustment of -1.0 seconds is applied for all movements at all signalized intersections. This is reflective of busy, urban intersections that operate at or near capacity, where drivers take advantage of as much of the green and amber time as possible to clear the intersection.

Comment #8h) - Traffic Operations (Section 10.0)

There is an error in the Synchro representation of the Kingston Road/Rosebank Road intersection in all analyses where the westbound left turn lane is not included in the PM peak hour analysis.

Response

Noted.

Comment #8i) - Traffic Operations (Section 10.0)

The Synchro analysis includes an incorrect lane configuration at the intersection of Kingston Road and Whites Road for all scenarios.

Response

Noted.

Comment #8j) - Traffic Operations (Section 10.0)

The Existing AM Peak Hour Synchro analysis includes an incorrect lane configuration at the Whites Road/Highway 401 eastbound off-ramp intersection.

Response

Comment #8k) – Traffic Operations (Section 10.0)

The existing timing at Bayly Street and Whites Road needs to be updated to show split-phase operation.

Response

Noted.

Comment #8I) - Traffic Operations (Section 10.0)

While Synchro queue reports were included in the appendix materials, the consultant did not provide a summary of queues or identify any potential issues or requirements associated with the queue results.

Response

Synchro queue analysis results were not presented in the report due to a full VISSIM model of the study area was provided that summarizes the queue analysis results. The VISSIM model provides a better representation of the queueing analysis results than a Synchro model. VISSIM is a microsimulation model that observes the queueing based on each individual vehicle travel behaviours, similar to real-life travel behaviours and experiences. Synchro is a macrosimulation model that calculates queueing based on constant parameter assumptions which is not representative of a person's travel behaviour. Therefore, the Synchro queue analysis results were not reported in detail as part of this report.

Comment #8m) - Traffic Operations (Section 10.0)

In focusing on the primary access to the subject site, i.e. the Kingston Road/ Steeple Hill intersection, we note that there are 95th percentile queues for the westbound left turn movement that exceed the available storage lane length by 80 to 85 metres in the pre-BRT scenario. The analysis shows that the 95th percentile queue is approximately 145 to 150 metres whereas the storage lane is approximately 65 metres. Under this scenario, the length of this storage lane is limited since it is back-to-back with the eastbound left turn lane on the Kingston Road approach to Whites Road. To increase the storage for one requires reducing the storage for the other. The Synchro analysis also includes cautionary notes for this movement indicating that the 95th percentile queue exceeds capacity and the queue may be longer and that the volume for the 95th percentile is metered by the upstream signal. These details were not addressed in the study.

Response

Synchro queue analysis results were not presented in the report due to a full VISSIM model of the study area was provided that summarizes the queue analysis results. The VISSIM model provides a better representation of the queueing analysis results than a Synchro model. VISSIM is a microsimulation model that observes the queueing based on each individual vehicle travel behaviours, similar to real-life travel behaviours and experiences. Synchro is a macrosimulation model that calculates queueing based on constant parameter assumptions which is not representative of a person's travel behaviour. Therefore, the Synchro queue analysis results were not reported in detail as part of this report.

Comment #8n) - Traffic Operations (Section 10.0)

Under the scenario with the BRT, the analysis results show that the 95th percentile queues for the westbound left turn movement in the PM peak hour would increase to 210 to 220 metres. If designing the left turn storage for the 95th percentile, this is problematic since there is only 265 metres between the stop bars of the westbound Kingston Road approach to Steeple Hill and the eastbound Kingston Road approach to Whites Road. As noted above, the details related to Synchro queue results were not addressed in the study.

Response

Synchro queue analysis results were not presented in the report due to a full VISSIM model of the study area was provided that summarizes the queue analysis results. The VISSIM model provides a better representation of the queueing analysis results than a Synchro model. VISSIM is a microsimulation model that observes the queueing based on each individual vehicle travel behaviours, similar to real-life travel behaviours and experiences. Synchro is a macrosimulation model that calculates queueing based on constant parameter assumptions which is not representative of a person's travel behaviour. Therefore, the Synchro queue analysis results were not reported in detail as part of this report.

Comment #9b) – Microsimulation Analysis (Section 11.0 and Appendix F)

We note that that although there is a typo in Figure 29 with regard to the illustration of signalized intersections in the Vissim study area (i.e. missing signal symbol at the Kingston Road/Highway 401 westbound off ramp intersection), the Vissim model does include the Kingston Road/Delta Boulevard intersection that was omitted from the Synchro analysis.

Response

Noted, Figure 29 has been updated in both the Urban Transportation Considerations Report and the Microsimulation Model Calibration and Analysis Report provided in Appendix F.

Comment #9c) - Microsimulation Analysis (Section 11.0 and Appendix F)

Our comments on the Vissim modelling are as follows:

- It appears that aerial photography and street view imagery were used to determine the existing road alignment and intersection configurations, since there is no discussion of field work;
- It appears that vehicle travel times for the study area were obtained using Google Maps Distance Matrix API, since there is no discussion of conducting travel time runs in the field;
- While the model parameters related to vehicle and driver behaviour are acceptable, there is no documentation to indicated if a static routing or dynamic assignment was utilized;
- For the information provided, we find that the calibration of the model is within acceptable industry targets;
- For the future Vissim analysis and presentation of results, the consultant does not specify the horizon year; in contrast, the Synchro analysis results for the with BRT scenario are presented for the 2024, 2029, and 2034 forecasts;
- The consultant notes that travel time was selected as the performance metric, and states the rationale as, "... to ensure that the traffic impacts associated with the site redevelopment would not result in excessive travel time increases." The consultant's conclusion, "... it is projected that vehicular travel times will not increase significantly throughout the study area in both the weekday morning (AM) and afternoon (PM) peak hours due to the proposed redevelopment" is problematic since "significant" or "excessive" are not defined, and the comparison of travel times presented in the report is existing conditions versus forecast conditions including the proposed development. There is no Vissim analysis presented for future conditions without the development that would assist in identifying the effect on travel time of just the development; and
- To complement the Synchro analysis, queuing determined through the Vissim model should also have been used as performance metric. Similarly, delays determined through the Vissim model should also have been used to compare with the Synchro results.

Response

- Noted, Section 1.3.1 of the Microsimulation Model Calibration and Analysis Report provided in Appendix F clarifies
 how the road alignment and intersection configurations were obtained. However, a combination of Bing Maps and
 Google Maps/Streetview imagery was indeed used to determine the existing road alignment and intersection
 configurations.
- Noted, Section 1.3.3 of the Microsimulation Model Calibration and Analysis Report provided in Appendix F clarifies how vehicle travel time data was collected. However, the Google Maps Distance Matrix API was indeed utilized to collect real-time travel time data.
- Noted, Section 1.4 of the Microsimulation Model Calibration and Analysis Report provided in Appendix F clarifies
 that the Vissim microsimulation model utilizes static vehicle inputs and routing decisions to assign turning
 movement volumes associated with the existing conditions, future background, and future total analysis scenarios.
- Noted.
- Noted, the future background and future total scenarios horizon year is 2039 and this has been clarified in Section 3.0 of the Microsimulation Model Calibration and Analysis Report provided in Appendix F.
- Noted, a future background scenario has been included in the analysis detailed in Section 3.0 of the Microsimulation Model Calibration and Analysis Report provided in Appendix F and includes a comparison of existing conditions, future background and future total scenarios analysis outputs.
- Noted, the Vissim microsimulation analysis provided in Section 3.0 of the Microsimulation Model Calibration and Analysis Report includes an analysis of vehicle travel times, vehicle queueing and vehicle delay model outputs.

The Vissim microsimulation model-based analysis is complimentary to the Synchro, Highway Capacity Manual based. The Synchro analysis provided in the Urban Transportation Considerations report focuses on future projected impacts at the intersection turning movement level, while the Vissim microsimulation analysis provides future projected impacts both network wide and on specific intersection operations (focusing on metrics that are not available with standard traffic capacity analysis methods).

Ministry of Transportation, September 25, 2020
Comment #1
This is the report of a multi-modal project at a conceptual level.
Response
Noted.
Comment #2
This is Town oriented development (Pickering) and many assumptions are related to the Town's future planning. Can we confirm with the town that they are in agreement with the assumption made in this TIS regarding trip generation and modal split.
Response
Noted.
Comment #3
The trip distribution seems to be logical and I am in agreement with that.
Response
Noted.
- Noted.
Comment #4
For the existing conditions, Hwy 401 at Whites Rd W-N/S ramp terminal has been analysed with 2 left turning lanes and 1 right turning lane. This should be done with 1 left + 1 shared $LR + 1$ right as is.
Response
Noted.
Comment #5
For future conditions for the same intersection it is assumed that an additional RT lane will be in place as result of background traffic. I am not sure about it and we may need to confirm with our P&D folks.
Response

Comment #6

The level of service at the ramp terminal will drop eventually; C to D in most cases and D to E in others. For E-N/S ramp terminal at Whites Rd the WBL will be over its maximum capacity as result of the development. There are no mitigation measures proposed.

Response

Ministry of Transportation, September 30, 2020

Comment #1

We require at least one interchange east and west of the study area (Sheppard/Port Union and Liverpool) in the microsimulation. We want to assess the impact of the developments on the immediate interchange and adjacent interchanges.

Response

Given the interchanges to the east and west of the interchange at Whites Road are 2 to 3 kilometers away and the lack of east-west connecting streets through the study area and immediate area between these interchanges, aside from Kingston Road, there are no significant opportunities for east-west Highway 401 traffic diversion within close enough proximity to the site and study area. Therefore, expanding the model study area to include the interchanges at Sheppard/Port Union and Liverpool is not required to quantify the impacts associated with the proposed redevelopment.

Comment #2

We would like to see the operations on Highway 401 to assess the traffic impact of the proposed development. MTO will be able to provide volumes and travel time results instead of using Google.

Response

The site traffic associated with the proposed redevelopment is not projected to increase Highway 401 mainline traffic significantly.

During the weekday morning (AM) peak hour, eastbound mainline volumes are projected to increase by approximately 30 vehicles and westbound mainline volumes are projected to increase by approximately 195 vehicles.

During the weekday afternoon (PM) peak hour, eastbound mainline volumes are projected to increase by approximately 120 vehicles and westbound mainline volumes are projected to decrease by approximately 75 vehicles.

Given the projected increase/decrease in Highway 401 mainline volumes associated with the proposed redevelopment are minimal, expanding the model study area to include the Highway 401 mainline through the study area is not required to quantify the impacts associated with the proposed redevelopment.

Comment #3

Figure 29 of the report and Figure 1 of Appendix F – The Highway 401 WB off ramp at Kingston Road should also be signalized.

Response

Noted, the Figure in both **Section 12.0** of the updated Urban Transportation Considerations Report and in Section 1.2 of the Microsimulation Model Calibration and Analysis Report provided in Appendix F have been updated.

Comment #4

We require the microsimulation model files to complete the review to ensure the coding and input information is satisfactory. A snapshot of the model with focus on the arterial road is not enough to undertake a complete review.

Response

Noted, Vissim microsimulation models can be provided.

Comment #5

Can the consultant clarify what is the horizon year of the future traffic condition?

Response

Noted, the future background and future total scenarios horizon year is 2039 and this has been clarified in Section 3.0 of the Microsimulation Model Calibration and Analysis Report provided in Appendix F.

Comment #6

The consultant will have to comment on the calibration results on MTO infrastructures based on MTO calibration criteria as attached.

Response

Noted, Section 2.3.3 of the Microsimulation Model Calibration and Analysis Report provided in Appendix F details a model calibration evaluation using the MTO calibration criteria provided.

Comment #7

We would like to see MOE other than travel time (i.e. LOS, volume throughput, speed and etc.).

Response

Noted, the Vissim microsimulation model analysis now includes a review of vehicle travel times along study area road segments, and vehicle queuing and delays at key study area intersections. These are detailed in Section 3.0 of the Microsimulation Model Calibration and Analysis Report provided in Appendix F.

Comment #8

The consultant needs to clarify if any forecasting approach (i.e. macro model or forecasting) is used in the analysis and ensure all modes were included. The consultant will need to provide volumes in the report.

Response

Noted, Section 1.1 of the Microsimulation Model Calibration and Analysis Report provided in Appendix F clarifies that the intersection turning movement volumes for the existing conditions, future background and future total scenarios are based on the existing counts and traffic assignment prepared as part of the Synchro analysis presented in Section 9.2, Section 9.3, and Section 9.5 of the Urban Transportation Considerations Report.

1.0 INTRODUCTION

BA Group is retained by Director Industrial Holdings Limited to provide transportation consulting services related to a landmark mixed-use development (the "Project") located at 603-643 & 645-699 Kingston Road in the City of Pickering (the "Site").

1.1 This Study

This study includes a summary of our review of the urban transportation elements of the Project, including:

- A multi-modal travel assessment;
- Traffic impact and operations studies;
- Parking and loading studies; and
- Mobility Choice Travel Plan (Transportation Demand Management).

1.2 Existing Site

The Site is bounded by Kingston Road to the north, a car dealership to the west, Whites Road to the east, and Highway 401 to the south.

The Site's location is illustrated in Figure 1.

The Site is currently occupied by large retail stores and surface parking lots. The primary access to the Site is provided from a signalized intersection at Kingston Road and Steeple Hill, while there is a secondary access point provided from a site driveway along Kingston Road to the west of the primary access.

The site context is illustrated in Figure 2.

FIGURE 1 SITE LOCATION

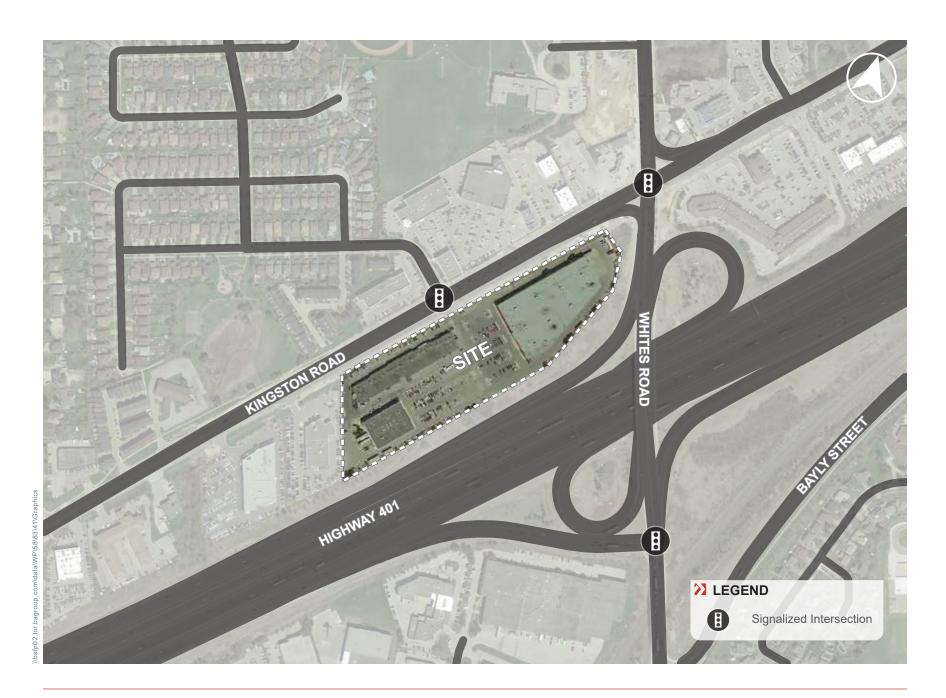


FIGURE 2 SITE CONTEXT

BA GROUP 5883-41 603 KINGSTON ROAD

2.0 PROPOSED DEVELOPMENT CONCEPT

2.1 Overview

The Project consists of the following key elements:

- 1. Towers 1, 2 and 3 are located along the south property line, at the west side of the Site. The towers are 36 storeys, which are connected by a 4-storey podium (Podium 1).
- 2. Towers 4 and 5 are located along the south property line, near the centre of the Site. The towers are 36 storeys, which are connected by a 4-storey podium (Podium 2).
- 3. Tower 6 is located along the south property line, at the east side of the Site. The tower is 42 storeys, with a commercial area located with a 4-storey podium (Podium 3).
- 4. Tower 7 is located at the northeast corner of the Site. The tower is 24 storeys, with a commercial area located atgrade within a 4-storey podium (Podium 4).
- 5. Towers 8, 9 and 10 are each "U"-shaped buildings and are located along the north property line at the east, centre and west side of the Site, respectively. All three mid-rise towers are 14 storeys, with a commercial area located atgrade within each of the 6-storey podiums (Podium 5, Podium 6, and Podium 7).
- 6. An at-grade park will be provided along the north properly line, near the centre of the Site (between Towers 9 and 10).
- 7. A new road network with an access off of Kingston Road, forming a southerly connection of Steeple Hill Road and a new east-west road connection extending west from Steeple Hill Road, providing access to the below grade parking. The new road network can function either as a private or public road and will be determined in a future submission.
- 8. A private internal road network with a right-in / right-out access off of Kingston Road along the west side of the site and a connection extending east from Steeple Hill Road, providing access to the below grade parking.
- 9. The concept development includes two levels of underground parking, as well as parking in Podiums 1, 2 and 3. The below-grade parking beneath Podiums 1 and 2 only contains one level of parking.

The overall Project is illustrated in Figure 3. The key elements are described in greater detail in the following sections.

Reduced scale architectural plans are included in Appendix A.

2.2 Building Summary

A summary of the Project is outlined in Table 1 and the site plan is illustrated in Figure 3.

Table 1 Project Summary

Component	Description
Build Elements	
Retail	2,474 square metres of retail space located on the ground floor of Podium 4, 5, 6 and 7.
Office	3,475 square metres of office spaces located in the 4-storey of Podium 3.
Residential	3,460 residential units in ten towers.
Park	3,093 square metres of parkland is proposed centre of the Site, between the towers 9 and 10.
Transportation	Elements
Pedestrian Access	Multiple grade-related accesses from Whites Road, Kingston Road and the internal private road network. In addition, a multi-use path is provided along the south property line, within the 14.0 metre MTO setback.
Vehicular Access	 The existing signalized Kingston Road / Steeple Hill intersection will continue to provide vehicular access to the Site. The lane configuration of the Site access will be expanded to provide additional lanes. This intersection will be the primary access to the Project. A driveway located at the northwest corner of the Site will be maintained to provide a secondary access point to the Project. This driveway will operate as right-in / right-out access point. An internal road system will connect all parking accesses, the two vehicular access points, the residential drop-off, and the Project's loading areas.
Bicycle Infrastructure	Details to be provided through subsequent applications to the City of Pickering.
Parking Supply	 Approximately 2,768 parking spaces are proposed to accommodate the Project within two levels of below- grade parking and within Podium 1, 2 and 3. The parking plans will be refined through subsequent applications to the City of Pickering.
Loading	Details to be provided through subsequent applications to the City of Pickering.

Note that the current development plan contemplates an overall of 3,460 residential units. Based on the traffic analysis operations conducted as part of this study, a total of 2,884 residential units can be accommodated on the area road network. As such, a future expansion up to 3,460 residential units will be contemplated as part of a future review, subject to additional improvements and mitigation measures.

For the purposes of this study, the site has been designed to accommodate the overall development of 3,460 residential units, but the traffic analysis has been completed based on 2,884 residential units.

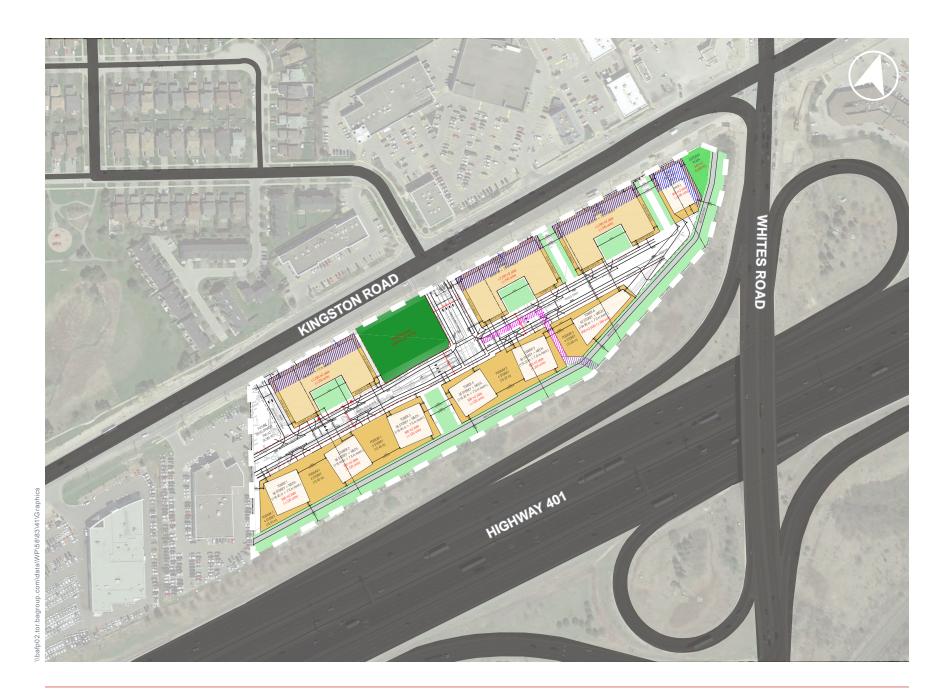


FIGURE 3 SITE PLAN

3.0 PLANNING & POLICY CONTEXT

3.1 Provincial and Regional Policy Framework and Directives

There are a number of provincial and regional policy documents related to transportation that pertain to the Site, including:

- The Planning Act;
- Provincial Policy Statement;
- Places to Grow: Growth Plan for the Greater Golden Horseshoe (2019);
- Ontario Ministry of Transportation Transit-Supportive Guidelines (2012);
- Metrolinx 2041 Regional Transportation Plan (2018);
- Durham Transportation Master Plan (2017); and
- Durham-Scarborough Bus Rapid Transit Study (2018).

The key transportation details of these policy documents are summarized below. The development proposal for the Site incorporates the policy direction of these documents by incorporating a mix of uses, greater density and reduced parking standards based on the Site's proximity to existing and planned transit corridors and the implementation of transportation demand management (TDM) strategies as part of the proposal.

3.1.1 Planning Act

The **Planning Act** directs municipalities to have regard to matters of provincial interest set out in Section 2 of the Planning Act, including:

- (q) the promotion of development that is designed to be sustainable, to support public transit and to be oriented to pedestrians;
- (s) the mitigation of greenhouse gas emissions and adaptation to a changing climate.

3.1.2 Provincial Policy Statement

Adopted in May 2020, the **Provincial Policy Statement (PPS)** provides policy direction to promote transportation demand management (TDM) strategies to be implemented for new developments to increase the efficiency of existing and planned transportation infrastructure (Section 1.6.7.2). Additionally, the PPS states that land use pattern, density, and mix of uses should be promoted to minimize the length and number of vehicle trips and support current and future use of transit and active transportation (Section 1.6.7.4). In summary, the PPS is supportive of the use of transportation demand management, such as reduced parking rates, to support and increase the efficiency of more sustainable transportation options.

3.1.3 Places to Grow: Growth Plan for the Greater Golden Horseshoe

The Growth Plan for the Greater Golden Horseshoe (Growth Plan) (as amended in 2020) aims to foster economic growth, provide greater housing supply and options, increase employment, and build communities for a healthier and more affordable life in the Greater Golden Horseshoe. As such, the Growth Plan outlines the importance of reducing reliance on the automobile and promoting transit and active transportation. In particular, the Growth Plan encourages transit-supportive policies, such as reduced parking standards, within major transit station areas (MTSAs), which are areas that are within an approximate 500 to 800 metre radius (i.e. 10-minute walk) of an existing or planned higher order transit station. The Site is located within 500 to 800 metres of a future Durham-Scarborough Bus Rapid Transit (BRT) stop, and is within 800 metres of a possible GO Transit station at Whites Road.

3.1.4 Ontario Ministry of Transportation (MTO) Transit-Supportive Guidelines

The **Ontario Ministry of Transportation Transit-Supportive Guidelines** are intended to assist with the implementation of policies and objectives set out in the PPS and the Growth Plan for the GGH, both of which provide key policy directives to manage future growth in the Greater Toronto Area and beyond.

The guidelines aim to create an environment that is supportive of transit, and to develop services and programs intended to increase transit ridership. The guidelines also support the use of TDM strategies, particularly in close proximity to transit routes. This may include the sharing of parking between Site uses, the use of on-street parking during off-peak hours, and the reduction of minimum and maximum parking requirements as TDM measures are adopted.

3.1.5 2041 Metrolinx Regional Transportation Plan

The Metrolinx 2041 Regional Transportation Plan (2041 RTP) – adopted in 2018 as an update to The Big Move (2008) – provides a framework to create an integrated, multi-modal, and regional transportation system to support the growth of healthy, complete, and sustainable communities.

The 2041 RTP contains strategies that integrate land use and transportation planning to identify areas for investment and build new connections. Strategy 4.8 specifically addresses parking management, encouraging the Province to adopt a region-wide policy that "provides guidelines and encourages best practice in parking management." The strategy states that "zoning standards should be reviewed, with the expectation that minimum parking requirements will be reduced, particularly in transit-supportive neighbourhoods", such as the area around and including the lands of the Project. The 2041 RTP also speaks to embedding TDM strategies in land use planning and development to prioritize cycling, walking and transit use.

3.1.6 Durham Transportation Master Plan

The **Durham Transportation Master Plan** includes plans to expand Whites Road north of Kingston Road to 6-7 lanes, as well as identifies the Whites Road / Highway 401 interchange for modifications and a future Ministry of Ontario Class Environmental Assessment Study.

One of the action items of the TMP is to create guidelines that support a Regional parking strategy, which could include amendments to zoning by-laws to reduce parking minimum, set maximum and allow shared parking.

3.1.7 Durham-Scarborough Bus Rapid Transit Study

The **Durham-Scarborough BRT Study** reviewed rapid transit alternatives for the future transit project and evaluated each alternative against the base case. The business case approach assessment recommended a hybrid alternative. The recommended design is now being studied further in the preliminary design phase of the transit project.

3.2 Local Area and Site-Specific Planning Policy

There are a number of local area policies and strategic framework documents pertaining to the Site, including:

- Pickering Official Plan (2018); and
- Kingston Road Corridor and Specialty Retailing Node Intensification Study (2019).

The key transportation details of these policy documents are summarized in the following sections.

3.2.1 Pickering Official Plan

The Pickering *Official Plan* states that City Council shall consider a reduction in the number of required car parking spaces where bicycle parking facilities or TDM measures are provided. It also encourages intensification along primary transit corridors and MTSAs, such as the Pickering GO Station, as identified in Metrolinx's RTP.

3.2.2 Kingston Road Corridor and Specialty Retailing Node Intensification Study

The Kingston Road Corridor and Specialty Retailing Node Intensification Study (the "intensification study") explored intensification opportunities along the Kingston Road corridor. The areas surrounding the Site is identified as the Whites Precinct. In the Whites Precinct, the intensification study recommends greater densities at the intersection of Kingston Road and White Road (i.e. the Site). The intensification study states that an increase in density within this precinct can result in a total of 7,622 residents and 2,536 jobs.

The intensification study also recommends creating new connections through the larger land parcels in the precinct, including a mid-block public road connection south of Kingston Road at Steeple Hill Road. It also recommends reducing the number of individual access points on Kingston Road.

The recommended intensification scenario for the Whites Precinct is illustrated in Figure 4.

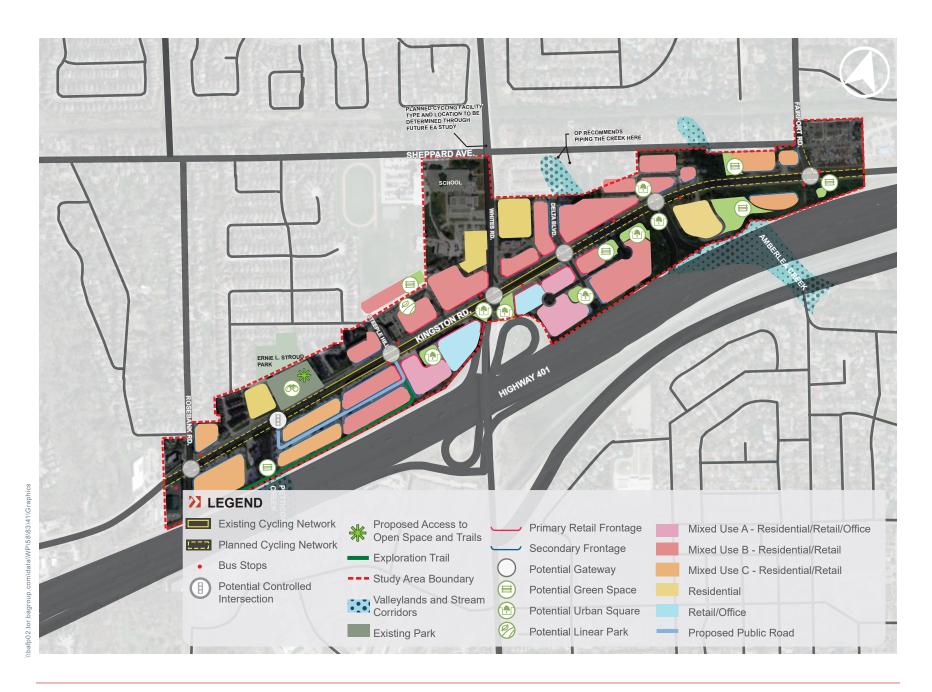


FIGURE 4 WHITES - RECOMMENDED INTENSIFICATION SCENARIO

4.0 EVOLVING AREA TRANSPORTATION CONTEXT

4.1 Area Road Context

4.1.1 Existing Road Network

The Site is well located relative to the significant roadway connections provided across the City and the wider Durham Region. Together, the public road network surrounding the Site provides a hierarchy of road connections ranging from expressway to local roads. The existing area road network is illustrated in **Figure 5**.

Major east-west connections across the City are provided by the Highway 401 and Kingston Road corridors, which also link the Site with other municipalities in the Durham Region and Greater Toronto Area. A major north-south connection across the City is provided by the Whites Road corridor, which connects the Site to the nearest Highway 401 interchange.

A detailed description of the area road network surrounding the Site and the characteristics of the streets serving the downtown area of Pickering is provided in **Table 2**.

Table 2 Area Road Network

Ту	pe	Street Name	On-street Parking & Regulations	Roadway Limits	Description
Highway	Freeway	Highway 401	No parking or stopping permitted at any time.	Freeway extends from Windsor in the west to the Ontario-Quebec border in the east.	14-lane cross-section, 7 lanes in each direction between the express and collector lanes. Auxiliary lanes are provided at on- and off-ramps.
Type B Arterial	East-West	Kingston Road	No parking or stopping permitted at any time.	Roadway extends from Highway 2A in the west to Ajax in the east (where is becomes Dundas Street West, east of Lake Ridge Road).	5-lane cross section, 2 lanes in each direction and a center lane for left- turns, right-turns and storage. Key intersections have auxiliary turn lanes.
Type A Arterial	North-South	Whites Road	No parking permitted at any time.	Roadway extends from Petticoat Lane in the south to Taunton Road in the north.	In proximity to the Site, the corridor ranges from a 4-lane cross section to a 5-lane cross section with 2 lanes in each direction. North of Kingston Road, a center lane is provided for left-turns, right-turns and storage. South of Kingston Road, auxiliary lanes are provided for the on- and off-ramps to the Highway 401. Key intersections have auxiliary turn lanes.
Local Road		Steeple Hill	No parking permitted at any time along the south / west side of the street between Kingston Road to Edmund Drive.	Roadway extends from Kingston Road in the south and curves towards Lightfoot Place in the northwest.	2-lane cross-section, 1 lane in each direction. Key intersection at Kingston Road has auxiliary turn lanes.

4.1.2 Planned Road Network

As previously mentioned, the Durham Transportation Master Plan (2017) outlines that Whites Road between Kingston Road to Finch Avenue will be widened from 5 to 6 lanes between 2022 and 2026. The Whites Road / Highway 401 interchange was also identified as an interchange for modification in the Provincial Class Environmental Assessment studies for Highway 401. However, detailed information on the proposed modification has not been provided.

The site plan includes new private roads from the existing site access points along Kingston Road (at Steeple Hill and the northwest corner of the Site). These two new roads are connected by an internal east-west road that will serve the uses on-site and provide access to the below-grade parking facilities.

4.1.3 Other Improvements for Consideration

Another improvement that should be considered in order to enhance the carrying capacity of the road network is to expand the Highway 401 Eastbound off-ramp at Whites Road. The proposed improvement, which will be analyzed in the traffic analysis, is to add an additional eastbound right turn lane, and to convert the existing eastbound right/left turn lane into an exclusive left turn lane.

The proposed improvement to the 401 eastbound off-ramp that should be considered is illustrated in Figure 6.

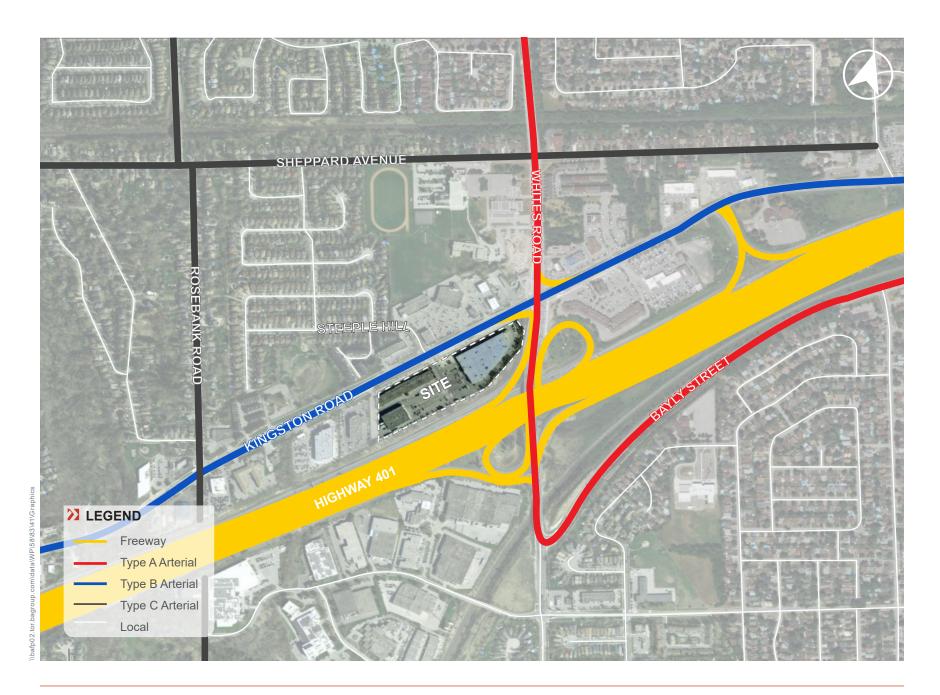


FIGURE 5 EXISTING AREA ROAD NETWORK

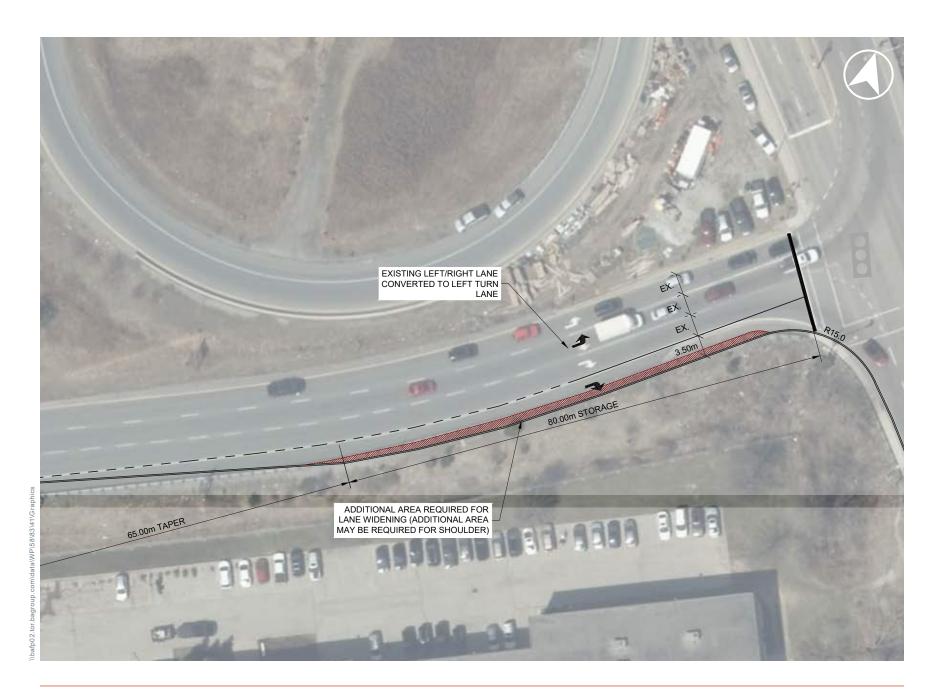


FIGURE 6 POTENTIAL EXPANSION OF THE 401 EASTBOUND OFF-RAMP AT WHITES ROAD

4.2 Area Transit Context

4.2.1 Existing Transit Network

The Site is located along important corridors, Kingston Road and Whites Road, located to the west of the Pickering City Centre. As a result, the Site is well serviced by surface transit that provide frequent and convenient access to local and regional transit services.

The existing area transit network is illustrated in **Figure 7** and details regarding existing transit options are included in **Table 3**.

The existing transit reach is illustrated in **Figure 12** in sections below. The existing transit reach highlights the destinations that can be reached within 60 minutes using transit services. The transit reach also illustrates how often these destinations can be reached within an hour based on the frequency of the transit services. Reaching certain destinations is time-dependent (i.e. the arrival at the destination within 60 minutes relies on a scheduled departure), while others are "guaranteed" or time-independent (i.e. the destinations can be reached frequently within 60 minutes and there is no need to schedule the departure).

The transit reach graphics are calculated using ESRI's ArcGIS Network Analyst software tool, which utilized schedules of the transit services, as well as walking distance from the transit services and transfer times, to calculate the distance that could be reached within the 60 minute time period. The process is outlined in greater detail in **Appendix B**.

Table 3 Area Transit Network

1	umber / Name of rvice Line	Headway	Closest Stop Location	Description
GO Transit	Lakeshore West	15 minutes during weekday peak periods 30 minutes during off peak periods	Pickering GO Station (3 km from the Site)	The Lakeshore East line operates bi-directionally service throughout the day, 7 days a week, excluding holidays. During weekdays, trains operate approximately 5-15 minutes during peak hours, & approximately every 30 minutes during off-peak hours. During weekends, trains operate every 30 minutes for most of the day and every hour in the morning and evening.
	110 Finch West	30 minutes during the weekday peak periods between all branches 30 to 60 minutes during the weekday off peak periods for the 110B branch 60 minutes during the weekend	Kingston Road / Whites Road (300 m from the Site, 4-5 min walk)	The route generally runs between Pickering Parkway Terminal and Pickering GO Station, circulating along Finch Avenue to Altona Road. The route has three branches – 110, 110A and 110B. The 110 and 110A branches are limited to peak time, and services Pickering GO Station. The 110B branch does not serve the Pickering GO Station and circles back along Kingston Road to return to Pickering Parkway Terminal.
Durham Region Transit	120 Whites	15-25 minutes during weekday peak periods	Kingston Road / Whites Road (300 m from the Site, 4-5 min walk)	The route runs from Pickering GO Station to the northwest along Whites Road.
Durham R	193 Pickering Community Route	The 193A branch runs 3 times on weekdays and Saturdays	Kingston Road / Whites Road (300 m from the Site, 4-5 min walk)	The route circulates throughout Pickering, stopping at Pickering Parkway Terminal. The route has two branches – 193A and 193B. The 193A branch serves the Site. Both routes are limited to peak time.
	DRT Pulse 900	7-8 minutes during weekday peak periods 10-30 minutes during weekday off peak periods 15-30 minutes on Saturdays and 30-60 minutes on Sundays	Kingston Road / Steeple Hill (Adjacent to the Site)	The route is high frequency service along Highway 2 between University of Toronto Scarborough and Downtown Oshawa. Bus only lanes have been constructed on portions of Kingston Road, including adjacent to the Site, to facilitate improved travel time and reliability for the BRT service. The bus only lanes are part of the Highway 2 Transit Priority initiative to provide BRT through the region.

4.2.2 Planned Transit Network

4.2.2.1 DURHAM-SCARBOROUGH BRT

As part of Metrolinx's 2041 Regional Transportation Plan for the Greater Toronto and Hamilton Area, the Durham-Scarborough BRT has been identified as a key part of the Regional Frequent Rapid Transit Network. The project is in the advanced stages of planning and design, as studied in the 2018 "Durham-Scarborough Bus Rapid Transit Study: Initial Business Case Report", and has \$10 million in funding committed from the province through Metrolinx.

The primary route will generally run along Kingston Road, connecting Scarborough Centre and Downtown Oshawa. The route will have frequent 15-minute headway or better service, seven days a week, and will have reliable service due to separation from traffic and signal priority measures. The other branches of the route will connect to the Kingston / Lawrence / Morningside area.

The recommended Hybrid Alternative Concept from the 2018 study will alternate between centre median running way and curbside running way. Adjacent to the Site, the proposed route will be in the centre median. The proposed BRT design is illustrated in **Figure 8**.

Key Benefits of the BRT

Metrolinx has conducted a significant amount of analysis in order to examine the projected impacts of the BRT on the Kingston Road corridor and its surrounding areas. In order to understand the effects of the BRT on not only the Kingston Road corridor in its entirety, but on the Site in particular, BA Group conducted supplemental analysis that focused on additional aspects of the BRT and its potential impacts on travel demand to/from the proposed development.

First, this analysis reviewed TTS information to identify key areas to which a significant number of residents of the Kingston Road/Whites Road area currently travel. The review then determined which of those key areas will be served by the BRT and will therefore be well connected to the Site in the future via higher order transit. The key areas that are connect to the Site via the BRT are illustrated in **Figure 9**.

Second, the ESRI's ArcGIS Network Analyst software tool was used to compare the existing and future transit reaches of the Site. This comparison emphasized the significant improvement in the ease and convenience of travel via transit (i.e. no need to schedule departure times to coordinate with bus arrivals and transfers) to/from the Site that can be expected following the completion of the BRT. The existing and future "guaranteed" 30 minute transit reach is illustrated in **Figure 10**.

Finally, the analysis utilized the Google Maps API, as well as on GTFS live transit vehicle coordinates, to collect travel speeds along an existing proxy BRT corridor, Highway 7 in York Region. The travel speeds highlighted the lack of impact of private vehicle congestion on BRT bus travel speeds. The outputs of this analysis are shown in **Figure 11**.

The inputs and process of the analysis is outlined in greater detail in **Appendix B**.

In summary, BA Group conducted analysis to supplement the work undertaken to date by Metrolinx and focused on assessing the impact of the future BRT on travel demand to/from the Site. This analysis revealed that:

- 1. The BRT will provide improved transit service to multiple key destinations for which travel demand to/from the proposed development will be significant;
- 2. The higher frequency service associated with the BRT will significantly expand the departure time-independent (i.e. guaranteed) transit reach to/from the Site, reducing the need for future residents to plan and coordinate their departure times with bus arrivals and transfers. This will greatly improve the ease and convenience of travelling to/from the Site via transit; and

3. In the event of congestion along the Kingston Rd corridor, the BRT will maintain relatively constant travel speeds, providing residents of the future development with reliable transit journey times. In addition, those travel speeds will be comparable to, and could potentially be higher than, those of private vehicles.

Based on the foregoing, it can be concluded that:

The BRT will significantly improve the level of transit service provided to future residents of the proposed development. Moreover, the benefits afforded by the BRT will result in a significant share of travel to/from the proposed development, particularly travel to/from certain high-demand key areas, to be undertaken via transit.

4.2.2.2 REGIONAL EXPRESS RAIL

Metrolinx's Regional Express Rail (RER) is working on increasing GO Transit service through expansion and the electrification of the GO Transit rail network. As part of RER, GO Transit will offer more services and more stations. The City, Metrolinx and TTC have been working together to develop the RER in tandem with SmartTrack, an initiative to increase transit services between Etobicoke and Scarborough.

The new train technology / electrification will boost travel speeds on the Lakeshore East GO Transit line will provide all-day, two-way services with 15 minutes or better transit service. RER and SmartTrack will add new stations (East Harbour and Gerrard-Carlaw) on the Lakeshore East line as well.

The RER program is currently underway and is anticipated to be completed in 2024, according to Metrolinx's 2041 RTP.

The increased service and new stations will provide the Site with an increased transit reach. Additionally, the high frequency services will increase the number of destinations that are "guaranteed" or departure time-independent.

As the design and / or construction of the BRT and RER are both underway and funded, both services were assumed to be in place for the future transit reach. The future reach was calculated by factoring in the new transit travel speeds into the transit schedules that were input into the ESRI's ArcGIS Network Analyst software tool. The process is outlined in greater detail in **Appendix B**.

The existing 60 minute transit reach and 60 minute future transit reach are illustrated in Figure 12 and Figure 13.

4.2.2.3 OTHER IMPROVEMENTS FOR CONSIDERATION

In a June 2016 report, Metrolinx examined a number of potential new stations locations across the seven existing GO Transit rail corridors in light of the planned RER and SmartTrack programs. The initial business case (IBC) approach analyzed each potential station based on a strategic and financial case.

The IBC reviewed a potential station at White Road and Granite Court, approximately 600 metres from the Site. The location of the potential Whites Road GO Station is illustrated in **Figure 14**. The report concluded that the Whites Road station did not satisfy enough of the strategic and financial case criteria to be considered for near-term consideration and potential implementation. The main criteria that Whites Road failed to satisfy were as follows:

- The anticipated future density (approximately 30-40 people + jobs per hectare (P+J / Ha) within 800 metres) of the station did not meet Metrolinx's Mobility Hub density targets;
- The majority of trips at this station would be from existing customers that use the Pickering or Rouge Hill stations;
- The station would result in a net loss of trips due to negative time impacts to upstream riders; and
- A negative net present values is anticipated due to capital costs, annual station and train operation costs, and the anticipated net loss of fare revenue.

Since the release of the June 2016 IBC report, the City of Pickering released its intensification study in 2019. As previously discussed, the intensification study explored growth opportunities along the Kingston Road corridor and recommended increased densities in the vicinity of the Site (the "Whites Precinct"). The potential mixes of uses and densities proposed by the intensification study results in a total of 7,622 residents and 2,536 jobs on potential redevelopment sites within Whites Precinct, which could increase the number of riders and minimize the net loss of trips.

If the portions of Whites Precinct within 800 m of the station were assumed to currently have a similar density as the existing area around the potential station (i.e. 25 P+J/ha as of 2011)¹, and the increased density proposed as part of the site plan for the Site and intensification study for this portion of Whites Precinct were incorporated, the increased densities would add approximately 9,000 new people and jobs to the area. This would increase the density of the area within 800 m of the potential station to approximately 71 P+J/ha. Based on the above, the potential Whites Road station would satisfy the density target of 50 – 200 P+J/ha for areas served by Regional Rail, as outlined in the Metrolinx Mobility Hub Guidelines.

A comparison of the potential soft sites and future density reviewed in the IBC report, and the potential density based on the intensification study and proposed site plan is illustrated in **Figure 15** and **Figure 16**. The future transit reach of the area with the creation of the Whites Road station is illustrated in **Figure 17**. Based on the increase in density and the transit reach, the potential Whites Road station should be reconsidered.

¹ Metrolinx (June 2014). RER New Station Initial Business Case – Whites Road Station:

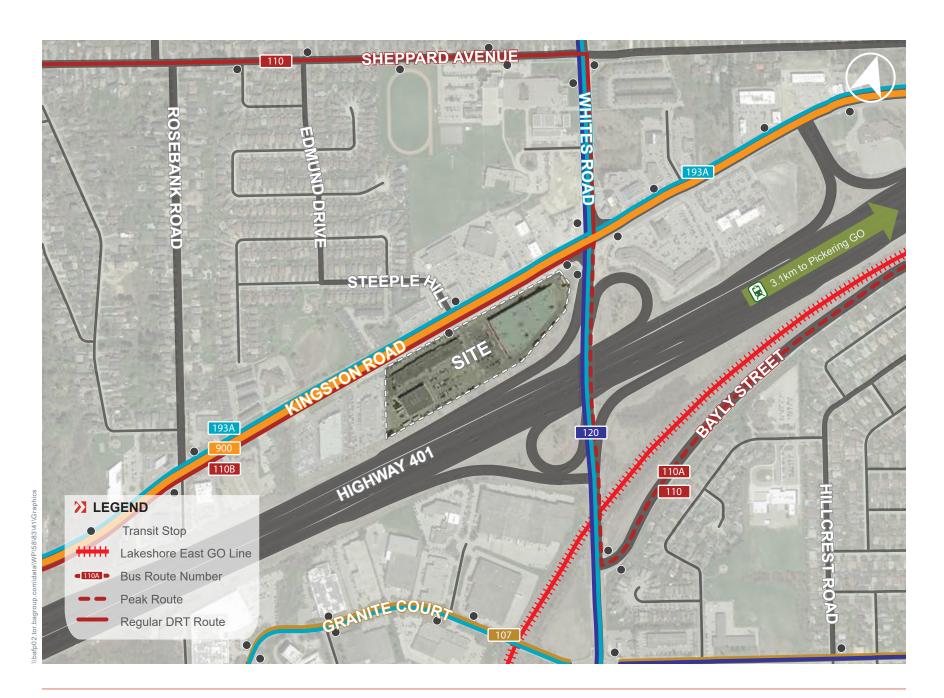
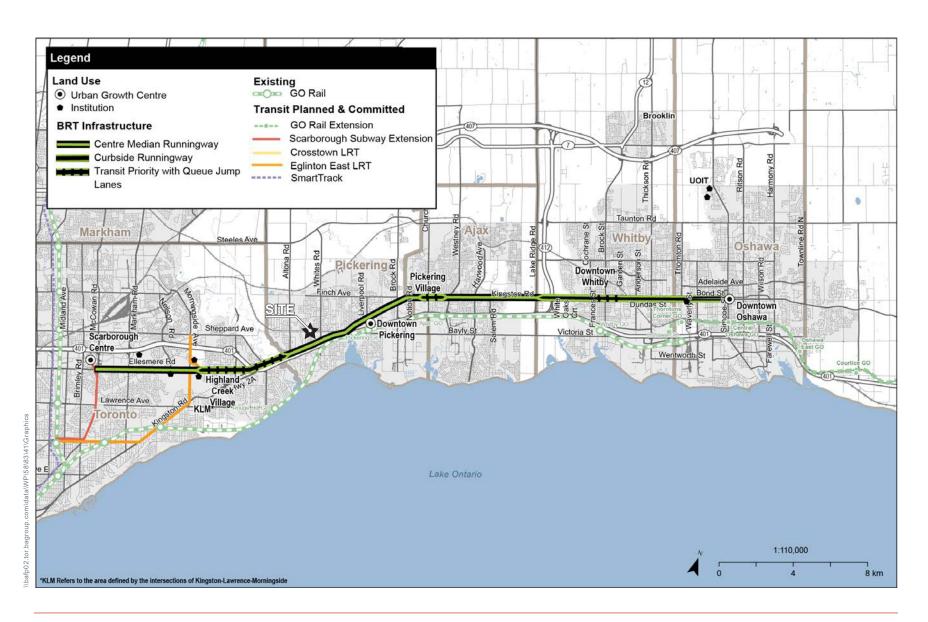



FIGURE 7 EXISTING AREA TRANSIT NETWORK

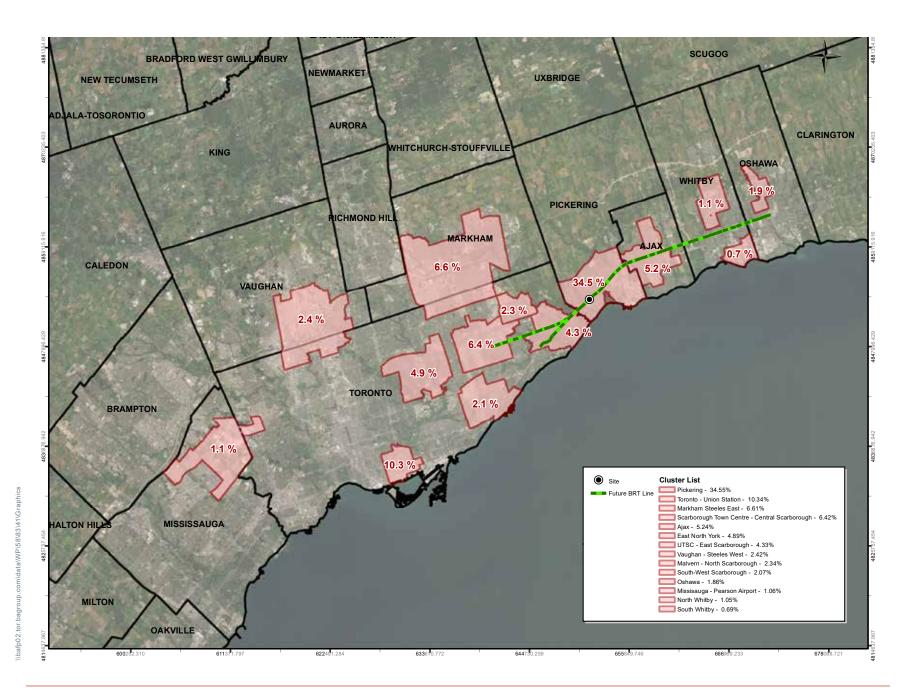


FIGURE 9 BRT CONNECTIVITY - KEY DESIGNATIONS

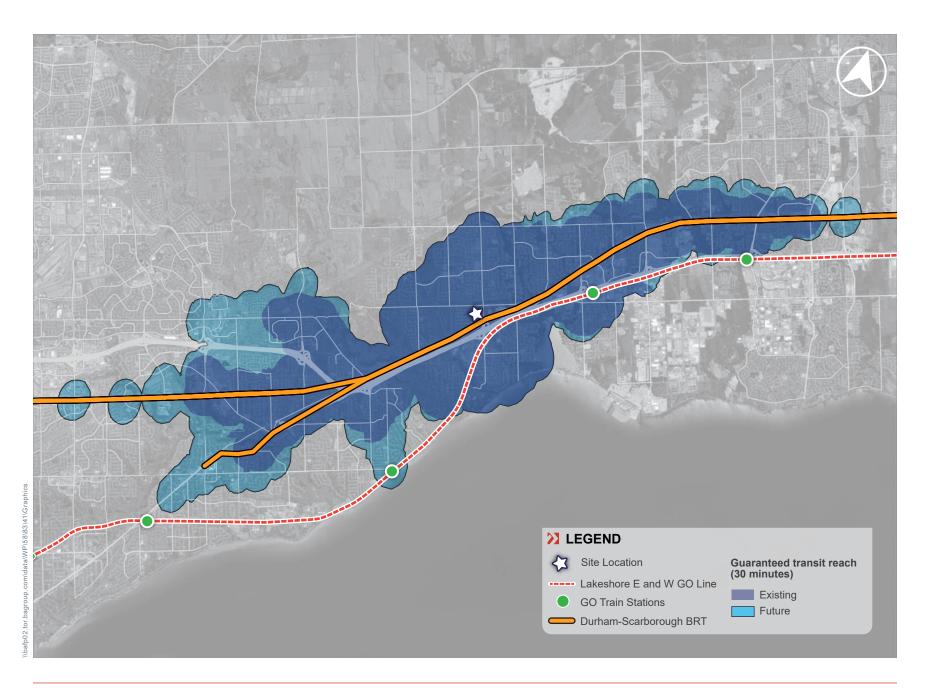
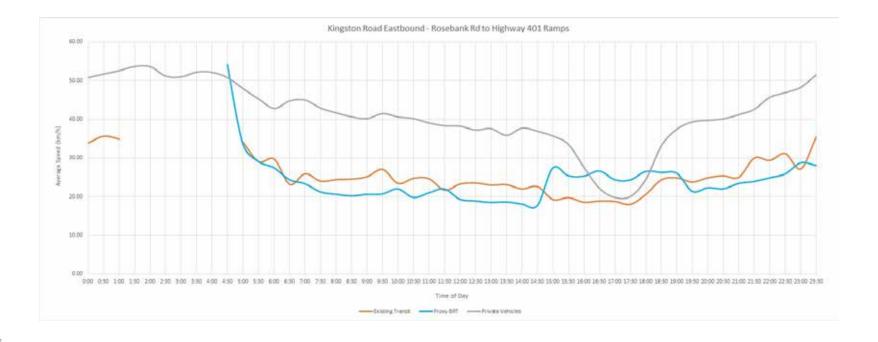



FIGURE 10 EXISTING VS FUTURE BRT GUARANTEED 30 MINUTE TRANSIT REACH

603 KINGSTON ROAD

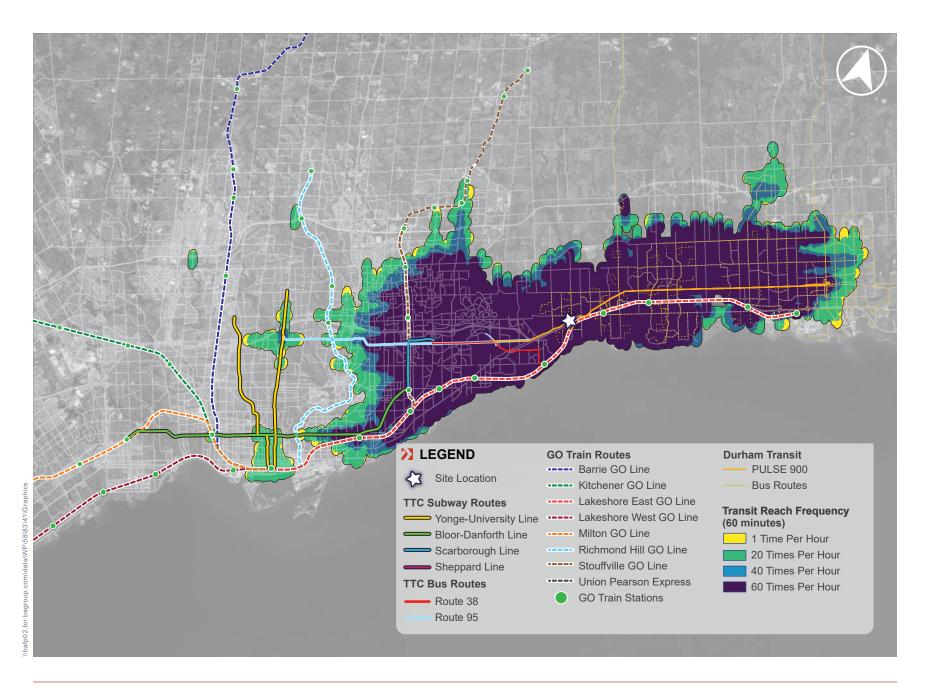


FIGURE 12 EXISTING 60 MINUTE TRANSIT REACH FREQUENCY

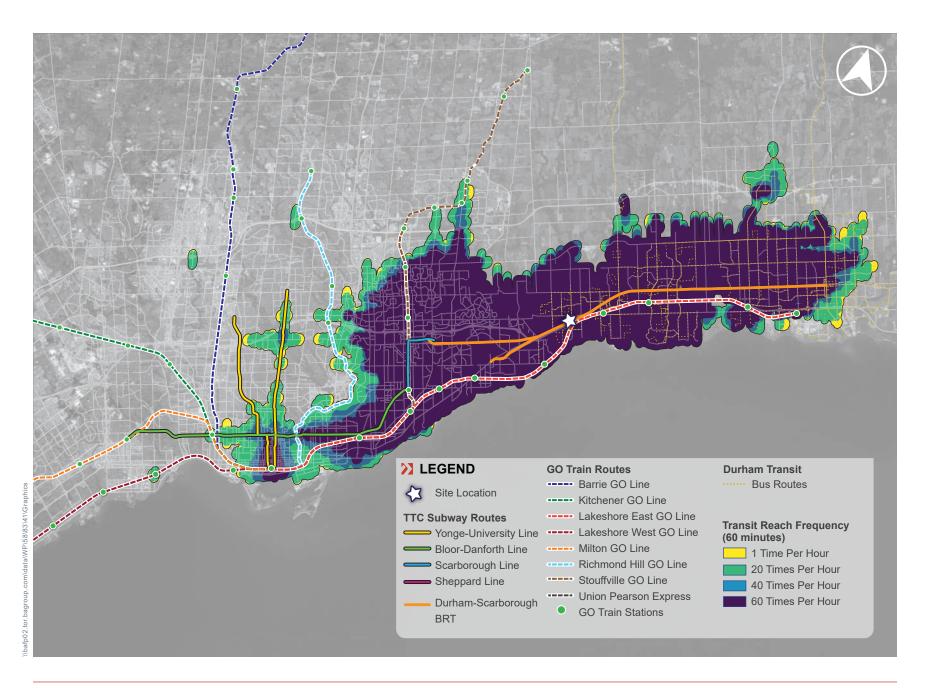


FIGURE 13 BRT & RER FUTURE 60 MINUTE TRANSIT REACH FREQUENCY

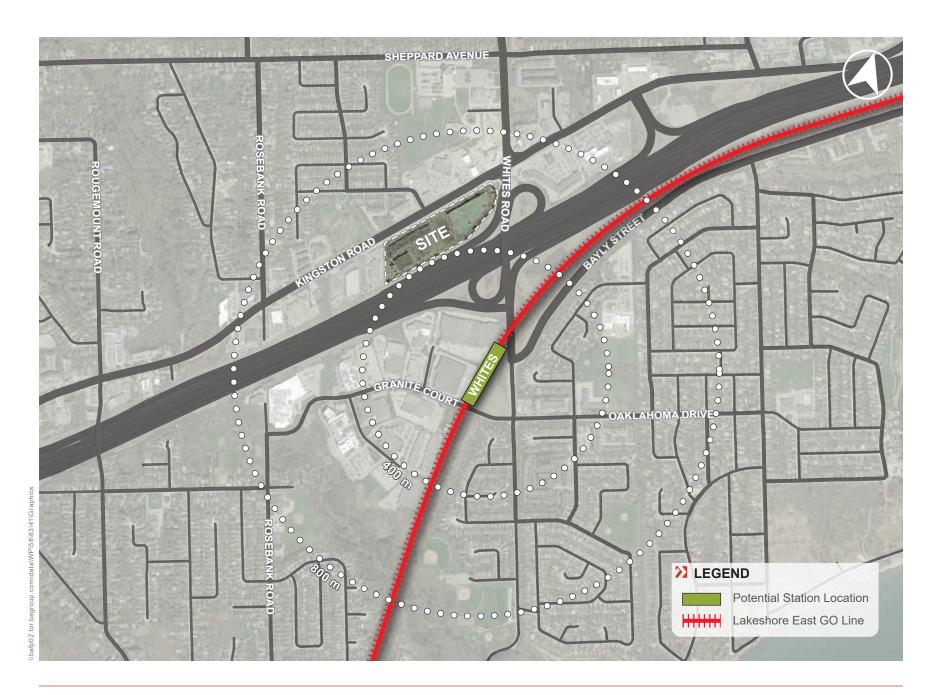


FIGURE 14 FUTURE WHITES GO STATION

FIGURE 15 BUSINESS CASE REVIEW OF DENSITY SERVED BY WHITES GO STATION

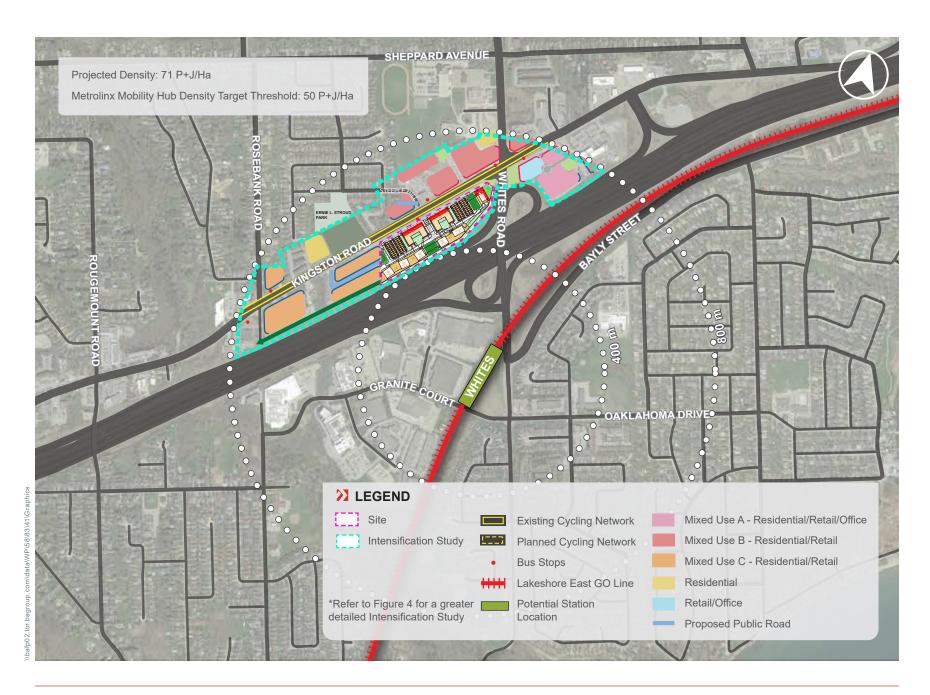


FIGURE 16 INTENSIFICATION STUDY REVIEW OF DENSITY SERVED BY WHITES GO STATION

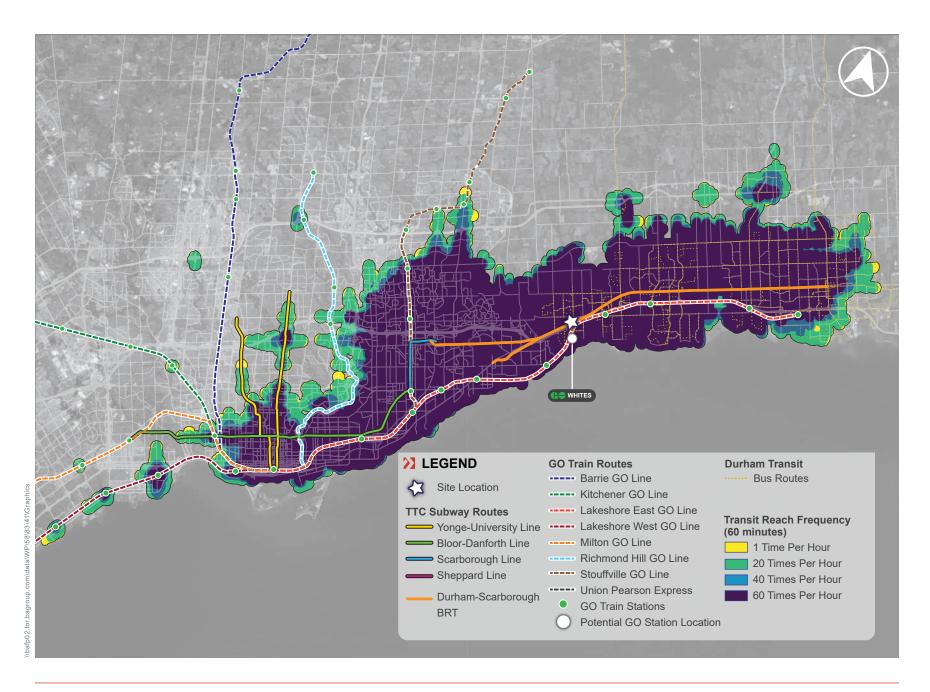


FIGURE 17 WHITES GO STATION FUTURE 60 MINUTE TRANSIT REACH FREQUENCY

4.3 Area Pedestrian Context

4.3.1 Existing Pedestrian Network

The proposed redevelopment Site is centrally located along the Kingston Road corridor, just outside of the City Centre. There are a mix of uses along this corridor that can be accessed by walking, however, the vehicle-oriented design of the area (i.e. large surface parking lots and wide streets) does not prioritize pedestrian trips. Pedestrian destinations and the area context are illustrated in **Figure 18**.

Pedestrian Crossings

In the immediate area surrounding the Site, there are two signalized intersections with marked pedestrian crossings, which adequately facilitate pedestrian movement in a safe manner. Adjacent to the Site, the Kingston Road / Steeple Hill intersection is spaced approximately 315 to 620 metres from the nearest pedestrian crossings on Kingston Road. The lack of mid-block crossings hinders pedestrian mobility in the area.

Sidewalks

Sidewalks with a width of approximately 1.6 metres are provided on both sides of Kingston Road, and generally contain a landscaped buffer between the sidewalk and vehicular traffic lanes. However, the sidewalk on the south side discontinues west of the Site until Rosebank Road. Sidewalks are provided on both sides of Whites Road, but there generally is no buffer provided between the sidewalk and vehicular traffic.

Currently, there are no pedestrian facilities that connect the commercial uses on the Site to the external sidewalk.

4.3.2 Planned Pedestrian Improvements

The intensification study (as seen in **Figure 4**) proposes numerous improvements for the pedestrian realm along Kingston Road within the Whites Precinct. A controlled intersection is proposed for further study between Steeple Hill and Rosebank Road, creating a potential new mid-block pedestrian crossing. This would help facilitate pedestrian mobility and make the area more porous for pedestrians.

Additionally, the intensification study proposes new park land within the precinct to create new pedestrian links from Kingston Road to the areas surrounding the corridor. Retail and secondary frontages along Kingston Road are also proposed to animate the public realm and provide more opportunities for pedestrian interactions at-grade.

The proposed site plan provides new sidewalk facilities along the internal road network that connect to the external sidewalk network. These sidewalks provide pedestrian connections between the new uses on-site and the wider pedestrian network and surrounding uses. The removal of the large surface parking lots and the proposed at-grade retail uses adjacent to Kingston Road creates an opportunity for pedestrian interaction and will improve the public realm.

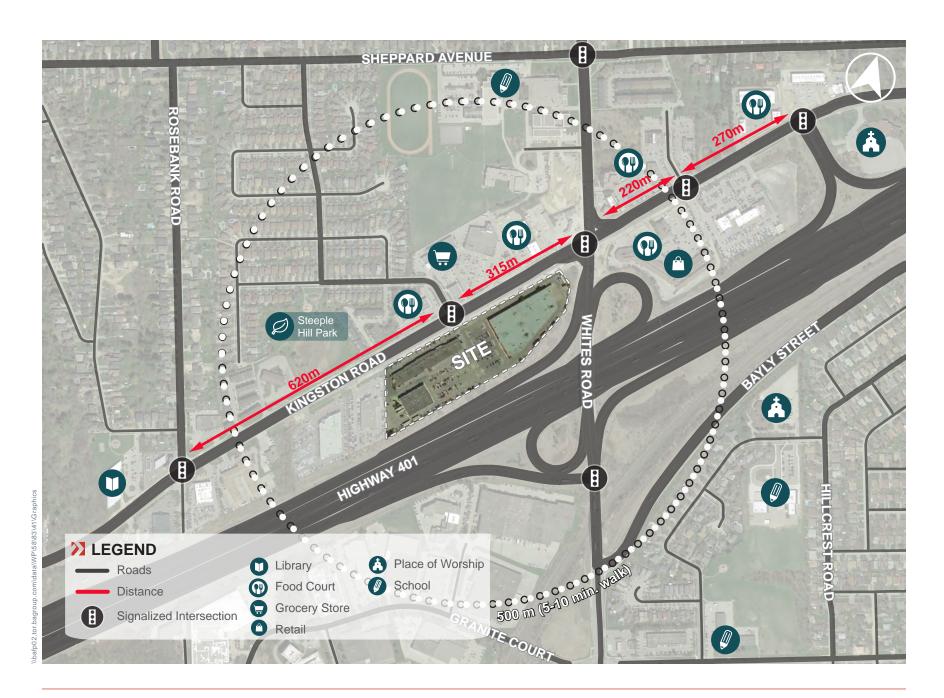


FIGURE 18 EXISTING AREA PEDESTRIAN DESTINATIONS

4.4 Area Cycling Context

4.4.1 Existing Cycling Network

The Site is located along a portion of the Kingston Road bike lane that has been constructed. The bike lane provides cyclist with a designated lane that is marked on the pavement. The bike lane currently extends from west of the Site in the west to Delta Boulevard in the east.

There are smaller municipal cycling infrastructure along Granite Court and Rosebank Road. However, these routes do not have direct connections to the Site.

4.4.2 Planned Cycling Network Improvements

The Durham Transportation Master Plan (2017) includes planned primary cycling routes within the vicinity of the Site. These include:

- <u>Kingston Road</u>: the cycling infrastructure on Kingston Road is proposed to be continuous, extending from Altona Road in the west to Highway 412 in the east where the cycling infrastructure will continue along Dundas Street.
- Whites Road: cycling infrastructure is proposed along this corridor, extending from Highway 7 in the north to Kingston Road in the south.
- Rougemount Drive: cycling infrastructure is proposed along this corridor, extending from Kingston Road in the north to the Waterfront Trail in the south.

The existing and planned cycling infrastructure network is illustrated in Figure 19.

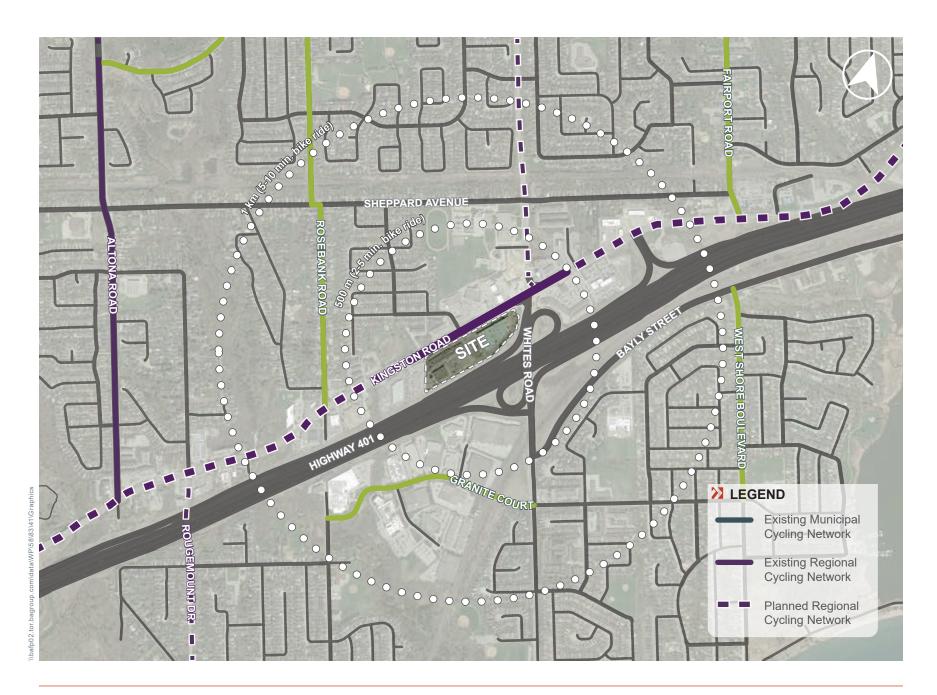


FIGURE 19 EXISTING AND FUTURE AREA CYCLING NETWORK

5.0 TRANSPORTATION DEMAND MANAGEMENT STRATEGY

5.1 TDM Approach

The TDM Plan for the proposed development outlines the various TDM measures and strategies being advanced to reduce the number of private automobile-based trips made to / from the Site, to promote the use of more active and sustainable modes of transportation, and to play a role in responding to the mobility needs of employees, residents, and visitors of the proposed development.

The TDM Plan, combined with the physical attributes of the site plan – including the Site's location in the regional transit network, bicycle infrastructure, and pedestrian facilities – are intended to reduce auto-mode share to the greatest extent possible

Providing Mobility Choice

The proximity of transit services to the proposed development, combined with the integration of existing and planned active transportation infrastructure, is intended to ensure that people traveling to / from the Site are given viable and attractive transportation options. The provision of multi-modal transportation infrastructure will offer an enhanced level of mobility choice for perspective employees and residents.

Parking Provisions and Management

Limits to the accommodation of motorists based on establishing appropriate parking supplies and associated management programs, are intended to further reduce auto-mode share.

Parking supply and management elements are addressed further in Section 6.0.

5.2 TDM Objectives

TDM strategies include the application of various site design elements and property management/operational policies that have the goal of redistributing and reducing the travel demand of a project, specifically that of single occupancy private vehicles, with the primary objective of:

- reducing demand on road infrastructure, thereby minimizing road and parking capital expenditures;
- increasing travel efficiency;
- reducing climate change emissions;
- improving air quality; and
- improving overall health.

To ensure that the redevelopment sets a sustainable precedent of urban redevelopment and encourages the use of non-private automobile modes of travel, a comprehensive framework has been developed that will serve as a guideline for the implementation of effective TDM strategies.

5.3 TDM Measures

The proposed development includes a number of investments in transportation infrastructure, and notably the public realm and wider pedestrian network, to maximize mobility choice and connect with existing and planned active transportation and transit infrastructure. Through the Zoning By-law Amendment and future Site Plan Application processes, infrastructure and parking supply measures supportive of reducing reliance on single-occupant vehicles will be pursued and formalized. TDM measures proposed as part of the current development application are outlined in **Table 4**.

Table 4 Potential TDM Plan Strategies

		Intent	Implementation
PROMOTION OF TRANSIT USE		Support and promotion of area transit services for both short and long-distance travel by employees, residents, and visitors will reduce the overall use of vehicles and the need to own one. The development site's proximity to transit services, especially along Kingston Road, and access to local and regional transit services provides convenient access and connections across the City and Durham Region	 provide convenient and accessible pedestrian connections from the Site to the nearby transit stops consideration will be given to providing a shuttle between the Site and Pickering GO Station to increase transit usage, which will be redirected to Whites Road GO Station should it be approved consideration will be given to provide first time residents with a pre-loaded PRESTO card facilitate accessible transit services at grade increase the awareness, utility, practicality and viability of transit travel capitalize on the already good, and improving, level of local transit accessibility afforded to the Site enable the widespread use of transit
BICYCLE FACILITIES	ð₩	Bicycle use is a convenient and viable travel alternative to the personal automobile. Bicycle lanes are provided along Kingston Road to link the proposed development with the wider City cycling network. The proximity of the Site to the Kingston Road route and future connections provide safe, reliable pathways to connect into other areas in the City.	 shower and change facilities will be provided, if deemed necessary, to support cycling to and from non-residential uses on-site long-term bicycle parking will be located within secure and weather-protected areas within the parking garage at grade short-term bicycle parking will be located near the primary entrances of the development to promote the use of bicycles safe, clear and convenient access is provided to cyclists cycling maintenance and repair facilities to be provided
PEDESTRIAN CONNECTIVITY	†	The quality of the public realm and pedestrian accessibility surrounding the Site influences the mobility choices of employees, residents, and visitors to the proposed development. A high-quality, safe, connection between transit stops, the public realm, and Site vicinity sidewalks encourages employees, residents and visitors to travel between the Site and surrounding neighbourhoods without the use of a vehicle.	 provide high-quality, safe pedestrian-scale connections from the Site to the surrounding street and pedestrian pathway network maintain on-site pedestrian facilities to enable year-round pedestrian access enhance the quality of the public realm through the provision of pedestrian-scale landscaping, appropriate sidewalk widths and parkland, and general improvement of the public realm along building frontages enhance site porosity through the introduction of mid-block pedestrian routes, animated through the programming of retail and other uses

	Intent	Implementation
LAND USE INTEGRATION	Locate the Site with a variety of land uses in the surrounding area and introduce a variety of land uses within the redevelopment plan, that is easily accessible or provide space for supportive retail, restaurant, services, etc. This promotes and reduces overall vehicle trips as a result of the proximity and level of convenience offered by reducing the need to travel off-site for typical daily activity.	 the site plan offers a range of mutually-supportive employment, retail, residential, recreational and amenity spaces on-site; provide connections to nearby buildings / retail spaces to reduce the need for employees and visitors to travel off-site or to utilize a vehicle for travel off-site to address daily needs;
REDUCE CAR USAGE	Provide options to reduce day-to-day use of private vehicles and promoted reduced vehicle ownership. Reducing the use and ownership of private vehicles reduces traffic demands on site accesses and the local street network, and reduces costly vehicle parking infrastructure while allowing opportunities to make more efficient use of vehicle parking that is provided.	provide priority vehicle parking for car-pool and low- emission vehicles
PARKING SUPPLY AND MANAGEMENT	Reduced parking standards applied to the proposed development encourages employees and visitors to re-consider the use or ownership of a vehicle. The reduction of office parking standards will increase the potential for employees and visitors to utilize transit, car-sharing, cycling and pedestrian facilities within the surrounding area.	 establish appropriate minimum parking supply standards for the proposed land uses that may be reduced compared to City by-law provisions to accommodate essential site related needs in this context. adopt a sharing of commercial office, residential visitor, and retail parking to maximize the efficient use of parking resources locate parking underground to enhance the pedestrian realm and encourage use of non-auto means at grade

		Intent	Implementation
COMMUNICATION AND PROMOTION	(i)	The provision of transportation information and on-going promotional and educational programmes targeted to site employees, residents and visitors, to make travellers aware of various transportation options made available to arrive / depart the Site, where transportation services can be accessed, and recourses made available to those wanting to try more sustainable transportation options.	• inclusion of transportation information screens located in accessible high-(foot) traffic locations to inform travellers, on an on-going basis, the time, location, and travel schedules of various transportation options available on-site, including broader taxi / ride-share provider service networks, transit / bike share provisions and other transportation services.

6.0 VEHICULAR PARKING CONSIDERATIONS

6.1 Zoning By-law Parking Requirements

6.1.1 Site-Specific By-laws No. 1810-84 & 2471-87

The Site is zoned by two site-specific by-laws, By-law No. 1810-84 and By-law No. 2471-87. By-law No. 1810-84 applies to the western portion of the Site, while By-law No. 2471-87 applies to the eastern portion of the Site. The gross floor area was conservatively utilized for the gross leasable area (GLA).

Under the site-specific by-laws, only non-residential uses are permitted on the Site, thus, the parking provisions only include minimum parking requirements for non-residential uses. For the purpose of this analysis, the residential parking requirements of the underlying By-law No. 3036 were applied to the Site.

The application of the minimum parking requirements to the proposed development is summarized in **Table 5**, resulting in a total requirement of 6,278 parking spaces, including 6,055 residential parking spaces and 223 non-residential parking spaces.

Table 5 Site-Specific By-laws No. 1810-84 & 2471-87 Parking Requirements

	Use	Units / GFA¹	Rate (Minimum)	Requirement (Minimum)			
ER			Residential				
PODIUM 1 + TOWER 1, 2 & 3	Multiple Family Vertical (Apartment)	960 units	1.75 spaces per unit ³	1,680 spaces			
	Subtotal	960 units		1,680 spaces			
PO	Total			1,680 spaces			
ER			Residential				
PODIUM 2 + TOWER 4 & 5	Multiple Family Vertical (Apartment)	640 units	1.75 spaces per unit ³	1,120 spaces			
DIUM 4	Subtotal	640 units		1,120 spaces			
PO	Total	1,120 spaces					
	Residential						
9	Multiple Family Vertical (Apartment)	380 units	1.75 spaces per unit ³	665 spaces			
WER	Subtotal	380 units		665 spaces			
3 + TO	Non-Residential Non-Residential						
PODIUM 3 + TOWER 6	Western Portion of the Site 0 m ²		4.5 spaces per 100 m ² of GLA ⁴	0 spaces			
РОС	Eastern Portion of the Site 3,856 m ² 3.5 spaces per 93 m ² of G		3.5 spaces per 93 m ² of GLA ⁵	145 spaces			
	Subtotal	-		145 spaces			
	Total	Total					

	Use	Units / GFA ¹	Rate (Minimum)	Requirement (Minimum)			
			Residential				
PODIUM 4 + TOWER 7	Multiple Family Vertical (Apartment)	200 units	1.75 spaces per unit ³	350 spaces			
	Subtotal	200 units		350 spaces			
			Non-Residential				
	Western Portion of the Site	0 m ²	4.5 spaces per 100 m ² of GLA ⁴	0 spaces			
РОГ	Eastern Portion of the Site	676 m ²	3.5 spaces per 93 m ² of GLA ⁵	25 spaces			
	Subtotal	-		25 spaces			
	Total			375 spaces			
			Residential				
80	Multiple Family Vertical (Apartment)	420 units	1.75 spaces per unit ³	735 spaces			
PODIUM 5+TOWER8	Subtotal	420 units		735 spaces			
5 + 70			Non-Residential				
INM :	Western Portion of the Site	0 m ²	4.5 spaces per 100 m ² of GLA ⁴	0 spaces			
РОБ	Eastern Portion of the Site	676 m ²	3.5 spaces per 93 m ² of GLA ⁵	25 spaces			
	Subtotal	-		25 spaces			
	Total			760 spaces			
	Residential						
6	Multiple Family Vertical (Apartment)	420 units	1.75 spaces per unit ³	735 spaces			
+ TOWER 9	Subtotal	420 units		735 spaces			
			Non-Residential				
PODIUM 6	Western Portion of the Site	0 m ²	4.5 spaces per 100 m ² of GLA ⁴	0 spaces			
РОБ	Eastern Portion of the Site	742 m ²	3.5 spaces per 93 m ² of GLA ⁵	28 spaces			
	Subtotal	-		28 spaces			
	Total			763 spaces			
ER			Residential				
PODIUM 7 + TOWER 10	Multiple Family Vertical (Apartment)	440 units	1.75 spaces per unit ³	770 spaces			
DIUM	Subtotal	440 units		770 spaces			
ЬО	Total			770 spaces			

Use		Units / GFA ¹ Rate (Minimum)		Requirement (Minimum)	
	TOTAL RESIDENT PARKING SP		6,055 spaces		
SITE	TOTAL NON-RESIDENT PARKIN	223 spaces			
S	TOTAL PARKING SPACES	6,278			

Notes:

- 1. Based upon statistics provided Graziani & Corazza Architects dated October 24, 2023.
- 2. According to the minimum parking requirements of the underlying By-law No. 3036.
- 3. Includes parking provisions for visitors.
- 4. According to the minimum parking requirements of By-law No. 1810-84.
- 5. According to the minimum parking requirements of By-law No. 2471-87.

6.1.2 Zoning By-law 7553-17

The City of Pickering has a zoning by-law for the City Centre that has reduced parking standards and permits parking to be shared between uses, acknowledging the transit accessibility of the City Centre and temporal patterns between differing uses.

As the Site is located along the future BRT corridor and has a mix of uses proposed on-site, it is our opinion that the City Centre parking standards are more appropriate for the Site. Additionally, the applicable zoning by-laws are considered outdate, as the by-laws were drafted over 30 years ago and the latest amendment to the parking requirements occurred in 2001.

The application of the City Centre By-law 7553-17 minimum parking requirements to the proposed development is summarized in **Table 6**. The sharing parking permissions results in a total parking requirement of 3,374 parking spaces, including 2,768 residential parking spaces and 606 non-residential parking spaces.

6.2 Proposed Parking Requirements

The proposed parking requirements are as follows:

- Apartment Dwelling: 0.65 parking spaces per unit
- Residential Visitors: 0.15 spaces per unit
- Office: no designated office parking will be provided, it will share the visitor parking
- Retail: no designated retail parking will be provided for retail space less than 1,000 m² GFA per building, it will share the visitor parking

The application of the proposed minimum parking requirements to the proposed development is summarized in **Table 7**. The application of the proposed minimum parking requirements results in a total parking requirement of 2,768 parking spaces, including 2,249 residential parking spaces and 519 non-resident parking spaces.

Currently, a total of 2,768 parking spaces in two levels of below-grade parking and within Podium 1, 2 and 3 are proposed to support the Project. Further details of the proposed development's parking supply and location will be provided in subsequent applications to the City through the approval process.

Table 6 City of Pickering By-law 7553-17 Parking Requirements

				Requirement with Sharing							
Use	Units / Floor Area ¹	Rate (Minimum)	Requirement (Minimum)		We	ekday			We	ekend	
				Morning	Noon	Afternoon	Evening	Morning	Noon	Afternoon	Evening
Residential											
Apartment Dwelling	3,460 units	0.80 spaces per unit	2,768 spaces	es 100%							
SUBTOTAL	3,460 units	(0.80 spaces per unit)	2,768 spaces	aces 2,768 spaces							
Non-Residential											
Residential Visitors	3,460 units	0.15 spaces per unit	519 spaces	104 sps (20%)	104 sps (20%)	311 sps (60%)	519 sps (100%)	104 sps (20%)	104 sps (20%)	311 sps (60%)	519 sps (100%)
Office	3,475 m²	2.5 spaces per 100 m ² GLFA	87 spaces	87 sps (100%)	78 sps (90%)	83 sps (95%)	9 sps (10%)	9 sps (10%)	9 sps (10%)	9 sps (10%)	0 sps (0%)
Retail	2,474 m²	3.5 spaces per 100 m ² GLFA	87 spaces	57 sps (65%)	78 sps (90%)	78 sps (90%)	78 sps (90%)	70 sps (80%)	87 sps (100%)	87 sps (100%)	61 sps (70%)
SUBTOTAL	SUBTOTAL 693			248 sps	260 sps	472 sps	606 sps	183 sps	200 sps	407 sps	580 sps
TOTAL (with sharing) ²			3,461 spaces	3,016 sps	3,028 sps	3,240 sps	3,374 sps	2,951 sps	2,968 sps	3,175 sps	3,348 sps

Notes:

^{1.} Based upon statistics provided Graziani & Corazza Architects dated October 24, 2023.

^{2.} Sharing provision are in accordance with Zoning By-law 7553-17 Section 3.4.

Table 7 Recommended Minimum Parking Requirements

	Use	Units / GFA ¹	Rate (Minimum)	Requirement (Minimum)				
			Residential					
PODIUM 1 + TOWER 1, 2 & 3	Apartment Dwelling	960 units	0.65 spaces per unit	624 spaces				
/ER 1,	Subtotal	960 units		624 spaces				
+ TOM			Non-Residential					
Z M 1	Residential Visitors	960 units	0.15 spaces per unit	144 spaces				
PODIL	Subtotal	-		144 spaces				
	Total			768 spaces				
			Residential					
8 5	Apartment Dwelling	640 units	0.65 spaces per unit	416 spaces				
WER 4	Subtotal	640 units		416 spaces				
PODIUM 2 + TOWER 4 &								
IUM 2	Residential Visitors	640 units	0.15 spaces per unit	96 spaces				
РОБ	Subtotal	-		96 spaces				
	Total			512 spaces				
	Residential							
	Apartment Dwelling	380 units	0.65 spaces per unit	247 spaces				
9 &	Subtotal	380 units		247 spaces				
PODIUM 3 + TOWER 6			Non-Residential					
13 + T	Residential Visitors	380 units	0.15 spaces per unit	57 spaces				
NDIO	Retail	381 m²	No minimum	0 spaces				
- B	Office	3,475 m ²	No minimum	0 spaces				
	Subtotal	-		57 spaces				
	Total			304 spaces				

	Use	Units / GFA¹	Rate (Minimum)	Requirement (Minimum)			
l		·	Residential				
PODIUM 4 + TOWER 7	Apartment Dwelling	200 units	0.65 spaces per unit	130 spaces			
	Subtotal	200 units		130 spaces			
+ TOW		,	Non-Residential				
M. 4	Residential Visitors	200 units	0.15 spaces per unit	30 spaces			
PODIL	Retail	676 m²	No minimum	0 spaces			
	Subtotal	-		30 spaces			
	Total			160 spaces			
			Residential				
	Apartment Dwelling	420 units	0.65 spaces per unit	273 spaces			
/ER 8	Subtotal	420 units		273 spaces			
PODIUM 5 + TOWER 8	Non-Residential						
S W	Residential Visitors	420 units	0.15 spaces per unit	63 spaces			
PODII	Retail	676 m²	No minimum	0 spaces			
	Subtotal	-		63 spaces			
	Total			336 spaces			
			Residential				
	Apartment Dwelling	420 units	0.65 spaces per unit	273 spaces			
VER 9	Subtotal	420 units		273 spaces			
PODIUM 6 + TOWER 9							
9 W 0	Residential Visitors	420 units	0.15 spaces per unit	63 spaces			
PODI	Retail	742 m ²	No minimum	0 spaces			
	Subtotal	-		63 spaces			
	Total			336 spaces			

l	Use	Units / GFA¹	Rate (Minimum)	Requirement (Minimum)
			Residential	
10	Apartment Dwelling	440 units	0.65 spaces per unit	286 spaces
TOWER	Subtotal	440 units		286 spaces
+				
PODIUM 7	Residential Visitors	440 units	0.15 spaces per unit	66 spaces
PO	Subtotal	-		66 spaces
	Total	352 spaces		
	TOTAL RESIDENT PARKING SPACES	2,249 spaces		
SITE	TOTAL NON-RESIDENT PARKING SPACE	519 spaces		
	TOTAL PARKING SPACES	2,768 spaces		

Notes:

- 1. Based upon statistics provided Graziani & Corazza Architects dated October 24, 2023.
- 2. Sharing provision are in accordance with Zoning By-law 7553-17 Section 3.4.

6.3 Appropriateness of Reduced Residential Parking Supply

In our opinion, the resident parking standards outlined in Site-Specific By-laws No. 1810-84 & 2471-87 overstate the parking needs of contemporary mixed-use buildings located in transit-accessible areas within the City of Pickering.

Adoption of a reduced residential parking standard is considered appropriate based upon the following considerations:

- Provincial and local policy / plan that direct municipalities to reduce or eliminate minimum parking requirements;
- The Site's transportation context, including its proximity to existing and planned transportation networks that provide non-automobile dependent travel connections across the City;
- A review of Zoning By-Law parking standards across the GTHA and eastern Ontario;
- Recent resident parking reduction approvals obtained for residential buildings located within close proximity to an existing surface transit;
- Parking sales trends in the City of Pickering for residential building located within close proximity to high-order transit stations and surface transit; and
- The TDM measures for the Site that will influence parking demand on-site and in the wider area.

The following provides an overview of the contextual factors influencing parking demand at mixed-use development in the Pickering area and the appropriateness of the proposed (reduced) minimum parking requirements in this instance.

6.3.1 Provincial & Local Parking Policy

As growth in cities increase, transit connections and access to alternative modes of transportation (e.g., walking, cycling, carpooling) become more critical in moving residents, visitors, and employees between home, work, and entertainment destinations. In addition, developments within major cities in North America are continuously recognizing that the location of a proposed development, in relation to transit services, pedestrian infrastructure, and cycling infrastructure plays an important role in decreasing auto ownership, and potentially alleviating traffic congestion.

In this way, increasing efforts and investments are being made to change travel behaviour, as shown through existing and evolving provincial, regional, and local policies as it pertains to parking management, parking requirements, and prioritizing more sustainable travel choices over automobiles.

As previously discussed in **Section 3.0**, there are many Provincial plans and local policies that provide a framework to guide development in Ontario municipalities. These plans and policies often contain direction with regards to development along transit corridors, commenting on parking standards and the future regulations of parking minimums. A brief overview of the Provincial and local plans and policies that support a reduced parking minimum are outlined below.

6.3.1.1 PLANNING ACT

The Planning Act directs municipalities to have regard to matters of provincial interest set out in Section 2 of the Planning Act, including:

- (r) the promotion of development that is designed to be sustainable, to support public transit and to be oriented to pedestrians;
- (t) the mitigation of greenhouse gas emissions and adaptation to a changing climate.

The proposed reduced parking standards have regard to matters of Provincial interest in that they will promote sustainable, transit-supportive development, and mitigate greenhouse gas emissions as well as support and encourage the use of existing or planned higher order public transit by discouraging automobile ownership and demand for single-occupant vehicle trips.

6.3.1.2 PROVINCIAL POLICY STATEMENT

Adopted in May 2020, the **Provincial Policy Statement (PPS)** provides policy direction to promote transportation demand management (TDM) strategies to be implemented for new developments to increase the efficiency of existing and planned transportation infrastructure (Section 1.6.7.2). As well, the PPS states that land use pattern, density, and mix of uses should be promoted to minimize the length and number of vehicle trips and support current and future use of transit and active transportation (Section 1.6.7.4). In summary, the PPS is supportive of the use of transportation demand management, such as reduced parking rates, to support and increase the efficiency of more sustainable transportation options.

The proposed reduction in parking rates associated with the development is consistent with the PPS and is an appropriate development standard to facilitate intensification and transit-supportive development as planned for the area.

6.3.1.3 PLACES TO GROW: GROWTH PLAN FOR THE GREATER GOLDEN HORSESHOE

The **Growth Plan for the Greater Golden Horseshoe (Growth Plan)** (as amended in 2020) aims to foster economic growth, provide greater housing supply and options, increase employment, and build communities for a healthier and more affordable life in the Greater Golden Horseshoe. As such, the Growth Plan outlines the importance of reducing reliance on the automobile and promoting transit and active transportation. In particular, the Growth Plan encourages transit-supportive policies, such as reduced parking standards, within major transit station areas (MTSAs), which are areas that are within an approximate 500 to 800 metre radius (i.e. 10-minute walk) of an existing or planned higher order transit station. The Site is located within 500 to 800 metres of a future Durham-Scarborough Bus Rapid Transit (BRT) stop, and is within 800 metres of a possible GO Transit station at Whites Road.

The Growth Plan encourages development in MTSAs to support transit and active transportation, as noted in Section 2.2.4.8:

All major transit station areas will be planned and designed to be transit-supportive and to achieve multimodal access to stations and connections to nearby major trip generators by providing, where appropriate:

- a. connections to local and regional transit services to support transit service integration;
- b. infrastructure to support active transportation, including sidewalks, bicycle lanes, and secure bicycle parking; and
- c. commuter pick-up/drop-off areas.

Additionally, the Growth Plan explicitly states that development in MTSAs should provide alternative development standards such as reduced parking standards in Section 2.2.4.9:

Within all major transit station areas, development will be supported, where appropriate, by:

- d. planning for a diverse mix of uses, including additional residential units and affordable housing, to support existing and planned transit service levels;
- e. fostering collaboration between public and private sectors, such as joint development projects;
- f. providing alternative development standards, such as reduced parking standards; and
- g. prohibiting land uses and built form that would adversely affect the achievement of transit-supportive densities.

In addition to MTSA-specific policies, Section 3.2.24 of the Growth Plan encourages municipalities to implement transportation demand management policies that would prioritize and improve sustainable transportation modes, further supporting a reduced parking standard for the proposed site:

Municipalities will develop and implement transportation demand management policies in official plans or other planning documents or programs to:

- a. reduce trip distance and time;
- b. increase the modal share of alternatives to the automobile, which may include setting modal share targets;
- c. prioritize active transportation, transit, and goods movement over single-occupant automobiles;
- d. expand infrastructure to support active transportation; and
- e. consider the needs of major trip generators.

In summary, the Growth Plan explicitly shows support for the reduction of parking standards within MTSAs, of which the site is located within a future Durham-Scarborough Bus Rapid Transit (BRT) stop, and within of a possible GO station at Whites Road. Thus, the proposed parking rates for the Subject Site are consistent with the Growth Plan and are considered appropriate.

6.3.1.4 ONTARIO MINISTRY OF TRANSPORTATION TRANSIT-SUPPORTIVE GUIDELINES

The Ontario Ministry of Transportation Transit-Supportive Guidelines are intended to assist with the implementation of policies and objectives set out in the PPS and the Growth Plan for the GGH, both of which provide key policy directives to manage future growth in the Greater Toronto Area and beyond.

The guidelines aim to create an environment that is supportive of transit, and to develop services and programs intended to increase transit ridership. The guidelines also support the use of TDM strategies, particularly in close proximity to transit routes. This may include the sharing of parking between Site uses, the use of on-street parking during off-peak hours, and the reduction of minimum and maximum parking requirements as TDM measures are adopted. In this way, the proposed parking reduction proposed by the Subject Site is consistent with these provincial guidelines.

6.3.1.5 2041 METROLINX REGIONAL TRANSPORTATION PLAN

The purpose of the 2041 RTP is to provide a framework that will create an integrated, multi-modal regional transportation system to support the growth of healthy, complete and sustainable communities. The RTP contains strategies that integrate land use and transportation planning to identify areas for investment and build new connections. One of these strategies specifically addresses parking management.

Strategy 4.8 rethinks the future of parking, encouraging the Province to adopt a region-wide policy that "provides guidelines and encourages best practice in parking management." The strategy states that "zoning standards should be reviewed, with the expectation that minimum parking requirements will be reduced, particularly in transit-supportive neighbourhoods."

The proposed parking reduction for the development is consistent with Metrolinx's policy.

6.3.1.6 DURHAM TRANSPORTATION MASTER PLAN

The TMP recommends Action 80 to support the goal of requiring new developments to support sustainable travel choices. The action item is to "create guidelines that support a Regional parking strategy for strategic nodes and corridors, in partnership with the area municipalities. Actions could include amendments to zoning by-laws (e.g., to reduce parking minimums, set maximums and allow shared parking), identifying parking supply caps for key districts, and studying the feasibility and benefits of public parking authorities." This aligns with the proposed (reduced) minimum parking requirements, and the applicant wants to work in partnership with the City of Pickering to amend the in force zoning by-laws.

6.3.1.7 PICKERING OFFICIAL PLAN

The Official Plan states that City Council shall encourage shared parking in mixed uses areas and shall consider a reduction in the parking requirement where TDM measures are provided. While this is stated in regards to the City Centre parking, it shows the direction that City policy is headed and it is our opinion that is should be applied to all areas of Pickering or at least the transit-accessible areas

6.3.2 Transportation Context

As outlined in **Section 4.0**, the Site is located in close proximity to existing transit services and planned transit services. The existing PULSE bus route, local bus routes and GO Transit services currently support non-automobile based travel, which ultimately supports a reduced parking standard.

A review of the 2016 Transportation Tomorrow Survey (TTS) for the area surrounding the Site revealed that while the majority of existing travel is conducted using an automobile, a considerable amount of home-based travel is conducted using transit and active transportation during the morning and afternoon peak periods.

TTS Zone 1046 (the area generally bounded by Whites Road, Highway 401, the Canadian National Railway line and Little Rouge Creek) were analyzed in order to determine peak period travel modes residents in the area. The data is summarized in **Table 8**.

Table 8 Area Peak Period Travel Mode Distribution

Weekday Peak Period	Auto Driver	Auto Passenger	Transit	Walk	Cycle	Total
AM	70%	16%	11%	3%	0%	100%
PM	74%	15%	7%	4%	0%	100%

Notes:

Based on the most recent 2016 Transportation Tomorrow Survey data, approximately 70-74% of all home-based trips taken during the weekday peak period in the Site's vicinity were undertaken by auto drivers. The provision of a parking space for 80% of apartment residents and 100% of townhouse residents (i.e. 0.80 spaces per unit and 1.00 spaces per unit) is above the upper range of the percent of areas residents that currently drive a vehicle to and from their home, based on 2016 data.

The 26-30% of area residents that carpool, use transit or use active transportation are supportive of a reduced parking standard, as it indicates that not all residents in the areas surrounding the Site depend on their own vehicle for their daily travel.

The future BRT and RER services will enhance the existing transit services, as will the future Whites Road GO Transit station, should it be reconsidered by Metrolinx. It is important to note that the transit reach of the Site is not dependent on the Whites Road station, as the planned BRT and RER services on their own increase the reliability / frequency of services across the City and wider region when compared to existing conditions, as outlined in **Section 4.2.2**.

Furthermore, the intensification study and TMPs for the area contain plans to expand the pedestrian and cycling networks. As such, the planned transportation networks and services, including the future transit, are anticipated to increase the percentage of area residents that carpool, use transit or use active transportation in their daily travel, further increasing support for reduced parking standards.

^{1.} Travel mode split calculated for home-based trips within TTS 2001 Zones 1046

6.3.3 Zoning By-Law Review - Resident Parking Standards

A comprehensive Zoning By-law review has been undertaken which compares parking standards adopted across numerous municipalities across the GTHA and eastern Ontario with comparable transit access to the Subject Site. The selection of municipalities was primarily based on certain urban characteristics, including density and intensification patterns, conventionally auto-centric network, and a diversity of transit services available in the area. These minimum parking requirements reflect evolving transit contexts, mixed-use environments, and the emergence of alternative modes of travel.

A summary of resident Zoning By-law rates for comparable Ontario municipalities is provided in **Table 9**.

Table 9 Residential Parking Supply Ratio Requirements – Comparable Ontario Municipalities

Municipality	Zoning By-law	City Area	Land Use Category	Nearby Transit Service	Minimum Resident Parking Requirement
Proposed Development		Mixed Corridors	Apartment Dwelling Unit	DRT Local Bus Routes Future Durham-Scarborough BRT Potential GO station at Whites Road	0.65 spaces / unit
	By-law 0225- 2007	Precinct 1	Condo / Rental Apartment		0.80 spaces / unit
Mississauga	Undergoing City staff investigation	Along future Hazel McCallion LRT		 MiWay Bus Mississauga Transitway MiWay Express Bus GO Bus Future Hazel McCallion LRT 	In June 2023, City of Mississauga's Council has motioned to investigate the feasibility of reducing, and possibly eliminating altogether, minimum residential parking requirements along the future Hazel McCallion Light Rail Transit line.
	By-law 001- 2021 (Passed)	VMC	Apartment Dwelling	TTC Bus / Subway GO Bus / Train YRT Bus YRT Viva BRT	0.40 spaces / unit
Vaughan	Yonge-Steeles Corridor Secondary Plan, (approved by OLT hearing)	Yonge- Steeles	Apartment Dwelling	TTC BusYRT BusFuture TTC SubwayFuture Steeles BRT	No Minimum
Toronto	By-law 569- 2013	Parking Zone B	Mixed-Use Building	 TTC Bus / Subway / Streetcar GO Bus / Train Miway Bus Future TTC Subway Future TTC Streetcar Future TTC BRT 	No Minimum
Brampton	By-law 270- 2004	Central Area / Downtown	Apartment Dwelling	GO Bus / Train Brampton Bus Brampton ZUM BRT Future Hazel McCallion LRT	No minimum

Municipality	Zoning By-law	City Area	Land Use Category	Nearby Transit Service	Minimum Resident Parking Requirement
Ottawa ¹	By-law 2008- 250	Area "X"	Mixed-Use Building (within 300 metres of a rapid transit station)	O-Train LRT OC Transpo Rapid Bus OC Transpo Frequent Bus	0.0 to 0.5 spaces / unit
Kingston	By-law 2022- 62	Parking Area 1 (Downtown)	Mixed-Use Building	Kingston Transit Express Bus Kingston Transit Bus	0.40 spaces / unit
Kitchener	By-law 2019- 051	Urban Growth Centre	Multiple Residential Buildings	GO Bus / TrainGRT busGRT lxpress BusGRT ION LRT	No Minimum

Notes:

A number of municipalities (Brampton, Kitchener, Toronto, Ottawa) have adopted substantial reductions in their residential parking rates within their urban areas to align with goals of reducing non-auto modes of travel and promote existing and planned investments to transit, cycling, and pedestrian infrastructure. For example, the City of Brampton removed minimum resident parking requirements in the City's Central Area / Downtown with the passing of their most recent zoning by-law, and in June 2023 the City of Mississauga's Council directed City staff to investigate the feasibility of eliminating minimum parking requirements along the future Hazel McCallion LRT line.

Given that the level of existing and planned future transit service levels across the municipalities highlighted in **Table 9** are comparable to that of Pickering in the area of the Subject Site, it is evident that the minimum parking requirements stipulated in the prevailing Site Specific Zoning By-law 1810-84 & 2471-87 exceed what is otherwise considered appropriate in comparable municipalities with a similar transit context.

Specifically, the future operation of the Durham-Scarborough BRT will unlock a higher level of transit accessibility that is comparable to the context presented for Kitchener (Urban Growth Centre) and Toronto (Parking Zone B – lands within proximity to frequent surface transit), and exceeds the general level of transit service provided in Hamilton (Downtown Zone). At the time of implementation for the Durham – Scarborough BRT, there will be a diverse range of transportation services for area residents: BRT, Durham Transit buses, and extensive active transportation. In addition, the potential GO station at Whites Road will provide additional services for area residents including GO bus/train.

Collectively, the above indicates a general trend within municipalities across the GTHA and eastern Ontario to present a progressive outlook towards the provision of residential parking supply, particularly where transit and transportation context is, or is planned to be, conducive to non-automobile travel.

6.3.4 Residential Parking Reduction Trends across the GTHA

Approvals for reduced resident parking supply rates (lower than the in-force Zoning By-law) have become commonplace within municipalities across the GTHA through the advent of increased emphasis on sustainable travel behaviours, including transit and active travel modes, and through the continually rapid growth of its population and associated significant expansions to its regional transit system.

^{1.} Along select streets within Central Ottawa and where the nearest active entrance of a mixed-use building is within 400 metres or less of a rapid transit station, the City of Ottawa Zoning By-law 2008-250 has no minimum resident parking standards for mixed-use buildings. Otherwise, a minimum standard of 0.5 spaces per unit applies.

BA Group has reviewed approvals for sites for which reduced resident standards have been provided by City Council as part of the Zoning By-law Amendment process, by the Committee of Adjustment as part of Minor Variance applications, or at the Ontario Land Tribunal. The following sections provide an overview of reduced resident approval trends for:

- Approval trends in Pickering (from 2019 to 2023) with comparable transportation contexts as the Subject Site (Section 6.3.4.1); and
- Approval trends across the GTHA (from 2018 to 2023) with comparable transportation contexts as the Subject Site (Section 6.3.4.2).

6.3.4.1 RESIDENTIAL PARKING REDUCTION TRENDS IN PICKERING

As the City of Pickering's population continues to grow, and as the transit services levels continue to improve within its urban areas, trends towards decreasing parking supplies have been observed relative to the by-law requirement. There has been an observed trend in reductions for residential parking approvals around the high-order transit stations in Pickering. A review of these approvals, summarized in **Table 10** shows a significant decline in resident parking rates over the last four years (from 2019 to 2023 there has been a reduction of 0.19 spaces per unit).

It is anticipated that this trend will be similar and continue with progressively lower rates, particularly with the future introduction of the Durham-Scarborough BRT providing additional east-west rapid transit capacity in the vicinity of the Subject Site.

Table 10 Reductions in Residential Parking Supply Requirements (City of Pickering)

Address	Residential Rate	Permission Through	Nearest High-Order Transit Station	Year of Approval
Universal City 2 & 3 (Bayly St / Liverpool Rd)	0.74 spaces / unit	CoA Decision - P/CA 60/19	Pickering GO Station (540 m from site)	2019
Universal City 6 (Bayly St / Liverpool Rd)	0.71 spaces / unit	City of Pickering Zoning By-law No. 7810/21	Pickering GO Station (540 m from site)	2021
Universal City 4 & 5 (Bayly St / Liverpool Rd)	0.65 spaces / unit	City of Pickering Zoning By-law No. 7936/22	Pickering GO Station (540 m from site)	2022
Universal City 7 (Bayly St / Liverpool Rd)	0.65 spaces / unit	City of Pickering Zoning By-law No. 7924/22	Pickering GO Station (540 m from site)	2022
PTC Phase 1 (Kingston Rd / Liverpool Rd)	0.65 spaces / unit	Site specific By-law 7981/23	Pickering GO Station (750 m from site)	2023
1786-1790 Liverpool Road	0.55 spaces / unit	Site specific By-law 8023/23	Pickering GO Station (700 m from site)	2023

6.3.4.2 RESIDENTIAL PARKING REDUCTION TRENDS ACROSS GTHA

Consistent with the trend of declining residential parking supplies within the City of Pickering, there have been numerous parking supply reductions across the broader GTHA for sites with comparable transportation contexts as the Subject Site.

As summarized in **Table 11**, a trend towards reduced parking supplies over time generally exists in all municipalities examined. Reductions over time have been observed in the City of Pickering, the Toronto boroughs of Etobicoke and Scarborough, the City of Hamilton, City of Vaughan and the City of Mississauga. Each of the developments within these jurisdictions possess transportation contexts comparable to that of the Subject Site, and in some cases possess diminished transit access relative to the Site.

Table 11 Parking Supply Reductions Across GTHA with Comparable Transportation Contexts

Address	Residential Rate	Permission Through	Nearest GO Station	Year of Approval / Proposal
	Approved Res	sidential Parking Supply Reduct	ions (GTHA)	
		City of Pickering		
Universal City 2 & 3 (Bayly St / Liverpool Rd)	0.74 spaces / unit	CoA Decision - P/CA 60/19	Pickering GO Station (540 m from site)	2019
Universal City 6 (Bayly St / Liverpool Rd)	0.71 spaces / unit	City of Pickering Zoning By-law No. 7810/21	Pickering GO Station (540 m from site)	2021
Universal City 4 & 5 (Bayly St / Liverpool Rd)	0.65 spaces / unit	City of Pickering Zoning By-law No. 7936/22	Pickering GO Station (540 m from site)	2022
Universal City 7 (Bayly St / Liverpool Rd)	0.65 spaces / unit	City of Pickering Zoning By-law No. 7924/22	Pickering GO Station (540 m from site)	2022
PTC Phase 1 (previous SS)	0.65 spaces / unit	Site specific By-law 7981/23	Pickering GO Station (750 m from site)	2023
1786-1790 Liverpool Road	0.55 spaces / unit	Site specific By-law 8023/23	Pickering GO Station (700 m from site)	2023
		City of Toronto		
		Etobicoke		
5365 Dundas Street West (Bloor St W / Kipling Ave)	0.75 spaces / unit (effective Phase 2 & 3 rate)	Site-specific By-law 1268-2018	Kipling GO Station (550 m from site)	2018
5507 & 5509 Dundas Street West	0.57 spaces / unit	Site specific By-laws 55-2021 & 56-2021	Kipling GO Station (1.2 km from site)	2021
23 Buckingham Street	0.34 spaces / unit	Site specific By-law 682- 2023(OLT)	Mimico GO Station (150 m from site)	2022
1 Audley Street & 8 Newcastle Street	0.34 spaces / unit	Site specific By-law 683- 2023(OLT)	Mimico GO Station (200 m from site)	2022
2 & 10 Audley Street & 29, 31, 59, & 71 Portland Street	0.34 spaces / unit	Site specific By-law 684- 2023(OLT)	Mimico GO Station (350 m from site)	2022
25 Audley Street	0.34 spaces / unit	Site specific By-law 685- 2023(OLT)	Mimico GO Station (290 m from site)	2022

Address	Residential Rate	Permission Through	Nearest GO Station	Year of Approval / Proposal
		Scarborough		
2200-2206 Eglinton Ave E	0.50 spaces / unit	OLT Decision: OLT-22-002268	Kennedy GO Station (1.3 km from site)	2022
		City of Hamilton	•	
71 Rebecca Street	0.65 spaces / unit	Zoning By-law 18-293	West Harbour GO Station (1.4 km)	2018
600 James	0.58 spaces / unit	LPAT Case No. PL190517	West Harbour GO Station (900 m from site)	2021
		City of Mississauga		
78 Park St E & 22-28 Ann St ¹	0.67 spaces / unit	CoA Decision - A413.20 & Site Specific By-law 0054-2020	Port Credit GO Station (80 m from site)	2020
151 City Centre Drive	0.67 spaces / unit	CoA Decision - "A" 355/21	Cooksville GO Station (2.4 km from site)	2021
3355 Hurontario Street	0.5 spaces / unit	MZO via O. Reg. 92/93	Planned Hazel McCallion LRT (50 m from site)	2023
5645 Hurontario Street	0.5 spaces / unit	MZO via O. Reg/ 92/93	Planned Hazel McCallion LRT (50 m from site)	2023
		City of Vaughan		
VMC Block 2 (Interchange Way)	0.6 spaces / unit	Zoning By-law 052-2019	Vaughan Metropolitan Centre (Subway) (1 km from site)	2019
Transit City 4-6 (Jane Street & Portage Parkway)	0.41 spaces / unit	Zoning By-law 071-2019	Vaughan Metropolitan Centre (Subway) (650 m from site)	2019
VMC Block 3 South (Interchange Way and Commerce Street)	0.3 spaces / unit	Zoning By-law 147-2022	Vaughan Metropolitan Centre (Subway) (700 m from site)	2022
	Proposed	Residential Parking Supply Re	ductions	
		City of Pickering		
1525 Pickering Parkway	0.65 spaces / unit		Pickering GO Station (1.2 km from site)	2022
		City of Vaughan		
216 – 220 Doughton Road	0.5 spaces / unit		Vaughan Metropolitan Centre (Subway) (700 m from site)	2020
7700 Keele Street	0.4 spaces / unit		Proposed Concord GO Station (1.5 km from site)	2022
		City of Toronto		
		Etobicoke		

Address	Residential Rate	Permission Through	Nearest GO Station	Year of Approval / Proposal			
10 – 18 Zorra Street	0.48 spaces / unit	Supported by staff in City comments	Mimico GO Station (3 km from site)	2023			
	City of Mississauga						
City Centre Block 8 (6625-57)	0.65 spaces / unit		Cooksville GO Station (2.4 km from site)	2023			

Notes:

A summary of key observations is provided below:

- Reductions in parking supply rates over time are observed across all examined municipalities, as well as across the broader GTHA.
- A forecast of the trendline generated for all considered approved is approaching a rate of 0.40 spaces / unit and proposed resident parking reductions is near the higher end of the range with the proposed rate of 0.65 spaces / unit for the Site.
- Approvals in the City of Pickering from 2019 to 2023 have reduced from 0.74 spaces / unit to 0.55 spaces / unit, representing a significant reduction of 0.16 spaces / unit over a period of 4 years.
- Approvals in the City of Vaughan from 2019 to 2022 have reduced from up to 0.6 spaces / unit in 2019 to 0.3 spaces / unit in 2022. This represents a significant reduction of 0.3 spaces / unit over a period of 3 years.
- Two approvals were recently granted in Mississauga (via a Minister's Zoning Order process) at 0.50 spaces per unit for sites located along existing surface transit routes but in close proximity to a planned LRT line.
- Only sites within the City of Toronto (Etobicoke and Scarborough) with comparable transportation contexts have been included (in proximity to a primary higher-order transit service (subway, LRT, GO Train, etc.) and supplemented by local surface transit). A downward trend in parking has been observed from 0.75 spaces per unit in 2018 to as low as 0.34 spaces per unit in 2022. In 2023, the City of Toronto eliminated minimum resident parking requirements entirely.

The resident parking supply reductions reviewed above range from 2018 to 2023 and strongly demonstrate a decrease in the provision of parking over time within municipalities across the GTHA. The proposed rate of 0.65 spaces / unit for the Site is considered appropriate given the range of approved parking rates across the GTHA. These approvals indicate a broader shift within the region towards a progressive outlook toward parking in areas which are well supported by strong existing and planned transportation contexts, including higher order transit services.

The reduction of parking supply rates over time within the City of Toronto and across the broader GTHA is indicative of a deliberate shift in perspectives towards transportation that is sustainable and equitable, including transit and active transportation. This trend in reduced parking supply rates is expected to prevail as the transportation contexts of many municipalities within the GTHA continue to improve through the advent of investment in transit and active transportation infrastructure.

This shift in perspective is further identified in contemporary zoning by-laws across southern and eastern Ontario, where numerous municipalities permit as-of-right low resident parking supply rates or have eliminated minimum requirements entirely. Sites which currently possess, or will possess in the future, a strong transportation context consisting of proximate

^{1.} Provided residential parking rate is effective based on the unit mix obtained from the 2019 TIS. Unit-specific parking rates are as follows: 1-bd: 0.57 spaces / unit, 2-bd: 0.73 spaces / unit, 3-bd: 1.10 spaces / unit.

access to higher order transit and additional complimentary transit services, supplemented by active transportation connections to transit services and local area destinations should be considered candidates for reduced parking supply rates. Reduction of the resident parking supply rate for the Site is consistent with the observed trends in reductions to parking supply rates over time across the GTHA, and aligns with contemporary outlooks across the region to the provision of parking supplies for developments within areas possessing strong transportation contexts.

6.3.5 City of Pickering Parking Sales Trends

Condominium parking sales information for five sites within the City of Pickering (Universal City developments) was previously submitted to the City by BA Group in support of a parking reduction for the proposed development at 1786 – 1790 Liverpool Road. **Table 12** summarizes parking sales information for Universal City.

While it is acknowledged that sales information does not necessarily reflect ultimate demand information at condominium buildings, particularly within a multi-building development plan, it does provide a useful indication of current market demand for resident parking.

A review of the recorded parking sales information for the first few phases of the Universal City development indicates that demand for parking spaces were below the existing Zoning By-law 7553/17 resident parking requirement of 0.8 spaces / unit. The first three development blocks of the Universal City sold at overall rates of 0.79, 0.74 and 0.72 spaces per unit (declining trend over time). Sales trends at the most recent development blocks are showing a further decline in resident parking with uptake rates of 0.58 and 0.51 spaces per unit. This declining sales trend for resident parking is consistent with the approval trends discussed in **Section 6.3.4** and supports the proposed reduction for the Subject Site.

Table 12 Universal City Condominiums Parking Sales Data Summary

Location	% Units Sold	Resident Parking Supply	Current Parking Sold	Current Unsold Parking Spaces
UC1	100% (275 units)	223 spaces (0.81 spaces / unit)	216 spaces (0.79 spaces / unit)	7 spaces
UC2	100% (336 units)	271 spaces (0.81 spaces / unit)	248 spaces (0.74 spaces / unit)	23 spaces
UC3	96% (357 units)	277 spaces (0.78 spaces / unit)	257 spaces (0.72 spaces / unit)	20 spaces
UC6	95% (306 units)	230 spaces (0.72 spaces / unit)	185 spaces (0.58 spaces / unit)	45 spaces
The Grand	44% (211 units)	324 spaces (0.67 spaces / unit)	107 spaces (0.51 spaces / unit)	217 spaces
Total	1,486 units	1,325 spaces (0.74 spaces / unit)	1,013 spaces (0.68 spaces / unit)	312 spaces

Notes:

- 1. Unit and parking spaces sales based on data provided by Unique AT Management Inc. in March 2023.
- 2. Based on the number of spaces and units cold at the time that the sales data was recorded.

6.3.6 TDM Measures

As previously discussed in **Section 5.0**, a number of TDM measures are being contemplated as part of the development proposal that will support a reduced residential parking supply. While a reduced parking supply is a direct incentive to reduce automobile use and ownership, there are additional TDM measures proposed to complement and work in tandem with the reduced parking supply. These include, but are not limited to, the following:

- The development of a mixed-use site that allows people to live and work without the use of a vehicle;
- New pedestrian connections that are integrated into the proposed road plan for the Site, which will support active transportation as a viable mode of traveling to and from the Site;
- The provision of bicycle parking to support and encourage cycling;
- Consideration in providing a shuttle to the Pickering GO Station to add convenience and encourage transit use for daily commuting;
- Strong connectivity to the existing and planned transit terminals adjacent to the Site to facilitate and maximise transit usage;
- Providing new residents and commercial tenants with information on existing transportation options to promote alterative modes of travel to the single occupant vehicle; and
- Additional measures developed in consultation with the City of Pickering.

6.4 Appropriateness of Reduced Non-Residential Parking Supply

Similar to residential parking standards, non-residential parking standards outlined in Site-Specific By-laws No. 1810-84 & 2471-87 overstate the parking needs of contemporary mixed-use buildings located in transit-accessible areas within the City of Pickering.

Adoption of reduced non-residential parking standards should be considered based upon the following considerations:

- The mixed-use, urban nature of the proposed development, which will encourage shared parking and interactions between the uses:
- The local nature and size of the retail component; and
- A review of standard applicable to comparable uses and context in adjacent Ontario municipalities.

6.4.1 Mixed-Use Nature of the Proposed Development

The proposed development introduces a mix of land uses (residential, office, and retail) into the existing commercial node that is surrounded by residential uses. The provision of mutually-supportive land uses, such as those proposed as part of the site plan, fosters a relationship that allows each use to serve and support the others.

The proposed residential and commercial uses will encourage internal site trips, shortening trips and improving mobility across the Site and surrounding area. Ultimately, the most convenient, comfortable, and practical way to conduct such internal trips will be by foot. The need for residents, employees, and visitors to make trips outside of the Site and surrounding area to address daily needs will be reduced, thus, reducing the need to use a vehicle for daily trips. As a result, parking demand generated from each use on-site will be reduced.

Furthermore, the current applicable parking standards (i.e. site-specific by-laws) do not include shared parking provisions, which allows the required parking for mixed-use development projects to be reduced by taking into account the different temporal parking characteristics for each use. The City Centre shared parking standards acknowledge that parking demand for different uses peak at various times throughout the day and parking spaces can be shared amongst uses with varying peaks.

Therefore, it is proposed to adopt the shared parking provisions from the City Centre by-law. The sharing will maximize the efficiency of the parking supply, and both in turn will minimize parking supply excesses.

6.4.2 The Local Nature of the Retail Uses

The proposed retail component, (approximately 2,474 m²), is required to provide 93 parking spaces for the proposed retail component, as per Zoning By-laws 1810-84 & 2471-87. This is considered to overstate the parking demand for the retail component, as the result use within the proposed development is anticipated to serve the residents and employees of the proposed development and residents within the immediate surrounding area, and would not be considered a "drive to" destination, which may otherwise generate a level of parking demand.

Based on the Site's proximity to transit and the mix of uses in the neighborhood, the retail use is anticipated to primarily attract cycling and walking trips, and to serve the local market (i.e. the dwelling units of the proposed development, the employees of the office building within the Site, and the local neighbourhood). The evolving area's transit and active transportation networks also support transit and cycling trips in order to reach the Site without the use of a private automobile. It is proposed, therefore, to provide zero parking spaces for the retail use, recognizing the size and context of the proposed retail use.

6.4.3 Review of Current Municipal Zoning By-law Parking Requirement for Residential Visitors

The current parking requirements for residential visitors are relatively high when compared to other surrounding municipalities. BA Group reviewed the residential visitor parking rates and parking approvals in the Cities of Vaughan,

Mississauga and Toronto, which are similarly attempting to shift from an auto-oriented approach in order to promote more sustainable forms of development and appropriately acknowledge transit context, in order to determine appropriate parking standards to apply as part of the development proposal.

The City of Mississauga, specifically the City Centre, has a comparable transit context to the proposed development. It is well served by MiWay bus routes, GO Transit services, and Zum bus routes. Although, it is important to note that the Hurontario LRT is planned to serve the City Centre upon its construction.

The City of Vaughan's Vaughan Metropolitan Centre (VMC) is also comparable in many respects to the Site, as it is well served by York Region Transit bus routes (including Viva Rapid Transit routes), Toronto Transit Commission (TTC) services, GO Transit services, and Zum bus routes. The VMC is also targeted for mixed-use, urban intensification with supporting policies (including VMC specific parking standards within the City of Vaughan's Zoning By-Law 001-2021) to encourage this growth.

The City of Toronto's Comprehensive Zoning By-Law 569-2013 (as amended) provides a range of parking requirements that are intended to recognize the transit accessibility of the area. The City's bylaw rates for Parking Zone B (for avenues with surface transit) have been reviewed for this Site, given the Site's proximity to existing and future surface transit along the Kingston Road corridor and GO Transit Lakeshore East rail corridor. In addition, the former City of Toronto's Zoning By-law 569-2013 for Policy Area 4 has been provided for comparison purposes.

A comparison of the zoning by-laws for residential visitor parking standards is summarized in Table 13.

Table 13 Comparison of Municipal Parking Standards for Residential Visitor

Current Zoning (Site- Specific Zoning)	City of Pickering – City Centre (7553-17)	City of Mississauga	City of Vaughan VMC	City of Toronto Parking Zone B	Former City of Toronto Policy Area 4	Proposed Standards
Visitor parking included in the residential parking requirements of 1.75 spaces per unit	0.15 spaces per unit	City Centre Rates 0.15 spaces per unit ¹ Non-City Centre Rates 0.25 spaces per unit	0.15 spaces per unit	2 spaces plus 0.05 spaces per unit	0.15 spaces per unit	0.15 spaces per unit

Notes:

Based on the foregoing, the parking standards in these respective zoning by-laws recognize that reduced parking standards are appropriate in highly transit-accessible area with an intensive mix of uses and high-quality urban realm. Therefore, the proposed residential visitor parking rate of 0.15 spaces per unit is considered appropriate given the existing and evolving area's transportation context.

^{1.} The City of Mississauga Zoning By-law 0225-2007 allows visitor parking to be shared with non-residential parking based on the greater of the visitor parking requirement or the parking requirement for all non-residential uses (with some limits).

7.0 BICYCLE PARKING CONSIDERATIONS

7.1 Zoning By-law Bicycle Parking Requirements

The site-specific by-laws that apply to the Site, or the underlying Zoning By-law 3036, do not contain bicycle parking provisions.

7.2 Recommended Bicycle Parking Requirements

As such, it is recommended to apply the bicycle parking provisions of the City Centre Zoning By-law 7553-17. These bicycle parking standards reflect the bicycle parking supply required to support a site within a transit-accessible area. Furthermore, the provision of bicycle parking is a TDM measure, which is encourages in local and provincial policy, especially when contemplated a reduced parking supply.

The application of the minimum bicycle parking requirements of Zoning By-law 7553-17 to the proposed development is summarized in **Table 14**. The application of the bicycle parking requirements results in a total parking requirement of 1,740 parking spaces, including 1,730 residential parking spaces and 10 non-residential parking spaces.

Further details of the proposed development's bicycle parking supply and location will be provided in subsequent applications to the City through the approval process.

Table 14 Recommended (Zoning By-law 7553-17) Bicycle Parking Requirements

Uses	Unit / Floor Area ¹	Rate (Minimum)	Requirement
Podium 1 + Towers 1, 2 & 3			
Apartment Dwelling	960 units	0.50 spaces per unit	480 spaces
Total			480 spaces
Podium 2 + Towers 4 & 5			
Apartment Dwelling	640 units	0.50 spaces per unit	320 spaces
Total			320 spaces
Podium 3 + Tower 6			
Apartment Dwelling	380 units	0.50 spaces per unit	190 spaces
Non-residential Uses	3,856 m ²	The greater of 2 or 1.0 spaces per 1,000 m ² of GLA	4 spaces
Total			194 spaces
Podium 4 + Tower 7			
Apartment Dwelling	200 units	0.50 spaces per unit	100 spaces
Non-residential Uses	676 m²	The greater of 2 or 1.0 spaces per 1,000 m ² of GLA	2 spaces
Total			102 spaces

Uses	Unit / Floor Area ¹	Rate (Minimum)	Requirement		
Podium 5 + Tower 8					
Apartment Dwelling	420 units	0.50 spaces per unit	210 spaces		
Non-residential Uses	676 m²	The greater of 2 or 1.0 spaces per 1,000 m ² of GLA	2 spaces		
Total			212 spaces		
Podium 6 + Tower 9					
Apartment Dwelling	420 units	0.50 spaces per unit	210 spaces		
Non-residential Uses	742 m²	The greater of 2 or 1.0 spaces per 1,000 m ² of GLA	2 spaces		
Total			212 spaces		
Podium 7 + Tower 10					
Apartment Dwelling	440 units	0.50 spaces per unit	220 spaces		
Total			220 spaces		
Site					
Residential			1,730 spaces		
Non-Residential	10 spaces				
Total			1,740 spaces		

Notes:

^{1.} Based upon statistics provided Graziani & Corazza Architects dated October 24, 2023.

8.0 LOADING CONSIDERATIONS

BA Group has assessed the number of loading spaces as part of the on-going application to support the proposed development, as well as the possible locations of the loading facilities within the core of each building. The loading provisions on-Site will be reviewed in detail as part of subsequent submissions to the City through the on-going approval process.

The current site-specific by-laws and underlying by-law do not contain minimum loading requirements. The City Centre Zoning By-law 7553-17 does not contain minimum loading requirements either.

In order to determine the number of loading spaces that could adequately support the proposed development, the loading requirements of the City of Toronto Zoning By-law 569-2013 were applied to the Site. The minimum loading requirement of 14 parking spaces, utilizing shared loading provisions and arranging shared loading facilities that can serve more than one tower, is summarized in **Table 15**.

The City Centre Zoning By-law 7553-17 does contain minimum dimensions for loading spaces, which are:

• 3.5m width x 12.0m length x 4.2m vertical clearance

However, BA Group recommends designing the loading spaces in accordance with the City of Toronto's Zoning By-law 569-2013. The dimensions of each loading space type are described below:

- Type A: 3.5m width x 17.0m length x 4.4m vertical clearance
- Type B: 3.5m width x 11.0m length x 4.0m vertical clearance
- Type C: 3.5m width x 6.0m length x 3.0m vertical clearance
- Type G: 4.0m width x 13.0m length x 6.1m vertical clearance

The Type 'G' loading space that is used for residential loading spaces under Zoning By-law 569-2013 is larger than the loading space dimensions found in the City Centre Zoning By-law 7553-17. Thus, it will satisfy the City Centre requirements.

Table 15 Recommended (City of Toronto Zoning By-law 569-2013) Loading Requirements

Use	Unit / Floor	Range		Туре с	of Loading	Spaces	
O3E	Area ¹	Kalige	Α	В	С	G	Total
Towers 1, 2 & 3 +	Podium 1						
Residential	960 units	400 units or more	-	-	1	1	2
TOTAL			-	-	1	1	2
Towers 4 & 5 + Podium 2							
Residential	640 units	400 units or more	-	-	1	1	2
TOTAL			-	-	1	1	2
Tower 6 + Podium	3						
Residential	380 units	31 to 399 units	-	-	-	1	1
Retail	381 m²	0 to 499 m ²	-	-	-	-	0
Office	3,475 m ²	2,000 to 3,999 m ²	-	1	2	-	3
SUBTOTAL			-	1	2	1	4

Use	Unit / Floor	Danga		Туре	of Loading	Spaces	
ose	Area ¹	Range	Α	В	С	G	Total
TOTAL (w/ sharing)		-	1	1	1	3
Tower 7 + Podium	4			•			
Residential	200 units	31 to 399 units	-	-	-	1	1
Retail	676 m ²	500 to 1,999 m ²	-	1	-	-	1
SUBTOTAL			-	1	-	1	2
TOTAL (w/ sharing)		-	-	-	1	1
Tower 8 + Podium	5						
Residential	420 units	400 units or more	-	-	1	1	2
Retail	676 m ²	500 to 1,999 m ²	-	1	-	-	1
SUBTOTAL			-	1	1	1	3
TOTAL (w/ sharing)		-	-	1	1	2
Tower 9 + Podium	6		_				
Residential	420 units	400 units or more	-	-	1	1	2
Retail	742 m²	500 to 1,999 m ²	-	1	-	-	1
SUBTOTAL			-	1	1	1	3
TOTAL (w/ sharing)			-	-	1	1	2
Tower 10 + Podium 7							
Residential	esidential 440 units 400 units or more		-	-	1	1	2
TOTAL			-	-	1	1	2
SITE TOTAL			-	1	6	7	14

Notes:

- 1. Based upon statistics provided Based upon statistics provided Graziani & Corazza Architects dated October 24, 2023.
- 2. Sharing based on providing a shared loading facility with servicing corridors to both towers.
- 3. Shared based on the sharing provisions contained in the City of Toronto Zoning By-law 59-2013 Chapter 40.10.90.1(1).

Vehicle manoeuvring diagrams entering and exiting the proposed loading facilities on-site will be provided in a subsequent submission as part of the on-going application process.

9.0 MULTI-MODAL TRAVEL DEMAND FORECASTING

The following section summarizes the approach taken to estimate the multi-modal travel demand characteristics of the Site based upon first principles. This approach was then compared to other proxy sites with similar characteristics.

9.1 Forecasting Approach

As noted above, preliminary travel demand forecasts have been prepared, as part of this study, for the proposed development based upon the development programme outlined in **Section 2.0**. Multi-modal forecasts have been developed from a first principles approach using person trip making characteristics for the key component uses within the Site.

As summarized in **Table 16**, the existing area travel characteristics reflect a high level of automotive travel mode usage. Based on existing multi-modal travel characteristics the travel characteristics for the proposed development are anticipated to reflect a high level of automotive usage.

The existing residential modal split for the site area was determined from a review of the 2016 Transportation Tomorrow Survey (TTS) data and is summarized in **Table 16**.

For the purpose of this analysis, travel demand to and from the Site has been developed by applying modal split and time of travel assumptions to base person-density parameters provided by Transportation Tomorrow Survey (TTS). Travel information that forms on the basis of this analysis has been obtained from 2016 Transportation Tomorrow Survey (TTS) and data collected by BA Group.

Table 16 Existing Residential Modal Split

Mode	AM Peak	PM Peak
Auto-Driver	70%	74%
Auto-Passenger	16%	15%
Transit	11%	7%
Walk	3%	4%
Cycle	0%	0%
Total	100%	100%

Notes:

Key technical assumptions used in establishing travel demand forecasts for the Site are outlined in the following sections.

9.2 Residential Site Travel Demands

Residential travel demand to / from the Site has been developed from 'first principles' based upon a review of the total number of residents anticipated to live on the Site combined with data of residential travel characteristics in the vicinity of the Site, particularly from the 2016 Transportation Tomorrow Survey (TTS) and data collected by BA Group/ Forecast travel demand for residential trips to / from the Site in the weekday morning and afternoon peak hours is summarized in **Table 17**.

^{1.} Based on 2016 TTS data for home-based trips to/from 2006 TTS Zones 1046, 1047 and 1049 during the typical weekday morning and afternoon peak hour periods.

Table 17 Residential Person-Based Trip Generation

Parameter			Peak Hour Travel Characteristics					
Residential U	nits			2,884 units				
Building Occu (Persons)	pancy			sume 95% of units occu t occupancy of 1.8 pers				
Street Peak H Proportion of			Assume 22% (AM) and 24% (PM) of peak period travel occurs during the peak ho = 1,085 (AM) and 1,185 (PM) people travelling during peak hours					
Trip Orientati	on		Week	day AM	Week	day PM		
			Inbound	Outbound	Inbound	Outbound		
			21%	79%	59%	41%		
Travel Deman	-		Based upon mod	Based upon modal share assumptions from the 2016 Transportation Tomorrow Survey (TTS) for zones 1046, 1047 and 1049				
Mode	AM	PM						
Auto	70%	74%	160	600	520	355		
Passenger	16%	15%	40	135	105	75		
Transit	11%	7%	25	95	50	35		
Pedestrian	3%	4%	5	25	25	20		
Cyclist	0%	0%	0	0	0	0		
Total Trips	100%	100%	230	855	700	485		
Resulting Veh	icular Trips		160	600	520	355		
Peak Hour Demand		Trips	Rate	Trips	Rate			
Inbound			160	0.06	520	0.18		
Outbound			600	0.21	355	0.12		
Two-Way			760	0.27	875	0.30		

Based on the foregoing, non-auto residential travel demand (i.e. the sum of the two-way transit, walking, and cycling trips outlined in Table 17) is forecast to be in the order 150 and 130 two-way trips in the weekday morning and afternoon peak hours, respectively.

Forecast vehicular residential site traffic generation, based on 'first principles' assessment, is in the order of 760 and 875 two-way trips in the weekday morning and afternoon peak hours, respectively. This represents trip generation rates of 0.27 and 0.30 two-way trips per unit in the weekday morning and afternoon peak hours, respectively.

BA Group has also reviewed the vehicular trip generation rates for the proposed residential use based on proxy site surveys at developments with similar area transportation characteristics. Vehicular trip generation rates adopted for the proposed residential use based upon the proxy site surveys is summarized in **Table 18**.

The yellow highlighting represents the non-auto residential travel demand.

Based upon the proxy trip generation methodology, the proposed residential use will generate approximately 780 and 865 two-way vehicle trips during the weekday morning and afternoon peak hours, respectively.

Based on the 'first principles' methodology, the proposed residential use will generate approximately 760 and 875 two-way vehicle trips during the weekday morning and afternoon peak hours, respectively. By comparison, the trip developed from the 'first principles' methodology are comparable to the trips developed from the proxy site surveys. Therefore, the trips developed from the 'first principles' methodology is reasonable and has been adopted for the purposes of this analysis. As such, the proposed residential use is anticipated to generate approximately 780 and 875 two-way vehicle trips during the weekday morning and afternoon peak hours, respectively.

Table 18 Residential Proxy Site Trip Generation

Location	Data	Date # of		M Peak Ho	ur	PI	M Peak Ho	ur
Location	Date	units	In	Out	2-Way	In	Out	2-Way
		Reside	ntial Condon	ninium Apart	ment			
7420, 7440 & 7460 Bathurst Street	Thursday, January 25, 2018	594	0.08	0.21	0.29	0.19	0.12	0.31
88-100 Promenade Circle	Thursday, January 25, 2018	336	0.04	0.15	0.19	0.19	0.14	0.33
110-120 Promenade Circle	Thursday, January 25, 2018	45	0.08	0.15	0.23	0.19	0.11	0.30
11 & 23 Oneida Crescent	Wednesday, September 25, 2013	178	0.05	0.27	0.32	0.22	0.10	0.32
39 Oneida Crescent	Wednesday, September 25, 2013	349	0.04	0.16	0.20	0.14	0.06	0.20
185 Oneida Crescent	Wednesday, October 9, 2013	201	0.06	0.31	0.37	0.26	0.09	0.35
	Average Trip Rates	Per Unit	0.05	0.22	0.27	0.20	0.10	0.30
			Overall Trip	Generation				
Overall Reside	Overall Residential Site Trip Rates Per Unit		0.05	0.22	0.27	0.20	0.10	0.30
Overall Resid	Overall Residential Site Trips (2,884 units)		145	635	780	575	290	865

9.3 Office Site Travel Demands

Office vehicle travel demand to / from the Site has been developed based upon a review of vehicular trip generation rates of proxy site surveys at developments with similar area transportation characteristics and ITE 11th Edition Trip Generation Rates for Land Use Code 710 – General Office Building. Vehicular trip generation rates adopted for the proposed office use is summarized in **Table 19**.

The proposed office use will generate approximately 55 and 45 two-way vehicle trips during the weekday morning and afternoon peak hours, respectively.

Note that based on existing 2016 TTS information, it is anticipated that the office trips will primarily be generated by automobile and will have very minimal non-automobile trips. As such, no trips were developed for the non-auto mode shares (i.e. transit, walking and cycling) for the purposes of this assessment.

Table 19 Office Site Trip Generation

Location	Date	GFA	Al	M Peak Ho	ur	PI	M Peak Ho	ur
Location	Date	(ft²)	In	Out	2-Way	In	Out	2-Way
		ITE 11 ^t	^h Edition Trip	Generation	Rates			
LUC 710 – General O	ffice Building (37,4	01 ft ²)	1.69	0.23	1.92	0.33	1.63	1.96
			Proxy	Sites				
45 Innovation Drive	Wednesday, November 9, 2016	70,000	0.63	0.06	0.69	0.01	0.61	0.62
2450 Victoria Park Avenue	Thursday, May 3, 2012	92,000	1.42	0.40	1.82	0.16	1.07	1.23
2450 Victoria Park Avenue	Tuesday, November 1, 2016	92,000	1.37	0.12	1.49	0.12	1.16	1.28
Average I	Proxy Trip Rates pe	er 1,000 ft ²	1.14	0.19	1.33	0.10	0.95	1.05
	Overall Trip Generation							
	Selected Trip Rates			0.19	1.33	0.10	0.95	1.05
Overal	Overall Office Site Trips (37,401 ft²)			10	55	5	40	45

9.4 Retail Site Travel Demands

Given the size and nature of the proposed retail, it is expected to primarily service residents of the proposed building as well as residents within the surrounding neighbourhood. In this regard, the majority of travel to/from the retail is expected to be pass-by vehicle trips and vehicle travel associated with the retail is expected to be minimal.

Notwithstanding, BA Group has incorporated a level of retail-related vehicle activity. For the purpose of this assessment, retail trip generation was based on a review of proposed parking supply and a total of approximately 90 retail parking spaces are assumed to be available for non-residential visitors in the parking garage. The number of parking spaces occupied by the non-residential visitors was estimated based on the peak period parking occupancy outlined in the City of Pickering By-law 7553-17. The resultant number of parking spaces which may be available for the non-residential (i.e. retail) visitors are summarized in **Table 20**.

Table 20 Non-Residential Parking Availability

	Peak Period Parking Demand				
	AM Peak Hour	PM Peak Hour			
Retail Parking Supply	92 spaces	89 spaces			
Time of Day Occupancy Rate	65%	90%			
Parking Spaces Occupied by Retail Visitors (Rounded)	60 spaces	80 spaces			

The retail related traffic volumes were forecasted based on the application of trip generation rate applied on a per occupied parking space basis. For the purpose of this analysis, it is assumed that the non-residential uses on the Site will have a 60-minute occupancy per parking space which is equivalent to a trip generation rate of 1.00 two-way trips per occupied parking space. The traffic volumes forecasts for the proposed non-residential component of the Site are summarized in **Table 21**.

It has been assumed that the projected retail vehicle trips during the weekday morning and afternoon peak hours will be pass-by trips from vehicles already travelling on the area road network.

Table 21 Retail Vehicle Trip Generation

	AM Peak Hour			PM Peak Hour			
	In	Out	2-Way	In	Out	2-Way	
Retail Trip Rates (per parking space occupied)	0.50	0.50	1.00	0.50	0.50	1.00	
Forecast Traffic Volumes Vehicle Trips	30	30	60	40	40	80	

The proposed retail use will generate approximately 60 and 80 two-way vehicle trips during the weekday morning and afternoon peak hours, respectively.

Note that based on 2016 TTS information, it is anticipated that the retail trips will primarily be generated by automobile and will have very minimal non-automobile trips. As such, no trips were developed for the non-auto mode shares (i.e. transit, walking and cycling) for the purposes of this assessment

9.5 Summary of Site Travel Demand

The combined multi-modal travel demand for the site is the sum of the demand contributions from the proposed residential, office and retail land uses and is summarized in **Table 22**.

Table 22 Site Multi-Modal Trip Summary

	AM Peak Hour			PM Peak Hour		
	In	Out	2-Way	In	Out	2-Way
Auto	235	640	875	565	435	1,000
Passenger	40	135	175	105	75	180
Transit	25	95	120	50	35	85
Pedestrian	5	25	30	25	20	45
Cyclist	0	0	0	0	0	0
Total	305	895	1,200	745	565	1,310

Overall, the site is forecast to generate in the order of 1,200 and 1,310 two-way person trips during the weekday morning and afternoon peak hours, respectively.

10.0 VEHICLE TRAVEL DEMANDS

10.1 Traffic Analysis Scenarios and Design Periods

Traffic operations analyses have been undertaken during the weekday morning and afternoon peak hours under the following conditions:

- Existing traffic traffic activity level under current conditions;
- Future background traffic traffic activity in the future which include allowances for corridor growth and background developments; and
- Future total traffic traffic activity in the future with the full build-out of the Site and projected site generate traffic added to the future road network.

Traffic projections for future scenarios have been prepared for a five-year (2029), ten-year (2034), and fifteen-year (2039) study horizon consistent with MTO reporting requirements.

10.2 Existing Traffic Volumes

10.2.1 Existing Baseline Traffic Volumes

Existing baseline traffic and pedestrian volumes were established at intersections within the study area for the weekday morning and afternoon peak hour periods using traffic count information obtained from surveys undertaken by Spectrum Traffic Data Inc. on Tuesday, May 16, 2023.

A listing of the traffic count data and sources are provided in **Table 23**. Existing traffic count data are included in **Appendix C**

Table 23 Existing Traffic Data Resources

Intersection	Date	Data Source
Kingston Road / Rosebank Road		
Kingston Road / Steeple Hill & Site Access Driveway		
Kingston Road / Highway 401 WB Ramps		
Whites Road / Kingston Road	Tuesday, May 16, 2023	Spectrum Traffic Data Inc.
Whites Road / Highway 401 EB Off-Ramp		
Whites Road / Bayly Street		
Kingston Road / Site Access Driveway		

The existing turning movement counts were reviewed in detail to ensure a general consistency in the traffic volumes on roadways between intersections. Where necessary, minor adjustments were made to balance traffic volumes between intersections to create a representative traffic volume base for the purposes of the traffic operations analyses undertaken as part of this study.

The existing and future road network and lane configurations are illustrated in **Figure 20** and **Figure 21**, respectively. Existing, balanced baseline area traffic volumes for the weekday morning and afternoon peak hours are summarized in **Figure 22**.

10.2.2 Existing Site Traffic Volumes

Existing site related traffic volumes were collected during the weekday morning and afternoon peak hour periods at the existing site driveways on Tuesday, May 16, 2023 by Spectrum Traffic Data Inc. on behalf of BA Group and are summarized in **Table 24**.

The existing site, as surveyed, generates approximately 70 and 430 two-way vehicle trips during the weekday morning and afternoon peak hours, respectively. Note the existing site will be removed as part of the proposed development programme. The removal of existing site traffic volumes during the weekday morning and afternoon peak hours are summarized in **Figure 23**.

Table 24 Existing Site Traffic Volumes

Driveway Access	AM Peak Hour			PM Peak Hour			
Dilveway Access	In	Out	2-Way	In	Out	2-Way	
Kingston Road / Steeple Hill & East Site Access	35	25	60	155	195	350	
Kingston Road / West Site Access	5	5	10	50	30	80	
Total Existing Site Traffic	40	30	70	205	225	430	

FIGURE 20 EXISTING LANE CONFIGURATIONS

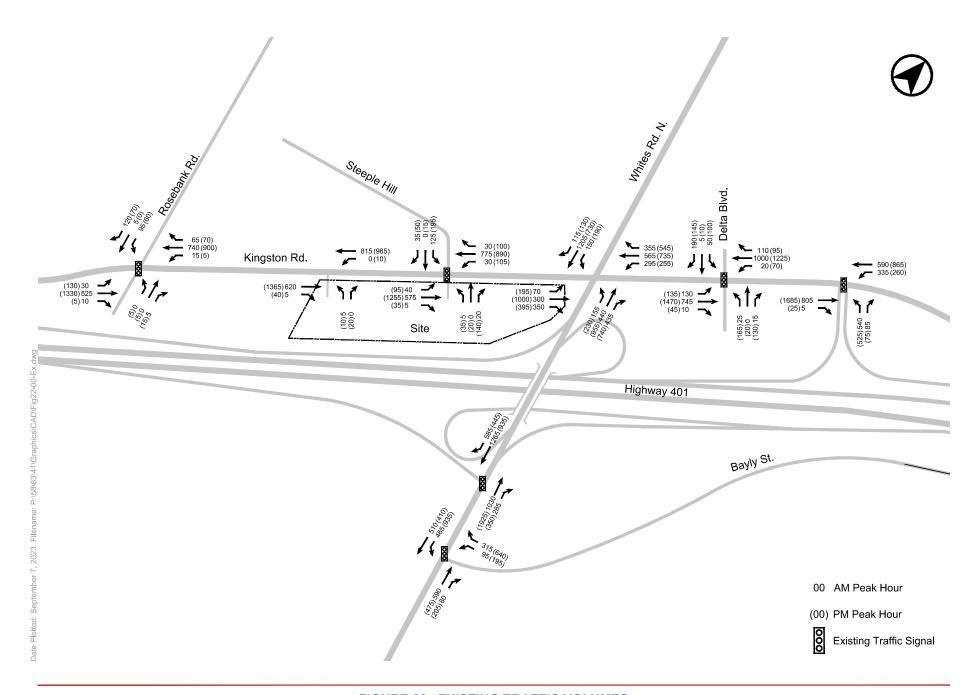


FIGURE 22 EXISTING TRAFFIC VOLUMES

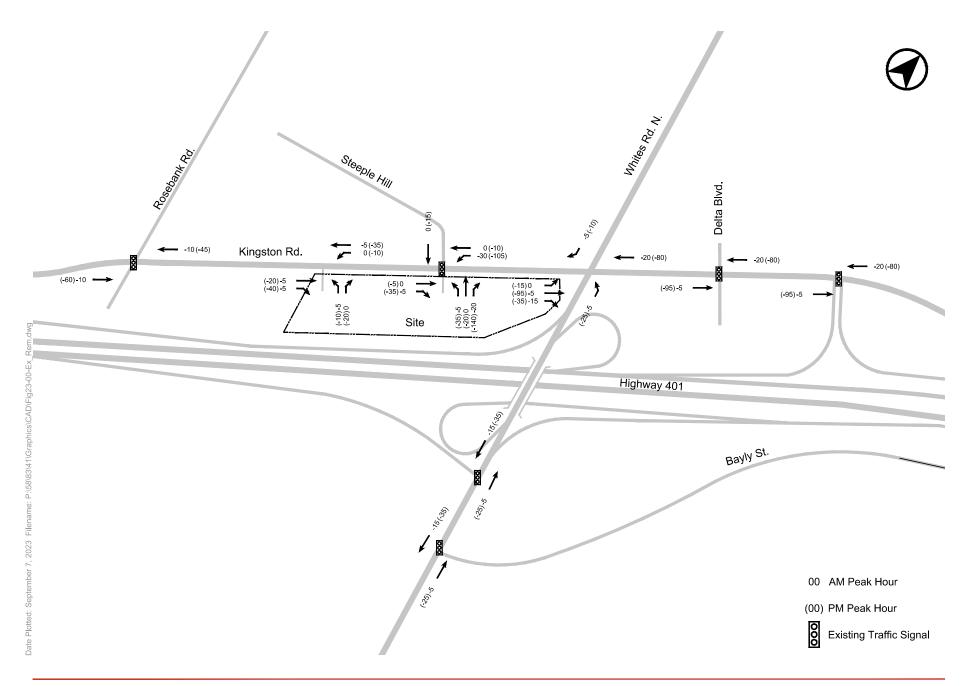


FIGURE 23 EXISTING SITE TRAFFIC REMOVAL

10.3 Future Background Traffic Volumes

A series of traffic allowances have been considered in accounting for possible traffic growth on the area road network based on an assessment of historical traffic volumes within the study area and traffic generated by other specific developments in the study area.

10.3.1 Corridor Growth Traffic Volumes

Traffic allowances have been made for general corridor growth on major corridors (i.e. Kingston Road and Whites Road). Given the lack of available 10-year historical traffic data along these major corridors, annual corridor traffic growth rates was adopted for the weekday morning and afternoon peak hours.

An annual growth rate of 1.0% was applied to the through movements along Kingston Road and Whites Road for a 5-year horizon to the 2029 horizon year.

The Kingston Road and Whites Road corridors are operating at close to capacity today, particularly the intersection of Kingston Road / Whites Road. In urban parts of the GTA, where road networks are nearing or at capacity within a mature road network, traffic corridor growth tends to slow down and even stop or reverse (i.e. decrease). The composition of traffic on the road tends to change too, evolving over time to serve more local traffic rather than pass-through or longer-distance traffic. Based on existing capacity constraints on Kingston Road and Whites Road, it is expected that future corridor growth rates would be lower than past growth rates, or even decrease to zero (i.e. no more growth).

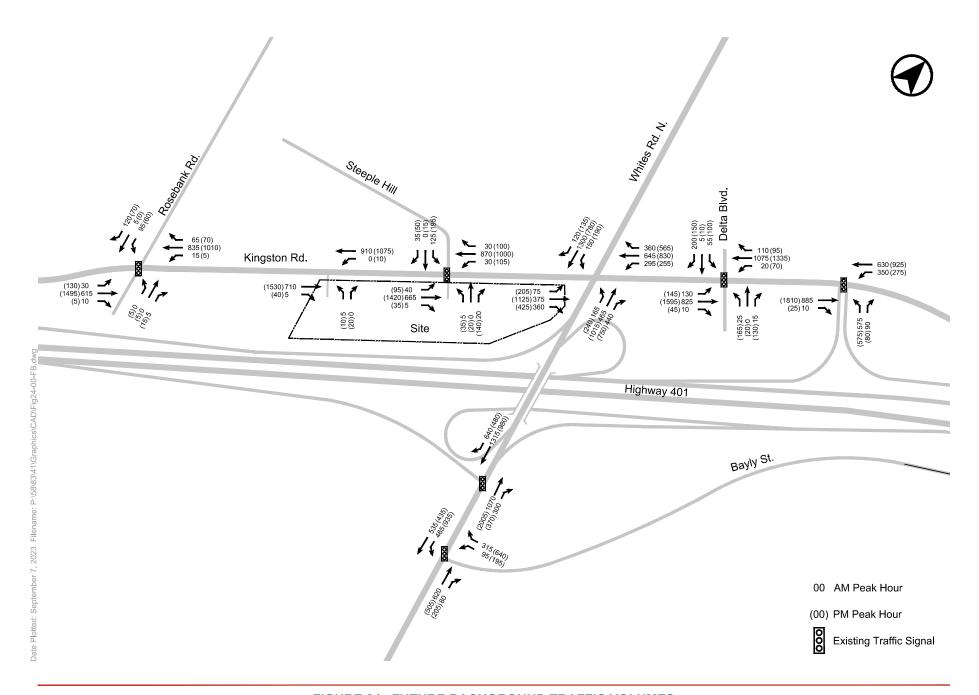
Based on the foregoing, beyond the 2029 horizon year, a reduced corridor growth rate of 0.5% has been adopted for the purpose of this analysis. This growth was applied to the through movements along Kingston Road and Whites Road for a 5-year and 10-year horizon beyond the full build-out of the Site (overall 10-year and 15-year study horizon).

10.3.2 Background Development Traffic Volumes

Traffic volume allowances have been made to account for substantive area background developments that are proposed or approved and / or under construction in the vicinity of the Site.

Area developments that have been considered as part of this study are summarized in **Table 25**. This table also summarizes the traffic generation source adopted for the purposes of this study, as well as the development status.

Background developments identified in the site area comprise approximately 917 residential units and 1,532 m2 of retail space.


Table 25 Area Background Developments

Site Location	Development Statistics	Trip Generation Notes / Sources
760-770 Kingston Road	82 residential units	Stantec, May 2019
375 Kingston Road	580 residential units 1,532 m2 retail	C.F. Crozier & Associates Inc., December 2021
346-364 Kingston Road	28 residential units	No TIS
1475 Whites Road	227 residential units	No TIS

10.3.3 Future Background Traffic Volumes

Future background traffic volumes have been established for the weekday morning and afternoon peak hours as the sum of the existing traffic volumes and specific area development traffic allowances.

The total future background traffic volumes are illustrated in **Figure 24**.

10.4 Site Traffic Volumes

10.4.1 Trip Generation

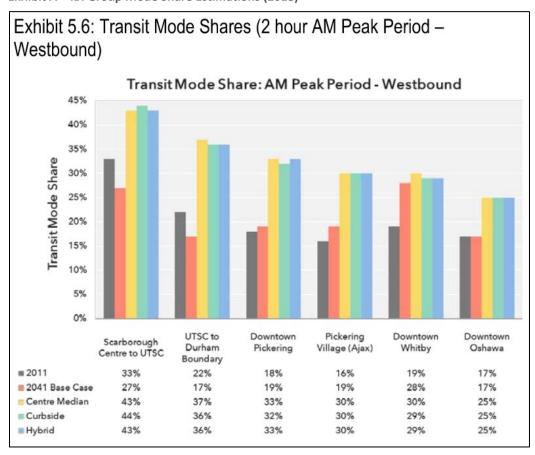
Vehicular site traffic was developed for two scenarios – Scenario 1 assumes that the bus rapid transit route along Kingston Road is not operational at any point within the study horizons assessed, while Scenario 2 assumes that the route is complete and operational at and beyond the full build-out of the Site.

The resultant vehicle trip generation for the overall proposed development for Scenario 1 is summarized in **Table 26**.

Table 26 Proposed Site Vehicle Traffic (Scenario 1)

	AM Peak Hour			PM Peak Hour		
	In	Out	2-Way	In	Out	2-Way
Existing Site Traffic ¹	40	30	70	205	225	430
Forecast Site Traffic						
New Residential-Related Site Traffic ² (2,884 units)	160	600	760	520	355	875
New Office-Related Site Traffic (3,475 m²)	45	10	55	5	40	45
New Retail-Related Site Traffic (2,474 m²)	30	30	60	40	40	80
Total New Site Traffic	235	640	875	565	435	1,000
Forecast Net-New Site Traffic						
Forecast Net-New Site Traffic	195	610	805	360	210	570

Notes:


- 1. Based upon traffic counts conducted at existing site access driveways by Spectrum Data on behalf of BA Group on Tuesday, May 16, 2023.
- 2. Trips are generated based on the initial rates shown in **Table 17**.
- 3. All trips rounded to the nearest 5.

Based on the foregoing, under Scenario 1, the Site is anticipated to generate in the order of 805 and 570 net-new two-way trips during the weekday morning and afternoon peak hours, respectively.

In Scenario 2, it is assumed that the Durham-Scarborough BRT line will be aligned with the Kingston Road right-of-way near the Site. As a result, it is expected that the Project will generate fewer vehicular trips than the projected trip generation calculated for Scenario 1. To reflect residential trip generation characteristics with the inclusion of the Durham-Scarborough BRT line, trip generation projections for the Site have been examined.

Residential trip generation rates were initially determined based on a series of proxy trip generation surveys conducted by BA Group in the past at similar residential developments located within walking distance of a GO Train station. Rates were then refined by adjusting the existing mode split to reach a target of 28% transit usage in future. The 28% was assumed via linear interpolation between 2016 TTS survey results (20 to 21%) and the target for 2041 (33% for centre median BRT in Downtown Pickering) assumed in IBI Group's Spring 2018 report titled *IBI Group Final Report Durham-Scarborough Bus Rapid Transit Study*. An excerpt of the IBI Group transit mode share estimations is shown below in **Exhibit A**.

Exhibit A – IBI Group Mode Share Estimations (2018)

Source: IBI Group Final Report Durham-Scarborough Bus Rapid Transit Study, 2018

Table 27 summarizes the vehicular trip generation rates which includes an adjustment for future mode split assumptions based on the findings summarized in **Exhibit A**.

Table 27 Revised Site Trip Generation Forecast

Location	Date	# of	Α	M Peak Ho	ur	PI	M Peak Ho	ur
Location	Date	units	In	Out	2-Way	In	Out	2-Way
		Reside	ntial Condon	ninium Apart	ment	•		
7420, 7440 & 7460 Bathurst Street	Thursday, January 25, 2018	594	0.08	0.21	0.29	0.19	0.12	0.31
88-100 Promenade Circle	Thursday, January 25, 2018	336	0.04	0.15	0.19	0.19	0.14	0.33
110-120 Promenade Circle	Thursday, le Circle January 25, 2018		0.08	0.15	0.23	0.19	0.11	0.30
11 & 23 Oneida Crescent	Wednesday, September 25, 2013	178	0.05	0.27	0.32	0.22	0.10	0.32
39 Oneida Crescent	Wednesday, September 25, 2013	349	0.04	0.16	0.20	0.14	0.06	0.20
185 Oneida Crescent	Wednesday, October 9, 2013	201	0.06	0.31	0.37	0.26	0.09	0.35
1215-1235 Bayly Street	Wednesday, May 10, 2023	444	0.05	0.12	0.17	0.14	0.07	0.21
1245-1255 Bayly Street	Wednesday, May 3, 2023	263	0.07	0.17	0.25	0.21	0.10	0.31
	Average Trip Rates	Per Unit	0.06	0.19	0.25	0.19	0.10	0.29
	neration Rate (post-E node share increased		0.05	0.17	0.22	0.15	0.08	0.23
			Overall Trip	Generation				
Overall Reside	ential Site Trip Rates	Per Unit	0.05	0.17	0.22	0.15	0.08	0.23
Overall Resid	ential Site Trips (2,88	34 units)	145	490	635	435	230	665

It is noted that additional proxy sites near the Site were also surveyed, with lower rates observed at the recently surveyed sites compared to the rates observed at the initial proxy sites. The adopted rates and assumptions are also consistent with those utilized for the proposed Phase 1 redevelopment of Pickering Town Centre in assessing the future traffic operations along the Kingston Road corridor.

For the purposes of this study, the site has been designed to accommodate the overall development of 3,460 residential units, but the traffic analysis has been completed based on 2,884 residential units.

Based on the foregoing, under Scenario 2, the Site is anticipated to generate in the order of 680 and 360 net-new two-way trips during the weekday morning and afternoon peak hours, respectively.

10.4.2 Trip Distribution and Assignment

Residential / Office Use

The trip distribution pattern for the residential use and office use was established based upon a review of 2016 Transportation Tomorrow Survey (TTS) for home-based trips to / from the surrounding area during the weekday morning and afternoon peak periods. General direction of approach and routing is summarized in **Table 28**.

Retail Use

As previously discussed, given the size and ancillary nature of the proposed retail, it is expected to primarily serve the residents internal and external to the Site. As such, the majority of travel to / from the retail is expected to be pass-by trips. The trip distribution pattern for the retail component of the Site was established based upon a review of existing area traffic patterns during the weekday morning and afternoon peak periods. The proposed directional distribution of site related traffic considers the orientation and configuration of the area street system, local access characteristics and movement restrictions.

The directional distribution of vehicle trips made to and from the Site has been based upon a review of information obtained from the 2016 Transportation Tomorrow Survey (TTS). The net-new site traffic assignment of the proposed development for the weekday morning and afternoon peak hours is shown in **Figure 25**.

Table 28 Site Traffic Assignment

To / From	Orientation to / from Site	Inbound	Outbound
	Residential Traffic Distribution		
Whites Road	North	5%	5%
Whites Road	South	0%	0%
Highway 401	East	0%	15%
Highway 401	West	40%	50%
Kingston Road	East	35%	5%
Kingston Road	West	30%	20%
Bayly Street	East	0%	5%
	Total	100%	100%
	Office Traffic Distribution		
Whites Road	North	10%	10%
Whites Road	South	0%	0%
Highway 401	East	0%	45%
Highway 401	West	15%	20%
Kingston Road	East	60%	10%
Kingston Road	West	10%	10%
Bayly Street	East	5%	5%
	Total	100%	100%

Notes:

1. Residential (home-based trips) and office (work-related trips) trip distribution is based on 2016 TTS data for vehicle trips to and from 2006 TTS traffic zones 10476-1049 and 1051 during the morning and afternoon peak hours.

10.5 Future Total Traffic Volumes

Future total traffic volumes, which represents the summation of baseline existing traffic volumes, corridor growth, traffic associated with area background developments, and forecast net-new Site-associated traffic volumes, are illustrated in **Figure 26** through **Figure 28**.

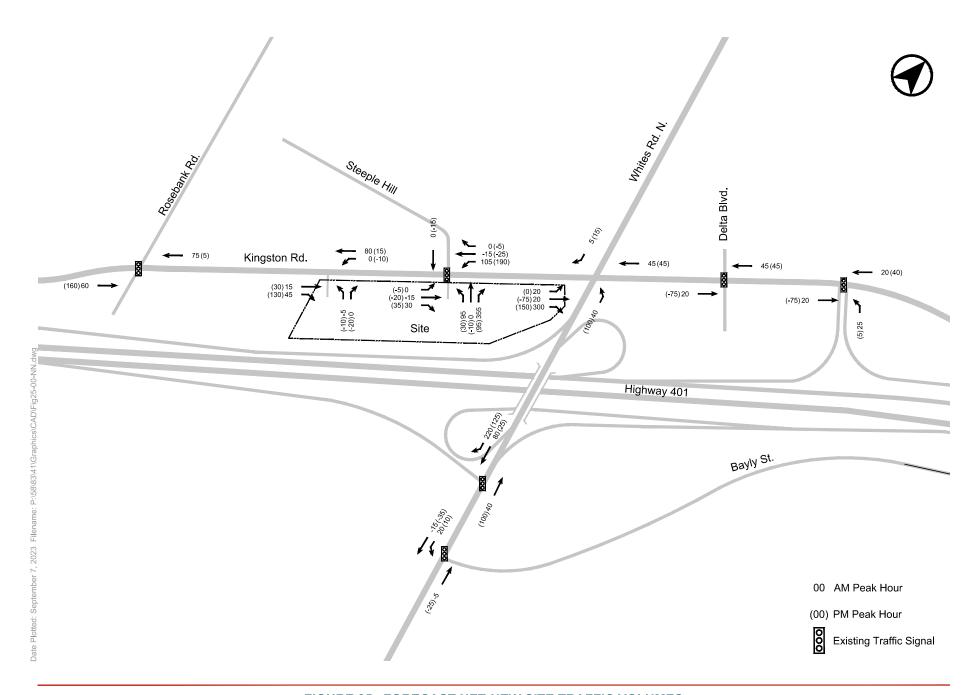


FIGURE 25 FORECAST NET-NEW SITE TRAFFIC VOLUMES

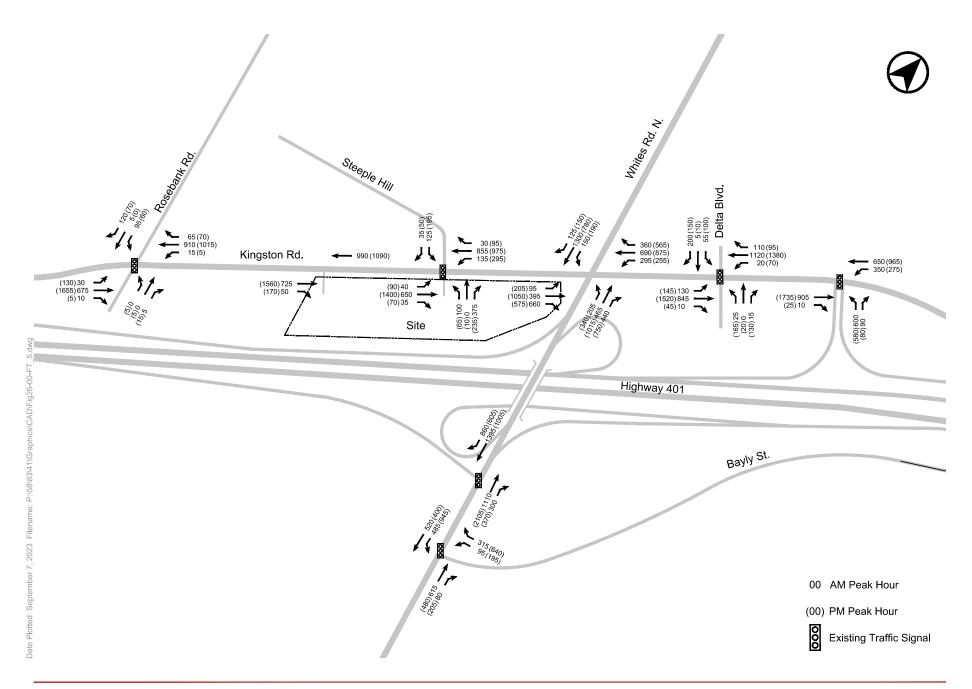


FIGURE 26 FUTURE TOTAL (5 YEARS) TRAFFIC VOLUMES

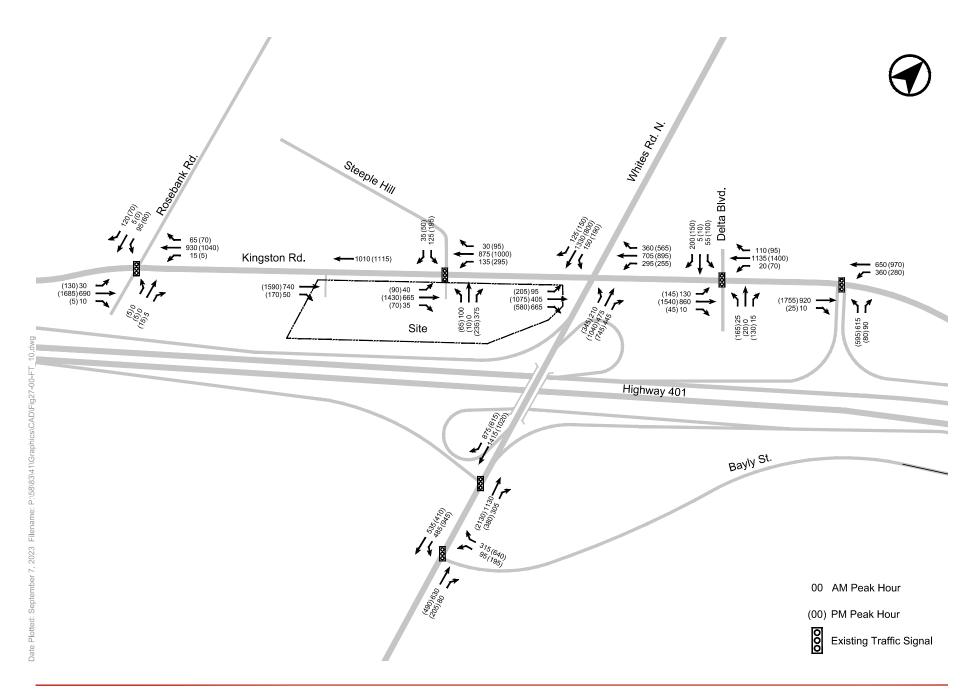


FIGURE 27 FUTURE TOTAL (10 YEARS) TRAFFIC VOLUMES

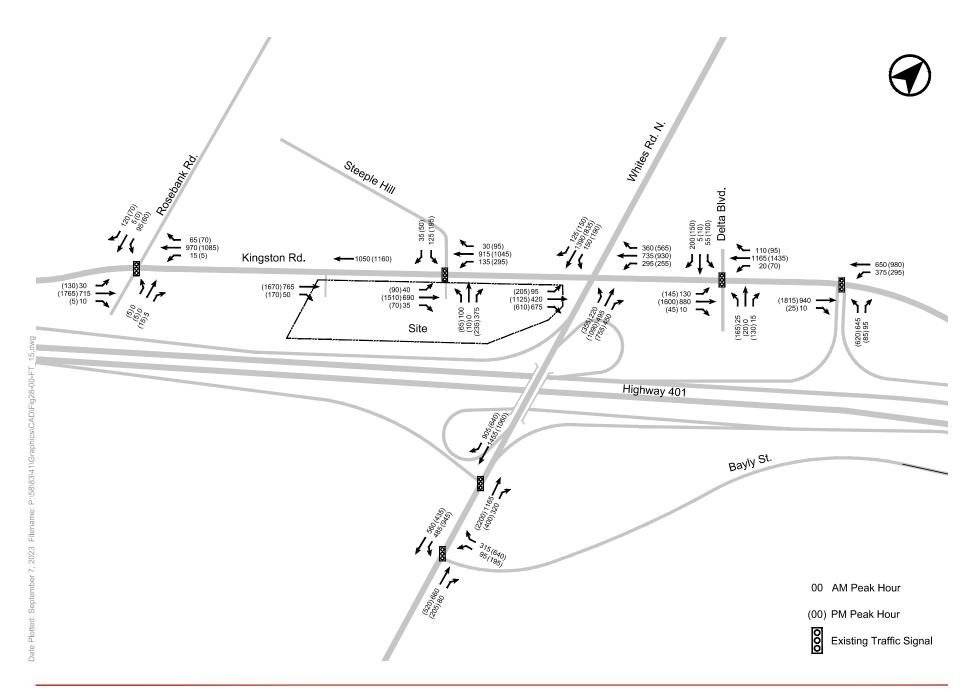


FIGURE 28 FUTURE TOTAL (15 YEARS) TRAFFIC VOLUMES

11.0 TRAFFIC OPERATIONS ANALYSIS

Traffic volume forecasts, intersection and driveway operations, and new Site traffic related impacts have been reviewed at the following area intersections as part of this study:

Signalized Intersections

- Kingston Road / Rosebank Road
- Kingston Road / Steeple Hill & Site Access Driveway
- Kingston Road / Highway 401 Westbound Ramps
- Kingston Road / Delta Road
- Whites Road / Kingston Road
- Whites Road / Highway 401 Eastbound Off-Ramp
- Whites Road / Bayly Street

Unsignalized Intersections

Kingston Road / Site Access Driveway

Analyses have been undertaken at these intersections during the weekday morning and afternoon peak hours and for 5-year (2039), 10-year (2044), and 15-year (2049) study horizons.

11.1 Analysis Methodology

Traffic operation analyses have been undertaken at the area intersections listed above using standard capacity analysis procedures as outlined below:

11.1.1 Signalized Intersection Methodology

Signalized intersection analyses have been carried out using standard capacity analysis for intersection operating under traffic signal control.

Analyses were conducted using the Synchro Version 11 traffic analysis software, which evaluates intersection performance based upon the methodologies outlined in the Highway Capacity Manual (HCM, 2000). One of the key output parameters of these analyses is a volume to capacity ratio (or v/c) which provides a relative measure of the level of capacity available to accommodate turning movement volumes at an intersection. A v/c ratio of 1.0 reflects "at or near capacity" conditions.

Another key output parameter of these analyses is a level of service (LOS) designation, ranging from LOS of A to F, which provides an indication of the level of delay (in seconds) experienced by motorists completing a turning manoeuvre at an intersection. LOS A indicates conditions of little delay and LOS F reflects conditions where more extended delays can be expected.

11.1.2 Unsignalized Intersection Methodology

Analyses were conducted using the Synchro Version 11 traffic analysis software, which evaluates intersection performance based upon the methodologies outlined in the Highway Capacity Manual (HCM 2000). Unsignalized intersection analysis have been carried out using standard capacity procedures for intersections operating under "Two-Way" and "All-Way" STOP control and in accordance with the methodologies outlined in the Highway Capacity Manual (HCM 2000).

The product of these analyses is a level of service (LOS) designation, ranging from LOS A to F, which provides a relative indication of the level of delay that may be experienced by motorists completing a turning manoeuvre at an intersection. LOS A represents conditions under which motorists would experience little delay and LOS F reflects conditions where more extended delays can be expected.

HCM level of service (LOS) criteria for unsignalized intersections is as follow:

- LOS A: Control Delay ≤ 10s
- LOS B: 10s < Control Delay ≤ 15s
- LOS C: 15s < Control Delay ≤ 25s
- LOS D: 25s < Control Delay ≤ 35s
- LOS E: 35s < Control Delay ≤ 50s
- LOS F: Control Delay > 50s

11.2 Network-Wide Parameters

The following section outlines the key parameters and assumptions adopted in the assessment of operational characteristics of the area road network for the following proposed development.

11.2.1 Base Saturation Flow Rates

A base saturation flow rate of 1,900 passenger cars per hour of green time per lane (pcphgpl) has been adopted as the base assumption within all Synchro analysis detailed in this study.

11.2.2 Heavy Vehicle Assumptions

Heavy and medium truck percentages incorporated into the analyses were based upon information obtained from observations made during existing intersection turning movement counts.

The relative proportion of heavy vehicles within the general traffic stream was used as the basis for the heavy vehicle adjustment factor inputs adopted within the Synchro analysis for both existing and future scenarios.

11.2.3 Lost Time Adjustments

To account for vehicles that complete a turning movement during amber or all-red times, a lost time adjustment of -1.0 seconds is applied for all movements at all signalized intersections. This is reflective of busy, urban intersections that operate at or near capacity, where drivers take advantage of as much of the green and amber time as possible to clear the intersection. Therefore, a base lost time adjustment factor of -1.0 seconds (i.e. a total loss time per phase equal to the amber plus all-red time minus 1 second) was adopted for the purposes of this assessment.

11.2.4 Signal Timings

Existing signal timings, phasing plans, and cycle lengths were obtained from the City of Pickering. These parameters were adopted for the analysis of existing conditions at all intersections and have been optimized where necessary under the five-year study horizon.

Existing signal timing plans have been provided in Appendix D.

11.2.5 Road Network

The existing road network configuration was assumed for this analysis and is consistent across all future scenarios. The existing and future road network intersection lane configurations are shown in **Figure 20** and **Figure 21**, respectively.

11.2.6 Peak Hour Factors

The peak hour factors (PHFs) calculated from the existing turning movement counts are adopted in the Synchro analysis. Where peak hours factors were not available, a PHF of 0.92 was assumed for both peak hours in accordance with Durham Region's analysis guidelines. The calculated peak hour factors are summarized in **Table 29**.

Table 29 Peak Hour Factors

Intersection	AM Peak Hour	PM Peak Hour
Signalized Intersections		
Kingston Road / Rosebank Road	0.88	0.94
Kingston Road / Steeple Hill & Site Access Driveway	0.85	0.95
Kingston Road / Highway 401 WB Ramps	0.87	0.95
Kingston Road / Delta Road	0.83	0.98
Whites Road / Kingston Road	0.91	0.97
Whites Road / Highway 401 EB Off-Ramp	0.95	0.91
Whites Road / Bayly Street	0.90	0.90
Unsignalized Intersections	5	
Kingston Road / Site Access Driveway	0.87	0.96

11.2.7 Analysis of Kingston Road

The analysis has been updated to include build-out of the DBRT system along Kingston Road — with lane configurations adapted for a centre median BRT and two through lanes in each direction. East-west left-turn movements along Kingston Road were also converted to "protected only" to ensure the BRT service can function with high efficiency.

11.3 Traffic Operations Results

The traffic operation analysis results for the area signalized and unsignalized intersections are discussed in the following sections. The Synchro reports are provided in **Appendix E**.

11.3.1 Signalized Intersection Analysis – Scenario 1

Traffic analyses were undertaken at all signalized intersections during the weekday morning and afternoon peak hours within the study area under Scenario 1 and are summarized in **Table 30**.

Kingston Road / Rosebank Road

Under existing conditions, the Kingston Road / Rosebank Road signalized intersection operates acceptably with an overall v/c ratio of 0.39 and 0.50 in the morning and afternoon peak hours, respectively.

Under future background conditions, the Kingston Road / Rosebank Road intersection continues to operate acceptably with overall v/c ratios of 0.43 and 0.56 in the morning and afternoon peak hours, respectively.

Under future total conditions at full build-out of the Site, with added Site traffic activity, the intersection continues to operate acceptably with overall v/c ratios of 0.47 and 0.59 in the morning and afternoon peak hours, respectively.

Kingston Road / Steeple Hill & Site Access Driveway

Under existing conditions, the Kingston Road / Steeple Hill & Site Access Driveway signalized intersection operates acceptably with an overall v/c ratio of 0.43 and 0.69 in the morning and afternoon peak hours, respectively.

Under future background conditions, the intersection operates acceptably with morning and afternoon peak hour v/c ratios of 0.46 and 0.75, respectively. Note that the signal timings and cycle length were adjusted in the morning and afternoon peak hours.

Under future total conditions at full build-out of the Site, with added Site traffic activity, the intersection continues to operate acceptably with an overall v/c ratio of 0.83 and 0.96 during the respective weekday morning and afternoon peak hours. It is conservatively assumed that all right turns in and out of the Site will occur at this intersection to assess the 'worst case' scenario; in actuality, the operating conditions at the eastbound right and northbound right movements should experience a slight improvement over the reported results as a result of Site trips utilizing the western Site access.

Kingston Road / Highway 401 WB Ramps

Under existing conditions, the Kingston Road / Highway 401 WB Ramps signalized intersection operates acceptably with an overall v/c ratio of 0.67 and 0.90 in the morning and afternoon peak hours, respectively.

Under future background conditions, the intersection operates acceptably in the morning and afternoon peak hours with overall v/c ratios of 0.75 and 0.95, respectively. Note that the signal timing and cycle length were adjusted in the afternoon peak hours.

Under future total conditions, with added site traffic activity, the intersection continues to operate acceptably with an overall v/c ratio of 0.78 and 0.93 during the respective weekday morning and afternoon peak hours.

As part of the Ministry of Transportation (MTO) Traffic Impact Study Guidelines, further analyses were conducted for an additional five-year and ten-year horizon years beyond the initial five-year build-out horizon. Under future total 2034 traffic conditions, the intersection operates with overall v/c ratios of 0.81 and 0.95 during the weekday morning and afternoon peak hours. Under future total 2039 traffic conditions, the intersection operates with overall v/c ratios of 0.85 and 0.99 during the weekday morning and afternoon peak hours.

Kingston Road / Delta Road

Under existing conditions, the Kingston Road / Delta Road signalized intersection operates acceptably with an overall v/c ratio of 0.49 and 0.70 in the morning and afternoon peak hours, respectively.

Under future background conditions, the intersection operates acceptably with morning and afternoon peak hour v/c ratios of 0.54 and 0.75, respectively.

Under future total conditions at full build-out of the Site, with added Site traffic activity, the intersection continues to operate acceptably with an overall v/c ratio of 0.55 and 0.73 during the respective weekday morning and afternoon peak hours. Under future total 2034 traffic conditions, the intersection operates with overall v/c ratios of 0.56 and 0.74 during the respective weekday morning and afternoon peak hours. Under future total 2039 traffic conditions, the intersection operates with overall v/c ratios of 0.58 and 0.76 during the respective weekday morning and afternoon peak hours.

Whites Road / Kingston Road

Under existing conditions, the Whites Road /Kingston Road signalized intersection operates acceptably with an overall v/c ratio of 0.63 and 0.90 in the morning and afternoon peak hours, respectively.

Under future background conditions, the intersection operates acceptably in the morning and afternoon peak hours with overall v/c ratios of 0.67 and 0.96, respectively. Note that the signal timing and cycle length were adjusted in the morning and afternoon peak hour.

Under future total conditions at full build-out of the Site, with added Site traffic activity, the intersection continues to operate acceptably with an overall v/c ratio of 1.00 and 0.98 during the respective weekday morning and afternoon peak hours.

As part of the Ministry of Transportation (MTO) Traffic Impact Study Guidelines, further analysis was conducted for an additional five-year and ten-year horizon years beyond the five-year build-out horizon. Under future total 2034 traffic conditions, the intersection operates with overall v/c ratios of 1.03 in both the morning and afternoon peak hours. Under 2039 traffic conditions, the intersection operates with overall v/c ratios of 1.06 during both the weekday morning and afternoon peak hours.

Whites Road / Highway 401 EB Off-Ramp

Under existing conditions, the Whites Road / Highway 401 EB Off-Ramp signalized intersection operates acceptably with an overall v/c ratio of 0.52 and 0.88 in the morning and afternoon peak hours, respectively.

Under future background conditions, the intersection continues to operate acceptably in the morning and afternoon peak hours with overall v/c ratios of 0.52 and 0.88, respectively. Note that it has been recommended that the eastbound approach operates with a dual left and a dual right turn in order to provide additional capacity to the eastbound approach.

Under future total conditions at full build-out of the Site, with added Site traffic activity, the intersection continues to operate acceptably with an overall v/c ratio of 0.55 and 0.92 during the respective weekday morning and afternoon peak hours.

As part of the Ministry of Transportation (MTO) Traffic Impact Study Guidelines, further analyses were conducted for an additional five-year and ten-year horizon years beyond the five-year build-out horizon. Under future total 2034 traffic conditions, the intersection operates with overall v/c ratios of 0.56 and 0.96 during the respective weekday morning and afternoon peak hours. Under future total 2039 traffic conditions, the intersection operates with overall v/c ratios of 0.58 and 1.00 during the respective weekday morning and afternoon peak hours.

Whites Road / Bayly Street

Under existing conditions, the Whites Road / Bayly Street signalized intersection operates acceptably with an overall v/c ratio of 0.57 and 0.73 in the morning and afternoon peak hours, respectively.

Under the future background condition, the White Road / Bayly Street intersection continues to operate acceptably with overall v/c ratios of 0.59 and 0.75 in the morning and afternoon peak hours, respectively.

Under future total conditions at full build-out of the Site, with added Site traffic activity, the intersection continues to operate acceptably with an overall v/c ratio of 0.59 and 0.74 during the respective weekday morning and afternoon peak hours.

As part of the Ministry of Transportation (MTO) Traffic Impact Study Guidelines, further analyses were conducted for an additional five-year and ten-year horizon years beyond the five-year build-out horizon. Under future total 2034 traffic conditions, the intersection operates with overall v/c ratios of 0.60 and 0.74 during the respective weekday morning and afternoon peak hours. Under future total 2039 traffic conditions, the intersection operates with overall v/c ratios of 0.62 and 0.76 during the respective weekday morning and afternoon peak hours.

Overall, the proposed development as planned can be appropriately accommodated at the area signalized intersections; no mitigation measures are required on the area street network within the five-year study horizon.

Table 30 Signalized Intersection Analysis Summary – Scenario 1

					-					
Intersection / Traffic	Existir	ng	Future Bacl	kground	Future Tota	(2029)	Future Tota	l (2034)	Future Total (2039)	
Movement	v/c	LOS	v/c	LOS	v/c	LOS	v/c	LOS	v/c	LOS
		<u> </u>	<u> </u>	Kingston	Road / Roseba	nk Road	<u>'</u>			
EBL	0.09 (0.36)	A (A)	0.10 (0.41)	A (A)	0.12 (0.42)	A (A)	0.12 (0.43)	A (A)	0.13 (0.46)	A (A)
EBTR	0.24 (0.51)	A (A)	0.28 (0.57)	A (A)	0.30 (0.60)	A (A)	0.30 (0.62)	A (A)	0.31 (0.65)	A (A)
WBL	0.03 (0.02)	A (A)	0.03 (0.03)	A (A)	0.03 (0.03)	A (A)	0.04 (0.03)	A (A)	0.04 (0.04)	A (A)
WBTR	0.36 (0.37)	A (A)	0.40 (0.41)	A (A)	0.45 (0.42)	A (A)	0.46 (0.43)	A (A)	0.48 (0.45)	A (A)
NBL	0.00 (0.04)	A (D)	0.00 (0.04)	A (D)	0.00 (0.04)	A (D)	0.00 (0.04)	A (D)	0.00 (0.04)	A (D)
NBTR	0.00 (0.04)	D (D)	0.00 (0.04)	D (D)	0.00 (0.04)	D (D)	0.00 (0.04)	D (D)	0.00 (0.04)	D (D)
SBL	0.56 (0.47)	D (D)	0.56 (0.47)	D (D)	0.56 (0.47)	D (D)	0.56 (0.47)	D (D)	0.56 (0.47)	D (D)
SBTR	0.11 (0.05)	D (D)	0.11 (0.05)	D (D)	0.18 (0.05)	D (D)	0.20 (0.05)	D (D)	0.24 (0.05)	D (D)
Overall	0.39 (0.50)	A (A)	0.43 (0.56)	A (A)	0.47 (0.59)	A (A)	0.48 (0.61)	A (A)	0.49 (0.63)	A (A)
			Kingston	Road / Ste	eeple Hill & Site	Access D	riveway			
EBL	0.13 (0.35)	A (B)	0.14 (0.37)	A (B)	0.35 (0.45)	D (C)	0.37 (0.45)	D (C)	0.41 (0.47)	D (C)
EBTR	0.29 (0.66)	A (B)	0.33 (0.70)	A (B)	0.70 (0.96)	D (D)	0.71 (1.04)	D (E)	0.73 (1.10)	D (F)
WBL	0.07 (0.44)	A (C)	0.08 (0.46)	A (D)	0.67 (0.83)	D (E)	0.69 (1.28)	D (F)	0.71 (1.29)	E (F)
WBTR	0.37 (0.45)	A (A)	0.40 (0.47)	A (A)	0.64 (0.47)	C (A)	0.65 (0.50)	C (A)	0.68 (0.52)	C (C)
NBL	0.03 (0.12)	D (D)	0.03 (0.27)	D (E)	0.33 (0.48)	C (E)	0.33 (0.43)	C (E)	0.33 (0.42)	C (E)
NBTR	0.02 (0.20)	D (D)	0.02 (0.22)	D (E)	0.66 (0.65)	C (E)	0.66 (0.76)	C (E)	0.66 (0.76)	C (E)
SBL	0.65 (0.84)	D (E)	0.70 (0.97)	E (F)	0.99 (1.01)	F (F)	0.99 (0.98)	F (F)	0.99 (1.01)	F (F)
SBTR	0.03 (0.07)	D (D)	0.03 (0.08)	D (D)	0.03 (0.03)	C (D)	0.03 (0.03)	C (D)	0.03 (0.03)	C (F)
Overall	0.43 (0.69)	B (B)	0.46 (0.75)	B (C)	0.83 (0.96)	D (D)	0.84 (1.25)	D (E)	0.85 (1.27)	D (E)
			Kin	gston Road	d / Highway 40	L WB Ram	ps			
EBTR	0.58 (0.95)	C (D)	0.70 (0.99)	C (D)	0.74 (0.95)	C (D)	0.79 (0.97)	D (D)	0.83 (1.01)	D (E)
WBL	0.79 (0.90)	C (E)	0.84 (0.89)	D (E)	0.86 (0.89)	D (E)	0.88 (0.90)	D (E)	0.93 (0.91)	E (E)
WBT	0.29 (0.37)	A (A)	0.32 (0.38)	A (A)	0.33 (0.40)	A (A)	0.33 (0.41)	B (A)	0.33 (0.41)	B (A)
NBL	0.77 (0.78)	D (D)	0.79 (0.93)	D (E)	0.80 (0.93)	D (E)	0.80 (0.95)	D (E)	0.82 (0.99)	D (F)
NBR	0.19 (0.17)	D (D)	0.19 (0.21)	D (D)	0.19 (0.21)	C (D)	0.19 (0.22)	C (D)	0.20 (0.23)	C (D)
Overall	0.67 (0.90)	C (C)	0.75 (0.95)	C (D)	0.78 (0.93)	C (D)	0.81 (0.95)	C (D)	0.85 (0.99)	D (D)

Continued on Next Page

Intersection / Traffic	Existir	ng	Future Bacl	kground	Future Tota	(2029)	Future Tota	l (2034)	Future Tota	ıl (2039)
Movement	v/c	LOS	v/c	LOS	v/c	LOS	v/c	LOS	v/c	LOS
				Kingston	Road / Delta Bo	ulevard				
EBL	0.41 (0.42)	A (A)	0.43 (0.49)	A (B)	0.45 (0.52)	A (B)	0.46 (0.53)	A (B)	0.47 (0.54)	A (B)
EBT	0.36 (0.69)	A (B)	0.40 (0.75)	A (B)	0.42 (0.72)	A (B)	0.43 (0.73)	A (B)	0.44 (0.76)	A (B)
EBR	0.01 (0.03)	A (A)	0.01 (0.03)	A (A)	0.01 (0.03)	A (A)	0.01 (0.03)	A (A)	0.01 (0.03)	A (A)
WBL	0.06 (0.31)	A (B)	0.06 (0.35)	A (B)	0.06 (0.33)	A (B)	0.07 (0.33)	A (B)	0.07 (0.36)	A (B)
WBT	0.51 (0.60)	A (B)	0.56 (0.66)	B (B)	0.58 (0.70)	B (B)	0.59 (0.71)	B (B)	0.61 (0.72)	B (B)
WBR	0.10 (0.07)	A (A)	0.10 (0.08)	A (B)	0.10 (0.08)	A (B)	0.10 (0.08)	A (B)	0.10 (0.08)	A (B)
NBL	0.44 (0.79)	D (E)	0.44 (0.79)	D (E)	0.44 (0.79)	D (E)	0.44 (0.79)	D (E)	0.44 (0.79)	D (E)
NBTR	0.01 (0.15)	D (D)	0.01 (0.14)	D (D)	0.01 (0.14)	D (D)	0.01 (0.14)	D (D)	0.01 (0.14)	D (D)
SBL	0.38 (0.47)	D (D)	0.39 (0.46)	D (D)	0.39 (0.46)	D (D)	0.39 (0.46)	D (D)	0.39 (0.46)	D (D)
SBTR	0.40 (0.13)	D (D)	0.47 (0.13)	D (D)	0.48 (0.13)	D (D)	0.48 (0.13)	D (D)	0.49 (0.13)	D (D)
Overall	0.49 (0.70)	B (B)	0.54 (0.75)	B (C)	0.55 (0.73)	B (C)	0.56 (0.74)	B (C)	0.58 (0.76)	B (C)
	-	'		Whites	Road / Kingstor	n Road				
EBL	0.29 (0.64)	C (C)	0.25 (0.79)	B (D)	0.43 (0.87)	C (E)	0.44 (0.90)	C (E)	0.46 (0.94)	C (E)
EBT	0.29 (0.88)	C (D)	0.27 (1.06)	C (F)	0.33 (0.99)	C (E)	0.34 (1.02)	C (E)	0.35 (1.07)	C (E)
EBR	0.52 (0.56)	C (C)	0.41 (0.51)	C (D)	1.05 (0.88)	E (E)	1.18 (0.88)	F (E)	1.20 (0.95)	F (C)
WBL	0.76 (0.92)	D (E)	0.66 (0.89)	C (E)	0.76 (0.89)	D (E)	0.77 (0.89)	D (E)	0.79 (0.88)	D (E)
WBT	0.50 (0.56)	C (C)	0.43 (0.67)	C (D)	0.52 (0.72)	C (D)	0.53 (0.73)	C (D)	0.55 (0.76)	C (D)
WBR	0.37 (0.77)	C (D)	0.36 (0.74)	C (D)	0.41 (0.76)	C (D)	0.42 (0.77)	C (D)	0.43 (0.78)	C (D)
NBL	0.64 (0.80)	C (D)	0.77 (0.69)	D (C)	0.80 (0.96)	D (E)	0.85 (1.22)	D (F)	0.88 (1.28)	D (F)
NBT	0.24 (0.57)	C (C)	0.34 (0.64)	D (D)	0.31 (0.64)	D (D)	0.32 (0.66)	D (D)	0.33 (0.70)	D (D)
NBR	0.45 (0.92)	C (D)	0.52 (0.94)	D (E)	0.53 (0.94)	C (E)	0.55 (0.94)	C (E)	0.57 (0.96)	C (E)
SBL	0.38 (0.87)	C (E)	0.49 (0.70)	C (D)	0.41 (0.70)	C (D)	0.41 (0.70)	C (D)	0.42 (0.72)	C (D)
SBT	0.71 (0.45)	C (C)	1.00 (0.51)	E (D)	0.99 (0.56)	E (D)	0.98 (0.58)	E (D)	1.03 (0.60)	F (D)
SBR	0.09 (0.11)	C (C)	0.14 (0.15)	D (D)	0.15 (0.22)	D (D)	0.15 (0.22)	D (D)	0.15 (0.22)	D (D)
Overall	0.63 (0.90)	C (D)	0.67 (0.96)	D (D)	1.00 (0.98)	D (E)	1.03 (1.03)	D (E)	1.06 (1.06)	E (E)
			Wh	ites Road ,	Highway 401 I	B Off-Rar	пр			
EBL	0.75 (0.88)	D (C)	0.74 (0.87)	D (C)	0.76 (0.94)	D (C)	0.76 (1.01)	D (D)	0.77 (1.05)	D (E)
EBR	0.42 (0.89)	C (D)	0.17 (0.52)	C (B)	0.18 (0.50)	C (B)	0.20 (0.50)	C (B)	0.23 (0.50)	C (B)
NBT	0.42 (0.86)	A (C)	0.43 (0.88)	A (D)	0.45 (0.89)	A (D)	0.46 (0.91)	A (D)	0.48 (0.93)	A (D)
SBT	0.29 (0.50)	A (C)	0.29 (0.52)	A (C)	0.31 (0.52)	A (C)	0.31 (0.53)	B (C)	0.32 (0.55)	B (C)
Overall	0.52 (0.88)	B (C)	0.52 (0.88)	B (C)	0.55 (0.92)	B (C)	0.56 (0.96)	B (D)	0.58 (1.00)	B (D)
				Conti	nued on Next P	age				

Intersection / Traffic	Existing		Future Background		Future Tota	Future Total (2029)		Future Total (2034)		Future Total (2039)	
Movement	v/c	LOS	v/c	LOS	v/c	LOS	v/c	LOS	v/c	LOS	
				Whites	Road / Bayly S	treet					
WBL	0.51 (0.69)	D (D)	0.51 (0.69)	D (D)	0.51 (0.69)	D (D)	0.51 (0.69)	D (D)	0.51 (0.69)	D (D)	
WBR	0.31 (0.64)	B (B)	0.32 (0.65)	B (B)	0.32 (0.64)	B (B)	0.32 (0.64)	B (B)	0.33 (0.65)	B (B)	
NBT	0.74 (0.66)	D (D)	0.75 (0.68)	D (D)	0.75 (0.66)	D (D)	0.75 (0.67)	D (D)	0.76 (0.69)	D (D)	
NBR	0.09 (0.17)	C (C)	0.10 (0.19)	C (C)	0.10 (0.17)	C (C)	0.10 (0.18)	C (C)	0.10 (0.20)	C (C)	
SBL	0.48 (0.76)	C (C)	0.50 (0.77)	C (D)	0.51 (0.78)	C (C)	0.52 (0.78)	C (D)	0.54 (0.79)	C (D)	
SBLT	0.47 (0.68)	C (C)	0.49 (0.71)	C (C)	0.49 (0.68)	B (C)	0.50 (0.69)	C (C)	0.53 (0.72)	C (C)	
Overall	0.57 (0.73)	C (C)	0.59 (0.75)	C (C)	0.59 (0.74)	C (C)	0.60 (0.74)	C (C)	0.62 (0.76)	C (C)	

Notes:

1. XX (XX) – Weekday Morning Peak Hour (Weekday Afternoon Peak Hour)

11.3.2 Unsignalized Intersection Analysis – Scenario 1

Traffic operations analysis results for the area unsignalized intersections are summarized in Table 31.

Table 31 Unsignalized Traffic Analysis Intersection Summary – Scenario 1

Intersection / Traffic	Existing		Future Background		Future Total (2029)		Future Total (2034)		Future Total (2039)		
Movement	Delay (s)	LOS	Delay (s)	LOS	Delay (s)	LOS	Delay (s)	LOS	Delay (s)	LOS	
	Kingston Road / Site Access Driveway										
WBL	0.0 (12.9)	A (B)	0.0 (14.2)	A (B)			Prohib	ited.			
NBLR	23.7 (36.7)	C (E)	29.2 (54.8)	D (F)	0.0 (0.0)	A (A)	0.0 (0.0)	A (A)	0.0 (0.0)	A (A)	

Notes:

The unsignalized intersection of Kingston Road / Site Access Driveway operates acceptably during the existing traffic conditions, with individual traffic movements operating with a level of service (LOS) of LOS E during weekday peak hours.

Under future background traffic conditions, the traffic analysis herein indicates a modest increase in average delay. Additional delay of 18 seconds or less can be anticipated during the weekday morning and afternoon peak hours, respectively, relative to the existing condition. However, it is noted that northbound traffic is minimal during the peak hour (in the order of 10-20 turning vehicles).

Under future total traffic conditions, the existing access point abutting Kingston Road will be maintained as a right-in / right-out (RIRO) access with prohibited inbound and outbound left turns. For the purpose of the analysis, it is assumed that right turn manoeuvres out of the Site will occur at the signalized intersection of Kingston Road / Steeple Hill & Site Access Driveway to assess the 'worst case' scenario at the intersection given that Site trips are expected to be accommodated at the unsignalized Site access. Moreover, it is assumed that Site-related traffic travelling eastbound will exit the Site via the easternmost Site access.

Based on the foregoing, the Site driveway will operate acceptably with the redevelopment of the Site under Scenario 1 within the five-year study horizon.

^{1.} XX (XX) – Weekday Morning Peak Hour (Weekday Afternoon Peak Hour).

11.3.3 Signalized Intersection Analysis – Scenario 2

Traffic analyses were undertaken at all signalized intersections during the weekday morning and afternoon peak hours within the study area under Scenario 2 and are summarized in **Table 32**.

Kingston Road / Rosebank Road

Under existing conditions, the Kingston Road / Rosebank Road signalized intersection operates acceptably with an overall v/c ratio of 0.39 and 0.50 in the morning and afternoon peak hours, respectively.

Under future background conditions, the Kingston Road / Rosebank Road intersection continues to operate acceptably with overall v/c ratios of 0.43 and 0.56 in the morning and afternoon peak hours, respectively.

Under future total conditions at full build-out of the Site, with added Site traffic activity, the intersection continues to operate acceptably with overall v/c ratios of 0.50 and 0.68 in the morning and afternoon peak hours, respectively.

Kingston Road / Steeple Hill & Site Access Driveway

Under existing conditions, the Kingston Road / Steeple Hill & Site Access Driveway signalized intersection operates acceptably with an overall v/c ratio of 0.43 and 0.69 in the morning and afternoon peak hours, respectively.

Under future background conditions, the intersection operates acceptably with morning and afternoon peak hour v/c ratios of 0.46 and 0.75, respectively. Note that the signal timings and cycle length were adjusted in the morning and afternoon peak hours.

Under future total conditions at full build-out of the Site, with added Site traffic activity, the intersection continues to operate acceptably with an overall v/c ratio of 0.78 and 0.96 during the respective weekday morning and afternoon peak hours. It is conservatively assumed that all right turns in and out of the Site will occur at this intersection to assess the 'worst case' scenario; in actuality, the operating conditions at the eastbound right and northbound right movements should experience a slight improvement over the reported results as a result of Site trips utilizing the western Site access.

Kingston Road / Highway 401 WB Ramps

Under existing conditions, the Kingston Road / Highway 401 WB Ramps signalized intersection operates acceptably with an overall v/c ratio of 0.67 and 0.90 in the morning and afternoon peak hours, respectively.

Under future background conditions, the intersection operates acceptably in the morning and afternoon peak hours with overall v/c ratios of 0.75 and 0.95, respectively. Note that the signal timing and cycle length were adjusted in the afternoon peak hours.

Under future total conditions, with added site traffic activity, the intersection continues to operate acceptably with an overall v/c ratio of 0.84 and 0.96 during the respective weekday morning and afternoon peak hours.

As part of the Ministry of Transportation (MTO) Traffic Impact Study Guidelines, further analyses were conducted for an additional five-year and ten-year horizon years beyond the initial five-year build-out horizon. Under future total 2034 traffic conditions, the intersection operates with overall v/c ratios of 0.85 and 0.98 during the weekday morning and afternoon peak hours. Under future total 2039 traffic conditions, the intersection operates with overall v/c ratios of 0.88 and 1.02 during the weekday morning and afternoon peak hours.

Kingston Road / Delta Road

Under existing conditions, the Kingston Road / Delta Road signalized intersection operates acceptably with an overall v/c ratio of 0.49 and 0.70 in the morning and afternoon peak hours, respectively.

Under future background conditions, the intersection operates acceptably with morning and afternoon peak hour v/c ratios of 0.54 and 0.75, respectively.

Under future total conditions at full build-out of the Site, with added Site traffic activity, the intersection continues to operate acceptably with an overall v/c ratio of 0.61 and 0.75 during the respective weekday morning and afternoon peak hours. Under future total 2034 traffic conditions, the intersection operates with overall v/c ratios of 0.62 and 0.75 during the respective weekday morning and afternoon peak hours. Under future total 2039 traffic conditions, the intersection operates with overall v/c ratios of 0.63 and 0.77 during the respective weekday morning and afternoon peak hours.

Whites Road / Kingston Road

Under existing conditions, the Whites Road / Kingston Road signalized intersection operates acceptably with an overall v/c ratio of 0.63 and 0.90 in the morning and afternoon peak hours, respectively.

Under future background conditions, the intersection operates acceptably in the morning and afternoon peak hours with overall v/c ratios of 0.67 and 0.96, respectively. Note that the signal timing and cycle length were adjusted in the morning and afternoon peak hour.

Under future total conditions at full build-out of the Site, with added Site traffic activity, the intersection continues to operate acceptably with an overall v/c ratio of 0.83 and 0.97 during the respective weekday morning and afternoon peak hours.

As part of the Ministry of Transportation (MTO) Traffic Impact Study Guidelines, further analysis was conducted for an additional five-year and ten-year horizon years beyond the five-year build-out horizon. Under future total 2034 traffic conditions, the intersection operates with overall v/c ratios of 0.85 and 0.98 in the morning and afternoon peak hours, respectively. Under 2039 traffic conditions, the intersection operates with overall v/c ratios of 0.87 and 1.01 during both the weekday morning and afternoon peak hours, respectively.

Whites Road / Highway 401 EB Off-Ramp

Under existing conditions, the Whites Road / Highway 401 EB Off-Ramp signalized intersection operates acceptably with an overall v/c ratio of 0.52 and 0.88 in the morning and afternoon peak hours, respectively.

Under future background conditions, the intersection continues to operate acceptably in the morning and afternoon peak hours with overall v/c ratios of 0.52 and 0.88, respectively. Note that it has been recommended that the eastbound approach operates with a dual left and a dual right turn in order to provide additional capacity to the eastbound approach.

Under future total conditions at full build-out of the Site, with added Site traffic activity, the intersection continues to operate acceptably with an overall v/c ratio of 0.55 and 0.91 during the respective weekday morning and afternoon peak hours.

As part of the Ministry of Transportation (MTO) Traffic Impact Study Guidelines, further analyses were conducted for an additional five-year and ten-year horizon years beyond the five-year build-out horizon. Under future total 2034 traffic conditions, the intersection operates with overall v/c ratios of 0.56 and 0.93 during the respective weekday morning and afternoon peak hours. Under future total 2039 traffic conditions, the intersection operates with overall v/c ratios of 0.58 and 0.96 during the respective weekday morning and afternoon peak hours.

It is advisable for the City to coordinate with the Region to construct an eastbound off-ramp at the intersection of Liverpool Road and Highway 401 to alleviate future congestion at the intersection of Whites Road and Kingston Road. At this time, there is no eastbound off-ramp connection to Liverpool Road which forces motorists to exit Highway 401 via Whites Road or Brock Road further to the east of the Site. Given the number of area background developments along the vicinity of the Kingston Road corridor and the existing conditions of the area off-ramps operating near theoretical capacity in the

afternoon peak hour periods, addressing potential off-ramp congestion should be a priority item for the City and Region in a future edition of the TMP in addressing safety and redistributing traffic to other off-ramp connections in the area.

Whites Road / Bayly Street

Under existing conditions, the Whites Road / Bayly Street signalized intersection operates acceptably with an overall v/c ratio of 0.57 and 0.73 in the morning and afternoon peak hours, respectively.

Under the future background condition, the White Road / Bayly Street intersection continues to operate acceptably with overall v/c ratios of 0.59 and 0.75 in the morning and afternoon peak hours, respectively.

Under future total conditions at full build-out of the Site, with added Site traffic activity, the intersection continues to operate acceptably with an overall v/c ratio of 0.59 and 0.74 during the respective weekday morning and afternoon peak hours.

As part of the Ministry of Transportation (MTO) Traffic Impact Study Guidelines, further analyses were conducted for an additional five-year and ten-year horizon years beyond the five-year build-out horizon. Under future total 2034 traffic conditions, the intersection will continue operating with overall v/c ratios of 0.59 and 0.74 during the respective weekday morning and afternoon peak hours. Under future total 2039 traffic conditions, the intersection operates with overall v/c ratios of 0.61 and 0.76 during the respective weekday morning and afternoon peak hours.

Overall, the proposed development as planned can be appropriately accommodated at the area signalized intersections within the five-year study horizon; no mitigation measures are required on the area street network.

Table 32 Signalized Intersection Analysis Summary – Scenario 2

Intersection	Existir	ng	Future Background		Future Tota	Future Total (2029)		l (2034)	Future Total (2039)	
/ Traffic Movement	v/c	LOS	v/c	LOS	v/c	LOS	v/c	LOS	v/c	LOS
Kingston Road / Rosebank Road										
EBL	0.09 (0.36)	A (A)	0.10 (0.41)	A (A)	0.32 (0.56)	D (D)	0.32 (0.56)	D (D)	0.32 (0.56)	D (D)
EBTR	0.24 (0.51)	A (A)	0.28 (0.57)	A (A)	0.34 (0.69)	A (A)	0.34 (0.71)	A (A)	0.36 (0.74)	A (B)
WBL	0.03 (0.02)	A (A)	0.03 (0.03)	A (A)	0.25 (0.12)	D (D)	0.25 (0.12)	D (D)	0.25 (0.12)	D (D)
WBTR	0.36 (0.37)	A (A)	0.40 (0.41)	A (A)	0.51 (0.55)	B (B)	0.52 (0.56)	B (B)	0.54 (0.58)	B (B)
NBL	0.00 (0.04)	A (D)	0.00 (0.04)	A (D)	0.00 (0.04)	A (D)	0.00 (0.04)	A (D)	0.00 (0.04)	A (D)
NBTR	0.00 (0.04)	D (D)	0.00 (0.04)	D (D)	0.00 (0.04)	D (D)	0.00 (0.04)	D (D)	0.00 (0.04)	D (D)
SBL	0.56 (0.47)	D (D)	0.56 (0.47)	D (D)	0.56 (0.47)	D (D)	0.56 (0.47)	D (D)	0.56 (0.47)	D (D)
SBTR	0.11 (0.05)	D (D)	0.11 (0.05)	D (D)	0.11 (0.05)	D (D)	0.11 (0.05)	D (D)	0.11 (0.05)	D (D)
Overall	0.39 (0.50)	A (A)	0.43 (0.56)	A (A)	0.50 (0.68)	B (B)	0.51 (0.69)	B (B)	0.53 (0.72)	B (B)

Continued on Next Page

Intersection	Existir	ıg	Future Back	ground	Future Tota	(2029)	Future Tota	l (2034)	Future Total (2039)	
/ Traffic Movement	v/c	LOS	v/c	LOS	v/c	LOS	v/c	LOS	v/c	LOS
	<u> </u>		Kingston	Road / Ste	eeple Hill & Site	Access D	riveway			<u> </u>
EBL	0.13 (0.35)	A (B)	0.14 (0.37)	A (B)	0.68 (0.57)	F (E)	0.68 (0.57)	F (E)	0.68 (0.57)	F (E)
EBTR	0.29 (0.66)	A (B)	0.33 (0.70)	A (B)	0.63 (0.98)	D (E)	0.64 (1.00)	D (E)	0.66 (1.06)	D (E)
WBL	0.07 (0.44)	A (C)	0.08 (0.46)	A (D)	0.71 (0.79)	E (D)	0.71 (0.79)	E (E)	0.71 (0.80)	E (D)
WBTR	0.37 (0.45)	A (A)	0.40 (0.47)	A (A)	0.59 (0.57)	B (D)	0.60 (0.58)	B (B)	0.63 (0.60)	B (D)
NBL	0.03 (0.12)	D (D)	0.03 (0.27)	D (E)	0.31 (0.44)	C (E)	0.31 (0.44)	C (E)	0.31 (0.44)	C (E)
NBTR	0.02 (0.20)	D (D)	0.02 (0.22)	D (E)	0.28 (0.47)	C (E)	0.28 (0.48)	C (E)	0.28 (0.49)	C (E)
SBL	0.65 (0.84)	D (E)	0.70 (0.97)	E (F)	1.00 (0.98)	F (F)	1.00 (0.98)	F (F)	1.00 (1.01)	F (F)
SBTR	0.03 (0.07)	D (D)	0.03 (0.08)	D (D)	0.03 (0.03)	C (D)	0.03 (0.03)	C (D)	0.03 (0.03)	C (D)
Overall	0.43 (0.69)	B (B)	0.46 (0.75)	B (C)	0.78 (0.96)	D (D)	0.79 (0.97)	D (D)	0.80 (1.00)	D (E)
	-		King	gston Road	d / Highway 40	L WB Ram	ps			-
EBTR	0.58 (0.95)	C (D)	0.70 (0.99)	C (D)	0.79 (0.98)	D (D)	0.80 (0.99)	D (D)	0.82 (1.03)	D (E)
WBL	0.79 (0.90)	C (E)	0.84 (0.89)	D (E)	0.96 (0.95)	E (F)	1.01 (0.98)	F (F)	1.09 (1.03)	F (F)
WBT	0.29 (0.37)	A (A)	0.32 (0.38)	A (A)	0.33 (0.39)	A (A)	0.33 (0.40)	B (A)	0.33 (0.40)	B (A)
NBL	0.77 (0.78)	D (D)	0.79 (0.93)	D (E)	0.80 (0.93)	D (E)	0.80 (0.95)	D (E)	0.82 (0.99)	D (F)
NBR	0.19 (0.17)	D (D)	0.19 (0.21)	D (D)	0.19 (0.21)	C (D)	0.19 (0.22)	C (D)	0.20 (0.23)	C (D)
Overall	0.67 (0.90)	C (C)	0.75 (0.95)	C (D)	0.84 (0.96)	D (D)	0.85 (0.98)	D (D)	0.88 (1.02)	D (E)
				Kingston I	Road / Delta Bo	ulevard				
EBL	0.41 (0.42)	A (A)	0.43 (0.49)	A (B)	0.59 (0.60)	D (D)	0.59 (0.60)	D (D)	0.59 (0.60)	D (D)
EBT	0.36 (0.69)	A (B)	0.40 (0.75)	A (B)	0.41 (0.75)	A (B)	0.42 (0.76)	A (B)	0.43 (0.79)	A (C)
EBR	0.01 (0.03)	A (A)	0.01 (0.03)	A (A)	0.01 (0.03)	A (A)	0.01 (0.03)	A (A)	0.01 (0.03)	A (A)
WBL	0.06 (0.31)	A (B)	0.06 (0.35)	A (B)	0.36 (0.47)	D (D)	0.36 (0.47)	D (D)	0.36 (0.47)	D (D)
WBT	0.51 (0.60)	A (B)	0.56 (0.66)	B (B)	0.64 (0.74)	B (C)	0.65 (0.75)	B (C)	0.67 (0.77)	B (C)
WBR	0.10 (0.07)	A (A)	0.10 (0.08)	A (B)	0.10 (0.08)	A (B)	0.10 (0.08)	A (B)	0.10 (0.08)	A (B)
NBL	0.44 (0.79)	D (E)	0.44 (0.79)	D (E)	0.44 (0.79)	D (E)	0.44 (0.79)	D (E)	0.44 (0.79)	D (E)
NBTR	0.01 (0.15)	D (D)	0.01 (0.14)	D (D)	0.01 (0.14)	D (D)	0.01 (0.14)	D (D)	0.01 (0.14)	D (D)
SBL	0.38 (0.47)	D (D)	0.39 (0.46)	D (D)	0.39 (0.46)	D (D)	0.39 (0.46)	D (D)	0.39 (0.46)	D (D)
SBTR	0.40 (0.13)	D (D)	0.47 (0.13)	D (D)	0.48 (0.13)	D (D)	0.48 (0.13)	D (D)	0.49 (0.13)	D (D)
Overall	0.49 (0.70)	B (B)	0.54 (0.75)	B (C)	0.61 (0.75)	B (C)	0.62 (0.75)	B (C)	0.63 (0.77)	B (C)

Continued on Next Page

Intersection	Existir	ng	Future Bacl	ground	Future Tota	(2029)	Future Tota	l (2034)	Future Total	(2039)
/ Traffic Movement	v/c	LOS	v/c	LOS	v/c	LOS	v/c	LOS	v/c	LOS
				Whites	Road / Kingstor	n Road				
EBL	0.29 (0.64)	C (C)	0.25 (0.79)	B (D)	0.61 (0.84)	E (F)	0.61 (0.84)	E (F)	0.61 (0.84)	E (F)
EBT	0.29 (0.88)	C (D)	0.27 (1.06)	C (F)	0.45 (0.97)	D (D)	0.47 (1.00)	D (E)	0.48 (1.04)	D (D)
EBR	0.52 (0.56)	C (C)	0.41 (0.51)	C (D)	0.48 (0.39)	A (A)	0.48 (0.39)	A (A)	0.49 (0.41)	A (A)
WBL	0.76 (0.92)	D (E)	0.66 (0.89)	C (E)	0.94 (0.97)	F (F)	0.94 (0.97)	F (F)	0.94 (0.97)	F (F)
WBT	0.50 (0.56)	C (C)	0.43 (0.67)	C (D)	0.57 (0.78)	D (D)	0.58 (0.80)	D (D)	0.60 (0.83)	D (D)
WBR	0.37 (0.77)	C (D)	0.36 (0.74)	C (D)	0.26 (0.38)	A (A)	0.26 (0.38)	A (A)	0.26 (0.38)	A (A)
NBL	0.64 (0.80)	C (D)	0.77 (0.69)	D (C)	0.95 (1.01)	E (F)	0.97 (1.04)	E (F)	1.01 (1.10)	F (F)
NBT	0.24 (0.57)	C (C)	0.34 (0.64)	D (D)	0.31 (0.67)	D (D)	0.31 (0.69)	D (D)	0.33 (0.72)	D (D)
NBR	0.45 (0.92)	C (D)	0.52 (0.94)	D (E)	0.51 (0.94)	C (E)	0.52 (0.94)	C (E)	0.53 (0.95)	C (E)
SBL	0.38 (0.87)	C (E)	0.49 (0.70)	C (D)	0.45 (0.75)	C (D)	0.46 (0.76)	C (D)	0.47 (0.79)	C (D)
SBT	0.71 (0.45)	C (C)	1.00 (0.51)	E (D)	0.96 (0.56)	E (D)	0.99 (0.58)	E (D)	1.03 (0.60)	F (D)
SBR	0.09 (0.11)	C (C)	0.14 (0.15)	D (D)	0.11 (0.24)	D (D)	0.11 (0.24)	D (D)	0.11 (0.24)	D (D)
Overall	0.63 (0.90)	C (D)	0.67 (0.96)	D (D)	0.83 (0.97)	D (D)	0.85 (0.98)	D (D)	0.87 (1.01)	D (D)
			Wh	ites Road /	Highway 401 I	B Off-Rar	mp			
EBL	0.75 (0.88)	D (C)	0.74 (0.87)	D (C)	0.76 (0.93)	D (C)	0.76 (0.94)	D (C)	0.77 (0.98)	D (D)
EBR	0.42 (0.89)	C (D)	0.17 (0.52)	C (B)	0.18 (0.50)	C (B)	0.19 (0.50)	C (B)	0.22 (0.50)	C (B)
NBT	0.42 (0.86)	A (C)	0.43 (0.88)	A (D)	0.45 (0.89)	A (D)	0.46 (0.90)	A (D)	0.48 (0.93)	A (D)
SBT	0.29 (0.50)	A (C)	0.29 (0.52)	A (C)	0.30 (0.51)	B (C)	0.31 (0.52)	B (C)	0.32 (0.55)	B (C)
Overall	0.52 (0.88)	B (C)	0.52 (0.88)	B (C)	0.55 (0.91)	B (C)	0.56 (0.93)	B (C)	0.58 (0.96)	B (C)
				Whites	Road / Bayly S	treet				
WBL	0.51 (0.69)	D (D)	0.51 (0.69)	D (D)	0.51 (0.69)	D (D)	0.51 (0.69)	D (D)	0.51 (0.69)	D (D)
WBR	0.31 (0.64)	B (B)	0.32 (0.65)	B (B)	0.32 (0.64)	B (B)	0.32 (0.64)	B (B)	0.33 (0.65)	B (B)
NBT	0.74 (0.66)	D (D)	0.75 (0.68)	D (D)	0.75 (0.66)	D (D)	0.75 (0.67)	D (D)	0.76 (0.69)	D (D)
NBR	0.09 (0.17)	C (C)	0.10 (0.19)	C (C)	0.10 (0.17)	C (C)	0.10 (0.18)	C (C)	0.10 (0.20)	C (C)
SBL	0.48 (0.76)	C (C)	0.50 (0.77)	C (D)	0.50 (0.77)	C (C)	0.51 (0.77)	C (C)	0.54 (0.79)	C (D)
SBLT	0.47 (0.68)	C (C)	0.49 (0.71)	C (C)	0.49 (0.68)	B (C)	0.50 (0.69)	C (C)	0.52 (0.72)	C (C)
Overall	0.57 (0.73)	C (C)	0.59 (0.75)	C (C)	0.59 (0.74)	C (C)	0.59 (0.74)	C (C)	0.61 (0.76)	C (C)

Notes:

1. XX (XX) – Weekday Morning Peak Hour (Weekday Afternoon Peak Hour)

11.3.4 Unsignalized Intersection Analysis – Scenario 2

Traffic operations analysis results for the area unsignalized intersections are summarized in Table 33.

Table 33 Unsignalized Traffic Analysis Intersection Summary – Scenario 2

Intersection / Traffic	Existing		Future Background		Future Total (2029)		Future Total (2034)		Future Total (2039)	
Movement	Delay (s)	LOS	Delay (s)	LOS	Delay (s)	LOS	Delay (s)	LOS	Delay (s)	LOS
	Kingston Road / Site Access Driveway									
WBL	0.0 (12.9)	A (B)	0.0 (14.2)	A (B)			Prohib	ited.		
NBLR	23.7 (36.7)	C (E)	29.2 (54.8)	D (F)	0.0 (0.0)	A (A)	0.0 (0.0)	A (A)	0.0 (0.0)	A (A)

Notes:

The unsignalized intersection of Kingston Road / Site Access Driveway operates acceptably during the existing traffic conditions, with individual traffic movements operating with a level of service (LOS) of LOS E during weekday peak hours.

Under future background traffic conditions, the traffic analysis herein indicates a modest increase in average delay. Additional delay of 18 seconds or less can be anticipated during the weekday morning and afternoon peak hours, respectively, relative to the existing condition. However, it is noted that northbound traffic is minimal during the peak hour (in the order of 10-20 turning vehicles).

Under future total traffic conditions, the existing access point abutting Kingston Road will be maintained as a right-in / right-out (RIRO) access with prohibited inbound and outbound left turns. For the purpose of the analysis, it is assumed that right turn manoeuvres out of the Site will occur at the signalized intersection of Kingston Road / Steeple Hill & Site Access Driveway to assess the 'worst case' scenario at the intersection given that Site trips are expected to be accommodated at the unsignalized Site access. Moreover, it is assumed that Site-related traffic travelling eastbound will exit the Site via the easternmost Site access.

Based on the foregoing, the Site driveway will operate acceptably with the redevelopment of the Site under Scenario 2 within the five-year study horizon.

^{1.} XX (XX) – Weekday Morning Peak Hour (Weekday Afternoon Peak Hour).

12.0 MICROSIMULATION ANALYSIS

12.1 Vissim Model Development

To best assess whether the proposed redevelopment of 603-643 & 645-699 Kingston Road, could be appropriately accommodated without undue impacts on the local transportation network, especially given future proposed changes including background traffic growth due to intensification along Kingston Road, as well as new transit facilities including the proposed Durham-Scarborough bus rapid transit (BRT) line, a *Vissim* modelling, and microsimulation analysis exercise has been conducted. This analysis focuses on the existing and future conditions along Kingston Road and Whites Road, and is detailed in the 603-643 & 645-699 Kingston Road Mixed-Use Development, Microsimulation Model Calibration and Analysis Report (herein referred to as the "Microsimulation Model Calibration and Analysis Report") in **Appendix F**.

The model development details, specifically the extent of the model, the field data collected, and the coding standards applied are briefly summarized below and provided in detail in **Section 1 of the Microsimulation Model Calibration and Analysis Report in Appendix F**.

12.1.1 Extent of the Vissim Model and Study Area

The *Vissim* traffic microsimulation model includes the Kingston Road corridor from Rosebank Road to the Highway 401 ramps, and the Whites Road corridor from Sheppard Avenue to Oklahoma Drive/Granite Court, including the Highway 401 eastbound off-ramp. The area covered by the *Vissim* traffic microsimulation model is illustrated in **Figure 29**.

Figure 29: 603-643 & 645-699 Kingston Road Vissim Microsimulation Model Study Area

The *Vissim* microsimulation model utilizes static vehicle inputs and routing decisions to assign turning movement volumes associated with the existing conditions, future background, and future total analysis scenarios. The intersection turning movement volumes for the different scenarios are based on the existing counts and traffic assignment prepared as part of the Synchro analysis presented in **Section 9.2**, **Section 9.3**, and **Section 9.5**.

Finally, the future conditions *Vissim* traffic microsimulation model incorporates the Durham-Scarborough BRT corridor as proposed in the *Durham-Scarborough Bus Rapid Transit Study Initial Business Case Report* (dated spring 2019), including two stops proposed within the study area along Kingston Road, at Rosebank Road and Whites Road.

12.1.2 Data Collection and Information Gathering

In order to develop a representative model of traffic conditions on the surrounding area road network, several different pieces of information were gathered and incorporated into the Vissim microsimulation model including:

- Existing road alignment and intersection lane configurations determined primarily through Bing Maps aerial photographs, as well as Google Street View imagery of the study area;
- Future configuration of Kingston Road after the construction of the Durham-Scarborough BRT which was determined from the details provided in the Initial Business Case;
- Signal timing plans at all signalized intersections located within the study area provided by the Regional Municipality of Durham;
- Turning movement counts at all signalized and some unsignalized intersections through the study area which
 were obtained from field data collection exercises conducted during the weekday morning (AM) and afternoon
 (PM) peak periods; and
- Vehicle travel times along the Kingston Road corridor, the Whites Road corridor and along the Highway 401 eastbound off-ramp at Whites Road, obtained using the Google Maps Distance Matrix API.

Detailed turning movement count data summary sheets are provided in **Appendix C**, while signal timing plans are included in **Appendix D**.

12.2 Existing Conditions Model Calibration

The general objective of calibrating the Kingston Road and Whites Road *Vissim* traffic microsimulation model was, as is the case with every calibration exercise, to ensure that the model could sensibly replicate today's existing traffic conditions as a starting point, from which predictions and forecasts regarding future traffic operations on the area road network would be obtained.

The outcome of the calibration exercise was therefore a model of existing conditions which, when used in conjunction with travel demand forecasts derived by BA Group, could credibly produce private vehicle, transit, and pedestrian-related predictions regarding future multi-modal traffic operations throughout the study area.

The following provides a brief summary of the existing conditions model calibration process and is provided in greater detail in Section 2 of the Microsimulation Model Calibration and Analysis Report in Appendix F.

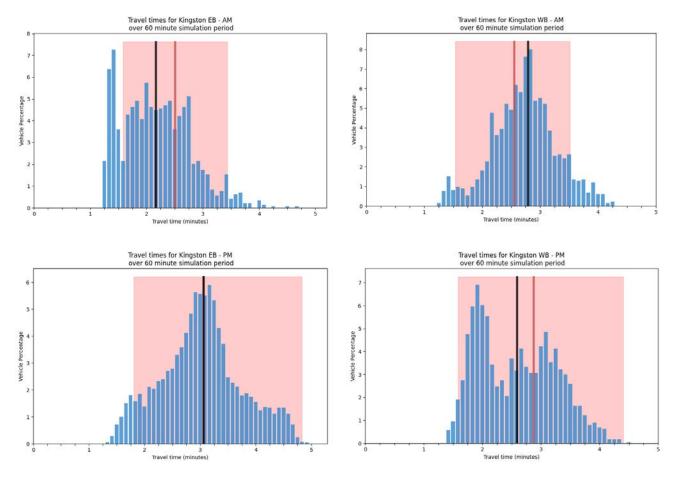
12.2.1 Model Calibration Process and Target Metrics

Data pertaining to two types of metrics describing existing traffic operations throughout the study area's transportation network were collected, summarized, and used to establish targets to be replicated by the calibrated *Vissim* model.

Simulation runs were conducted and outputs corresponding to each metric were extracted and compared to their target values. Model parameters were then adjusted, and simulation sets were re-run and performance metrics re-outputted and compared to their target values. This process was repeated iteratively until model outputs were determined to match existing network metrics. The existing conditions models were calibrated with intersection turning movement count data and vehicle travel time data.

Turning movement count data was collected via turning movement counts conducted at all signalized intersections and significant unsignalized intersections located throughout the study area. Vehicle travel time data was obtained with the Google Maps Distance Matrix API along the Kingston Road corridor, the Whites Road corridor, and the Highway 401 eastbound off-ramp at Whites Road.

The outputs (of 10 simulations) from the calibrated Kingston Road and Whites Road *Vissim* existing conditions model were summarized and compared with the collected turning movement count and vehicle travel time data and model calibration was evaluated with the Ministry of Transportation Ontario calibration criteria ("MTO calibration criteria").


12.2.2 Model Calibration Results

Turning movement counts were conducted at all intersections throughout the study area, and outputs from the calibrated Kingston Road and Whites Road *Vissim* existing conditions model are detailed in **Section 2.3.1** of the **Microsimulation Model Calibration and Analysis Report in Appendix F**. As illustrated in **Table 1** of the **Microsimulation Model Calibration and Analysis Report in Appendix F**, all turning movements in the *Vissim* model accurately reflects data collected in the field, as demonstrated by the low (i.e. less than 3.0) GEH values corresponding to all individual turning movements throughout the study area.

Model simulation travel time outputs along the Kingston Road corridor, the Whites Road corridor, and the Highway 401 eastbound off-ramp at Whites Road, were compared to data extracted from the Google Maps Distance Matrix API. As detailed in Section 2.3.2 of the Microsimulation Model Calibration and Analysis Report in Appendix F. As illustrated in Table 2 and Figure 3 through Figure 8 of the Microsimulation Model Calibration and Analysis Report in Appendix F, vehicle travel times output from the *Vissim* model accurately reflect the travel time data collected with the Google Maps Distance Matrix API, as demonstrated by the low (i.e. less than 15%) percent differences between the *Vissim* model and target average vehicle travel times, and by the *Vissim* model vehicle travel time ranges falling within or closely reflecting those of the target vehicle travel time ranges.

Figure 30 provides travel time calibration plots for Kingston Road. Whites Road and the Highway 401 eastbound off-ramp travel time calibration plots are also provided in **Section 2.3.2 of the Microsimulation Model Calibration and Analysis Report in Appendix F**.

Figure 30: Kingston Road Eastbound and Westbound - Existing Model Calibration Travel Times (AM/PM)

In addition to the discussion provided in Section 2.3.1 and Section 2.3.2 of the Microsimulation Model Calibration and Analysis Report in Appendix F, calibration of the existing conditions *Vissim* model was also evaluated with the MTO calibration criteria. The weekday morning (AM) and afternoon (PM) existing conditions peak hour models meet the volume focused evaluation criteria thresholds, specifically those related to the model demand input, corridor screenline volumes, and turning movement volumes as illustrated in Table 3, Table 4, and Table 5 of the Microsimulation Model Calibration and Analysis Report in Appendix F respectively. The weekday morning (AM) and afternoon (PM) existing conditions peak hour models also meet the model travel time evaluation criteria thresholds as illustrated in Table 6 of the Microsimulation Model Calibration and Analysis Report in Appendix F.

The calibration results and evaluation provided in **Section 2 of the Microsimulation Model Calibration and Analysis Report in Appendix F**, demonstrate that the *Vissim* simulation model of existing conditions is well calibrated and accurately reflects current traffic operations throughout the study area during the weekday morning (AM) and weekday afternoon (PM) peak hours. Therefore, the model is considered to be a suitable tool for evaluating the impact of different projected future traffic scenarios on the road network surrounding the 603-643 & 645-699 Kingston Road redevelopment.

12.3 Future Conditions Model Analysis

The calibrated *Vissim* microsimulation model was used to analyze and quantify the projected impacts of the 603-643 & 645-699 Kingston Road redevelopment on both the weekday morning (AM) and weekday afternoon (PM) peak hours.

Vissim microsimulation models were developed for both future background and future total scenarios. The future background model represents future conditions (i.e. accounting for future growth and local background developments) without the 603-643 & 645-699 Kingston Road redevelopment while the future total represents the future conditions with the 603-643 & 645-699 Kingston Road redevelopment. The future background and future total *Vissim* models represent a 2039 horizon year and traffic volumes are consistent with those provided in **Section 9.3** and **Section 9.5**.

As detailed in **Section 4.1.3**, network improvements have been proposed to accommodate future traffic conditions and operations associated with the Durham-Scarborough BRT (illustrated as modeled in **Figure 31**). Proposed network improvements include signal timing modifications along Kingston Road and Whites Road in both the future background and future total scenario models and an additional turn lane at the Highway 401 eastbound off-ramp and Whites Road intersection resulting in an eastbound approach lane configuration of 2 dedicated left-turn lanes and 2 dedicated right-turn lanes in only the future total scenario model.

The projected impact of the 603-643 & 645-699 Kingston Road redevelopment were primarily assessed through this modelling exercise with vehicle travel times along study area road segments, and vehicle queuing and delays at key study area intersections to ensure that the traffic impacts associated with the site redevelopment can be accommodated by the road network. The following provides a brief summary of the future conditions model analysis results and is provided in greater detail in **Section 3 of the Microsimulation Model Calibration and Analysis Report in Appendix F**.

Figure 31: Durham-Scarborough BRT at Kingston Road and Whites Road

12.3.1 Travel Time Analysis Results

Travel time analysis is provided through a comparison of existing conditions corridor travel times, and projected future background and future total corridor travel times. Future background and future total scenario travel time outputs are provided in Table 7 of the Microsimulation Model Calibration and Analysis Report in Appendix F.

EXISTING AND FUTURE BACKGROUND COMPARISONS

Comparisons between the existing and future background *Vissim* model scenarios, demonstrate that average travel times are projected to increase along Kingston Road in both the eastbound and westbound directions in the order of 6 to 37 seconds during the morning (AM) peak hour and 21 to 26 seconds during the afternoon (PM) peak hour.

Average travel times along Whites Road are projected to vary for both the northbound and southbound directions with a decrease in the order of 8 to 20 seconds during the morning (AM) peak hour and an increase in the order of 2 to 25 seconds during the afternoon (PM) peak hour.

Travel time increases on Kingston Road and Whites Road are the result of the future operations associated with background traffic growth and the implementation of the future Durham-Scarborough BRT line.

Finally, when comparing existing and future background travel times along the Highway 401 eastbound off-ramp, an increase in travel times is observed only during the morning (AM) peak hour of approximately 30 seconds, due to proposed signal timing adjustments to accommodate traffic increases at the intersection.

FUTURE BACKGROUND AND FUTURE TOTAL COMPARISONS

When comparing the future background and future total *Vissim* model scenarios, average travel times are projected to increase along Kingston Road in both the eastbound and westbound directions in the order of 11 to 43 seconds during the morning (AM) peak hour and 14 to 15 seconds during the afternoon (PM) peak hour.

Average travel times are also projected to increase along Whites Road in both the northbound and southbound directions in the order of 23 to 43 seconds during the morning (AM) peak hour and 14 to 19 seconds during the afternoon (PM) peak hour.

Travel time increases on Kingston Road and Whites Road in the future total scenario are due to the additional site traffic along these corridors. These travel time increases are less than 45 seconds for all segments when comparing to the existing conditions, with the exception of the eastbound direction on Kingston Rd during the morning (AM) peak hour, due to an increase in both background and site traffic travelling towards the Highway 401 westbound on-ramp at Kingston Road.

Finally, a comparison of the future background and future total travel times along the Highway 401 eastbound off-ramp illustrate a projected increase of 22 seconds during the weekday morning (AM) peak hour and a decrease of 15 seconds during the weekday afternoon (PM) peak hour, despite volumes increasing by 125 vehicles in the weekday morning (AM) peak hour and by 220 vehicles in the weekday afternoon (PM) peak hour, as a result of the proposed additional eastbound right-turn lane and signal timing adjustments at the intersection.

Overall, the future total model analysis results provided, including the travel time comparison plots, demonstrate that corridor travel times throughout the study area are not projected to increase significantly. Specifically, travel time increases are all less than 45 seconds across the study area road segments and therefore, the projected vehicle travel time impacts of the proposed 603-643 & 645-699 Kingston Road redevelopment can be appropriately accommodated by the future road network. Figure 32 and Figure 33 provide travel time comparison plots for Kingston Road. Whites Road and the Highway 401 eastbound off-ramp travel time comparison plots are also provided in Section 3.2.1 of the Microsimulation Model Calibration and Analysis Report in Appendix F.

Figure 32: Kingston Road Eastbound - Travel Time Comparison Plots (AM and PM)

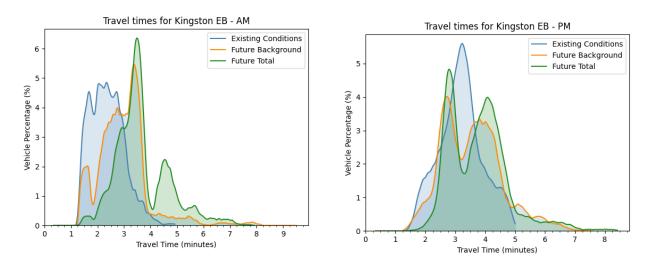
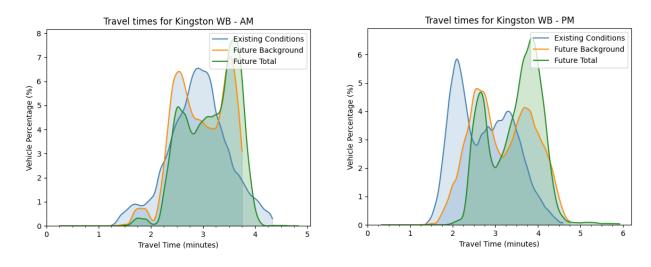



Figure 33: Kingston Road Westbound - Travel Time Comparison Plots (AM and PM)

12.3.2 Queuing Analysis Results

Queueing analysis is provided through a comparison of existing conditions intersection vehicle queueing, and projected future background and future total intersection vehicle queueing. Existing, future background and future total scenario vehicle queue outputs and their associated storage areas are provided in **Table 8 of the Microsimulation Model Calibration and Analysis Report in Appendix F**.

EXISTING AND FUTURE BACKGROUND COMPARISONS

Most notable queueing increases between the existing and future background scenarios occur during the afternoon (PM) peak hours along the Kingston corridor in the eastbound direction for the following movements:

- EBT/EBR at Kingston Road and Steeple Hill/East Site Access of approximately 67 metres.
- EBL at Kingston Road and Whites Road of approximately 53 metres.
- EBT at Kingston Road and Whites Road of approximately 88 metres.
- NBR at Kingston Road and Whites Road of approximately 43 metres.
- EBT/EBR at Kingston Road and Highway 401 Ramps of approximately 86 metres.

Projected vehicle queuing increases in the future background scenario are due to the reduction in eastbound and westbound vehicle capacity along Kingston Road associated with the implementation of the future Durham-Scarborough BRT line. Although vehicle queues are projected to increase, the projected queues are contained within available storage areas and are not expected to cause intersection spillbacks and/or congestion.

FUTURE BACKGROUND AND FUTURE TOTAL COMPARISONS

Between the future background and future total scenarios, queueing is expected to increase in response to the addition of the proposed site traffic.

During the weekday morning (AM) peak hour, vehicle queuing increases are observed at the following intersection turning movements:

- WBL at Kingston Road and Steeple Hill/East Site Access of approximately 36 metres.
- EBT at Kingston Road and Whites Road of approximately 40 metres.
- EBR at Kingston Road and Whites Road of approximately 57 meters.
- SBT at Kingston Road and Whites Road of approximately 79 metres.

The intersection turning movements where morning (AM) peak hour vehicle queuing increases are observed align with turning movements where volumes have increased due to the addition of proposed site traffic to the network. The resulting morning (AM) peak hour queues remain contained within available storage areas and continue to not be expected to cause intersection queue spillbacks and/or congestion.

During the weekday afternoon (PM) peak hour, vehicle queuing increases are observed at the following intersection turning movements:

- WBL at Kingston Road and Steeple Hill/East Site Access of approximately 48 metres.
- EBL at Kingston Road and Whites Road of approximately 66 metres.
- EBT at Kingston Road and Whites Road of approximately 80 metres.
- NBL at Kingston Road and Whites Road of approximately 50 metres.
- NBL at Kingston Road and Highway 401 Westbound off-ramp of approximately 56 metres.
- NBR at Kingston Road and Highway 401 Westbound off-ramp of approximately 56 metres.

The intersection turning movements where afternoon (PM) peak hour vehicle queuing increases are observed once again align with turning movements where volumes have increased due to the addition of proposed site traffic to the network. The resulting afternoon (PM) peak hour queues remain contained within available storage areas and continue to not be expected to cause intersection queue spillbacks and/or congestion.

Overall, the future conditions model analysis results provided, demonstrate that projected future vehicle queues are not expected to increase significantly and can be accommodated within available storage areas. Therefore, the projected vehicle queuing impacts of the proposed 603-643 & 645-699 Kingston Road redevelopment can be appropriately accommodated by the future road network.

12.3.3 Intersection Turn Delay Results

Average vehicle delay is provided through a comparison of existing conditions vehicle delay, and projected future background and future total vehicle delay. Existing, future background and future total scenario average vehicle turn delay outputs are provided in **Table 9 of the Microsimulation Model Calibration and Analysis Report in Appendix F**.

EXISTING AND FUTURE BACKGROUND COMPARISONS

Average vehicle delay increases between the existing and future background scenarios are observed along Kingston Road due to the reduction in eastbound and westbound vehicle capacity along Kingston Road associated with the implementation of the future Durham-Scarborough BRT line.

Average vehicle delay increases are projected for the following intersection turning movements during the weekday morning (AM):

- EBL at Kingston Road and Steeple Hill/East Site Access of approximately 39 seconds.
- WBL at Kingston Road and Steeple Hill/East Site Access of approximately 69 seconds.
- EBL at Kingston Road and Whites Road of approximately 33 seconds.
- EBT at Kingston Road and Whites Road of approximately 33 seconds.

Average vehicle delay increases are projected for the following intersection turning movements during the weekday afternoon (PM):

- EBL at Kingston Road and Steeple Hill/East Site Access of approximately 26 seconds.
- EBT/EBR at Kingston Road and Steeple Hill/East Site Access of approximately 18 seconds.
- EBL at Kingston Road and Whites Road of approximately 23 seconds.

FUTURE BACKGROUND AND FUTURE TOTAL COMPARISONS

Average vehicle delays are projected to increase for a few intersections turning movements due to the addition of proposed site traffic to the network in both the weekday morning (AM) and afternoon (PM) peak hours.

Average vehicle delay increases are projected for the following intersection turning movements during the weekday morning (AM):

- EBT at Kingston Road and Whites Road of approximately 22 seconds.
- EBR at Kingston Road and Whites Road of approximately 18 seconds.
- SBT at Kingston Road and Whites Road of approximately 22 seconds.
- SBR at Kingston Road and Whites Road of approximately 20 seconds.

Average vehicle delay increases are projected for the following intersection turning movements during the weekday afternoon (PM):

NBL at Kingston Road and Highway 401 Westbound off-ramp of approximately 46 seconds.

The future conditions model analysis results provided, demonstrate that projected future average vehicle delays are not expected to increase significantly with increases typically less than 25 seconds. Where average vehicle delays are observed exceeding 25 seconds, these are due to signal timing adjustments required to accommodate traffic volume increases at intersections and are not expected to have significant impacts on intersection performance. Overall, the projected vehicle delay impacts of the proposed 603-643 & 645-699 Kingston Road redevelopment can be appropriately accommodated by the future road network.

12.3.4 Vehicle Average Travel Speed Plots

Network vehicle average travel speed plots, a valuable set of traffic operation metrics that aggregates the previously discussed detailed attributes (i.e. vehicle travel times, queuing, delays, etc.) into all-encompassing values provide an overall snapshot of study area traffic conditions. Existing conditions, future background and future total scenario vehicle average travel speed plots are included in **Figure 34** and **Figure 35** for both the weekday morning (AM) and afternoon (PM) peak hours, respectively.

As expected, there exists vehicle average travel speed reductions observed along Kingston Road in the future background and future total scenarios resulting from the reduction in eastbound and westbound vehicle capacity along Kingston Road associated with the implementation of the future Durham-Scarborough BRT line. Furthermore, a comparison between future background and future total vehicle average travel speed plots illustrates the negligible impacts on overall network performance associated with the addition of the proposed site traffic.

Figure 34: Vehicle Average Travel Speed Plots (AM)

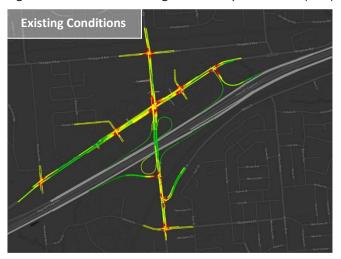


Figure 35: Vehicle Average Speed Plots (PM)

12.4 Vissim Conclusions and Recommendations

A *Vissim* microsimulation traffic model was developed, calibrated, and utilized to assess whether the area road network could appropriately accommodate the transportation-related impacts of background growth and local study area background developments, the proposed redevelopment, network improvements (i.e. signal timing adjustments along Kingston Road and Whites Road and an additional turn lane at the Highway 401 eastbound off-ramp and Whites Road intersection) and the planned Durham-Scarborough BRT line.

Overall, the *Vissim* microsimulation model analysis results demonstrate that study area travel times, intersection vehicle queueing, and turn delays are not projected to increase significantly along Kingston Road, Whites Road, the Highway 401 eastbound off-ramp, and the Highway 401 westbound on/off-ramp during the weekday morning (AM) and afternoon (PM) peak hours due to the proposed redevelopment, and that the projected impacts of the proposed 603-643 & 645-699 Kingston Road redevelopment can be appropriately accommodated by the future road network.

13.0 SUMMARY AND CONCLUSIONS

BA Group is retained by Director Industrial Holdings Limited to provide transportation consulting services related to the mixed-use development (the "Project") located at 603-643 & 645-699 Kingston Road in the City of Pickering (the "Site").

The current development concept, as represented in the conceptual site plan drawings and development statistics prepared by Graziani + Corazza Architects, dated October 24, 2023, enclosed with this submission, is preliminary in nature and is subject to change.

The current development concept, which represents a high-level master plan for a new mixed-use community, is primarily intended to form the basis of the proposed Draft Official Plan Amendment, which is required to facilitate the proposed density and Floor Space Index on the subject lands, as well as the proposed Draft Zoning By-law Amendment which is required to establish a new site-specific zoning framework that will implement the City's current land use vision for the subject lands.

This proposed Official Plan and Zoning By-law Amendment framework is intended to provide flexibility in order to ensure that the development of the lands responds to market conditions and can result in the implementation of plans and alternative plans to achieve intensification based on good planning and urban design principles.

As such, it is anticipated that the development concept as presented in this report be considered conceptual and will be revised, as necessary, to account for new and/or evolving considerations related to the master-planned community.

Proposed Development

- 1. The proposed development includes six high-rise towers, two mid-rise towers, and four townhouse blocks. A total of 3,460 residential units are proposed.
- 2. Three of the high-rise buildings contain approximately 2,474 square metres of retail uses, primarily at-grade along Kingston Road. Podium 3 of one of the high-rise buildings contains approximately 3,475 square metres of office uses.
- 3. Approximately 3,093 square metres of parkland is proposed within three parks provided between the buildings on-
- 4. The Site will be served by two vehicular access points and an internal road network. The new road network can function either as a private or public road and will be determined in a future submission.
- 5. Note that the current development plan contemplates an overall of 3,460 residential units. Based on the traffic analysis operations conducted as part of this study, a total of 2,884 residential units can be accommodated on the area road network. As such, a future expansion up to 3,460 residential units will be contemplated as part of a future review, subject to additional improvements and mitigation measures.
- 6. For the purposes of this study, the site has been designed to accommodate the overall development of 3,460 residential units, but the traffic analysis has been completed based on 2,884 residential units.

Planning Context

- 7. There are a number of local, regional, and provincial policy documents that support and encourage transportation demand management (TDM) strategies to be incorporated into new developments and reduced minimum parking standards, especially for developments in areas well served by transit services.
- 8. The Metrolinx 2041 Regional Transportation Plan includes plans for the Durham-Scarborough Bus Rapid Transit (BRT), which will provide reliable transit services adjacent to the Site. The initial design of the BRT has been established in the Durham-Scarborough Bus Rapid Transit Study. The recommended initial BRT design has been incorporated in a sensitivity analysis as part of the report's traffic review.

9. The City of Pickering's Kingston Road Corridor and Speciality Retail Node Intensification Study (the "intensification study") recommends intensification scenarios along the Kingston Road corridor. The intensification study sets the framework for development in the area surrounding the Site, and will create greater densities in the area, which will be discussed later with regards to the potential Whites Road GO Transit station.

Transportation Context

- 10. The Site is well located relative to the significant roadway connections provided across the City and the wider Durham Region, with access to a nearby expressway.
- 11. The Site is located in close proximity (approximately 300 metres) to four bus routes, including the Durham Region Transit Pulse services that is a bus rapid transit (BRT) service. Some of these bus routes connect the Site to Pickering GO Station, providing the Site with access to provincial transit services as well.
- 12. A number of planned transit improvements will enhance the transit reach and quality of service afforded to the Site, including the future Durham-Scarborough BRT and Metrolinx's Regional Express Rail (RER).
- 13. The key benefits of the BRT for the Site and surrounding area are; it provides transit service to multiple key destinations, the frequency of the BRT will reduce departure time dependency, and the BRT will maintain relatively constant travel speeds and reliable travel times even during times of congestion.
- 14. The RER, in combination with the BRT, will improve the transit reach of the Site and surrounding area, as well as reduce departure time dependency when traveling to key destinations.
- 15. While Metrolinx's 2016 initial business case concluded that a new GO Transit station should not be constructed at Whites Road, a review of the potential density for the area based on the City of Pickering's intensification study and proposed site plan concluded that the forecast densities for the area would satisfy the Metrolinx Mobility Hub Guidelines' density target of 50 200 P+J/ha for areas served by Regional Rail. Therefore, the potential Whites Road station should be reconsidered, which would provide enhanced regional service for the Site and complement the BRT.
- 16. The area surrounding the Site is largely vehicle-oriented in design with its large surface parking lots, wide streets, limited pedestrian crossing opportunities, and discontinuous / lack of sidewalks.
- 17. The intensification study proposed new pedestrian crossing opportunities and connections. The study also plans new retail and secondary frontages along Kingston Road to animate the public realm and pedestrian interactions in the area.
- 18. Additionally, the site plan provides new pedestrian facilities along the internal road network that connect the wider pedestrian network and surrounding uses to the new uses on-site. The removal of surface parking and provision of atgrade retail uses along Kingston Road provide an opportunity to animate the public realm.
- 19. The existing cycling network in the vicinity of the Site includes portions of the Kingston Road bike lane, and cycling infrastructure along Granite Court and Rosebank Road. A number of planned improvements will foster enhance the cycling network, including a continuous bike lane along Kingston Road, and cycling infrastructure along Whites Road and Rougemount Drive.

Mobility Choice Travel Plan

- 20. A mobility choice travel plan is pursued to advance Transportation Demand Management (TDM), to the extent possible, within the context of the proposed redevelopment.
- 21. A number of TDM strategies and measures are proposed as part of the plan, their primary objectives are as follows:

Providing Mobility Choice:

- Major Transit Infrastructure Investments and Transit Strategy
- Bicycle Infrastructure and Amenities
- Pedestrian Facilities

Transportation Demand Management:

- Automobile Use Management
- Land Use and Building Infrastructure
- Coordination, Communication and Promotion
- 22. The TDM measures proposed as part of the Project include the consideration of providing a transit shuttle, bicycle parking, shower and change facilities, new pedestrian connections on-site, a mix of uses on-site, and raising awareness of the travel options available to new residents and employees.

Vehicular Parking Considerations

- 23. The application of the site-specific by-laws, By-law No. 1810-84 and By-law No. 2471-87. By-law No. 1810-84 to the development programme results in a requirement of 6,278 parking spaces, including 6,055 residential parking spaces and 223 non-residential parking spaces.
- 24. The application of the City's City Centre zoning by-law, By-law 7553-17, to the development proposal results in a requirement of 3,374 parking spaces, including 2,768 residential parking spaces and 606 non-residential parking spaces. For an effective residential parking supply ratio of 0.85 spaces per unit.
- 25. It is proposed to provide parking at the following supply ratios:
 - Residential: 0.65 parking spaces per unit
 - Residential Visitors: 0.15 parking spaces per unit
 - Office: no designated office parking will be provided, it will share the visitor parking
 - Retail: no designated retail parking will be provided for retail space less than 1,000 m² GFA per building, it will share the visitor parking

The resulting recommended supply is 2,768 parking spaces, including 2,249 residential parking spaces and 519 non-resident parking spaces.

- 26. The recommended parking requirements is considered appropriate based on provincial and local policy, the Site's transportation context, area parking sales data, recently approved parking rates, a review of other municipalities zoning by-law parking requirements, and elements of the Project.
- 27. Currently a total of 2,768 parking spaces in below-grade and podium parking are proposed to support the Project. Further details of the proposed development's parking supply and location will be provided in subsequent applications to the City through the approval process.

Bicycle Parking Considerations

- 28. The site-specific by-laws that apply to the Site, or the underlying Zoning By-law 3036, do not contain bicycle parking provisions.
- 29. It is recommended to apply the bicycle parking provisions of the City Centre zoning by-law.
- 30. The application of the City's City Centre zoning by-law, By-law 7553-17, to the development proposal results in a requirement of 1,740 parking spaces, including 1,730 residential parking spaces and 10 non-residential parking spaces.
- 31. Further details of the proposed development's bicycle parking supply and location will be provided in subsequent applications to the City through the approval process.

Loading Considerations

- 32. The current site-specific by-laws and underlying by-law do not contain minimum loading requirements. The City Centre Zoning By-law 7553-17 does not contain minimum loading requirements either.
- 33. The loading provisions on-Site will be reviewed in detail as part of subsequent submissions to the City through the ongoing approval process.
- 34. In order to determine the number of loading spaces that could adequately support the proposed development, the loading requirements of the City of Toronto Zoning By-law 569-2013 were applied to the Site. The minimum loading requirement of 14 loading spaces utilizes shared loading provisions and shared loading facilities that can serve more than one tower.

Multi-Modal Travel Demand Forecasting

- 35. BA Group has established travel demand forecasts for auto-based and non-auto-based trips for the Site.
- 36. Travel demand forecasts for residential-related person trips have been developed from a "first principles" approach using person trip making characteristics. Based on the unit occupancy, non-auto residential travel demand (i.e. transit, walking, and cycling trips) is forecast to be in the order of 150 and 130 two-way trips in the weekday morning and afternoon peak hours respectively.
- 37. Based on existing 2016 TTS information, it is anticipated that the office trips will primarily be generated by automobile and will have very minimal non-automobile trips. As such, no trips were developed for the non-auto mode shares (i.e. transit, walking and cycling) for the purposes of this assessment. It is anticipated that the office use will generate in the order of 70 and 55 two-way vehicle trips in the morning and afternoon peak hours, respectively.
- 38. Understanding the nature of proposed retail uses and the expected travel characteristics associated with retail-related person trips, the analysis herein assumes that the projected retail trips during the weekday morning and afternoon peak hours will be pass-by trips from vehicles already travelling on the area road network. It is anticipated that the retail use will generate in the order of 50 and 70 two-way vehicle trips in the morning and afternoon peak hours, respectively.
- 39. In summary, 1,205 and 1,310 two-way person trips are forecasted for the proposed development during the weekday morning and afternoon peak hours, respectively.
- 40. A total of 880 two-way vehicles trips are anticipated during the weekday morning peak hour, and 1,000 two-way vehicle trips are anticipated during the weekday afternoon peak hour.

Vehicle Travel Demands

- 41. The existing Site currently generates approximately 80 and 295 trips at the existing Site driveway during the weekday morning and afternoon peak hours, respectively.
- 42. Background developments to the 2024 (5-year) planning horizon identified in the Site area (i.e. other developments that will be completed and occupied by 2024) comprise approximately 82 residential units, 194 sq. m. of car-wash facility GFA, 211 sq. m. of convenience store GFA, and 112 sq. m. of fast-food restaurant GFA. In addition, as a conservative measure, a 1% per annum traffic growth rate was assumed along the Kingston Road and Whites Road corridor during the weekday morning peak hour, as part of the traffic operations analysis prepared herein.
- 43. The net new Site vehicular trips generated by the proposed development are in the order of 805 and 570 two-way vehicle trips during the weekday morning and afternoon peak hours, respectively.

Traffic Operations Review

- 44. Traffic operations analyses were undertaken during the weekday morning and afternoon street peak hours under the following traffic conditions:
 - Existing traffic conditions traffic activity level under current conditions;
 - Future background traffic conditions Anticipated traffic volumes within the planning horizon which include allowances for corridor growth and background developments; and
 - Future total traffic conditions Forecast traffic volumes on the area street network, including net new Siterelated traffic demands.

Traffic projections for future scenarios have been prepared for a 2024, 2029 and 2034 horizon years consistent with MTO reporting requirements.

- 45. Under existing traffic conditions, all signalized intersections in the study area operate at a busy, but acceptable level of service with overall v/c ratios of 0.74 or better in the weekday morning and 0.87 or better in the weekday afternoon peak hours.
- 46. Under future background traffic conditions, all signalized intersections in the study area continue to operate at a busy, but acceptable level of service with overall v/c ratios of 0.78 or better in the weekday morning and 0.89 or better in the weekday afternoon peak hours.
- 47. Under future total traffic conditions, all signalized intersections in the study area continue to operate at a busy, but acceptable level of service with overall v/c ratios of 0.83 or better in the weekday morning and 0.90 or better in the weekday afternoon peak hours.
- 48. BA Group recommends a dual left and dual right turning lane at the Whites Road / Highway 401 WB Off-Ramp signalized intersection in order to provide additional capacity to the eastbound approach.
- 49. Under existing, future background and future total traffic conditions, unsignalized intersections and site driveway access in the study area operate acceptably, with turning movement level of service generally in the LOS A to LOS B range during the weekday morning and afternoon peak hours.
- 50. A future BRT will impact traffic operations and travel characteristics in the immediate study area. As such, a preliminary traffic operations analysis was undertaken to quantify, at a high level, these impacts within the site environs. This review considered the operations study area signalized intersections along the Kingston Road corridor.
- 51. The analysis results indicated that the signalized intersections along the Kingston Road operate at busy conditions with v/c ratios above theoretical capacity. However, considering the BRT expansion is a significant transit upgrade over existing services, it is anticipated that a travel mode shift for vehicles travelling along Kingston Road within the

- site environs will occur. As a result of an increase in ridership using the BRT and a commensurate drop in passenger vehicle activity, intersections along Kingston Road would operate at acceptable conditions (i.e. below theoretical capacity) with the Durham-Scarborough BRT implemented.
- 52. Based upon the above, the proposed development plan can be reasonably accommodated from a traffic operations perspective.

Appendix A: Reduced Scale Architectural Plans

PROJECT STATISTICS			OCT.25.2
	Permitted / Required	Prop	oosed
01. SITE AREA			
Development Block		39,615 m2	3.96 ha 9.79 ac
Private / Public Road		426,411 ft2 5,033 m2	9.79 ac 0.50 ha
Proposed Park		54,177 ft2 3,093 m2	1.24 ac 0.31 ha
Future Development Block		33,298 ft2 798 m2	0.76 ac 4.85 ha
		8,585 ft2	11.99 ac
Total Site Area		48,539 m2 522,471 ft2	9.63 ha 23.79 ac
02. N.F.A.	MEASURED FROM INTERIOR FACES OF Exterior Walls		
RESIDENTIAL Podium 1 + Tower 1, 2 & 3			
Podium 1 Tower 1		± 982 m2 ± 22,731 m2	± 10,573 ft2 ± 244,670 ft2
Tower 2		± 22,731 m2	± 244,670 ft2
Tower 3		± 22,731 m2	± 244,670 ft2
Subtotal		± 69,174 m2	± 744,582 ft2
Podium 2 + Tower 4 & 5		1 400 0	a. 5 007 00
Podium 2 Tower 4		± 499 m2 ± 22,730 m2	± 5,367 ft2 ± 244,659 ft2
Tower 5		± 22,731 m2	± 244,670 ft2
Subtotal		± 45,959 m2	± 494,696 ft2
Podium 3 + Tower 6			(C. 4077 (MA)
Podium 3 Tower 6		± 784 m2 ± 26,662 m2	± 8,437 ft2 ± 286,987 ft2
Subtotal		± 27,446 m2	± 295,425 ft2
Podium 4 + Tower 7			
Podium 4		± 679 m2	± 7,311 ft2
Tower 7 Subtotal		± 14,196 m2 ± 14,875 m2	± 152,800 ft2 ± 160,111 ft2
Podium 5 + Tower 8 Podium 5		± 12,868 m2	± 138,512 ft2
Tower 8		± 16,666 m2	± 179,390 ft2
Subtotal		± 29,534 m2	± 317,902 ft2
Podium 6 + Tower 9 Podium 6		± 12,060 m2	± 120 512 #2
Tower 9	+	± 12,868 m2 ± 16,666 m2	± 138,512 ft2 ± 179,390 ft2
Subtotal		± 29,534 m2	± 317,902 ft2
Podium 7 + Tower 10			
Podium 7		± 13,029 m2	± 140,244 ft2
Tower 10 Subtotal		± 17,134 m2 ± 30,163 m2	± 184,429 ft2 ± 324,672 ft2
RESIDENTIAL SUBTOTAL		± 246,685 m2	± 2,655,290 ft2
RETAIL			
Podium	4	0.00	0.40
Podium 1 Podium 2	+	± 0 m2 ± 0 m2	± 0 ft2 ± 0 ft2
Podium 3		± 375 m2	± 4,031 ft2
Podium 4		± 676 m2	± 7,273 ft2
Podium 5 Podium 6		± 676 m2 ± 742 m2	± 7,273 ft2 ± 7,984 ft2
Subtotal		± 2,468 m2	± 26,561 ft2
RETAIL SUBTOTAL		± 2,468 m2	± 26,561 ft2
OFFICE Podium			
Podium 3		± 3,430 m2	± 36,923 ft2
Subtotal		± 3,430 m2	± 36,923 ft2
OFFICE SUBTOTAL		± 3,430 m2	± 36,923 ft2 + 2,718,773 ft3
Total 03. F.S.I	N.F.A./TOTAL SITE AREA	± 252,582 m2	± 2,718,773 ft2
RESIDENTIAL FSI		±	5.1
NON RESIDENTIAL FSI			0.1
Total		+	5.2

04. LANDSCAPED AREA Proposed Park

Gateway Plaza Total

± 5.2

± 3,636 m2

 \pm 33,298 ft2

± 5,839 ft2

± 39,137 ft2

 All calculations are approximate and preliminary 2. Not yet deducted: 5% for inset balconies

Unit count and breakdown subject to market condition

	Permitted / Required	Proposed
05. UNIT COUNT		
Podium 1 + Tower 1, 2 & 3		
Podium 1 Tower 1	+	± 0 ± 320
Tower 2		± 320
Tower 3		± 320
Subtotal		± 960
Podium 2 + Tower 4 & 5		
Podium 2		± 0
Tower 4		± 320
Tower 5 Subtotal		± 320 ± 640
SUDIOIAI		± 040
Podium 3 + Tower 6		
Podium 3		± 0
Tower 6 Subtotal		± 380 ± 380
SUDIVIAI		± 500
Podium 4 + Tower 7		
Podium 4		± 0
Tower 7		± 200 + 200
Subtotal	+	± 200
Podium 5 + Tower 8		
Podium 5		± 180
Tower 8		± 240
Subtotal	+	± 4 20
Podium 6 + Tower 9	<u> </u>	
Podium 6		± 180
Tower 9		± 240
Subtotal		± 420
Podium 7 + Tower 10		
Podium 7		± 190
Tower 10		± 250
Subtotal		± 440
Total On Parking		± 3,460
06. Parking Podium 1 + Tower 1, 2 & 3		± 730
Podium 1 + Tower 1, 2 & 3 Podium 2 + Tower 4 & 5	+	± 730 ± 578
Podium 3 + Tower 6		± 233
Podium 4 + Tower 7		± 130
Podium 5 + Tower 8		± 303
Podium 6 + Tower 9 Podium 7 + Tower 10		± 310 ± 484
Total		± 484 ± 2768
07. Building Heights		
or. Danumg Horgins		4 Storey
Podium 1		± 15.45 m
		(from avg. grade 104.95 m to 5th floor)
Towar 1		36 Storey + mech.
Tower 1		\pm 123.45 m (116.45 m + 7.0 m mech.) (from avg. grade 104.95 m to top of roof)
	1	36 Storey + mech.
Tower 2		\pm 123.45 m (116.45 m + 7.0 m mech.)
		(from avg. grade 104.95 m to top of roof)
Т		36 Storey + mech.
Tower 3		± 123.45 m (116.45 m + 7.0 m mech.) (from avg. grade 104.95 m to top of roof)
		(from avg. grade 104.95 in to top of roof) 4 Storey
Podium 2		± 15.32 m
		(from avg. grade 105.38 m to 5th floor)
		36 Storey + mech.
Tower 4		± 123.32 m (116.32 m + 7.0 m mech.)
		(from avg. grade 105.38 m to top of roof) 36 Storey + mech.
Tower 5		± 123.32 m (116.32 m + 7.0 m mech.)
101101		(from avg. grade 105.38 m to top of roof)
		4 Storey
Podium 3		± 15.60 m
		(from avg. grade 105.55 m to 5th floor)
Tower 6		42 Storey + mech. + 1/11 00 m /13/4 00 m + 7.0 m mech.)
Tower 6		\pm 141.90 m (134.90 m + 7.0 m mech.) (from avg. grade 105.55 m to top of roof)
		4 Storey
	_	± 15.20 m
Podium 4		= 10.20 III
Podium 4		(from avg. grade 107.20 m to 5th floor)
		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech.
Podium 4 Tower 7		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.)
		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof)
		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.)
Tower 7		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof) 6 Storey
Tower 7		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof) 6 Storey ± 20.82 m
Tower 7		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof) 6 Storey ± 20.82 m (from avg. grade 107.03 m to 7th floor) 14 Storey + mech. ± 55.02 m (48.02 m + 7.0 m mech.)
Tower 7 Podium 5		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof) 6 Storey ± 20.82 m (from avg. grade 107.03 m to 7th floor) 14 Storey + mech. ± 55.02 m (48.02 m + 7.0 m mech.) (from avg. grade 107.03 m to top of roof)
Tower 7 Podium 5 Tower 8		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof) 6 Storey ± 20.82 m (from avg. grade 107.03 m to 7th floor) 14 Storey + mech. ± 55.02 m (48.02 m + 7.0 m mech.) (from avg. grade 107.03 m to top of roof) 6 Storey
Tower 7 Podium 5		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof) 6 Storey ± 20.82 m (from avg. grade 107.03 m to 7th floor) 14 Storey + mech. ± 55.02 m (48.02 m + 7.0 m mech.) (from avg. grade 107.03 m to top of roof) 6 Storey ± 21.47 m
Tower 7 Podium 5 Tower 8		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof) 6 Storey ± 20.82 m (from avg. grade 107.03 m to 7th floor) 14 Storey + mech. ± 55.02 m (48.02 m + 7.0 m mech.) (from avg. grade 107.03 m to top of roof) 6 Storey ± 21.47 m (from avg. grade 106.38 m to 7th floor)
Tower 7 Podium 5 Tower 8		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof) 6 Storey ± 20.82 m (from avg. grade 107.03 m to 7th floor) 14 Storey + mech. ± 55.02 m (48.02 m + 7.0 m mech.) (from avg. grade 107.03 m to top of roof) 6 Storey ± 21.47 m (from avg. grade 106.38 m to 7th floor) 14 Storey + mech.
Tower 7 Podium 5 Tower 8 Podium 6		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof) 6 Storey ± 20.82 m (from avg. grade 107.03 m to 7th floor) 14 Storey + mech. ± 55.02 m (48.02 m + 7.0 m mech.) (from avg. grade 107.03 m to top of roof) 6 Storey ± 21.47 m (from avg. grade 106.38 m to 7th floor)
Tower 7 Podium 5 Tower 8 Podium 6 Tower 9		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof) 6 Storey ± 20.82 m (from avg. grade 107.03 m to 7th floor) 14 Storey + mech. ± 55.02 m (48.02 m + 7.0 m mech.) (from avg. grade 107.03 m to top of roof) 6 Storey ± 21.47 m (from avg. grade 106.38 m to 7th floor) 14 Storey + mech. ± 55.67 m (48.67 m + 7.0 m mech.) (from avg. grade 106.38 m to top of roof) 6 Storey
Tower 7 Podium 5 Tower 8 Podium 6		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof) 6 Storey ± 20.82 m (from avg. grade 107.03 m to 7th floor) 14 Storey + mech. ± 55.02 m (48.02 m + 7.0 m mech.) (from avg. grade 107.03 m to top of roof) 6 Storey ± 21.47 m (from avg. grade 106.38 m to 7th floor) 14 Storey + mech. ± 55.67 m (48.67 m + 7.0 m mech.) (from avg. grade 106.38 m to top of roof) 6 Storey ± 21.35 m
Tower 7 Podium 5 Tower 8 Podium 6 Tower 9		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof) 6 Storey ± 20.82 m (from avg. grade 107.03 m to 7th floor) 14 Storey + mech. ± 55.02 m (48.02 m + 7.0 m mech.) (from avg. grade 107.03 m to top of roof) 6 Storey ± 21.47 m (from avg. grade 106.38 m to 7th floor) 14 Storey + mech. ± 55.67 m (48.67 m + 7.0 m mech.) (from avg. grade 106.38 m to top of roof) 6 Storey ± 21.35 m (from avg. grade 105.60 m to 7th floor)
Tower 7 Podium 5 Tower 8 Podium 6 Tower 9		(from avg. grade 107.20 m to 5th floor) 24 Storey + mech. ± 86.15 m (79.15 m + 7.0 m mech.) (from avg. grade 107.20 m to top of roof) 6 Storey ± 20.82 m (from avg. grade 107.03 m to 7th floor) 14 Storey + mech. ± 55.02 m (48.02 m + 7.0 m mech.) (from avg. grade 107.03 m to top of roof) 6 Storey ± 21.47 m (from avg. grade 106.38 m to 7th floor) 14 Storey + mech. ± 55.67 m (48.67 m + 7.0 m mech.) (from avg. grade 106.38 m to top of roof) 6 Storey ± 21.35 m

GENERAL NOTES

- 1. This drawing to be read in conjunction with all other drawings comprising the complete set of approved drawings for this development.
- 2. All roads have been designed to meet the Canadian Highway Bridge Code, CAN/CSA S6 and will be surfaced in order to be accessible under all climate conditions.
- 3. For Landscaping, refer to landscape drawings.
- 4. For proposed grading, refer to landscape/grading drawings.
- 5. All perimeter existing information indicated taken from survey.
- 6. All work to be done in conformance with the 2012 Ontario Building Code (O.B.C., as amended).

PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS / APPROPRIATENESS / RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN

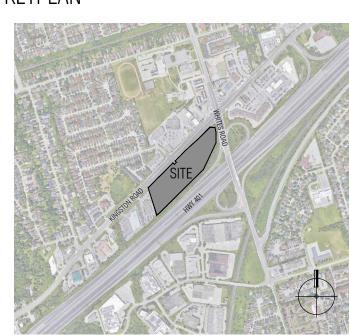
WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

01. APR.2020 ISSUED FOR REZONING

E.C. 02. OCT.25.2023 REISSUED FOR REZONING

SURVEY INFORMATION


BOUNDARY AND TOPOGRAPHICAL SURVEY OF PART OF LOTS 29, RANGE 3 BROKEN FRONT CONCESSION (GEOGRAPHIC TOWNSHIP OF PICKERING) CITY OF PICKERING REGIONAL MUNICIPALITY OF DURHAM

R. AVIS SURVEYING INC. SUITE 203 235 YORKLAND BOULEVARD

TORONTO, ONTARIO M2J 4Y8 TEL.: (416) 490-8352 FAX: (416) 491-6206

www.ravissurveying.com

KEYPLAN

LIST OF DRAWINGS	
A.101 STATISTICS AND GENERAL NOTES A.102 SITE PLAN	N.T.S. 1:750
A.201 UNDERGROUND PLAN	1:750
A.301 GROUND FLOOR PLAN A.302 2ND - 3RD FLOOR PLAN A.303 4TH - 5TH FLOOR PLAN A.304 TYPICAL FLOOR PLAN	1:750 1:750 1:750 1:750
A.501 BUILDING SECTIONS	1:200

issued for revisions

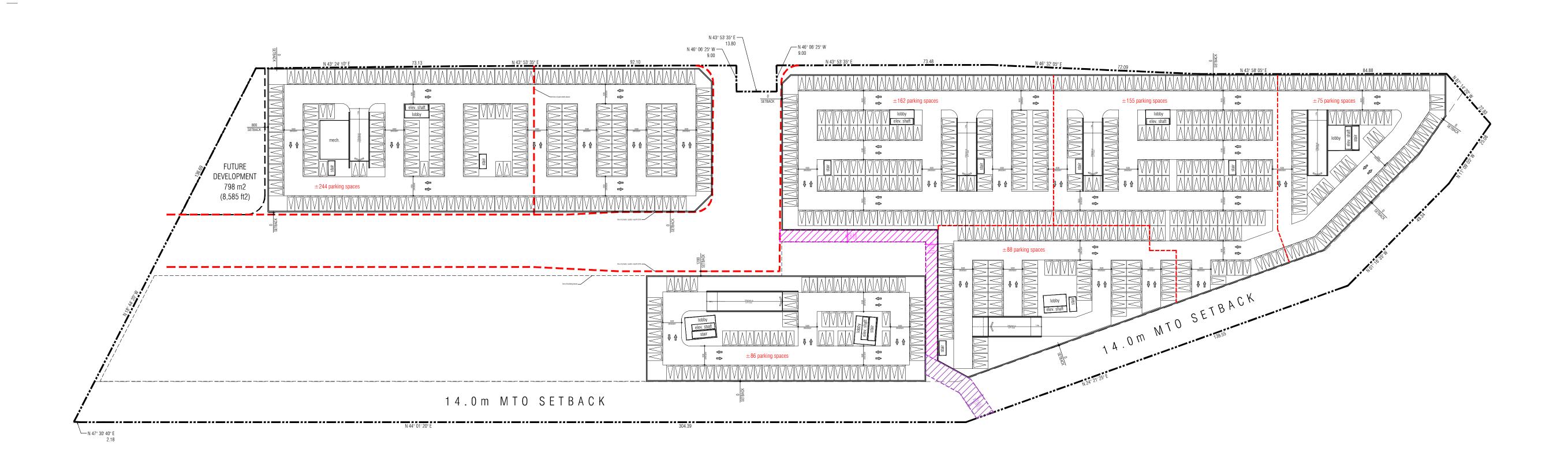
CORAZZA ARCHITECTS

8400 JANE STREET, BUILDING D-SUITE 300 CONCORD, ONTARIO L4K 4L8 T.905.795.2601 F.905.795.2844 WWW.GC-ARCHITECTS.COM PROPOSED MIXED USE DEVELOPMENT

603 - 643 & 645 - 699 Kingston Road

Director Industrial Holdings Limited PICKERING

E.CORAZZA PROJECT ARCHITECT: L.WONG ASSISTANT DESIGNER: L.WONG/O.HADI/W.CHIU DRAWN BY: D.BIASE CHECKED BY: PLOT DATE: OCT.25.2023 1682.19


> STATISTICS AND **GENERAL NOTES**

> > A.101 N.T.S.

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT

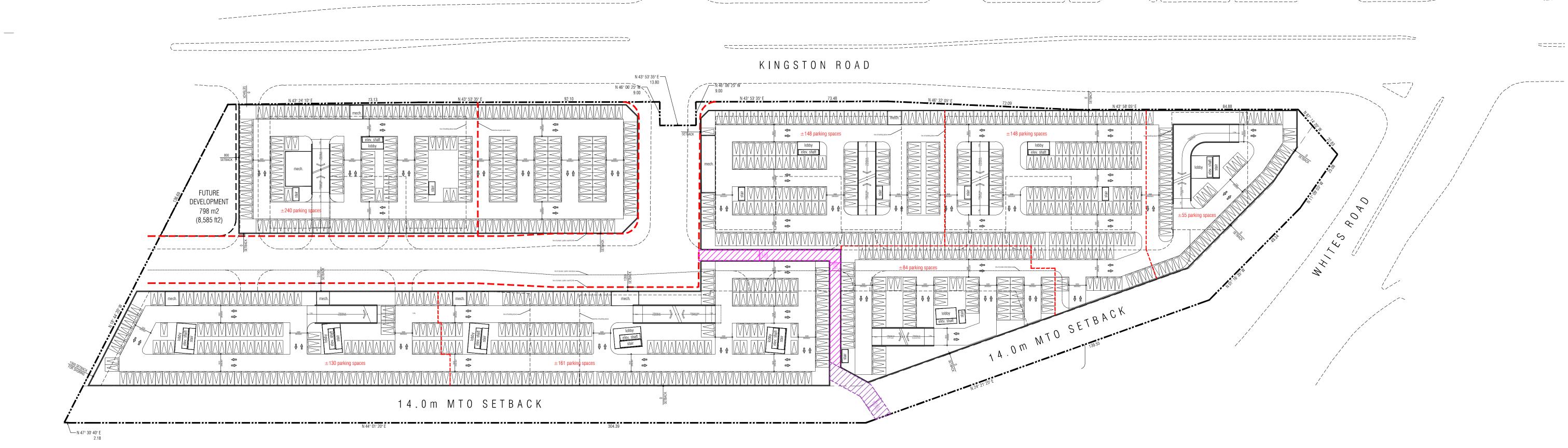
THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:


1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

01. APR.2020 ISSUED FOR REZONING

02. OCT.19.2023 REISSUED FOR REZONING

P2 UNDERGROUND PLAN

PROPOSED MIXED USE DEVELOPMENT

603 - 643 & 645 - 699 Kingston Road

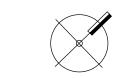
Director Industrial Holdings Limited

PICKERING ONTARI

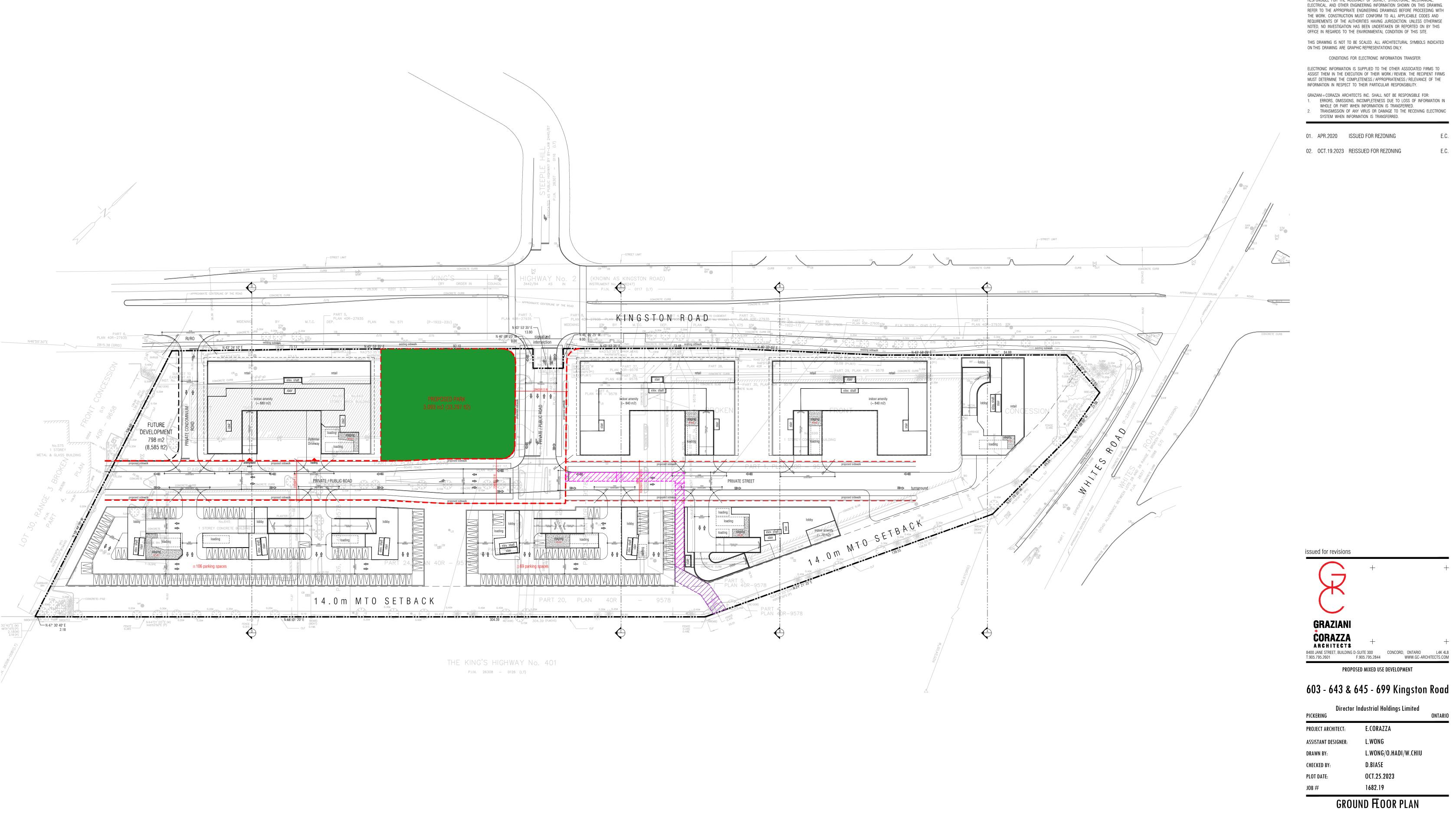
PROJECT ARCHITECT: E.CORAZZA

ASSISTANT DESIGNER: L.WONG

DRAWN BY: L.WONG/O.HADI/W.CHIU


CHECKED BY: D.BIASE

PLOT DATE: OCT.25.2023


JOB # 1682.19

UNDERGROUND PLAN

P1 UNDERGROUND PLAN 2 1:750 A.201

A.

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

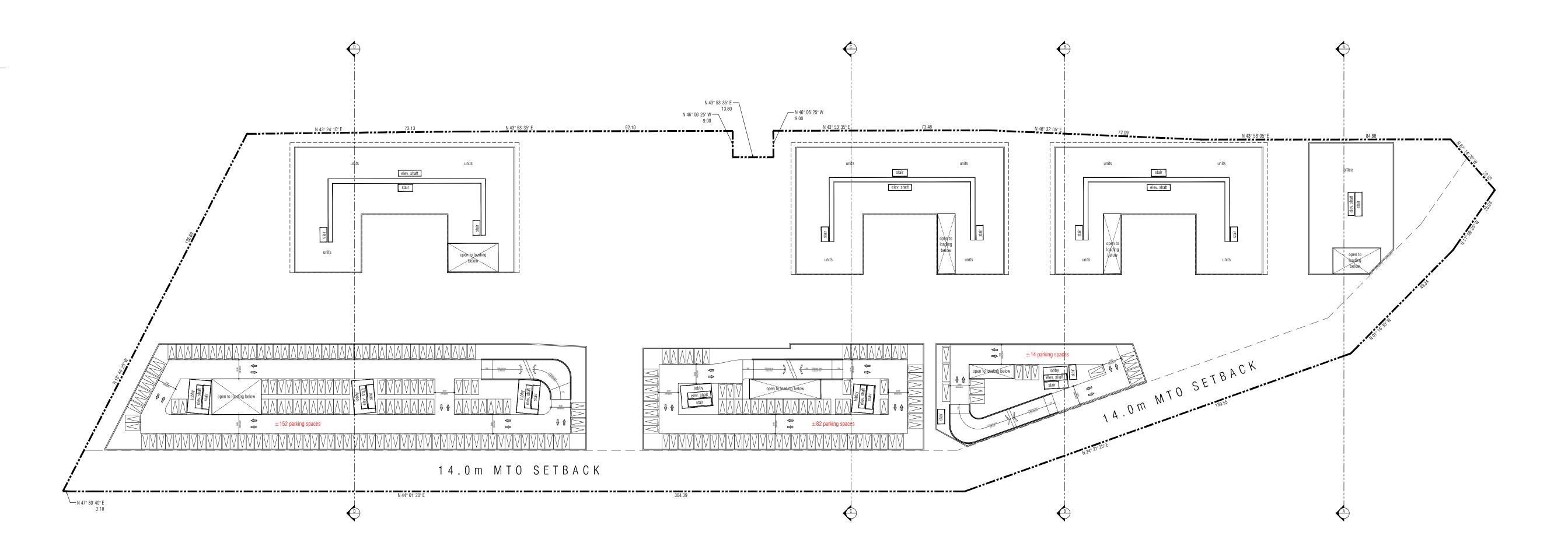
CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

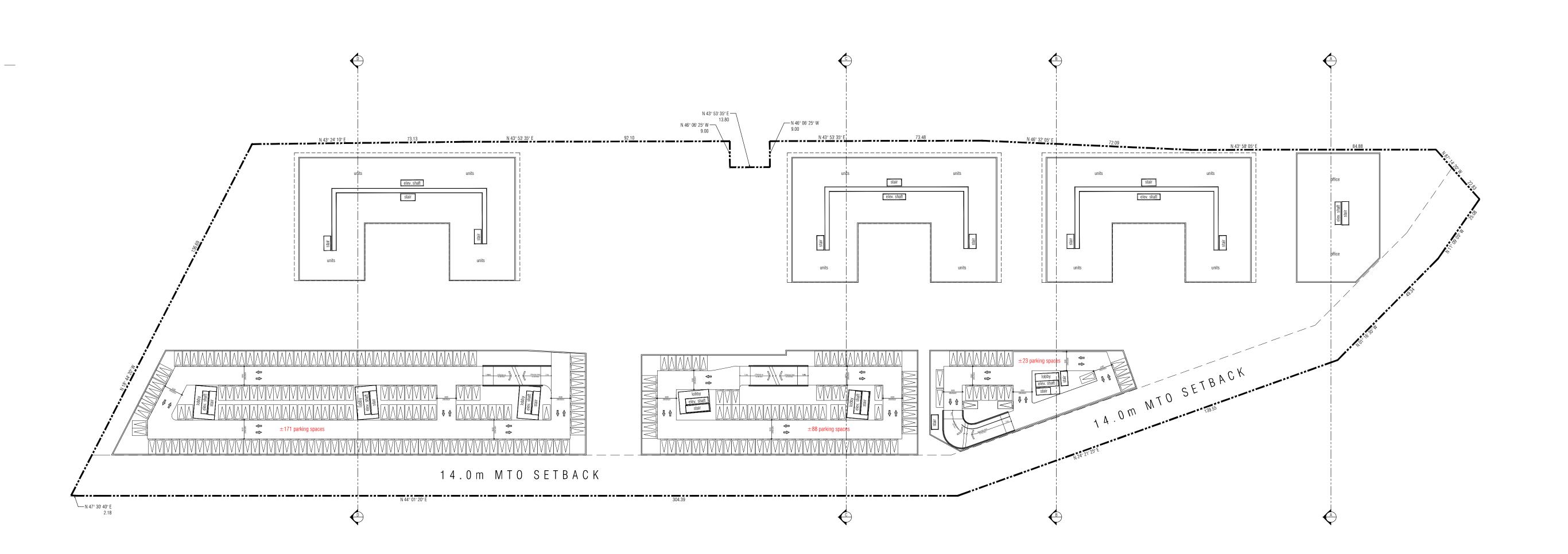
ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS / APPROPRIATENESS / RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC


603 - 643 & 645 - 699 Kingston Road


Director Industrial Holdings Limited

PICKERING	ONTAR
PROJECT ARCHITECT:	E.CORAZZA
ASSISTANT DESIGNER:	L.WONG
DRAWN BY:	L.WONG/O.HADI/W.CHIU
CHECKED BY:	D.BIASE
PLOT DATE:	OCT.25.2023
JOB#	1682.19

GROUND HOOR PLAN

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:

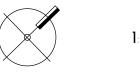
1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

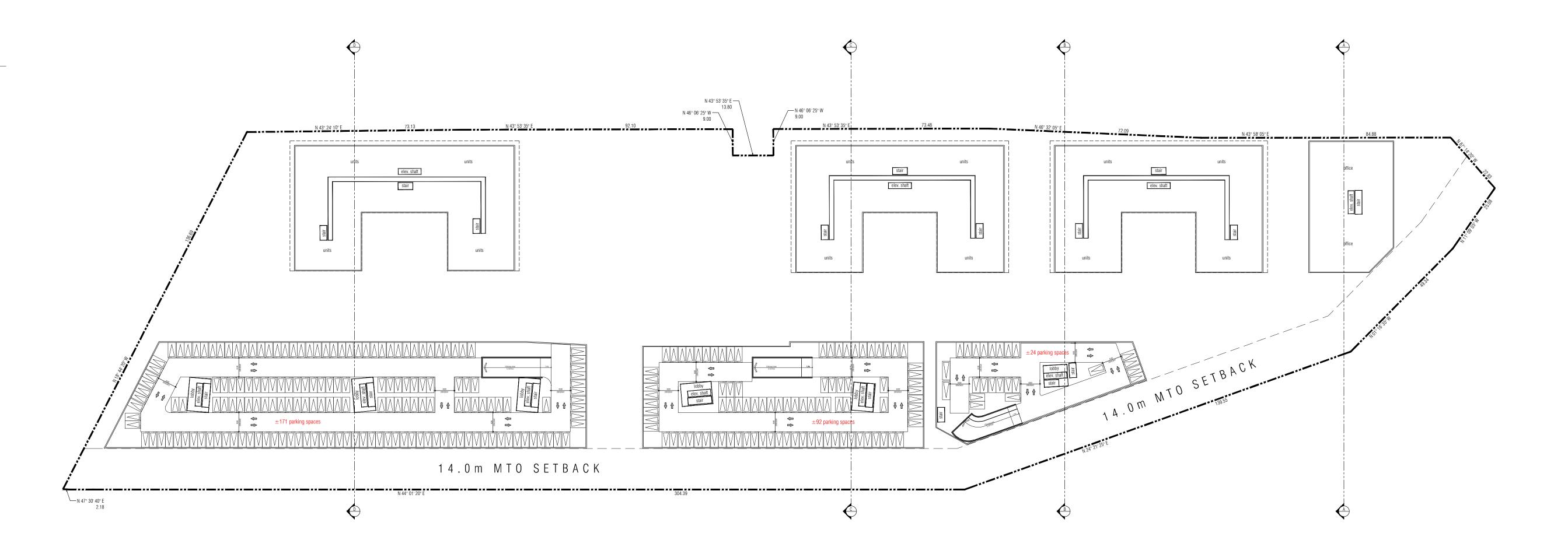
01. APR.2020 ISSUED FOR REZONING E.C

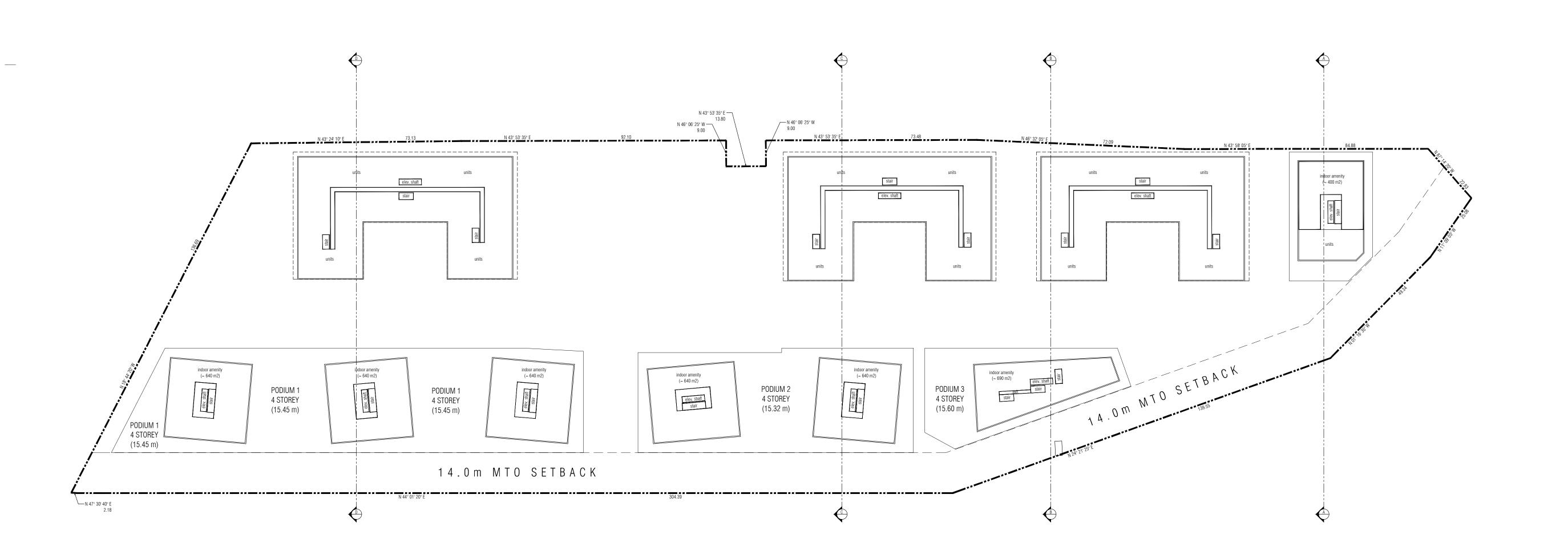
02. OCT.19.2023 REISSUED FOR REZONING

TROTOSED MIXED OSE DEVELOT MENT


603 - 643 & 645 - 699 Kingston Road

Director Industrial Holdings Limited	
	(


PICKERING		UNIAK
PROJECT ARCHITECT:	E.CORAZZA	
ASSISTANT DESIGNER:	L.WONG	
DRAWN BY:	L.WONG/O.HADI/W.CHIU	
CHECKED BY:	D.BIASE	
PLOT DATE:	OCT.25.2023	
JOB #	1682.19	
	2110 200	


2ND - 3RD FLOOR PLAN

A.302

THIS DRAWING, AS AN INSTRUMENT OF SERVICE, IS PROVIDED BY AND IS THE PROPERTY OF GRAZIANI+CORAZZA ARCHITECTS INC. THE CONTRACTOR MUST VERIFY AND ACCEPT RESPONSIBILITY FOR ALL DIMENSIONS AND CONDITIONS ON SITE AND MUST NOTIFY GRAZIANI+CORAZZA ARCHITECTS INC. OF ANY VARIATIONS FROM THE SUPPLIED INFORMATION. GRAZIANI+CORAZZA ARCHITECTS INC. IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, STRUCTURAL, MECHANICAL, ELECTRICAL, AND OTHER ENGINEERING INFORMATION SHOWN ON THIS DRAWING. REFER TO THE APPROPRIATE ENGINEERING DRAWINGS BEFORE PROCEEDING WITH THE WORK. CONSTRUCTION MUST CONFORM TO ALL APPLICABLE CODES AND REQUIREMENTS OF THE AUTHORITIES HAVING JURISDICTION. UNLESS OTHERWISE NOTED, NO INVESTIGATION HAS BEEN UNDERTAKEN OR REPORTED ON BY THIS OFFICE IN REGARDS TO THE ENVIRONMENTAL CONDITION OF THIS SITE.

THIS DRAWING IS NOT TO BE SCALED. ALL ARCHITECTURAL SYMBOLS INDICATED ON THIS DRAWING ARE GRAPHIC REPRESENTATIONS ONLY.

CONDITIONS FOR ELECTRONIC INFORMATION TRANSFER:

ELECTRONIC INFORMATION IS SUPPLIED TO THE OTHER ASSOCIATED FIRMS TO ASSIST THEM IN THE EXECUTION OF THEIR WORK/REVIEW. THE RECIPIENT FIRMS MUST DETERMINE THE COMPLETENESS/APPROPRIATENESS/RELEVANCE OF THE INFORMATION IN RESPECT TO THEIR PARTICULAR RESPONSIBILITY.

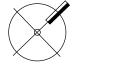
GRAZIANI+CORAZZA ARCHITECTS INC. SHALL NOT BE RESPONSIBLE FOR:


1. ERRORS, OMISSIONS, INCOMPLETENESS DUE TO LOSS OF INFORMATION IN WHOLE OR PART WHEN INFORMATION IS TRANSFERRED.

2. TRANSMISSION OF ANY VIRUS OR DAMAGE TO THE RECEIVING ELECTRONIC SYSTEM WHEN INFORMATION IS TRANSFERRED.

01. APR.2020 ISSUED FOR REZONING E.C

02. OCT.19.2023 REISSUED FOR REZONING


603 - 643 & 645 - 699 Kingston Road

Director Industrial Holdings Limited

PICKERING	maosinar noramgs Eminoa	ONTARIO
PROJECT ARCHITECT:	E.CORAZZA	
ASSISTANT DESIGNER:	L.WONG	
DRAWN BY:	L.WONG/O.HADI/W.CHIU	
CHECKED BY:	D.BIASE	
PLOT DATE:	OCT.25.2023	
JOB#	1682.19	

4TH - 5TH FLOOR PLAN

Appendix B: Transit Reach & Impact Analysis

2.0 METHODOLOGY

The ESRI ArcGIS suite of functions was used to generate and spatially analyse the various existing and future transit scenarios and their impact in relation to the Site. The Network Analyst toolbox in particular was used to model and run analyses for the different transit network scenarios.

The inputs for these different transit scenarios are further discussed in **Section 3.0**.

2.1 NETWORK ASSUMPTIONS

Table B1 summarizes all the assumptions that have been made when a transit network is built.

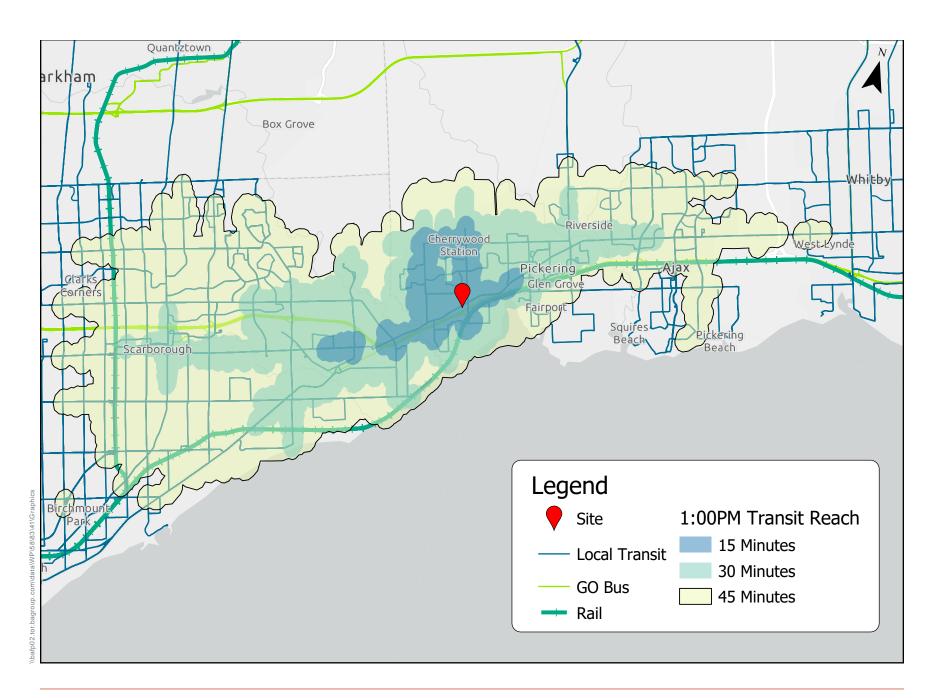
TABLE B1 NETWORK MODEL ASSUMPTIONS

		Assumption
1	Existing Schedules	All transit runs on time and according to schedule.
2	2 Pedestrian Travel Speed	Pedestrians travel at a speed of 4 km/s, or approximately 1.11 m/s.
		Pedestrians do not have to wait at intersections.
	3 Transfers	There is no time penalty for transferring between transit services.
3		No consideration is taken for an acceptable number of transfers in a trip
4	Fare	All transit modes can be taken without regard for fare differences

2.2 TRANSIT SERVICE AREA ANALYSIS

The transit service area analysis is a type of geospatial analysis which generates service area polygons around areas that are accessible by transit and walking in a given time interval for a specified site in a given transit network.

This type of analysis requires the following inputs:


- Transit Network Model
- Site Location
- Departure or Arrival Time (e.g. 8:00 AM on a typical Thursday)
- Time Interval (e.g. 5 minute service area)

The analysis results in a geocoded coverage area highlighting the largest area a transit user can expect to reach if they were to leave the site at the specified time.

As the analysis requires temporal inputs, service area outputs vary based on the exact time chosen to run the analysis. The output provides a snapshot of what transit accessibility is like for the given departure time.

Figure B1 and **Figure B2** illustrate sample outputs from an existing transit network model with 8:00 AM and 1:00 PM departure times respectively.

2.3 DEPARTURE DEPENDENCE SERVICE AREA ANALYSIS

The Departure Dependence Service Area (DDSA) Analysis is a variation of the Transit Service Area Analysis as described in **Section 2.2**.

Due to the transit network model's dependence on temporal factors, resultant transit service areas change based on the departure or arrival time specified when running the transit service area analysis.

What this results in is that running a single transit service area can only approximate transit accessibility for the specific minute that is analysed. It provides a snapshot of what specific transit service area can be like for a specific departure or arrival time.

This means that a single transit service area may not be indicative of what the overall transit accessibility is for a peak hour, or any time period of interest. Running a service area analysis for a departure time 5 minutes later is equivalent to leaving the house 5 minutes later, potentially missing a bus and having to wait until the next bus arrives, which is accounted for in the model. This could potentially reduce the service area that is generated significantly.

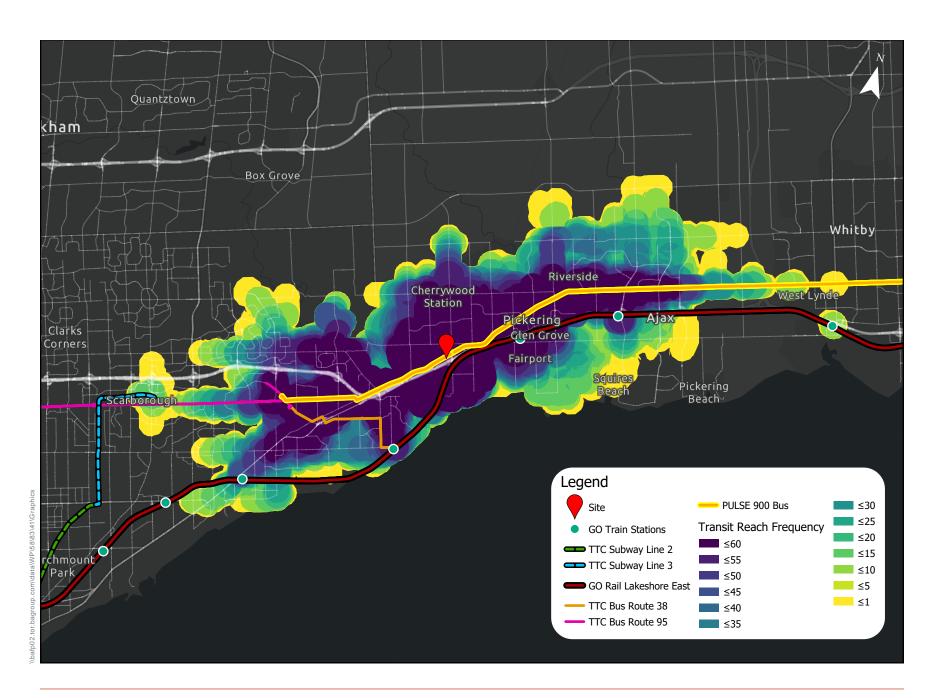
The purpose of the DDSA analysis is to provide a representative version of the transit service area for a given peak hour. It quantifies how often a specific location can be reached within a specified time interval (e.g. 15 min, 30 min, 45 min) over the course of an hour to determine the dependence on departure time a given transit service area has.

The DDSA analysis requires the following inputs:

- Transit Network Model
- Site Location
- Time Interval (e.g. 5 minute service area)
- 1 Hour Analysis Time Period (e.g. 8:00am to 9:00am)

A TSA analysis is run 60 times for every minute of the specified analysis time period (i.e. 8:01 am, 8:02 am, 8:03am, 8:04 am, etc.). These 60 transit service areas are overlaid to determine how many times in the hour each location can be accessed within in the hour and where on the departure time dependence scale each location falls.

Table B2 below summarizes a generalized version of the Departure Dependence Scale. **Figure B3** illustrates a sample output of the departure dependence service area analysis.


TABLE B2 DEPARTURE TIME DEPENDENCE SCALE

Number of Overlays	Equivalent Frequency of Reach	
1 time per hour	60 min	Departure Time Dependent
5 times per hour	12 min	
10 times per hour	6 min	
12 times per hour	5 min	
30 times per hour	2 min	
60 times per hour	1 min	Departure Time Independent (Guaranteed Reach)

Similar to the TSA analysis, the DDSA analysis results in geocoded polygons which highlights the areas a transit user can expect to reach within given time interval over the course of the given analysis time period.

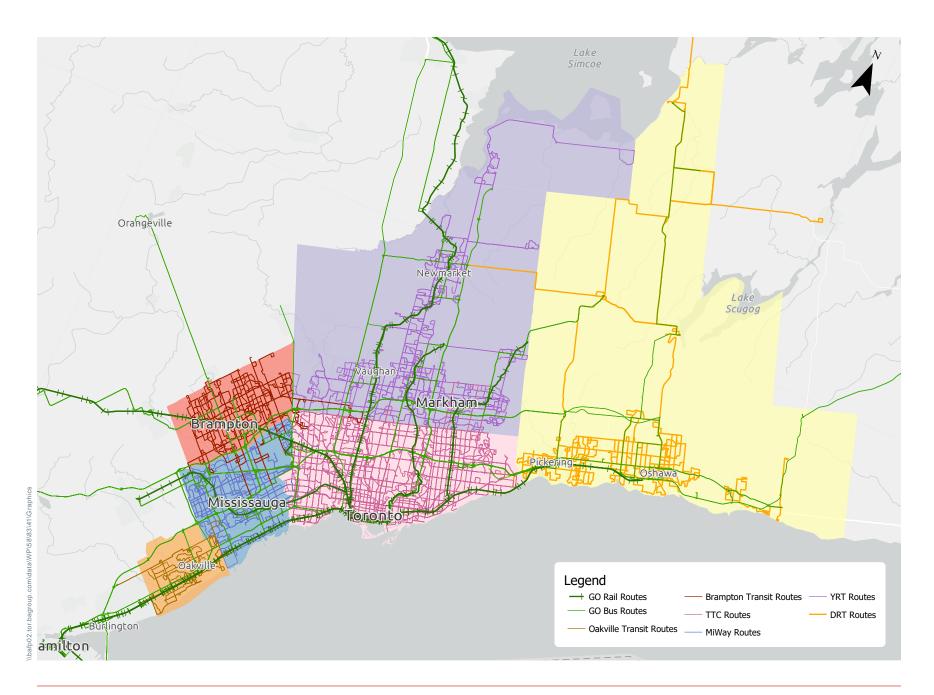
This type of analysis can help determine what the average transit service area is, and also help quantify changes in transit service that pertain more to frequency, rather than vehicle speed.

This type of analysis can also illustrate transit convenience and redundancy of service based on the frequency of the transit services. Reaching some destinations is departure time-dependent (i.e. the arrival at the destination within 30 minutes relies on a scheduled departure), while others are "guaranteed" or departure time-independent (i.e. the destinations can be reached frequently within 30 minutes and there is no need to schedule the departure).

3.0 MODEL PARAMETERS

3.1 EXISTING GTA TRANSIT NETWORK

The GTA Transit Network Model is a network dataset built for the purpose of running transit service area analysis of existing conditions.


3.1.1 Inputs

It contains current transit network and schedule information provided by the following transit agencies and services within the GTA:

- GO Transit
- UP Express
- Toronto Transit Commission
- Mississauga Transit
- York Region Transit
- Oakville Transit
- Durham Region Transit

It also contains road network information provided by the Province of Ontario, which is licensed under the Open Government Licence – Ontario.

Figure B4 illustrates the extent of the transit network. **Figure B5** illustrates the transit context within the vicinity of the Site.



FIGURE B5 EXISTING TRANSIT NETWORK WITHIN SITE VICINITY

3.2 FUTURE NETWORK WITH DURHAM SCARBOROUGH BRT

Scenario 2 consists of the following inputs:

- Existing transit network with the PULSE 900 express bus removed
- Addition of the Durham-Scarborough BRT

The Durham-Scarborough BRT corridor, as proposed in the *Durham-Scarborough Bus Rapid Transit Study Initial Business Case Report*, dated spring 2019 (herein referred to as the Initial Business Case) consists of three BRT routes, running primarily along Kingston Road. It services Downtown Oshawa to the west, and Scarborough Centre and the Kingston / Lawrence / Morningside area to the east.

The BRT is proposed to operate in mixed traffic along some sections of the route, and fully separated in the median of the road in other sections.

Between the three routes, a combined frequency of 26 buses per hour, or about 13 buses per direction (approximately, one bus every 5 minutes) would be provided during the weekday morning peak period. Within the vicinity of the site, two stops are proposed along Kingston Road at Rosebank Road and at Whites Road.

Figure B6 provides the locations of the stops along the primary BRT route. **Figure B7** illustrates the currently proposed BRT route.

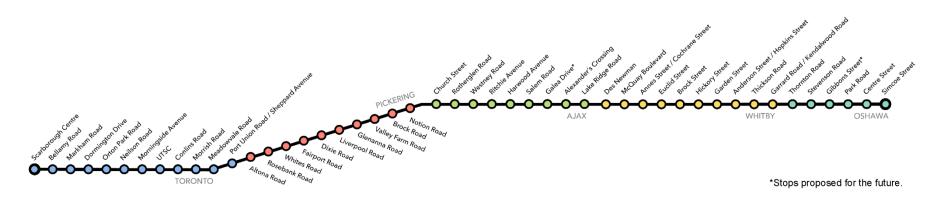
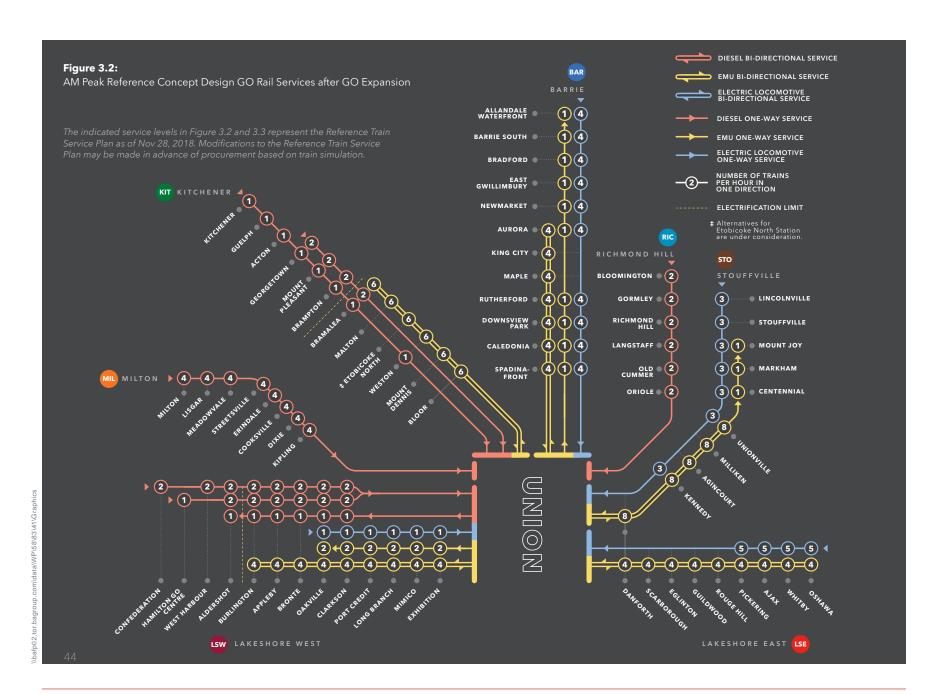



FIGURE B6: DURHAM-SCARBOROUGH BRT STOP LOCATIONS

3.3 FUTURE NETWORK WITH GO EXPANSION

GO Expansion, formerly known as the Regional Express Rail, is an initiative by the Province to improve GO rail service using new train technology on several key GO rail lines. Service frequency is anticipated to increase in for both on and off peak hours.


Figure B8 illustrates number of trains per hour on each line during the AM peak hour

The new train technology / electrification will boost travel speeds on the Lakeshore East GO Transit line will provide all-day, two-way services with 15 minutes or better transit service. RER and SmartTrack will add new stations (East Harbour and Gerrard-Carlaw) on the Lakeshore East line as well. The RER program is currently underway and is anticipated to be completed in 2024, according to Metrolinx's 2041 RTP.

Figure B9 illustrates the travel time differences on the Lakeshore East line between existing schedules and after GO Expansion.

For the purposes of this analysis, the new stations have not been added. This scenario only changes the travel speed and frequency of trains on the Lakeshore East and West Lines.

As the design and / or construction of the Durham Scarborough BRT (as described in the previous **Section 3.2**) and RER are both underway and funded, both services were assumed to be in place for this scenario.

BEST TIME TO UNION STATION (MINS)

FIGURE B9 LAKESHORE EAST TRAVEL TIME CHANGE FROM GO EXPANSION

3.4 FUTURE NETWORK WITH WHITES GO

In a June 2016 report, Metrolinx examined a number of potential new stations locations across the seven existing GO Transit rail corridors in light of the planned RER and SmartTrack programs. The initial business case (IBC) approach analyzed each potential station based on a strategic and financial case. One of these stations is Whites GO, located near the intersection of Kingston Road and Whites Road.

The location of the potential Whites Road GO Station is illustrated in **Figure B10**.

Whites GO would only be serviced by local service trains along the Lakeshore East line. As such, this scenario would only be feasible with the implementation of GO Expansion. As such this scenario builds upon the previous *Future with GO Expansion* scenario as described in **Section 1.1**.

4.0 ANALYSIS OUTPUTS

As discussed in earlier sections, the analysis focuses the following four transit scenarios:

- 1. Existing Conditions
- 2. Future Conditions with the planned Durham-Scarborough BRT
- 3. Future Conditions with the planned Durham-Scarborough BRT , Regional Express Rail Improvements
- Future Conditions with the planned Durham-Scarborough BRT, Regional Express Rail Improvements and proposed Whites GO Station

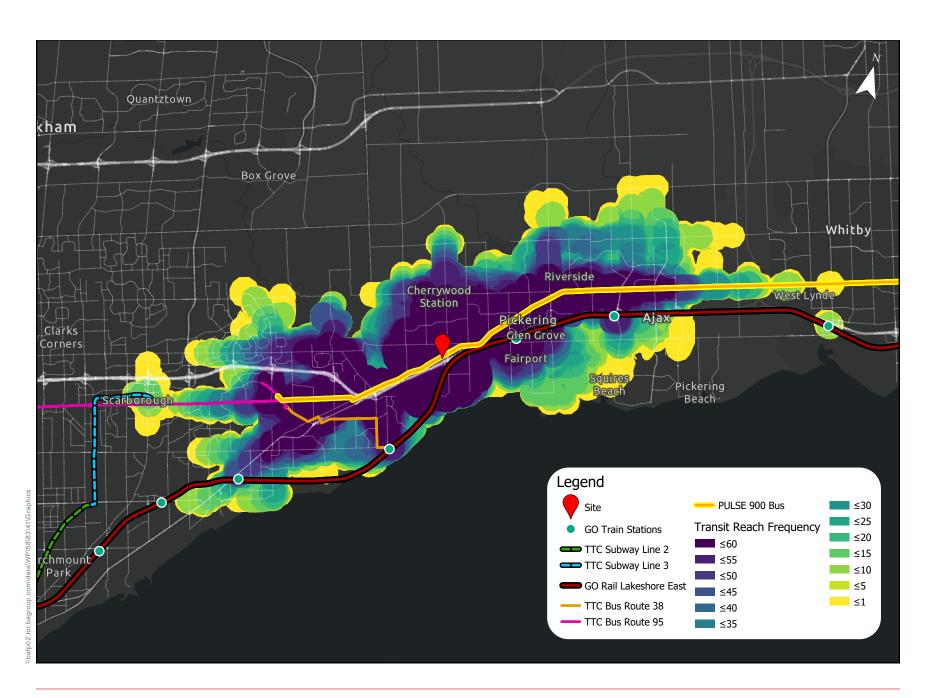
Within the four scenarios, transit was also analysed under a local and regional lens.

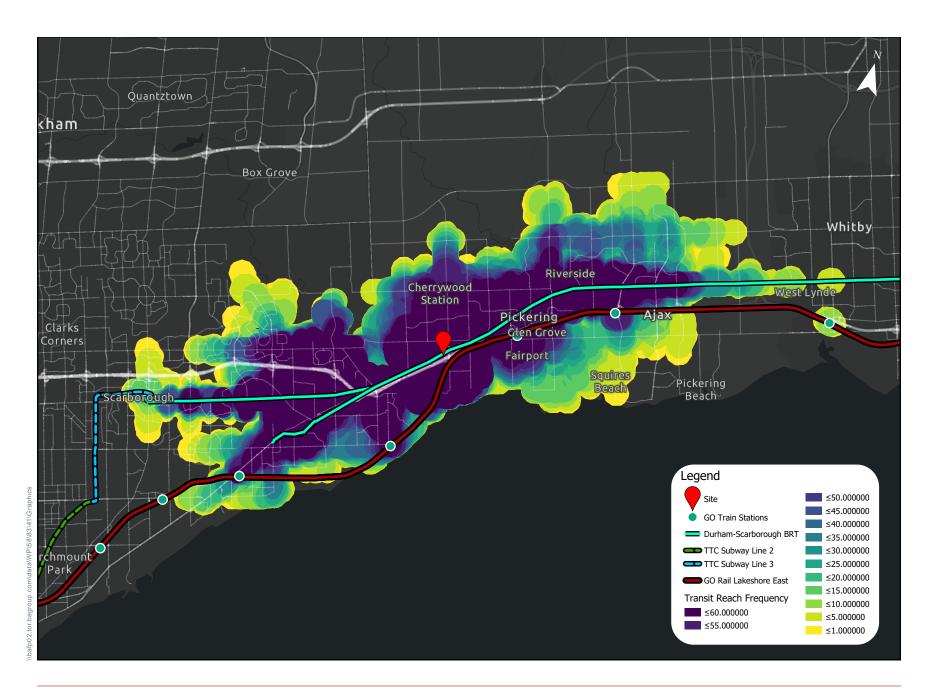
Local Transit

Local transit accessibility was analysed based on the area that could be serviced within 30 minutes of the Site. The local transit analysis assesses the impact of the planned Durham Scarborough BRT on local travel and day to day trips.

The BRT will provide increased service along the Kingston corridor, with increased headways and connections to Scarborough Town Centre. This will increase the will increase the number of destinations that are "guaranteed" or departure time-independent.

Figure B11 and **Figure B12** illustrate the outputs of scenarios 1 and 2 respectively.


Figure B13 illustrates a comparison of the "guaranteed" transit service area, as discussed in **Section 2.3**, of the existing and future scenarios.


Regional Transit

Regional transit accessibility was analysed based on the area that could be serviced within 60 minutes of the Site. The regional transit analysis assesses the impact of the GO Expansion and the addition of a new GO Station on regional commuters.

The increased service will provide the Site with an increased Transit Service Area. Additionally, the high frequency services will increase the number of destinations that are "guaranteed" or departure time-independent.

Figure B14 through **Figure B16** illustrate the outputs of scenarios 1, 3, and 4 respectively.

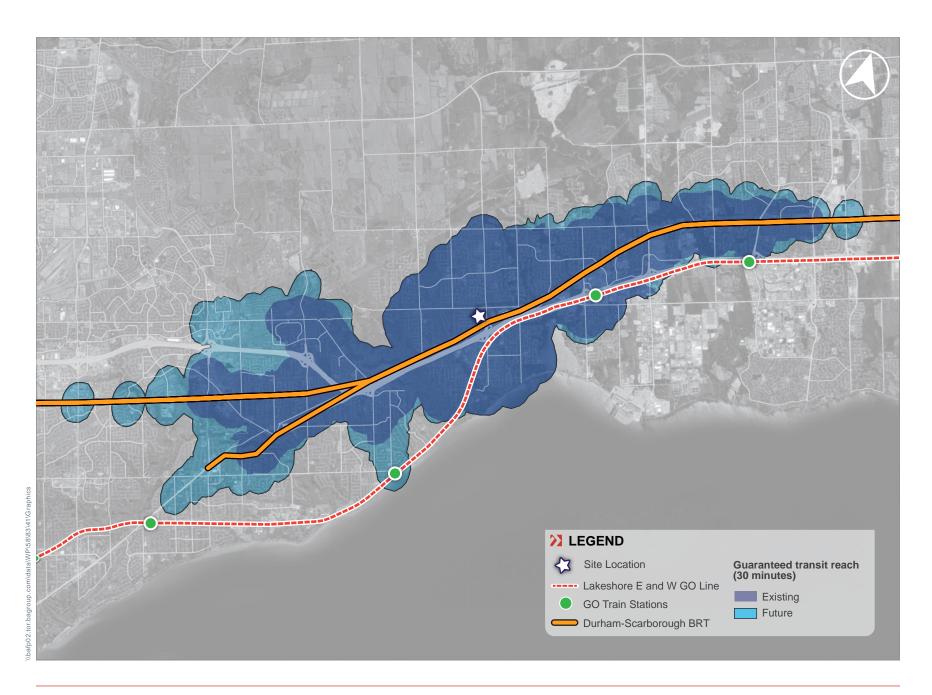


FIGURE B13 EXISTING VS FUTURE WITH BRT GUARANTEED 30 MIN TRANSIT SERVICE AREA

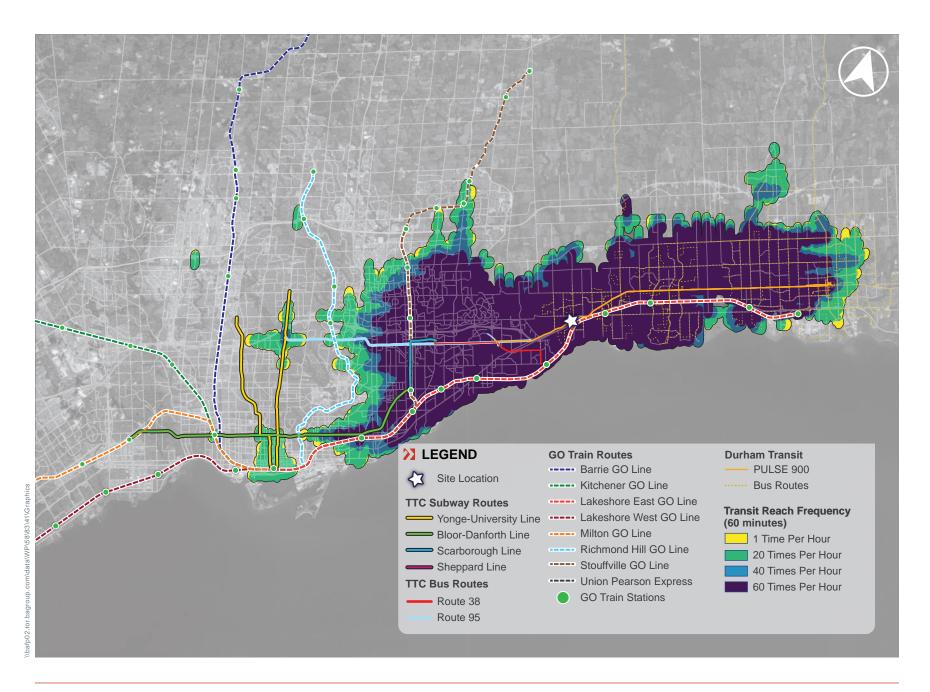


FIGURE B14 EXISTING 60 MIN TRANSIT SERVICE AREA 8:00 AM AND 9:00 AM

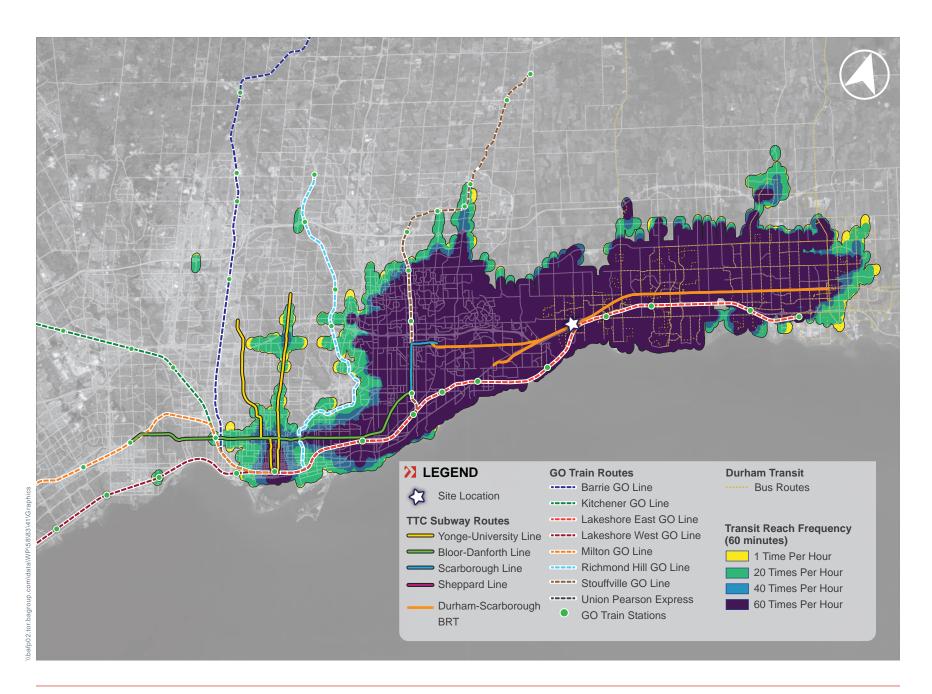
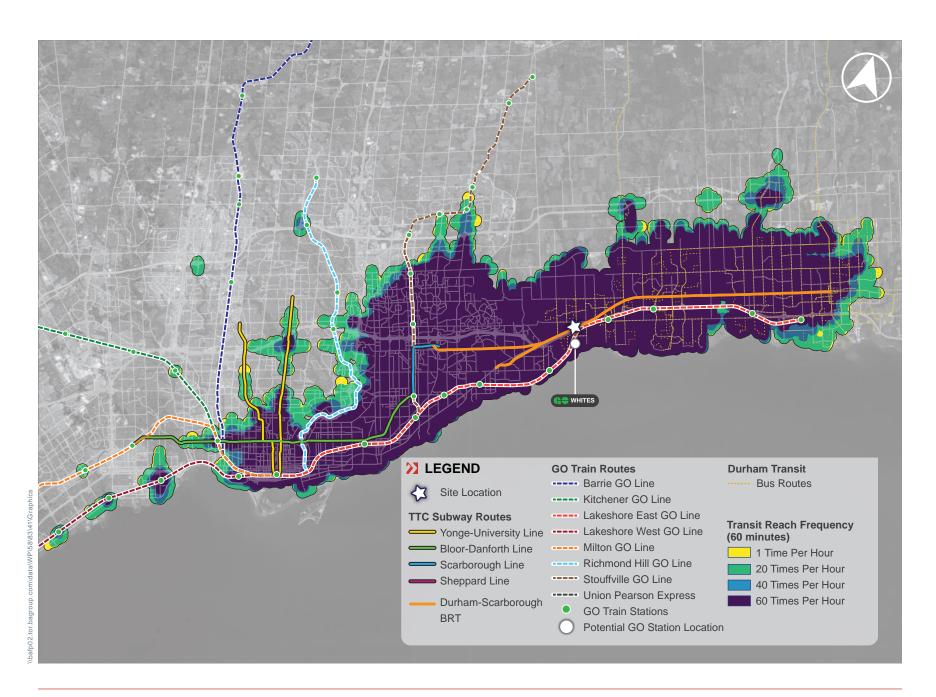



FIGURE B15 FUTURE WITH GO EXPANSION 60 MIN TRANSIT SERVICE AREA BETWEEN 8:00 AM AND 9:00 AM

Appendix C: Turning Movements Counts

Turning Movement Count Location Name: KINGSTON RD & ROSEBANK RD Date: Tue, May 16, 2023 Deployment Lead: Walter Fugaj

BA Group 300 45 ST. CLAIR AVE W TORONTO ONTARIO, M4V 1K9 CANADA

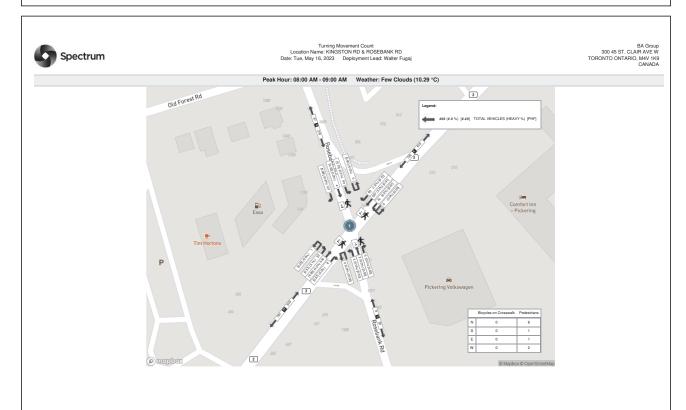
										Turr	ning M	ovement Count (1 . KIN	STON	RD & R	OSEBA	NK RD)								
Start Time				N Approa	ah RD					E Approa	ich N RD				P	S Approact	h RD					W Approa	ch RD		Int. Total (15 min)	Int. Total (1 hr)
	Right N:W	Thru N:S	Left N:E	UTum N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
07:00:00	11	0	13	0	3	24	6	95	0	0	1	101	0	0	0	0	1	0	0	53	6	0	0	59	184	
07:15:00	10	0	7	0	3	17	14	100	1	0	2	115	0	0	0	0	1	0	0	69	5	0	0	74	206	
07:30:00	23	0	13	0	-1	36	7	118	1	0	0	126	0	0	0	0	2	0	- 1	64	-1	0	3	66	228	
07:45:00	25	0	15	0	-1	40	14	149	4	0	0	167	1	0	1	0	1	2	2	104	13	0	1	119	328	946
08:00:00	34	1	21	0	1	56	7	147	5	0	0	159	1	0	0	0	0	1	2	104	10	1	0	117	333	1095
08:15:00	29	0	20	0	2	49	19	151	0	0	0	170	1	1	1	0	1	3	2	107	5	0	1	114	336	1225
08:30:00	34	0	33	0	2	67	15	179	5	0	- 1	199	2	0	0	0	0	2	- 1	151	3	0	0	155	423	1420
08:45:00	24	3	19	0	- 1	46	22	180	6	0	0	208	1	1	1	0	0	3	3	156	14	0	1	173	430	1522
***BREAK		•																								
16:00:00	21	- 1	14	0	5	36	13	206	2	0	2	221	4	0	3	0	-1	7	0	281	26	0	2	307	571	
16:15:00	16	- 1	15	0	2	32	19	205	-1	0	0	225	4	- 1	2	0	-1	7	2	282	30	0	0	314	578	
16:30:00	20	0	17	0	4	37	17	171	0	0	1	188	2	1	0	0	- 1	3	-1	367	33	0	4	401	629	
16:45:00	15	0	16	0	1	31	18	152	1	0	0	171	2	0	2	0	0	4	4	313	36	0	1	353	559	2337
17:00:00	19	- 1	11	0	2	31	17	203	- 1	0	0	221	9	1	3	0	0	13	0	315	31	0	0	346	611	2377
17:15:00	23	0	12	0	2	35	20	204	-1	0	0	225	3	2	0	0	-1	5	-1	276	35	0	-1	312	577	2376
17:30:00	21	- 1	16	0	7	38	16	162	0	0	6	178	- 1	1	2	0	5	4	- 1	292	37	0	1	330	550	2297
17:45:00	20	0	19	0	4	39	11	169	2	0	-1	182	- 1	2	1	0	1	4	-1	270	39	0	0	310	535	2273
Grand Total	345	8	261	0	41	614	235	2591	30	0	14	2856	32	10	16	0	16	58	21	3204	324	1	15	3550	7078	-
Approach%	56.2%	1.3%	42.5%	0%			8.2%	90.7%	1.1%	0%			55.2%	17.2%	27.6%	0%			0.6%	90.3%	9.1%	0%				
Totals %	4.9%	0.1%	3.7%	0%		8.7%	3.3%	36.6%	0.4%	0%		40.4%	0.5%	0.1%	0.2%	0%		0.8%	0.3%	45.3%	4.6%	0%		50.2%		
Heavy	6	0	4	0			2	68	0	0			0	0	0	0			0	71	1	0				
Heavy %	1.7%	0%	1.5%	0%			0.9%	2.6%	0%	0%			0%	0%	0%	0%			0%	2.2%	0.3%	0%				
Bicycles	0	0	0	0			0	1	0	0			0	0	0	0			0	2	0	0				
Bicycle %	0%	0%	0%	0%			0%	0%	0%	0%			0%	0%	0%	0%			0%	0.1%	0%	0%				

Turning Movement Page 1 of 5 BAC23M8V Count

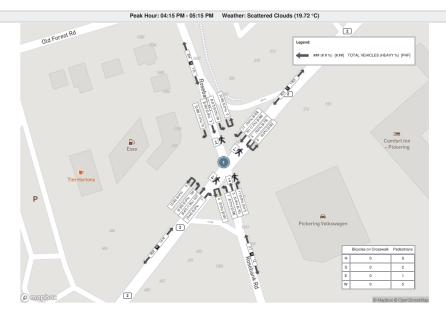
Turning Movement Count
Location Name: KINGSTON RD & ROSEBANK RD
Date: Tue, May 16, 2023 Deployment Lead: Walter Fugaj

BA Group 300 45 ST. CLAIR AVE W TORONTO ONTARIO, M4V 1K9 CANADA

								Pea	ık Hou	r: 08:00	AM - 0	9:00 AM We	ather: F	ew Clo	uds (10.	.29 °C)									
Start Time			F	N Approac	th RD				,	E Approac	h RD				R	S Approact	n RD					W Approac	th RD		Int. Total (15 min)
	Right	Thru	Left	UTum	Peds	Approach Total	Right	Thru	Left	UTum	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
08:00:00	34	1	21	0	1	56	7	147	5	0	0	159	1	0	0	0	0	1	2	104	10	1	0	117	333
08:15:00	29	0	20	0	2	49	19	151	0	0	0	170	1	1	1	0	1	3	2	107	5	0	1	114	336
08:30:00	34	0	33	0	2	67	15	179	5	0	1	199	2	0	0	0	0	2	-1	151	3	0	0	155	423
08:45:00	24	3	19	0	1	46	22	180	6	0	0	208	- 1	1	1	0	0	3	3	156	14	0	1	173	430
Grand Total	121	4	93	0	6	218	63	657	16	0	- 1	736	5	2	2	0	- 1	9	8	518	32	- 1	2	559	1522
Approach%	55.5%	1.8%	42.7%	0%			8.6%	89.3%	2.2%	0%			55.6%	22.2%	22.2%	0%			1.4%	92.7%	5.7%	0.2%			
Totals %	8%	0.3%	6.1%	0%		14.3%	4.1%	43.2%	1.1%	0%		48.4%	0.3%	0.1%	0.1%	0%		0.6%	0.5%	34%	2.1%	0.1%		36.7%	
PHF	0.89	0.33	0.7	0		0.81	0.72	0.91	0.67	0		0.88	0.63	0.5	0.5	0		0.75	0.67	0.83	0.57	0.25		0.81	
Heavy	1	0	3	0		4	1	21	0	0		22	0	0	0	0		0	0	22	1	0		23	
Heavy %	0.8%	0%	3.2%	0%		1.8%	1.6%	3.2%	0%	0%		3%	0%	0%	0%	0%		0%	0%	4.2%	3.1%	0%		4.1%	
Lights	120	4	90	0		214	62	636	16	0		714	5	2	2	0		9	8	496	31	1		536	
Lights %	99.2%	100%	96.8%	0%		98.2%	98.4%	96.8%	100%	0%		97%	100%	100%	100%	0%		100%	100%	95.8%	96.9%	100%		95.9%	
Single-Unit Trucks	1	0	2	0		3	0	6	0	0		6	0	0	0	0		0	0	9	1	0		10	-
Single-Unit Trucks %	0.8%	0%	2.2%	0%		1.4%	0%	0.9%	0%	0%		0.8%	0%	0%	0%	0%		0%	0%	1.7%	3.1%	0%		1.8%	
Buses	0	0	1	0		1	1	12	0	0		13	0	0	0	0		0	0	12	0	0		12	
Buses %	0%	0%	1.1%	0%		0.5%	1.6%	1.8%	0%	0%		1.8%	0%	0%	0%	0%		0%	0%	2.3%	0%	0%		2.1%	
Articulated Trucks	0	0	0	0		0	0	3	0	0		3	0	0	0	0		0	0	1	0	0		1	
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0.5%	0%	0%		0.4%	0%	0%	0%	0%		0%	0%	0.2%	0%	0%		0.2%	
Pedestrians					6						1						1						2		
Pedestrians%					60%						10%						10%						20%		
Bicycles on Crosswalk					0						0						0						0		-
Bicycles on Crosswalk%					0%						0%						0%						0%		-
Bicycles on Road	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		
Bicycles on Road%					0%						0%						0%						0%		



Turning Movement Count Location Name: KINGSTON RD & ROSEBANK RD Date: Tue, May 16, 2023 Deployment Lead: Walter Fugaj


BA Group 300 45 ST. CLAIR AVE W TORONTO ONTARIO, M4V 1K9 CANADA

								Peak	Hour:	04:15 P	M - 05:	15 PM Weath	ner: Sca	attered	Clouds	(19.72	C)								
Start Time				N Approa	ch < RD					E Approa KINGSTON	nh RD					S Approa ROSEBANI	ah RD					W Approx	ich I RD		Int. Tota (15 min
	Right	Thru	Left	UTum	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
16:15:00	16	1	15	0	2	32	19	205	1	0	0	225	4	1	2	0	1	7	2	282	30	0	0	314	578
16:30:00	20	0	17	0	4	37	17	171	0	0	1	188	2	1	0	0	1	3	-1	367	33	0	4	401	629
16:45:00	15	0	16	0	- 1	31	18	152	1	0	0	171	2	0	2	0	0	4	4	313	36	0	- 1	353	559
17:00:00	19	-1	11	0	2	31	17	203	-1	0	0	221	9	1	3	0	0	13	0	315	31	0	0	346	611
Grand Total	70	2	59	0	9	131	71	731	3	0	- 1	805	17	3	7	0	2	27	7	1277	130	0	5	1414	2377
Approach%	53.4%	1.5%	45%	0%			8.8%	90.8%	0.4%	0%			63%	11.1%	25.9%	0%			0.5%	90.3%	9.2%	0%			
Totals %	2.9%	0.1%	2.5%	0%		5.5%	3%	30.8%	0.1%	0%		33.9%	0.7%	0.1%	0.3%	0%		1.1%	0.3%	53.7%	5.5%	0%		59.5%	
PHF	0.88	0.5	0.87	0		0.89	0.93	0.89	0.75	0		0.89	0.47	0.75	0.58	0		0.52	0.44	0.87	0.9	0		0.88	
Heavy	1	0	0	0		1	0	11	0	0		11	0	0	0	0		0	0	23	0	0		23	
Heavy %	1.4%	0%	0%	0%		0.8%	0%	1.5%	0%	0%		1.4%	0%	0%	0%	0%		0%	0%	1.8%	0%	0%		1.6%	
Lights	69	2	59	0		130	71	720	3	0		794	17	3	7	0		27	7	1254	130	0		1391	
Lights %	98.6%	100%	100%	0%		99.2%	100%	98.5%	100%	0%		98.6%	100%	100%	100%	0%		100%	100%	98.2%	100%	0%		98.4%	-
Single-Unit Trucks	1	0	0	0		1	0	2	0	0		2	0	0	0	0		0	0	11	0	0		11	
Single-Unit Trucks %	1.4%	0%	0%	0%		0.8%	0%	0.3%	0%	0%		0.2%	0%	0%	0%	0%		0%	0%	0.9%	0%	0%		0.8%	
Buses	0	0	0	0		0	0	8	0	0		8	0	0	0	0		0	0	10	0	0		10	
Buses %	0%	0%	0%	0%		0%	0%	1.1%	0%	0%		1%	0%	0%	0%	0%		0%	0%	0.8%	0%	0%		0.7%	
Articulated Trucks	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	0	2	0	0		2	
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0.1%	0%	0%		0.1%	0%	0%	0%	0%		0%	0%	0.2%	0%	0%		0.1%	
Pedestrians					9						1						2						5		
Pedestrians%					52.9%						5.9%						11.8%						29.4%		
Bicycles on Crosswalk					0						0						0						0		
Bicycles on Crosswalk%					0%						0%						0%						0%		
Bicycles on Road	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		-
Bicycles on Road%					0%						0%						0%						0%		

Turning Movement Page 3 of 5 BAC23M8V Count

Turning Movement Page 5 of 5 BAC23M8V Count

Turning Movement Count
Location Name: KINGSTON RD & WEST SITE ACCESS
Date: Tue, May 16, 2023 Deployment Lead: Walter Fugaj

BA Group 300 45 ST. CLAIR AVE W TORONTO ONTARIO, M4V 1K9 CANADA

						illing wic	, vement	Count (2		TON RD & WEST SITE	- AUUL	50,					
Start Time				proach STON RD			603-643 H		pproach RD PLAZA	WEST ACCESS				proach STON RD		Int. Total (15 min)	Int. Tota (1 hr)
Start Time	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	UTurn W:W	Peds W:	Approach Total		
07:00:00	114	1	0	0	115	1	0	0	0	1	0	67	0	0	67	183	
07:15:00	119	0	0	0	119	0	2	0	0	2	1	77	0	0	78	199	
07:30:00	136	2	0	0	138	1	0	0	1	1	1	77	0	0	78	217	
07:45:00	166	0	0	0	166	3	0	0	0	3	1	118	0	0	119	288	887
08:00:00	172	0	1	1	173	0	2	0	1	2	3	124	0	0	127	302	1006
08:15:00	160	0	0	0	160	0	1	0	0	1	0	130	0	0	130	291	1098
08:30:00	192	0	0	0	192	0	3	0	0	3	2	181	0	0	183	378	1259
08:45:00	209	0	1	0	210	2	1	0	2	3	0	175	1	0	176	389	1360
***BREAK	***																
16:00:00	226	3	2	0	231	2	9	0	0	11	5	286	0	0	291	533	
16:15:00	220	3	1	0	224	7	4	0	0	11	10	303	0	0	313	548	
16:30:00	196	1	0	0	197	6	0	0	1	6	11	379	0	0	390	593	
16:45:00	202	1	0	0	203	0	2	0	0	2	8	340	0	0	348	553	2227
17:00:00	208	3	0	0	211	5	2	0	0	7	11	345	0	0	356	574	2268
17:15:00	221	1	0	0	222	7	5	0	1	12	5	301	0	0	306	540	2260
17:30:00	177	4	1	0	182	6	3	0	1	9	6	325	0	0	331	522	2189
17:45:00	195	1	1	0	197	7	6	0	1	13	9	295	0	0	304	514	2150
Grand Total	2913	20	7	1	2940	47	40	0	8	87	73	3523	1	0	3597	6624	
Approach%	99.1%	0.7%	0.2%		-	54%	46%	0%			2%	97.9%	0%		-		-
Totals %	44%	0.3%	0.1%		44.4%	0.7%	0.6%	0%		1.3%	1.1%	53.2%	0%		54.3%	-	
Heavy	73	0	0		-	2	1	0			0	81	0		-	-	-
Heavy %	2.5%	0%	0%		-	4.3%	2.5%	0%			0%	2.3%	0%			-	-
Bicycles	0	0	0		-	0	0	0			0	1	0		-	-	
Bicycle %	0%	0%	0%		-	0%	0%	0%			0%	0%	0%			-	-

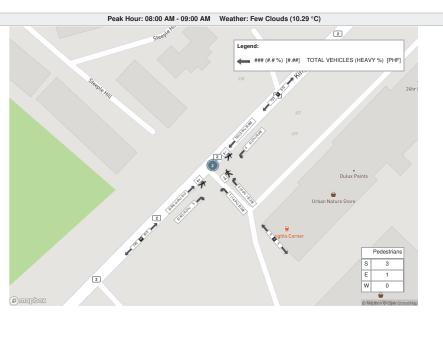
BA Group 300 45 ST. CLAIR AVE W TORONTO ONTARIO, M4V 1K9 CANADA

					Peak Hour	: 08:00 AI	M - 09:00	AM We	ather: F	ew Clouds (10.29 °C	c)					
Start Time			E A KING	pproach STON RE)		603-643 KIN	S Ap NGSTON RI	proach O PLAZA W	VEST ACCESS			W Ap	proach STON RD		Int. Tota (15 min)
	Thru	Left	UTurn	Peds	Approach Total	Right	Left	UTurn	Peds	Approach Total	Right	Thru	UTurn	Peds	Approach Total	
08:00:00	172	0	1	1	173	0	2	0	1	2	3	124	0	0	127	302
08:15:00	160	0	0	0	160	0	- 1	0	0	1	0	130	0	0	130	291
08:30:00	192	0	0	0	192	0	3	0	0	3	2	181	0	0	183	378
08:45:00	209	0	1	0	210	2	1	0	2	3	0	175	1	0	176	389
Grand Total	733	0	2	1	735	2	7	0	3	9	5	610	1	0	616	1360
Approach%	99.7%	0%	0.3%		-	22.2%	77.8%	0%		-	0.8%	99%	0.2%		-	-
Totals %	53.9%	0%	0.1%		54%	0.1%	0.5%	0%		0.7%	0.4%	44.9%	0.1%		45.3%	-
PHF	0.88	0	0.5		0.88	0.25	0.58	0		0.75	0.42	0.84	0.25		0.84	-
Heavy	22	0	0		22	0	1	0		1	0	28	0		28	
Heavy %	3%	0%	0%		3%	0%	14.3%	0%		11.1%	0%	4.6%	0%		4.5%	-
Lights	711	0	2		713	2	6	0		8	5	582	1		588	
Lights %	97%	0%	100%		97%	100%	85.7%	0%		88.9%	100%	95.4%	100%		95.5%	-
Single-Unit Trucks	7	0	0		7	0	1	0		1	0	14	0		14	-
Single-Unit Trucks %	1%	0%	0%		1%	0%	14.3%	0%		11.1%	0%	2.3%	0%		2.3%	-
Buses	12	0	0		12	0	0	0		0	0	13	0		13	-
Buses %	1.6%	0%	0%		1.6%	0%	0%	0%		0%	0%	2.1%	0%		2.1%	-
Articulated Trucks	3	0	0		3	0	0	0		0	0	1	0		1	-
Articulated Trucks %	0.4%	0%	0%		0.4%	0%	0%	0%		0%	0%	0.2%	0%		0.2%	-
Pedestrians	-	-	-	1		-	-	-	3		-	-	-	0		-
Pedestrians%	-	-	-	25%		-	-	-	75%		-	-	-	0%		-
Bicycles on Road	0	0	0	0		0	0	0	0		0	0	0	0		-
Bicycles on Road%			-	0%					0%			-	-	0%		

Turning Movement Page 2 of 5 BAC23M8V Count

Turning Movement Count
Location Name: KINGSTON RD & WEST SITE ACCESS
Date: Tue, May 16, 2023 Deployment Lead: Walter Fugaj

BA Group 300 45 ST. CLAIR AVE W TORONTO ONTARIO, M4V 1K9 CANADA


					Peak Hour: 04	:15 PM - ()5:15 PM	Weath	er: Scatte	ered Clouds (19.72	°C)					
Start Time				proach STON RD			603-643 KII		proach D PLAZA W	EST ACCESS				proach STON RD		Int. To (15 m
	Thru	Left	UTurn	Peds	Approach Total	Right	Left	UTum	Peds	Approach Total	Right	Thru	UTurn	Peds	Approach Total	
16:15:00	220	3	1	0	224	7	4	0	0	11	10	303	0	0	313	548
16:30:00	196	1	0	0	197	6	0	0	1	6	11	379	0	0	390	590
16:45:00	202	1	0	0	203	0	2	0	0	2	8	340	0	0	348	550
17:00:00	208	3	0	0	211	5	2	0	0	7	11	345	0	0	356	574
Grand Total	826	8	1	0	835	18	8	0	1	26	40	1367	0	0	1407	226
Approach%	98.9%	1%	0.1%		-	69.2%	30.8%	0%		-	2.8%	97.2%	0%		-	-
Totals %	36.4%	0.4%	0%		36.8%	0.8%	0.4%	0%		1.1%	1.8%	60.3%	0%		62%	-
PHF	0.94	0.67	0.25		0.93	0.64	0.5	0		0.59	0.91	0.9	0		0.9	-
Heavy	13	0	0		13	1	0	0		1	0	23	0		23	-
Heavy %	1.6%	0%	0%		1.6%	5.6%	0%	0%		3.8%	0%	1.7%	0%		1.6%	-
Lights	813	8	1		822	17	8	0		25	40	1344	0		1384	-
Lights %	98.4%	100%	100%		98.4%	94.4%	100%	0%		96.2%	100%	98.3%	0%		98.4%	-
Single-Unit Trucks	4	0	0		4	0	0	0		0	0	12	0		12	-
ingle-Unit Trucks %	0.5%	0%	0%		0.5%	0%	0%	0%		0%	0%	0.9%	0%		0.9%	-
Buses	8	0	0		8	0	0	0		0	0	9	0		9	-
Buses %	1%	0%	0%		1%	0%	0%	0%		0%	0%	0.7%	0%		0.6%	
Articulated Trucks	1	0	0		1	1	0	0		1	0	2	0		2	-
rticulated Trucks %	0.1%	0%	0%		0.1%	5.6%	0%	0%		3.8%	0%	0.1%	0%		0.1%	-
Pedestrians	-	-	-	0	-	-	-	-	1		-	-	-	0		-
Pedestrians%	-	-	-	0%		-	-	-	100%		-	-	-	0%		-
Bicycles on Road	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	-
Bicycles on Road%	-	-	-	0%		-	-		0%			-	-	0%		-

BAC23M8V

BAC23M8V

Turning Movement Count

Turning Movement Count
Location Name: KINGSTON RD & WEST SITE ACCESS
Date: Tue, May 16, 2023 Deployment Lead: Walter Fugaj BA Group 300 45 ST. CLAIR AVE W TORONTO ONTARIO, M4V 1K9 CANADA Spectrum Peak Hour: 04:15 PM - 05:15 PM Weather: Scattered Clouds (19.72 °C) 2 Legend: ### (#.# %) [#.##] TOTAL VEHICLES (HEAVY %) [PHF] Dulux Paints 2 Turning Movement Count

Page 5 of 5

Page 4 of 5

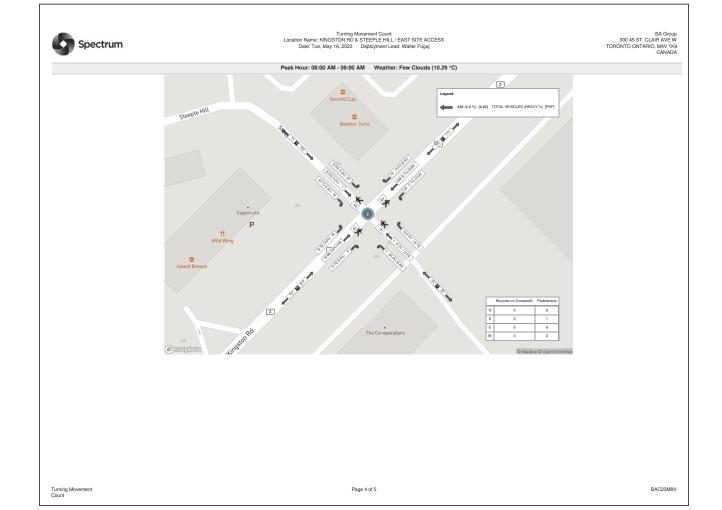
Turning Movement Count Location Name: KINGSTON RD & STEEPLE HILL / EAST SITE ACCESS Date: Tue, May 16, 2023 Deployment Lead: Walter Fugaj

BA Group 300 45 ST. CLAIR AVE W TORONTO ONTARIO, M4V 1K9 CANADA

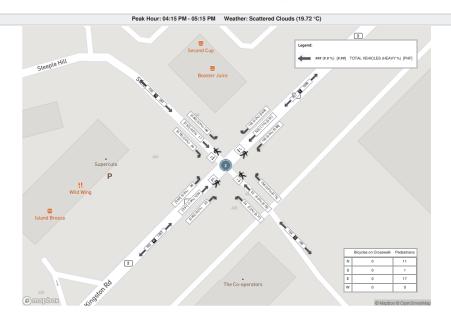
								T	ırning	Movem	ent Co	unt (3 . KINGST	ON RD	& STEE	PLE HI	LL / EAS	ST SITE	E ACCESS)								
Start Time				N Approac						E Approa KINGSTON	oh RD			603-	343 KINGST	S Approact	h ZA EAST	ACCESS				W Approa			Int. Total (15 min)	Int. Total (1 hr)
Olari Tillio	Right N:W	Thru N:S	Left N:E	UTum N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
07:00:00	3	0	22	0	3	25	6	110	7	0	0	123	4	0	1	0	1	5	0	65	3	0	0	68	221	
07:15:00	6	0	20	0	1	26	7	111	7	- 1	0	126	3	0	- 1	0	0	4	0	73	3	0	0	76	232	
07:30:00	7	0	27	0	1	34	6	128	4	0	1	138	0	0	1	0	1	1	0	74	6	0	0	80	253	
07:45:00	9	0	31	0	1	40	16	158	7	2	2	183	6	1	0	0	1	7	1	116	4	0	0	121	351	1057
08:00:00	11	0	29	0	1	40	6	156	6	0	3	168	3	0	2	0	0	5	1	114	7	0	1	122	335	1171
08:15:00	8	0	22	0	1	30	2	150	4	0	1	156	4	0	1	0	- 1	5	2	126	7	0	0	135	326	1265
08:30:00	6	1	38	0	3	45	7	190	11	1	3	209	6	0	1	0	0	7	2	161	14	0	1	177	438	1450
08:45:00	9	0	38	0	- 1	47	15	202	7	1	1	225	5	1	1	0	0	7	-1	165	14	0	0	180	459	1558
***BREAK	***	•																								
16:00:00	10	4	63	0	7	77	26	208	34	3	5	271	25	4	8	0	2	37	7	271	20	0	3	298	683	
16:15:00	14	5	43	0	2	62	29	205	30	0	5	264	27	7	5	0	- 1	39	6	281	26	1	0	314	679	
16:30:00	16	4	49	0	3	69	16	172	27	2	5	217	34	6	10	0	0	50	9	345	23	1	0	378	714	
16:45:00	12	0	43	0	1	55	20	180	29	1	1	230	31	3	11	0	0	45	8	313	22	0	0	343	673	2749
17:00:00	8	8	61	0	5	77	37	192	20	0	6	249	46	6	8	0	0	60	10	315	25	1	0	351	737	2803
17:15:00	14	6	53	0	5	73	26	200	24	0	4	250	27	4	10	0	3	41	8	285	18	0	1	311	675	2799
17:30:00	8	3	52	0	3	63	34	165	32	2	6	233	24	2	6	0	0	32	5	297	26	1	2	329	657	2742
17:45:00	17	4	51	0	2	72	20	171	39	2	2	232	34	4	8	0	1	46	2	282	21	0	1	305	655	2724
Grand Total	158	35	642	0	40	835	273	2698	288	15	45	3274	279	38	74	0	11	391	62	3283	239	4	9	3588	8088	
Approach%	18.9%	4.2%	76.9%	0%			8.3%	82.4%	8.8%	0.5%			71.4%	9.7%	18.9%	0%			1.7%	91.5%	6.7%	0.1%				
Totals %	2%	0.4%	7.9%	0%		10.3%	3.4%	33.4%	3.6%	0.2%		40.5%	3.4%	0.5%	0.9%	0%		4.8%	0.8%	40.6%	3%	0%		44.4%		
Heavy	3	0	7	0			3	70	4	0			1	0	1	0			0	80	3	0				
Heavy %	1.9%	0%	1.1%	0%			1.1%	2.6%	1.4%	0%			0.4%	0%	1.4%	0%			0%	2.4%	1.3%	0%				
Bicycles	0	0	0	0			0	0	0	0			0	0	0	0			0	1	0	0				
Bicycle %	0%	0%	0%	0%			0%	0%	0%	0%			0%	0%	0%	0%			0%	0%	0%	0%				

Turning Movement Page 1 of 5 BAC23M6V Count

Turning Movement Count
Location Name: KINGSTON RD & STEEPLE HILL / EAST SITE ACCESS
Date: Tue, May 16, 2023 Deployment Lead: Walter Fugaj


BA Group 300 45 ST. CLAIR AVE W TORONTO ONTARIO, M4V 1K9 CANADA

								Pea	k Hour:	08:00	AM - 09:	00 AM Weat	her: Fe	w Clou	ds (10.:	29 °C)									
Start Time			S	N Approa	oh LL RD				н	E Approac	h RD			603-6	543 KINGST	S Approa	nh AZA EAST	ACCESS				W Approa	ch RD		Int. Total (15 min)
Otal Time	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTum	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
08:00:00	11	0	29	0	1	40	6	156	6	0	3	168	3	0	2	0	0	5	- 1	114	7	0	1	122	335
08:15:00	8	0	22	0	- 1	30	2	150	4	0	- 1	156	4	0	1	0	-1	5	2	126	7	0	0	135	326
08:30:00	6	1	38	0	3	45	7	190	11	1	3	209	6	0	- 1	0	0	7	2	161	14	0	1	177	438
08:45:00	9	0	38	0	- 1	47	15	202	7	1	- 1	225	5	- 1	- 1	0	0	7	-1	165	14	0	0	180	459
Grand Total	34	- 1	127	0	6	162	30	698	28	2	8	758	18	- 1	5	0	- 1	24	6	566	42	0	2	614	1558
Approach%	21%	0.6%	78.4%	0%			4%	92.1%	3.7%	0.3%			75%	4.2%	20.8%	0%			1%	92.2%	6.8%	0%			
Totals %	2.2%	0.1%	8.2%	0%		10.4%	1.9%	44.8%	1.8%	0.1%		48.7%	1.2%	0.1%	0.3%	0%		1.5%	0.4%	36.3%	2.7%	0%		39.4%	
PHF	0.77	0.25	0.84	0		0.86	0.5	0.86	0.64	0.5		0.84	0.75	0.25	0.63	0		0.86	0.75	0.86	0.75	0		0.85	
Heavy	2	0	5	0		7	1	19	2	0		22	0	0	1	0		1	0	26	2	0		28	
Heavy %	5.9%	0%	3.9%	0%		4.3%	3.3%	2.7%	7.1%	0%		2.9%	0%	0%	20%	0%		4.2%	0%	4.6%	4.8%	0%		4.6%	
Lights	32	1	122	0		155	29	679	26	2		736	18	1	4	0		23	6	540	40	0		586	
Lights %	94.1%	100%	96.1%	0%		95.7%	96.7%	97.3%	92.9%	100%		97.1%	100%	100%	80%	0%		95.8%	100%	95.4%	95.2%	0%		95.4%	
Single-Unit Trucks	1	0	4	0		5	1	6	2	0		9	0	0	0	0		0	0	12	2	0		14	
Single-Unit Trucks %	2.9%	0%	3.1%	0%		3.1%	3.3%	0.9%	7.1%	0%		1.2%	0%	0%	0%	0%		0%	0%	2.1%	4.8%	0%		2.3%	
Buses	1	0	0	0		1	0	10	0	0		10	0	0	1	0		1	0	13	0	0		13	
Buses %	2.9%	0%	0%	0%		0.6%	0%	1.4%	0%	0%		1.3%	0%	0%	20%	0%		4.2%	0%	2.3%	0%	0%		2.1%	
Articulated Trucks	0	0	1	0		1	0	3	0	0		3	0	0	0	0		0	0	1	0	0		1	
Articulated Trucks %	0%	0%	0.8%	0%		0.6%	0%	0.4%	0%	0%		0.4%	0%	0%	0%	0%		0%	0%	0.2%	0%	0%		0.2%	
Pedestrians					6						8						1						2		
Pedestrians%					35.3%						47.1%						5.9%						11.8%		
Bicycles on Crosswalk					0						0						0						0		
Bicycles on Crosswalk%					0%						0%						0%						0%		
Bicycles on Road	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		
Bicycles on Road%					0%						0%						0%						0%		


BA Group 300 45 ST. CLAIR AVE W TORONTO ONTARIO, M4V 1K9 CANADA

								Peak I	Hour: 0	4:15 PN	/I - 05:1	5 PM Weathe	r: Scatt	ered Cl	ouds (1	9.72 °C)								
Start Time			s	N Approa	ch LL RD					E Approac	ah RD			603-6	43 KINGST	S Approac ON RD PLA	h ZA EAST	ACCESS				W Approa	sh RD		Int. Total (15 min)
	Right	Thru	Left	UTum	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
16:15:00	14	5	43	0	2	62	29	205	30	0	5	264	27	7	5	0	- 1	39	6	281	26	1	0	314	679
16:30:00	16	4	49	0	3	69	16	172	27	2	5	217	34	6	10	0	0	50	9	345	23	1	0	378	714
16:45:00	12	0	43	0	1	55	20	180	29	1	-1	230	31	3	11	0	0	45	8	313	22	0	0	343	673
17:00:00	8	8	61	0	5	77	37	192	20	0	6	249	46	6	8	0	0	60	10	315	25	1	0	351	737
Grand Total	50	17	196	0	11	263	102	749	106	3	17	960	138	22	34	0	- 1	194	33	1254	96	3	0	1386	2803
Approach%	19%	6.5%	74.5%	0%			10.6%	78%	11%	0.3%			71.1%	11.3%	17.5%	0%			2.4%	90.5%	6.9%	0.2%			
Totals %	1.8%	0.6%	7%	0%		9.4%	3.6%	26.7%	3.8%	0.1%		34.2%	4.9%	0.8%	1.2%	0%		6.9%	1.2%	44.7%	3.4%	0.1%		49.4%	
PHF	0.78	0.53	0.8	0		0.85	0.69	0.91	0.88	0.38		0.91	0.75	0.79	0.77	0		0.81	0.83	0.91	0.92	0.75		0.92	
Heavy	0	0	1	0		1	0	13	0	0		13	0	0	0	0		0	0	24	0	0		24	
Heavy %	0%	0%	0.5%	0%		0.4%	0%	1.7%	0%	0%		1.4%	0%	0%	0%	0%		0%	0%	1.9%	0%	0%		1.7%	
Lights	50	17	195	0		262	102	736	106	3		947	138	22	34	0		194	33	1230	96	3		1362	
Lights %	100%	100%	99.5%	0%		99.6%	100%	98.3%	100%	100%		98.6%	100%	100%	100%	0%		100%	100%	98.1%	100%	100%		98.3%	
Single-Unit Trucks	0	0	1	0		1	0	4	0	0		4	0	0	0	0		0	0	12	0	0		12	
Single-Unit Trucks %	0%	0%	0.5%	0%		0.4%	0%	0.5%	0%	0%		0.4%	0%	0%	0%	0%		0%	0%	1%	0%	0%		0.9%	
Buses	0	0	0	0		0	0	8	0	0		8	0	0	0	0		0	0	9	0	0		9	
Buses %	0%	0%	0%	0%		0%	0%	1.1%	0%	0%		0.8%	0%	0%	0%	0%		0%	0%	0.7%	0%	0%		0.6%	
Articulated Trucks	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	0	3	0	0		3	
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0.1%	0%	0%		0.1%	0%	0%	0%	0%		0%	0%	0.2%	0%	0%		0.2%	
Pedestrians					11						17						1						0		
Pedestrians%					37.9%						58.6%						3.4%						0%		
Bicycles on Crosswalk					0						0						0						0		
Bicycles on Crosswalk%					0%						0%						0%						0%		
Bicycles on Road	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		
Bicycles on Road%					0%						0%						0%						0%		

Turning Movement Page 3 of 5 BAC23MBV Count

Turning Movement Page 5 of 5 BAC23M8V Count

Er Walugn vom L& Lun World: uocatiounia & L:100\$ Gaetinki, ny nr Osebanki atl:11Er LnW aFN411189032188881 LpioF& Lunnilap-nr aitl Warga(-sNG\Wirp 200 N& 8NAE®Wus\$K Na, BRR ETKTIETNTIEsK STNW 6, NADS Vsls s

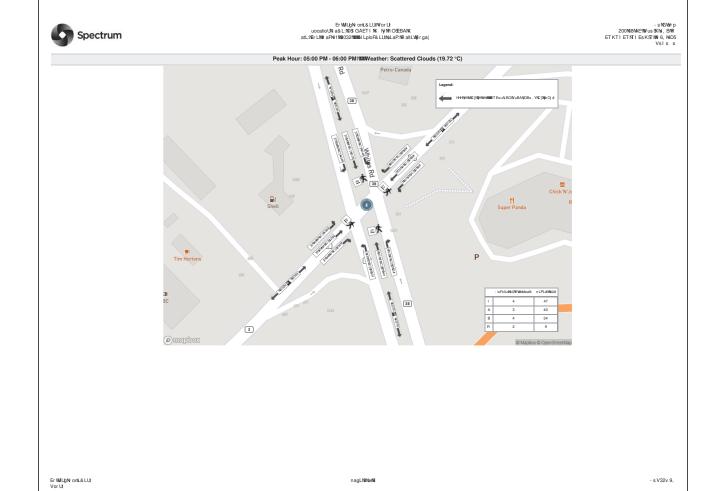
				N Approact	,					E Approach	1	ovement Count	(4 . KIN	GSTON		S Approact	h					W Approac	h		Int. Total	Int. T
Start Time	Kight I :R	EhW I : A	uLet 1:B	ROSEBANK 1 ErWU 1:1	nLPd I:	sppWachNEotal	Kight B:l	EhW B:R	uLet B:A	SIGAETIN FERWI B:B	nLPd B:	s ppWachNEotal	Kight A:B	EhW A:I	uLet A:R	ROSEBANK f ErWJ A:A	nLPd A:	s ppWachNEotal	Kight R:A	EhW R:B	uLet R:I	1 ErWU R:R	nLPd R:	s ppWachNEotal	(15 min)	(1
07:00:00	1	300	7	0	2	342	69	54	82	0	2	453	12	75	26	0	4	471	63	60	1	0	0	99	115	
07:48:00	45	347	47	0	0	382	12	51	13	0	0	334	10	97	37	0	0	476	10	34	7	0	0	99	721	
07:20:00	32	315	45	0	8	244	89	404	65	4	2	305	76	52	20	0	4	457	18	60	9	0	0	442	920	
07:68:00	24	267	27	3	4	647	93	445	52	0	8	356	59	432	25	0	3	310	71	67	44	0	3	426	4408	2
09:00:00	38	392	64	0	- 1	265	72	444	52	0	- 1	377	51	447	62	0	2	381	93	89	34	0	2	414	4062	2
09:48:00	37	316	20	0	4	234	54	445	18	0	4	378	57	440	29	0	4	368	74	89	40	0	4	425	590	- 2
09:20:00	23	388	60	0	2	237	50	485	13	0	2	244	59	54	39	0	3	347	407	54	30	0	6	349	4072	6
09:68:00	35	365	60	0	6	249	55	473	72	4	2	268	463	433	61	4	4	244	95	54	34	4	4	303	4471	6
- KBsI	D																								-	
41:00:00	62	467	80	0	41	360	435	309	13	0	5	255	496	450	17	0	47	664	56	329	65	0	49	294	4614	
41:48:00	68	439	84	0	8	336	425	491	17	4	8	252	491	308	88	0	3	661	55	456	66	0	7	227	4600	
41:20:00	35	471	67	0	41	383	422	416	18	0	40	213	485	304	60	0	2	600	403	383	85	0	6	642	4637	
41:68:00	65	493	65	0	7	390	443	411	15	0	40	267	478	453	69	0	0	648	407	321	88	4	0	255	4664	
47:00:00	22	464	68	0	7	345	424	456	18	4	9	254	419	346	11	0	4	669	409	314	67	4	4	647	4678	
47:48:00	20	495	66	0	8	312	420	475	72	0	8	293	303	394	81	0	8	825	404	306	67	0	7	283	4821	-
47:20:00	66	475	80	0	2	372	462	471	14	0	6	290	453	305	82	0	3	686	56	320	83	4	2	277	4696	8
47:68:00	36	479	83	0	2	386	425	496	87	0	8	290	490	303	86	0	6	621	54	327	65	0	0	277	4667	8
Grand Total	695	2606	145	3	98	6846	4110	3638	4015	6	90	8489	3476	3841	736	4	68	8648	4299	3359	801	6	84	6451	19283	
Approach%	40'9C	78%C	42%C	OC.			23%C	67C	30%C	0%C			60%C	61%C	42%C	00			22%C	86%C	43%C	0%C				
Totals %	318C	47%C	219C	OC.		32%C	9%C	43%C	87 8 C	0C		31%C	44%C	42C	219C	OC.		39%C	719C	44%C	3%C	OC		34%C		
Heavy	40	13	7	0			63	81	39	0			68	84	42	0			37	83	9	0				
Heavy %	3C 0	419C	4%C	00			318C	312C	3%C	00			3%C 0	3C	419C 0	00			4%C	312C	4%C	00				
Bicycles Bicycle %	0 0C	0 0C	000	0C			00	4 0C	0 0C	0 0C			00	4 0C	00	0C			000	4 0C	000	00				
Dicycle %	UC.	UC	ac.	UC			JU	uC.	uC	oC.			UU	oU.	UU	UU			UC.	00	OU.	UU				

ErWallgN on L&LUNVOrU: uocatioLNIa&L: 100 S GAETINK NJNR OSEBANK atL:1167-LNNV aFR41N18032118888N LploF&LUNNLaP:11R altLVNjrga(

-s MG\Worp 200 M68NAE%Wus %KNs, BMR ETKTIETNTIEsK STNNs 6, NAD5 VsIs s

								Pe	ak Hou	ır: 08:00	AM - 0	9:00 AM NXXXV e	ather: F	ew Clo	uds (10).29 °C)									
Start Time				N Approac	:h					E Approac	ah NK					S Approac	h					W Approac	:h K		Int. Total (15 min)
	Kight	EhW	uLd	f Er W	nLPd	s ppWachNEotal	Kight	EhW	uLd	f ErW	nLPd	s ppWachNEotal	Kight	EhW	uLd	f Er Wil	nLPd	s ppWachNEotal	Kight	EhW	uLet	f ErW	nLPd	sppWachNEotal	
09:00:00	38	392	64	0	-1	265	72	444	52	0	-1	377	51	447	62	0	2	381	93	89	34	0	2	414	4062
09:48:00	37	316	20	0	4	234	54	445	18	0	4	378	57	440	29	0	4	368	74	89	40	0	4	425	590
09:20:00	23	388	60	0	2	237	50	485	13	0	2	244	59	54	39	0	3	347	407	54	30	0	6	349	4072
09:68:00	35	365	60	0	6	249	55	473	72	4	2	268	463	433	61	4	4	244	95	54	34	4	4	303	4471
Grand Total	442	4084	484	0	46	4248	282	814	352	4	42	4309	622	660	488	4	7	4035	265	359	73	4	5	730	4272
Approach%	9%C	75%C	44%C	0C			35%C	61%C	36%2C	0%C			63%C	63%C	48%C	0%C			69%C	64%C	40C	0%C			
Totals %	3%C	36%C	2%C	OC.		20%C	912C	42%C	1%C	0C		39'2C	40%C	40%C	2%C	0C		36%C	918C	7C	4%C	OC.		41%C	
PHF	0199	0%2	0%3	0		0%6	0195	0193	0185	0188		0%9	0%1	0%	0396	0198		0%2	0193	0%3	0%1	0188		0%2	
Heavy	3	30	2	0		38	40	45	40	0		25	49	5	2	0		20	40	41	2	0		35	
Heavy %	4%C	4%C	3C	00		415C	399C	2%C	2%C	0C		218C	678C	3C	4%C	0C		315C	3%C	8%C	61BC	OC		6C	
Lights	444	4024	469	0		4350	262	863	392	4		4415	648	624	483	4		555	225	393	15	4		154	
Lights %	5919C	59%C	59C	OC.		59%C	57%C	51%C	51%C	400C		5199C	58%C	59C	59%C	400C		57%C	57%C	56%C	5819C	400C		51C	
Single-Unit Trucks	3	5	4	0		43	6	9	5	0		34	44	0	4	0		43	7	7	4	0		48	
Single-Unit Trucks %	49C	0%C	0100	OC.		0%C	4%C	4%C	2%C	0C		498C	318C	0C	0%C	0C		419C	3C	312C	4%C	OC.		394C	
Buses	0	40	3	0		43	6	40	0	0		46	6	9	0	0		43	3	9	3	0		43	
Buses %	0C	4C	412C	0C		0%C	4%C	419C	0C	0C		418C	0%C	419C	0C	0C		418C	0%C	31EC	3.8C	0C		4%C	
Articulated Trucks	0	4	0	0		4	3	4	4	0		6	2	4	3	0		1	4	4	0	0		3	
Articulated Trucks %	0C	0%C	0C	00		014C	0%C	018C	012C	0C		012C	0%C	018C	492C	0C		0%C	0%C	012C	00	0C		012C	
Pedestrians					46						43						7						5		
Pedestrians%					23%C	N					37%C	N					41%C	N					30%C	N	
Bicycles on Crosswalk					0						4						0						0		
Bicycles on Crosswalk%					00	N					312C	N					OC.	N					0C	N	
Bicycles on Road	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		
Bicycles on Road%					0C	N					OC.	N					OC.	N					0C	N	

Er WildyN ont & LLU Vor U


Er Willigh vom L& LUNV or Ut uocatio Unia & L:100 S GAET INK Ny NR OSEBANK at L:14Er LNN a R-14 11 N8 03 2 1000 000 11 Liplo F& LUNILa P:181 alt LWirga (-s MG\W/rp 200 M&RNAE9W/us SKNs, BMR ETKTIETNTIEsK STNW 6, NJD5 VsIs s

								Peal	k Hour:	05:00 F	PM - 06:	00 PM NSSSWeath	ner: Sca	ttered C	louds	(19.72 °	C)								
Start Time				N Approac	h					E Approa	ch NK					S Approac	h					W Approac	h K		Int. Total (15 min)
	Kight	EhW	uLa	f Er W	nLPd	s ppWachNeotal	Kight	EhW	uLd	f Er W	nLPd	s ppWachNEotal	Kight	EhW	uLd	f Er Wil	nLPd	s ppWachNEotal	Kight	EhW	uLa	f ErW	nLPd	s ppWachNeotal	1
47:00:00	22	464	68	0	7	345	424	456	18	4	9	254	419	346	11	0	4	669	409	314	67	4	4	647	4678
47:48:00	20	495	66	0	8	312	420	475	72	0	8	293	303	394	81	0	8	825	404	306	67	0	7	283	4821
47:20:00	66	475	80	0	2	372	462	471	14	0	6	290	453	305	82	0	3	686	56	320	83	4	2	277	4696
47:68:00	36	479	83	0	2	386	425	496	87	0	8	290	490	303	86	0	6	621	54	327	65	0	0	277	4667
Grand Total	424	197	454	0	49	4005	862	722	381	4	33	4822	763	501	335	0	43	4977	256	523	458	3	44	4832	5942
Approach%	42C	19%C	49%C	0C			28%C	67%C	41%C	0%C			25%C	69%2C	43%C	0C			38%C	14%C	4319C	0%C			
Totals %	318C	44%C	218C	OC.		47C	5%C	43°2C	612C	0C		38'9C	43%C	48%C	2%C	0C		24%C	1%C	48%C	212C	0C		38%C	
PHF	0106	0%4	0%3	0		0%3	0%8	0%6	0999	0188		0%9	0%3	0194	0997	0		0%7	0%4	0%5	0%6	0%		0%4	
Heavy	6	7	0	0		44	2	44	8	0		45	1	44	0	0		47	2	46	4	0		49	
Heavy %	2%C	4C	OC.	OC.		4%C	0%C	4%C	3C	00		4%C	0%C	418C	0C	00		0%C	019C	418C	018C	00		419C	
Lights	437	190	454	0		559	860	733	384	4		4846	721	958	335	0		4910	254	549	456	3		4808	
Lights %	51%C	55C	400C	OC.		59%C	55%C	59%C	59C	400C		59'9C	55%C	59%C	400C	0C		55%C	5518C	59%C	55%C	400C		59%C	
Single-Unit Trucks	4	2	0	0		6	3	8	8	0		43	3	6	0	0		1	2	8	4	0		5	
Single-Unit Trucks %	0%C	0%C	0C	OC.		0%C	0%C	01EC	3C	0C		019C	012C	0%C	0C	0C		018C	019C	018C	019C	0C		0%C	
Buses	2	4	0	0		6	4	1	0	0		7	6	2	0	0		7	0	5	0	0		5	
Buses %	312C	0%C	0C	OC.		0%C	018C	019C	0C	0C		0%C	0%C	012C	0C	0C		0%C	OC.	4C	0C	0C		0%C	
Articulated Trucks	0	2	0	0		2	0	0	0	0		0	0	6	0	0		6	0	0	0	0		0	
Articulated Trucks %	0C	0%C	OC	OC.		0%C	0C	0C	0C	oc.		0C	0C	0%C	0C	0C		019C	00	0C	0C	OC.		0C	
Pedestrians					47						34						40						9		
Pedestrians%					37C	N					22%C	N					48%C	N					43%C	N	
Bicycles on Crosswalk					4						4						3						2		
Bicycles on Crosswalk%					4%C	N					4%C	N					219C	N					619C	N	
Bicycles on Road	0	0	0	0	0		0	4	0	0	0		0	4	0	0	0		0	4	0	0	0		
Bicycles on Road%					0C	N					0C	N					0C	N					0C	N	

 Er Wild by ont & LLU
 nagUt%498
 - s V32v 9,

 Vor U
 - s V32v 9,

ID O SP; fvim i: BP f1: B Tfn LBD: FA LImi NBC A "G CAFRIMRA Mh T L FA T%M MLB NP IIV; UyR 7 Wasao F###M ediym i: BPTi Ur NPC UBB DFISUj

4LP DIE ossRock BP TL.RR.%hR CRCA CRCA LR.CVP, 0%B*63 - LALML

										Tur	ning M	ovement Count	(9 . KIN	IGSTO	N RD &	DELTA	BLVD)									
				N Approa	ch					E Approa	:h					S Approa	ch					W Approac	:h		Int. Total (15 min)	Int. Tot
Start Time	RISEB ANK	ED ANG	TigB ANa	t ID AMA	Wru AN	LeeD UnEP f Bud	ROSEB hMA	ED hNK	TigB hNG	t ID hNa	W ru hN	Lee® UnEP f Bld	ROSEB GNa	ED GM	TigB GNK	t ID GNG	Wiru GN	LeeB UtEP f Bibl	ROSEB KNS	ED K Na	TigB KMA	t ID KNK	Wru KN	Lee® UnEP f Bud	(15 min)	(1 hr)
spNisNis	oa	s	С	s	- 1	op	a0	1 c7	s	- 1	s	l 11	s	s	s	s	s	s	С	pl	ao	s	s	33	ol p	
spNcNs	00	s	- 11	s	- 1	00	ap	I 1o	0	s	s	al 0	s	s	0	s	s	0	a	р3	as	s	s	Isl	070	
spNesNes	03	s	ls	s	s	03	ao	17c	s	s	- 1	111	0	s	a	s	s	С	7	Isc	ac	- 1	s	l op	op3	
spNicNs	07	a	Ιp	s	s	00	00	a7a	С	s	- 1	oss	0	- 1	0	s	- 1	Р	С	1 07	00	s	-1	l p0	co7	I c3c
s1NasNas	71	a	1	s	- 1	pl	aa	ass	7	s	s	aa1	- 1	s	Р	s	s	1	Р	los	07	- 1	s	130	csl	I pp3
s1NcNs	03	- 1	17	s	s	c7	oc	ac7	0	s	s	a30	С	s	0	s	1	3	- 1	103	a1	s	s	l p1	сор	1 3co
s1NesNes	07	s	11	s	- 1	ср	ao	a0o	С	s	a	apl	С	s	0	s	0	3	a	l 1o	a1	- 1	- 1	al 0	ccl	al ac
s1Nichis	00	0	10	s	a	71	a3	oso	С	- 1	a	001	0	s	ls	s	s	10	a	aos	op	s	s	a73	711	aaps
2224RhL62	222	•																								
l 7NsNs	01	- 1	13	s	С	c1	ap	ol 7	Ιp	s	a	o7s	ac	- 1	07	s	-1	pa	ls	077	01	- 1	s	01 c	3sc	
17NcNs	07	a	as	s	a	71	ao	ol c	aa	s	1	o7s	a1	0	07	s	1	pp	р	o01	as	s	s	орс	11s	
l 7NasNas	os	0	- 11	s	-1	00	13	a1a	ac	s	s	oa7	ap	0	oa	s	s	7a	р	op3	a1	- 1	s	01 c	10p	
I 7Nichis	01	0	os	s	0	pl	10	apa	as	s	s	os7	03	С	0p	s	s	31	al	opo	a3	s	0	0ao	131	ocao
l phishis	00	0	17	s	- 1	70	al	a1c	al	s	- 1	oap	op	С	0c	s	- 1	1p	0	o0a	oc	s	s	011	1c1	o0p7
I pNoNs	a0	0	a1	s	a	00	os	ol p	11	s	0	o7c	ap	7	01	s	0	pl	10	070	0s	- 1	0	01 1	3s3	ocsc
l pháshás	03	a	a0	s	0	7c	a3	oss	l o	- 1	s	000	a7	0	00	s	s	7a	7	o30	a3	s	0	0a3	133	осср
l pNicNs	OI	7	ao	- 1	- 1	pl	11	osc	l o	s	s	007	os	0	op	s	a	pl	0	opo	00	a	a	011	113	0000
Grand Total	7a3	oa	a7o	- 1	a0	3ac	o3p	0l 7s	l pp	0	10	Орор	ac3	ol	oc1	s	10	701	Isa	0s01	01a	1	10	0700	10943	9
Approach%	715	08:5	a1805	s8 5		9	1805	1p8l 5	o\$p5	s8.5		9	0s5	085	cc8s5	s5		9	a8a5	1p8a5	1 s 805	s8x5		9		9
Totals %	c8p5	s8x5	a805	s5		18:5	o8'5	o15	1875	s5		0095	a805	s8b5	o8b5	s5		c@5	s85	o7885	0805	s8 5		0a8b5		9
Heavy	10	s	a	s		9	р	Пa	0	s		9	0	s	1	s		9	1	37	p	s		9		9
Heavy %	a8 5	s5	s815	s5		9	185	а\$р5	185	s5		9	18:5	s5	s8b5	s5		9	15	a805	18:5	s5		9		9
Bicycles	s	s	s	s		9	s	1	s	s		9	s	s	s	s		9	s	s	s	s		9		9
Bicycle %	s5	s5	s5	s5		9	s5	s5	s5	s5		9	s5	s5	s5	s5		9	s5	s5	s5	s5		9	-	9

ID O SP; fvim i: BP f1: B Tfn UBD: FAUm iNBCA* G CAFRIMRAPM h T L FAT90M MUBNP IIVP; UyPr7Wasao FFFFFM iedfym i: BFTiUrNBK UBB DFISU, 4LP DIE ossRocRG 8P TL.RR:%hR CRCA CRCA LR.CVP, 0%8P 63 - LALML

								Pea	k Hour	: 08:00	AM - 09	:00 AM FFFFWeat	ther: Fe	w Clo	uds (10	.29 °C)									
				N Approa	ch					E Approac	h					S Approx	sch					W Approa	ch		Int. Tota
Start Time	RSEB	ED	Ti gB	t ID	Wru	LeeB UnEP f But	RSEB	ED	Ti gB	t ID	Wru	Lee@ UnEP f But	RSEB	ED	Ti gB	t ID	Wru	Local UnEP f Bud	ROSEB	ED	Ti gB	t ID	Wru	Lee® UnEP f Build	(15 mir
s 1 hás hás	71	a	- 1	s	- 1	pl	aa	ass	7	s	s	aa1	1	s	р	s	s	1	Р	les	07	- 1	s	130	csl
s1NcNs	03	1	17	s	s	c7	oc	ac7	0	s	s	a30	c	s	0	s	1	3	1	103	a1	s	s	l p1	cop
s1NésNés	07	s	-11	s	- 1	ср	ao	a0o	c	s	a	apl	c	s	0	s		3	a	l 1o	a1	1	1	al 0	ccl
s1Nichts	00	0	10	s	a	71	a3	050	С	- 1	a	001	0	s	l s	s	s	l o	a	aos	ор	s	s	a73	711
Grand Total	I 3s	7	03	s	0	a0c	I s3	Issa	13	- 1	0	Hol	10	s	ac	s	0	03	l a	pl a	l a3	a	-1	100	2270
Approach%	pp8/5	a805	as5	s5		9	3875	11875	185	s8.5		9	oc85	s5	708 5	s5		9	1805	1085	1 c8 5	s8a5		9	
Totals %	1805	s8b5	a8a5	s5		1 s8 5	0815	008 5	s815	s5		03815	s8'5	s5	185	s5		185	s8:5	ol 805	c8p5	s8 5		орф5	
PHF	s8p1	s&	s&p	s		s87	s&p1	são	s@p3	s&c		s810	s&p	s	s8'o	s		s@c	s80o	s&pp	s8p	s&:		s 8 p3	
Heavy	P	s	- 1	5		1	a	oc	a	s		03		s	s	s			5	oa		5		op	
Heavy %	оф5	s5	a5	s5		o8b5	1815	08:5	1 s8:5	s5		o805	p8 5	s5	s5	s5		a8'5	s5	08:5	o@5	s5		08b5	
Lights	I 1o	7	01			aop	Isp	37p	Ιp	1		ls3a	l o		ac			01	la	71s	I a0	a		11 1	
Lights %	37855	I ss5	315	s5		37 b 5	31865	378:5	138:5	Iss5		37875	3a85	s5	Iss5	s5		3p805	Iss5	3c8:5	378 5	I ss5		3c8p5	
Single-Unit Trucks	7	s	- 1	s		P	a	11	1	s		al	1	s	s	s		1	s	I c	0	s		13	
Single-Unit Trucks %	o8x5	s5	a5	s5		a@5	1815	1815	c8s5	s5		I 885	p8 5	s5	s5	s5		a8'5	s5	a8 5	o8 5	s5		a8a5	
Buses	1	s	s	s		1	s	I o	s	s		I o	s	s	s	s		s	s	Ιo	1	s		10	
Buses %	s&5	s5	s5	s5		s805	s5	185	s5	s5		185	s5	s5	s5	s5		s5	s5	1815	s815	s5		1875	
Articulated Trucks	s	s	s	s		s	s	0	1	s		c	s	s	s	s		s	s	0	s	s		0	
Articulated Trucks %	s5	s5	s5	s5		s5	s5	s805	c8:5	s5		s805	s5	s5	s5	s5		s5	s5	s875	s5	s5		s&5	
Pedestrians	9	9	9	9	0	9	9	9	9	9	0	9	9	9	9	9	0	9	9	9	9	9	1	9	
Pedestrians%	9	9	9	9	os815	P	9	9	9	9	os815	P	9	9	9	9	os815	Р	9	9	9	9	p8p5	P	
Bicycles on Crosswalk	9	9	9	9	s	9	9	9	9	9	s	9	9	9	9	9	s	9	9	9	9	9	s	9	
Bicycles on Crosswalk%	9	9	9	9	s5	P	9	9	9	9	s5	P	9	9	9	9	s5	Р	9	9	9	9	s 5	P	
Bicycles on Road	s	s	s	s	s	9	s	s	s	s	s	9	s	s	s	s	s	9	s	s	s	s	s	9	
Bicycles on Road%	9	9	9	9	s5	P	9	9	9	9	s5	P	9	9	9	9	s5	P	9	9	9	9	s5	P	

ID OSP, fvim i: BP f1: B Tfn UBD: FAUmil 165.A* G CARFMR RMh T L F4.T%M MUBNP IIV, UyP: 7VRsaom###Miedlym i: BPTiUrn Kr UBBDFISU,

4LP DIE ossPocPG 8P TL.RPL%hRV CRCA CPCA LR.CVP, 0%3P 63 - LALML

								reak	noui.	74.43 F	WI - U3.4	5 PM PPPWWeathe	i. Scati	ereu C	iouus (19.72	٠,								
Start Time				N Approa	ch					E Approx	ich					S Approac	ch					W Appro	ach		Int. T
Start Time	ROSEB	ED	ΠgB	t ID	Wru	Lee® UnEP f But	ROSEB	ED	TigB	t ID	Wru	LeeB UnEP f Bud	RSEB	ED	Ti gB	t ID	Wru	LeeD UnEP f But	RSEB	ED	TigΒ	t ID	Wru	Lee® UnEP f Build	(15 n
I 710cNs	01	0	os	s	0	pl	10	apa	as	s	s	os7	03	С	0p	s	s	31	al	opo	a3	s	0	0ao	13
l pháshás	00	0	17	s	1	70	al	a1c	al	s	- 1	oap	op	c	0c	s	- 1	1p	0	o0a	oc	s	s	011	1
l pNicNs	a0	0	a1	s	a	cc	os	ol p	11	s	0	o7c	ap	7	01	s	0	pl	10	070	0s	- 1	0	01 1	3
l pNesNes	03	a	a0	s	0	7c	a3	oss	l o	- 1	s	000	a7		00	s	s	7a	7	o30	a3	s	0	0a3	1
Grand Total	1 00	l a	31	s	3	ac0	30	II p0	pa	- 1	С	1 001	l a3	13	170	s	0	ol I	0c	I Opa	100	- 1	ls	l 7cl	3
Approach%	c78p5	005	01875	s5		9	р5	1p&5	c805	s8 5		9	01 8:5	78.5	ca805	s5		9	а\$р5	138a5	185	s8 5		9	
Totals %	05	s8b5	a815	s5		p8 5	a875	005	a5	s5		op8p5	0875	s&5	0875	s5		185	1855	01 805	o\$p5	s5		07805	
PHF	s810	sabc	s8a	s		s83	s8p1	s@o	s817	sac		s@a	sBlo	s8p3	s8p	s		s8tc	s&0	s®o	s8 o	sac		s887	
Heavy		s	5	s .		s	5	11	s			11	s .	s	1	5			5	13	s	s		13	
Heavy %	s5	s5	s5	s5		s5	s5	18:5	s5	s5		18:5	s 5	s5	s875	s5		s8x5	\$ 5	18:5	s5	s5		I 8a5	
Lights	1 00	la	31	s		ac0	30	1107	pa	1		l oao	l a3	13	17a	5		ol s	0c	I Oco	100	1		l 7oa	
Lights %	l ss5	lss5	Iss5	s5		I ss5	I ss5	318:5	Iss5	Iss5		3185	1 ss5	l ss5	33805	s5		33 8 p5	1 ss5	318þ5	Iss5	I ss5		31815	
Single-Unit Trucks	s	s	s	s		s	s	- 11	s	s		11	s	s	1	s		1	s	ls	s	s		Is	
Single-Unit Trucks %	s5	s5	s5	s5		s5	s5	s85	s5	s5		s815	s5	s5	s8'5	s5		s8b5	s5	s\$p5	s5	s5		s875	
Buses	s	s	s	s		s	s	p	s	s		P	s	s	s	s		s	s	3	s	s		3	
Buses %	s5	s5	s5	s5		s5	s5	s875	s5	s5		s8:5	s5	s5	s5	s5		s5	s5	s875	s5	s5		s&5	
Articulated Trucks	s	s	s	s		s	s	s	s	s		s	s	s	s	s		s	s	s	s	s		s	
Articulated Trucks %	s5	s5	s5	s5		s5	s5	s5	s5	s5		s5	s5	s5	s5	s5		s5	s5	s5	s5	s5		s5	
Pedestrians	9	9	9	9	3	9	9	9	9	9	С	9	9	9	9	9	0	9	9	9	9	9	Is	9	
Pedestrians%	9	9	9	9	oa8 5	P	9	9	9	9	I p885	P	9	9	9	9	108:5	P	9	9	9	9	oc8p5	P	
Bicycles on Crosswalk	9	9	9	9	s	9	9	9	9	9	s	9	9	9	9	9	s	9	9	9	9	9	s	9	
licycles on Crosswalk%	9	9	9	9	s5	P	9	9	9	9	\$ 5	P	9	9	9	9	\$ 5	P	9	9	9	9	\$ 5	Р	
Bicycles on Road	s	s	s	s	s	9	s	- 1	s	s	s	9	s	s	s	s	s	9	s	s	s	s	s	9	
Bicycles on Road%	9	9	9	9	s5	P	9	9	9	9	s5	P	9	9	9	9	s5	P	9	9	9	9	s5	P	

ID OSP, fvim i: BP fl:B Tfn LED:RA Lm imS.A*G CARRMR-RMh T LR4T% M MLB NP liVP, UyrP7VBssori###Mied ym i: BPTiUr NeX LUBIDFISUj 4LP DIE ossPocPG 8P TL.RR WARK CRCA CPCA LR.CVP 0%P63 - LALML

4L- ao, 1%

(a) mapbox

Turning Movement Count
Location Name: KINGSTON RD & HWY 401 WB ACCESS
Date: Tue, May 16, 2023 Deployment Lead: Walter Fugaj

BA Group 300 45 ST. CLAIR AVE W TORONTO ONTARIO, M4V 1K9 CANADA

					Turni	ng Mover	nent Co	unt (5 . K	INGSTO	N RD & HWY 401	WB ACC	ESS)					
Start Time			E App KINGS	roach TON RD				S Ap HWY 401 \	proach NB ACCES	SS				proach STON RD		Int. Total (15 min)	Int. Tota (1 hr)
Start Time	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Left S:W	UTum S:S	Peds S:	Approach Total	Right W:S	Thru W:E	UTurn W:W	Peds W:	Approach Total		
07:00:00	93	59	0	0	152	7	83	0	0	90	1	69	0	0	70	312	
07:15:00	121	85	0	0	206	13	96	0	0	109	3	87	0	0	90	405	
07:30:00	116	79	0	0	195	14	80	0	0	94	2	108	0	0	110	399	
07:45:00	146	104	0	0	250	31	167	0	0	198	1	134	0	0	135	583	1699
08:00:00	93	121	0	0	214	23	105	0	0	128	1	170	0	0	171	513	1900
08:15:00	155	78	0	0	233	15	148	0	0	163	1	159	0	0	160	556	2051
08:30:00	154	65	0	0	219	26	124	0	0	150	1	206	0	0	207	576	2228
08:45:00	175	72	0	0	247	23	163	0	1	186	1	229	0	0	230	663	2308
***BREAK	***																
16:00:00	198	58	0	1	256	32	160	0	0	192	3	396	0	0	399	847	
16:15:00	181	40	0	0	221	35	187	0	0	222	9	399	0	0	408	851	
16:30:00	179	36	0	0	215	29	141	0	0	170	10	415	0	0	425	810	
16:45:00	230	54	0	0	284	16	74	0	0	90	11	422	0	0	433	807	3315
17:00:00	235	69	0	0	304	10	83	0	0	93	5	425	0	0	430	827	3295
17:15:00	217	75	0	0	292	21	160	1	0	182	3	420	0	0	423	897	3341
17:30:00	193	63	0	1	256	19	128	0	0	147	9	429	0	0	438	841	3372
17:45:00	178	54	1	0	233	24	153	0	2	177	10	410	0	0	420	830	3395
Grand Total	2664	1112	- 1	2	3777	338	2052	1	3	2391	71	4478	0	0	4549	10717	-
Approach%	70.5%	29.4%	0%			14.1%	85.8%	0%			1.6%	98.4%	0%		-		-
Totals %	24.9%	10.4%	0%		35.2%	3.2%	19.1%	0%		22.3%	0.7%	41.8%	0%		42.4%	-	-
Heavy	65	34	0			12	54	0		-	1	99	0			-	
Heavy %	2.4%	3.1%	0%		-	3.6%	2.6%	0%		-	1.4%	2.2%	0%		-	-	-
Bicycles	1	0	0		-	0	0	0		-	0	1	0		-	-	-
Bicycle %	0%	0%	0%			0%	0%	0%		-	0%	0%	0%		-	-	

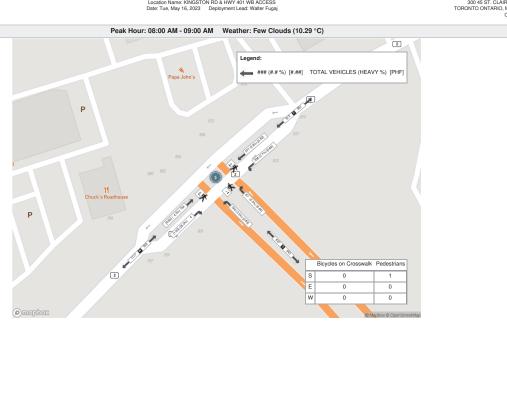
BA Group 300 45 ST. CLAIR AVE W TORONTO ONTARIO, M4V 1K9 CANADA

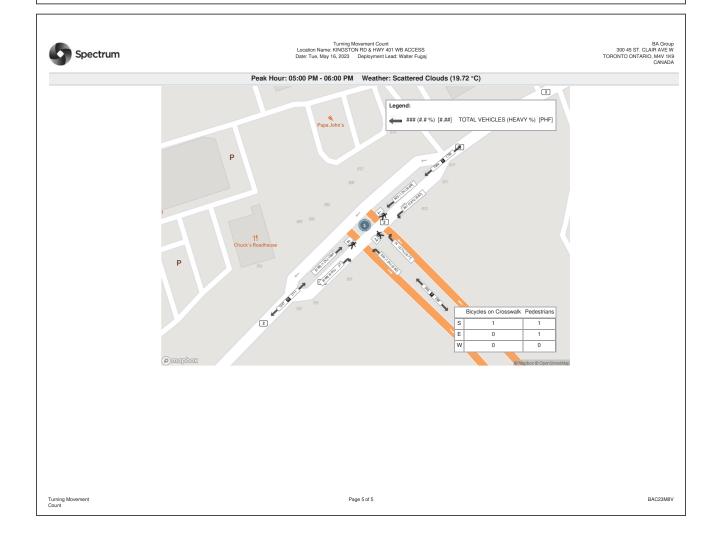
					Peak Hour: 08:0	0 AM - 09	9:00 AM	Weath	er: Few (Clouds (10.29 °C)						
Start Time			E App KINGS	roach TON RD				S Apı HWY 401 V	oroach NB ACCES	SS				oproach STON RD		Int. Total (15 min)
	Thru	Left	UTurn	Peds	Approach Total	Right	Left	UTurn	Peds	Approach Total	Right	Thru	UTurn	Peds	Approach Total	
08:00:00	93	121	0	0	214	23	105	0	0	128	1	170	0	0	171	513
08:15:00	155	78	0	0	233	15	148	0	0	163	1	159	0	0	160	556
08:30:00	154	65	0	0	219	26	124	0	0	150	1	206	0	0	207	576
08:45:00	175	72	0	0	247	23	163	0	1	186	1	229	0	0	230	663
Grand Total	577	336	0	0	913	87	540	0	1	627	4	764	0	0	768	2308
Approach%	63.2%	36.8%	0%		-	13.9%	86.1%	0%		-	0.5%	99.5%	0%		-	-
Totals %	25%	14.6%	0%		39.6%	3.8%	23.4%	0%		27.2%	0.2%	33.1%	0%		33.3%	-
PHF	0.82	0.69	0		0.92	0.84	0.83	0		0.84	1	0.83	0		0.83	-
Heavy	15	9	0		24	2	19	0		21	1	34	0		35	-
Heavy %	2.6%	2.7%	0%		2.6%	2.3%	3.5%	0%		3.3%	25%	4.5%	0%		4.6%	-
Lights	562	327	0		889	85	521	0		606	3	730	0		733	-
Lights %	97.4%	97.3%	0%		97.4%	97.7%	96.5%	0%		96.7%	75%	95.5%	0%		95.4%	-
Single-Unit Trucks	8	5	0		13	2	11	0		13	1	18	0		19	-
Single-Unit Trucks %	1.4%	1.5%	0%		1.4%	2.3%	2%	0%		2.1%	25%	2.4%	0%		2.5%	-
Buses	6	4	0		10	0	4	0		4	0	13	0		13	-
Buses %	1%	1.2%	0%		1.1%	0%	0.7%	0%		0.6%	0%	1.7%	0%		1.7%	-
Articulated Trucks	1	0	0		1	0	4	0		4	0	3	0		3	-
Articulated Trucks %	0.2%	0%	0%		0.1%	0%	0.7%	0%		0.6%	0%	0.4%	0%		0.4%	-
Pedestrians	-	-	-	0	-	-	-	-	1	-	-	-	-	0	-	-
Pedestrians%	-	-	-	0%		-	-	-	100%		-	-	-	0%		-
Bicycles on Crosswalk	-	-	-	0	-	-	-	-	0	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	0%		-	-	-	0%		-	-	-	0%		-
Bicycles on Road	0	0	0	0	-	0	0	0	0	-	0	0	0	0	-	-
Bicycles on Road%	-	-	-	0%		-	-	-	0%		-	-	-	0%		-

Turning Movement Page 2 of 5 BAC23M8V Count Page 15

Turning Movement Count
Location Name: KINGSTON RD & HWY 401 WB ACCESS
Date: Tue, May 16, 2023 Deployment Lead: Walter Fugaj

BA Group 300 45 ST. CLAIR AVE W TORONTO ONTARIO, M4V 1K9 CANADA


BAC23M8V


Buses 7 3 Buses % 0.9% 1.1% Articulated Trucks 0 1	KIN UTun 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1	0 0 1 1 0 1	Approach Total 304 292 256 233 1085 - 32% 0.89 21 1.9% 1064	Right 10 21 19 24 74 12.4% 2.2% 0.77 2 2.7%	Left 83 160 128 153 524 87.5% 0.82 7 1.3%		proach WB ACCES Peds 0 0 0 2 2	Approach Total 93 182 147 177 599 - 17.6% 0.82	Right 5 3 9 10 27 1.6% 0.8% 0.68	Thru 425 420 429 410 1684 98.4% 49.6% 0.98		proach STON RD Peds 0 0 0 0 0	Approach Total 430 423 438 420 1711 - 50.4% 0.98	827 897 841 830 3395
17:00:00 235 69 17:15:00 217 75 17:30:00 193 63 17:45:00 178 54 Grand Total 823 261 Approach% 75,9% 24.19 Totals % 24.2% 77,7% PHF 0.88 0.87 Heavy 11 10 Heavy % 1.3% 3.8% Lights 812 251 Lights 8 812 251 Lights % 98.7% 96.22 Single-Unit Trucks 4 6 Single-Unit Trucks 4 6 Single-Unit Trucks 4 6 Single-Unit Trucks 7 3 Buses 7 3 Buses 7 3 Buses 7 3 Articulated Trucks 0 1 1 Articulated Trucks 0 1 Articulated Trucks 0 0 1 Articulated Trucks 0 0 0.4%	0 0 0 1 1 1 1 9% 0.1% 6% 0% 7 0.25 0 6% 0%	0 0 1 1 0 1	304 292 256 233 1085 - 32% 0.89 21 1.9%	10 21 19 24 74 12.4% 2.2% 0.77 2 2.7%	83 160 128 153 524 87.5% 15.4% 0.82	0 1 0 0 1 0.2% 0% 0.25	0 0 0 2	93 182 147 177 599 - 17.6% 0.82	5 3 9 10 27 1.6% 0.8% 0.68	425 420 429 410 1684 98.4% 49.6% 0.98	0 0 0 0 0 0 0 0% 0%	0 0 0 0	430 423 438 420 1711 - 50.4% 0.98	897 841 830 3395
17:15:00 217 75 17:30:00 193 63 17:45:00 178 54 Grand Total 823 261 Approach% 75.9% 24.1% Totals % 24.2% 7.7% PHF 0.88 0.87 Heavy 11 10 Heavy% 1.3% 3.8% Lights 812 251 Lights % 98.7% 96:22 Single-Unit Trucks 4 6 Single-Unit Trucks 4 6 Single-Unit Trucks 4 6 Single-Unit Trucks 7 3 Buses 7 3 Buses 7 3 Buses 7 3 Articulated Trucks 0 1 1 Articulated Trucks 0 0 1 Articulated Trucks 0 0 1 Articulated Trucks 0 0 4	0 0 1 1 1 1 9% 0.1% 6% 0% 7 0.25	0 1 0 1	292 256 233 1085 - 32% 0.89 21 1.9%	21 19 24 74 12.4% 2.2% 0.77 2 2.7%	160 128 153 524 87.5% 15.4% 0.82	1 0 0 1 0.2% 0% 0.25	0 0 2	182 147 177 599 - 17.6% 0.82	3 9 10 27 1.6% 0.8% 0.68	420 429 410 1684 98.4% 49.6% 0.98	0 0 0 0 0 0% 0%	0 0	423 438 420 1711 - 50.4% 0.98	897 841 830 3395
17:30:00 193 63 17:45:00 178 54 Grand Total 823 261 Approach% 75.9% 24.19 Totals 24.2% 7.7% PHF 0.88 0.87 Heavy 11 10 Heavy% 1.3% 3.8% Lights 812 251 Lights % 98.7% 96.29 Single-Unit Trucks 4 6 Single-Unit Trucks 4 1 Articulated Trucks 0 1.1% Articulated Trucks 0 1 Articulated Trucks 0 0 1 Articulated Trucks 0 0 1 Articulated Trucks 0 0 0.4%	0 1 1 1 1 0 6 0.1% 6 0% 7 0.25 0 0%	1 0 1	256 233 1085 - 32% 0.89 21 1.9%	19 24 74 12.4% 2.2% 0.77 2 2.7%	128 153 524 87.5% 15.4% 0.82	0 0 1 0.2% 0% 0.25	0 2	147 177 599 - 17.6% 0.82	9 10 27 1.6% 0.8% 0.68	429 410 1684 98.4% 49.6% 0.98	0 0 0 0% 0% 0%	0	438 420 1711 - 50.4% 0.98	841 830 3395
17:45:00	1 1 1 1 % 0.1% % 0% 7 0.25 0 0%	0 1	233 1085 - 32% 0.89 - 21 1.9%	24 74 12.4% 2.2% 0.77 2 2.7%	153 524 87.5% 15.4% 0.82	0 1 0.2% 0% 0.25	2	177 599 - 17.6% 0.82	10 27 1.6% 0.8% 0.68	410 1684 98.4% 49.6% 0.98	0 0 0% 0% 0%	0	420 1711 - 50.4% 0.98	830 3395
Grand Total 823 261 Approach% 75.9% 24.1% Totals % 24.2% 7.7% PHF 0.88 0.87 Heavy 11 10 Heavy % 1.3% 3.8% Lights 812 255 Lights % 98.7% 96.2% Single-Unit Trucks 4 6 Single-Unit Trucks % 0.5% 2.3% Buses 7 3 Buses % 0.9% 1.1% Articulated Trucks 0 1 Articulated Trucks 0 0.4	1 1 % 0.1% % 0% 7 0.25 0 0%	1	1085 - 32% 0.89 	74 12.4% 2.2% 0.77 2 2.7%	524 87.5% 15.4% 0.82	1 0.2% 0% 0.25		599 - 17.6% 0.82	27 1.6% 0.8% 0.68	1684 98.4% 49.6% 0.98	0 0% 0% 0	-	1711 - 50.4% 0.98	3395
Approach% 75.9% 24.19 Totals % 24.2% 7.7% PHF 0.88 0.87 Heavy 11 10 Heavy % 1.3% 3.8% Lights 812 251 Lights % 98.7% 96.29 Single-Unit Trucks 4 6 Single-Unit Trucks 0.5% 2.3% Buses 7 3 Buses % 0.9% 1.1% Articulated Trucks 0 1 1 Articulated Trucks 0 0,4% 0.4%	% 0.1% % 0% 7 0.25 0 0%		32% 0.89 21 1.9%	12.4% 2.2% 0.77 2 2.7%	87.5% 15.4% 0.82	0.2% 0% 0.25	2	17.6% 0.82	1.6% 0.8% 0.68	98.4% 49.6% 0.98	0% 0% 0	0	- 50.4% 0.98	
Totals %	% 0% 7 0.25 0 % 0%		32% 0.89 21 1.9%	2.2% 0.77 2 2.7%	15.4% 0.82 7	0% 0.25 0		17.6% 0.82	0.8%	49.6% 0.98	0%		50.4% 0.98	
PHF 0.88 0.87 Heavy 11 10 Heavy% 1.3% 3.8% Lights 812 251 Lights % 98.7% 96.22 Single-Unit Trucks 4 6 Single-Unit Trucks 0.5% 2.3% Buses 7 3 Buses 1.1% Articulated Trucks 0 1.1 Articulated Trucks 0 1 Articulated Trucks 0% 0.4%	7 0.25 0 % 0%		0.89 21 1.9%	0.77 2 2.7%	0.82 7	0.25		0.82 9	0.68	0.98	0		0.98	
Heavy 11 10 Heavy % 1,3 % 3,8 % Lights 812 251 Lights % 98.7% 96.2% Single-Unit Trucks 4 6 Single-Unit Trucks 2.3% Buses 7 3 Buses 7 3 Buses 0,9% 1.1% Articulated Trucks 0% 0.4 %	0 % 0%		21 1.9%	2 2.7%	7	0		9						
Heavy% 1.3% 3.8%	% 0%		1.9%	2.7%					0	20	0		20	
Lights					1.3%	0%								
Lights % 98.7% 96.2% Single-Unit Trucks 4 6 Single-Unit Trucks 0.5% 2.3% Buses 7 3 Buses % 0.9% 1.1% Articulated Trucks 0 1 Articulated Trucks 0% 0.4%	1 1		1064	70				1.5%	0%	1.2%	0%		1.2%	-
Single-Unit Trucks 4 6 Single-Unit Trucks 0.5% 2.3% Buses 7 3 Buses % 0.9% 1.1% Articulated Trucks 0.9% 0.4 Articulated Trucks 0.0 0.4				72	517	1		590	27	1664	0		1691	-
Single-Unit Trucks 0.5% 2.3% Buses 7 3 Buses % 0.9% 1.1% Articulated Trucks 0 1 Articulated Trucks 0% 0.4%	% 100%	•	98.1%	97.3%	98.7%	100%		98.5%	100%	98.8%	0%		98.8%	-
Buses 7 3 Buses % 0.9% 1.1% Articulated Trucks 0 1 Articulated Trucks % 0% 0.4%	0		10	1	6	0		7	0	7	0		7	-
Buses % 0.9% 1.1% Articulated Trucks 0 1 Articulated Trucks % 0% 0.4%	% 0%		0.9%	1.4%	1.1%	0%		1.2%	0%	0.4%	0%		0.4%	-
Articulated Trucks 0 1 Articulated Trucks % 0% 0.4%	0		10	0	1	0		1	0	13	0		13	-
Articulated Trucks % 0% 0.4%	% 0%		0.9%	0%	0.2%	0%		0.2%	0%	0.8%	0%		0.8%	-
	0		1	1	0	0		1	0	0	0		0	-
Dodostriono	% 0%		0.1%	1.4%	0%	0%		0.2%	0%	0%	0%		0%	-
redestrians	-	1		-	-	-	1		-	-	-	0		-
Pedestrians%	-	33.3%		-	-	-	33.3%		-	-	-	0%		-
Bicycles on Crosswalk	-	0	-	-	-	-	1	-	-	-	-	0	-	-
Bicycles on Crosswalk%		0%		-	-	-	33.3%		-	-	-	0%		-
Bicycles on Road 1 0	-	0	-	0	0	0	0	-	0	1	0	0	-	-

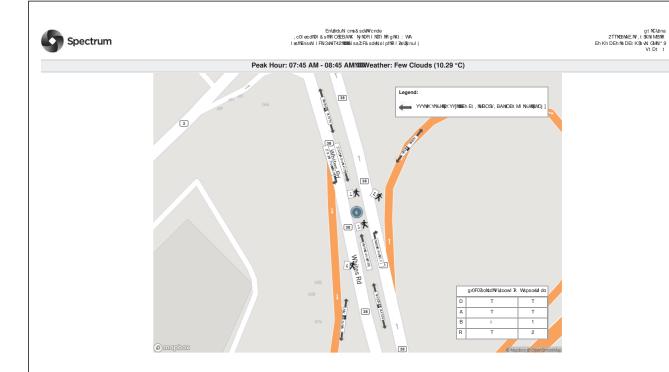
BAC23M8V

Turning Movement Count

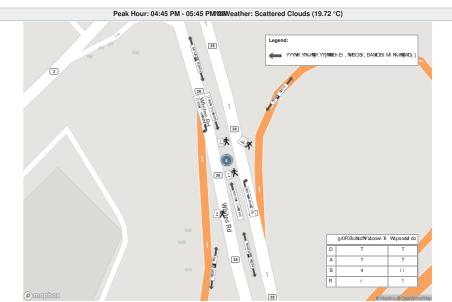
Page 4 of 5

gt NCLobna 2TTN GEMAE.NV, t SKNIMENR Eh Kh DEh Na DEt K SavNIGWN 1°9 Vt Dt t

Start Time			N App R OSEB	roach ANK ND			EA _I ORINGTI	pproach RgNaDNKt:W			S App R OSEB	roach ANK ND			WA ORINGTI	pproach RgNaDNKt:W	Int. Total (15 min)	Int. Tota (1 hr)
Start Time	KruLe DfR	ELUn DfA	PEnlai DfD	Wspo Df	t aald I OLNEce 7	PEnuli BfB	Wspo Bf	t aaldi OLNEcel 7	KruLe AfB	ELUh AfD	PEnlai AfA	Wépo Af	t aaldi OLNEcel 7	PEnuli RfR	Wspo R f	t aaldi OLNEcel 7		
TITTTTT	i G3	i G2	T	T	469	T	i	Т	3i	i 69	T	Т	45T	T	T	Т	529	
T1fi 5fTT	i GG	4T4	T	Т	2G3	Т	1	Т	16	i 36	T	Т	403	Т	Т	Т	594	
T1f2TfTT	i 14	4i 9	Т	Т	29i	Т	2	Т	3T	4i 4	Т	Т	414	Т	4	Т	332	
T1f@fTT	i 3i	209	Т	T	5i T	Т	2	Т	3G	429	Т	T	2T2	Т	T	Т	6i 2	43T1
T6fTTfTT	i 3i	494	Т	T	CB 52	Т	2	Т	iπ	413	Т	T	213	Т	T	Т	649	4691
T6fi 5fTT	i 21	413	Т	T	G 2	Т	T	Т	53	422	Т	T	469	Т	T	Т	1T4	2TT1
T6f2TfTT	i 46	463	Т	T	G G	Т	4	Т	35	42i	Т	Т	493	Т	2	T	1i T	2T50
T6fG5fTT 888g KBt *	i 4i	2Ti	Т	Т	G14	Т	4	Т	5i	2T3	Т	Т	251	Т	Т	Т	119	2T4T
i 3fTTfTT	62	444	Т	Т	2T5	Т	Т	Т	21	C6T	Т	Т	G61	Т	Т	Т	194	
i 3fi 5fTT	6i	4i i	Т	T	494	Т	4	Т	54	G4T	Т	Т	GI4	Т	2	Т	13G	
i 3f2TfTT	iTT	4G3	Т	T	2G3	Т	G	Т	32	Gi	Т	Т	GIG	Т	Т	Т	64T	
i 3fG5fTT	ii5	429	Т	Т	25G	Т	G	Т	1i	G 2	Т	Т	ŒG.	Т	Т	Т	626	24i (
i 1fTTfTT	61	424	Т	Т	2i 9	Т	2	Т	ii9	GI2	Т	T	594	Т	i	T	9i i	2222
i 1fi 5fTT	i 49	42G	Т	Т	232	Т	G	Т	i T1	524	Т	T	329	Т	5	T	i TT4	251i
i 1f2TfTT	ii5	42i	Т	Т	2G3	Т	4	Т	5G	G53	Т	T	5i T	Т	4	T	653	23T1
i 1f@fTT	9T	425	Т	Т	245	Т	4	Т	G6	G49	Т	Т	GI1	Т	2	Т	6T4	251i
Grand Total	i 91T	29i 6	T	T	5666	Т	G4	Т	i T63	5G26	T	Т	354G	Т	i 9	Т	12412	-
Approach%	22.5%	33.5%	T%		-	T%		-	i 3.3%	62.0%	T%		-	T%		-	-	-
Totals %	i 5.9%	2i .3%	T%		GI.G%	T%		T%	6.1%	G2.6%	T%		54.3%	T%		T%		-
Heavy	22	63	Т		-	Т		-	2T	ii4	Т		-	Т		-		-
Heavy %	i .1%	4.4%	T%		-	T%		-	4.6%	4.i %	T%		-	T%		-		-
Bicycles	Т	т	T		-	Т		-	T	i	T		-	Т		-		-
Bicycle %	T%	T%	T%		-	T%		-	T%	T%	T%		-	T%		-	-	-



En Lobirdu N. cms&sdeWcnde , c01 ecd ND1 & shR COSEBANK. Ny NORIN STINR g NKt: WA Iesh NEn swlin N. 3 w 1742 Nooman sa čr&sden) siph Rizsulyinu I (gt NCLohna 2TTNG5NAE.NV,t SKNIMENR Eh Kh DEh Na DEt KSavNiGMNi°9 Vt Dt. t


					Реак но	ur: 07:4	15 AM - U	8:45 AMMMWVeat	ner: Fev	Clouds	(10.29	°C)					
Start Time			N App	roach ANK ND			E App	proach RgNaDNKt:W			S App R OSEB	roach ANK ND			W App OR INSTINE	proach gNa DNKt: W	Int. To (15 mi
	KruLe	ELUh	PEnld	W6po	t aaldd OLNEcel 7	PEnldi	Wépo	t aaldd OLNEcel 7	KruLe	ELU	PEnldi	₩spo	t aald OLNEce 7	PEnldi	W6po	t aald OLNEce 7	
T1fG6fTT	i 3i	209	T	T	5i T	Т	2	Т	3G	429	T	T	2T2	Т	Т	Т	6i 2
T6fTTfTT	i 3i	494	T	T	G52	Т	2	Т	i TT	413	T	T	213	Т	T	Т	649
T6fi 5fTT	i 21	413	T	T	G 2	Т	T	Т	53	422	T	T	469	Т	T	Т	1T4
T6f2TfTT	i 46	463	T	Т	G G	Т	4	Т	35	42i	Т	T	493	Т	2	Т	1i 7
Grand Total	561	i 4T2	Т	Т	i 19T	Т	6	Т	465	919	T	Т	i 43G	Т	2	Т	305
Approach%	24.6%	31.4%	T%		-	T%		-	44.5%	11.5%	T%		-	T%		-	
Totals %	i 9.4%	29.G%	T%		56.3%	T%		T%	9.2%	24.i %	T%		G .G%	T%		T%	-
PHF	T.9i	T.63	Т		T.66	Т		Т	T.1i	T.69	Т		T.6G	т		Т	
Heavy	3	2T	Т		23	Т		Т	9	2i	Т		GT	T		Т	
Heavy %	i %	4.5%	T%		4%	T%		T%	2.4%	2.4%	T%		2.4%	T%		T%	-
Lights	56i	i i 12	T		i 15G	Т		Т Т	413	906	Т		i 44G	Т		т т	
Lights %	99%	91.5%	T%		96%	T%		T%	93.6%	93.6%	T%		93.6%	T%		T%	-
Single-Unit Trucks	5	i 6	T		42	T		Т	9	i G	Т		42	T		Т	-
Single-Unit Trucks %	T.9%	i .5%	T%		i .2%	T%		T%	2.4%	i .0%	T%		i .6%	T%		T%	-
Buses	T	iΤ	Т		i T	Т		Т	T	ii	Т		H	Т		T	-
Buses %	T%	T.6%	T%		T.3%	T%		T%	T%	i .i %	T%		T.9%	T%		T%	-
Articulated Trucks	i	4	Т		2	Т		Т	T	3	Т		3	Т		Т	-
Articulated Trucks %	T.4%	T.4%	T%		T.4%	T%		T%	T%	T.3%	T%		T.5%	T%		T%	-
Pedestrians	-	-	-	T	-	-	1	-	-	-	-	Т	-	-	2	-	
Pedestrians%	-	-	-	T%	N	-	32.3%	N	-	-	-	T%	N	-	41.2%	N	
Bicycles on Crosswalk	-	-	-	Т	-	-	i	-	-	-	-	Т	-	-	Т	-	-
Bicycles on Crosswalk%	-	-	-	T%	N	-	9.i %	N	-	-	-	T%	N	-	T%	N	-
Bicycles on Road	Т	T	Т	Т	-	Т	Т	-	T	Т	Т	Т	-	Т	Т	-	-
Bicycles on Road%	-	-	-	T%	N	-	T%	N	-	-	-	T%	N	-	T%	N	-

EntaliduN cms&sdeWcnde ,c0lecdNDl&sfNROSEBANK NyNORINGTINRg1Kit: WA lesfNEnsvNIFN3NNT42NXXXXN sa75F&sdeNsIpfNRIZesUNjnul(gt NCLohna 2TTNG5NAE.NV, t SKNIMENR Eh Kh DEh Na Det KSavNIGMNI°9 Vt Dt t

ELUh 429 424 42G 42i 923 31.1% 45.9% T.96 i G i .5%	PEntall	Wépo T T T T T	t auldi OLNEcdi 7 25G 219 232 203 1264 - 26.2% T.95	PEntal T	W6po G 2 G 4 i 2	t aaldi OLNEcel 7 T T T T T T T T T T T	KruLe 1i ii 9 i T1 5G 25i i 5.6% 9.1% T.1G	ELuh GI 2 GI 2 524 G63 i 61G 6G4% 54% T.66	PEnuli	Wépo T T T T T	t aaldel OLNEcod 7 G6G 594 329 5i T 4445 - 3i .1% T.61	PEnuld T T T T T T T% T% T%	Wspo T i 5 4 6	t aaldi OLNEcd 7 T T T T T T T T T	i ·
424 42G 42i 923 31.1% 45.9% T.96 i G i .5%	T T T T% T% T T% T T T T T T T T T T T	T T	2i 9 232 2G8 i 264 - 26.2% T.95	T T T T% T% T T% T	2 G 4	T T T T T T T T T T T T T T T T T T T	ii 9 i T1 5G 25i i 5.6% 9.1%	GI 2 524 GE3 i 61G 6G4% 54%	T T T T% T%	T T	594 329 5i T 4445 - 3i .1%	T T T T%	i 5	T T T T T T T T T T T T T T T T T T T	i
42G 42i 923 31.1% 45.9% T.96 i G i .5%	T T T% T% T T T T T T T T T T T T T T T	T	232 2G3 i 264 - 26.2% T.95	T T T% T% T T% T	G 4	T T T - T%	i T1 5G 25i i 5.6% 9.1%	524 Œ53 i 61G 6G4% 54%	T T T% T%	T	329 5i T 4445 - 3i .1%	T T T T% T%	5	T T T T T%	i
42i 923 31.1% 45.9% T.96 i G i .5%	T T% T% T% T T	Т	2G3 i 264 - 26.2% T.95	T T% T% T	4	T T - T% T	5G 25i i 5.6% 9.1%	G53 i 61G 6G4% 54%	T T T% T%	Т	5i T 4445 - 3i .1%	T T T% T%	4	T T - T%	
923 31.1% 45.9% T.96 i G i .5%	T% T% T% T T		i 264 - 26.2% T.95	T T% T% T	1	T - T% T	25i i 5.6% 9.1%	i 61G 6G4% 54%	T T% T%		4445 - 3i .1%	T T%		T - T%	_
31.1% 45.9% T.96 i G i .5%	T% T% T	Т	26.2% T.95	T% T% T	i 2	- T% T	i 5.6% 9.1%	6G4% 54%	T% T%	Т	- 3i .1%	T% T%	6	- T%	:
45.9% T.96 i G i .5%	T% T T		26.2% T.95	T% T		T% T	9.1%	54%	T%		3i .1%	Т%			
T.96 i G i .5%	T T		T.95	Т		T									
i G i .5%	T						T.1G	T.66	_		T 61	-		т.	
i .5%			i 9	т Т					T		1.01				
	T%					T	iΤ	4i	T		2i	т т		т т	
			i .0%	T%		T%	4.6%	i .i %	T%		i .0%	T%		T%	
944	т -		i 232	т		Т	2G	i 652	T		4i 9G	т т		Т	
96.5%	T%		96.3%	T%		T%	91.4%	96.9%	T%		96.3%	T%		T%	
iΤ	Т		i 2	Т		Т	5	i 4	T		i1	Т		Т	
i .i %	T%		T.9%	T%		T%	i .Œ%	T.3%	T%		T.6%	T%		T%	
2	Т		2	Т		T	Т	3	Т		3	Т		Т	
T.2%	T%		T.4%	T%		T%	T%	T.2%	T%		T.2%	T%		T%	
i	Т		2	Т		Т	5	2	T		6	T		Т	
T.i %	T%		T.4%	T%		T%	i .0%	T.4%	T%		T.G%	T%		T%	
-	-	Т	-	-	i i	-	-	-	-	T	-	-	1	-	
-	-	T%	N	-	54.G%	N	-	-	-	T%	N	-	22.2%	N	
-	-	Т	-	-	4	-	-	-	-	T	-	-	i	-	
-	-	T%	N	-	9.5%	N	-	-	-	T%	N	-	G6%	N	
Т	Т	Т	-	Т	Т	-	Т	i	Т	T	-	Т	Т	-	
	i T i .i % 2 T.2% i	iT T i.i% T% 2 T T.2% T% i T T.1% T%	iT T i.i.% T% 2 T T.2% T% i T T.1.96 T% i T T.1.96 T% - T - T% - T%	1T	1T T 12 T 1 i i % T% T.9% T% 2 T 2 T 7.2% T% T.4% T% i T 2 T T i T 2 T T i T - - - T - - - T T - - T T - - T T - T T T T	1T	1T T 12 T T 1 i j % T 56 T 76 T 76 2 T 2 T T 7 C 56 T 56 T 56 T 76 T 76 1 T 2 T T T 1 T 2 T T T 1 T 56 T 76 T 76	1T T 12 T T 5 i.1% T% T.9% T% T% i.Gl6 2 T 2 T T T T.2% T% T.4% T% T% T% T% i T 2 T T 5 T% T% 1.Gl6 T% i.Gl6 T% i.Gl6 T% I.Gl6 T% T% I.Gl6 T% T% I.Gl6 T% I.Gl6 T% I.Gl6 I.Gl6 <td>iT T i2 T T 5 i4 i.1% T% T.9% T% T% i.3% T.3% 2 T 2 T T T 3 T.2% T% T.4% T% T% T.2% 1.2% i T 2 T T 5 2 T.1% T% T.4% T% T% I.3% T.4% - - T - <td< td=""><td>i T T i 2 T T 5 i 4 T i J % T% T% T% T% i .Q% T.3% T% 2 T 2 T T T 3 T I Z% T% T.4% T% T%<!--</td--><td>1T T 12 T T 5 14 T 1.3% T% T% T% 1.0% T.3% T% 2 T 2 T T T 3 T 1.2% T% T%</td><td>iT T i2 T T 5 i4 T i1 i.1% T% T% T% t.0% T.2% T% T.2% T% T.2% T% T 3 T 3 T 3 T 3 T 2 T T T T 3 T 2 T 6 T.2% T% T 5 2 T 6 T.2% T 7 0 T.2% T 6 T.2% T 0 T.2% T 0 T.2% T 0 T.</td><td>iT T i2 T T 5 i4 T i1 T i.1% 7% 7% 7% 1.0% 7%</td></td></td<><td>iT T i2 T T 5 i4 T i1 T i.3% 7% T,9% T% T% i.0% T,3% T% T.6% T% 2 T 2 T T T 3 T 3 T 1.2% T% T,4% T% T,5% T,6% T,2% T% T,2% T,2% T% T,2% T,2% T% T,2% T,2%</td><td>iT T i2 T T 5 i4 T i1 T T i.3% 7% 7% 1.0% 1.0% 7%</td></td>	iT T i2 T T 5 i4 i.1% T% T.9% T% T% i.3% T.3% 2 T 2 T T T 3 T.2% T% T.4% T% T% T.2% 1.2% i T 2 T T 5 2 T.1% T% T.4% T% T% I.3% T.4% - - T - <td< td=""><td>i T T i 2 T T 5 i 4 T i J % T% T% T% T% i .Q% T.3% T% 2 T 2 T T T 3 T I Z% T% T.4% T% T%<!--</td--><td>1T T 12 T T 5 14 T 1.3% T% T% T% 1.0% T.3% T% 2 T 2 T T T 3 T 1.2% T% T%</td><td>iT T i2 T T 5 i4 T i1 i.1% T% T% T% t.0% T.2% T% T.2% T% T.2% T% T 3 T 3 T 3 T 3 T 2 T T T T 3 T 2 T 6 T.2% T% T 5 2 T 6 T.2% T 7 0 T.2% T 6 T.2% T 0 T.2% T 0 T.2% T 0 T.</td><td>iT T i2 T T 5 i4 T i1 T i.1% 7% 7% 7% 1.0% 7%</td></td></td<> <td>iT T i2 T T 5 i4 T i1 T i.3% 7% T,9% T% T% i.0% T,3% T% T.6% T% 2 T 2 T T T 3 T 3 T 1.2% T% T,4% T% T,5% T,6% T,2% T% T,2% T,2% T% T,2% T,2% T% T,2% T,2%</td> <td>iT T i2 T T 5 i4 T i1 T T i.3% 7% 7% 1.0% 1.0% 7%</td>	i T T i 2 T T 5 i 4 T i J % T% T% T% T% i .Q% T.3% T% 2 T 2 T T T 3 T I Z% T% T.4% T% T% </td <td>1T T 12 T T 5 14 T 1.3% T% T% T% 1.0% T.3% T% 2 T 2 T T T 3 T 1.2% T% T%</td> <td>iT T i2 T T 5 i4 T i1 i.1% T% T% T% t.0% T.2% T% T.2% T% T.2% T% T 3 T 3 T 3 T 3 T 2 T T T T 3 T 2 T 6 T.2% T% T 5 2 T 6 T.2% T 7 0 T.2% T 6 T.2% T 0 T.2% T 0 T.2% T 0 T.</td> <td>iT T i2 T T 5 i4 T i1 T i.1% 7% 7% 7% 1.0% 7%</td>	1T T 12 T T 5 14 T 1.3% T% T% T% 1.0% T.3% T% 2 T 2 T T T 3 T 1.2% T% T%	iT T i2 T T 5 i4 T i1 i.1% T% T% T% t.0% T.2% T% T.2% T% T.2% T% T 3 T 3 T 3 T 3 T 2 T T T T 3 T 2 T 6 T.2% T% T 5 2 T 6 T.2% T 7 0 T.2% T 6 T.2% T 0 T.2% T 0 T.2% T 0 T.	iT T i2 T T 5 i4 T i1 T i.1% 7% 7% 7% 1.0% 7%	iT T i2 T T 5 i4 T i1 T i.3% 7% T,9% T% T% i.0% T,3% T% T.6% T% 2 T 2 T T T 3 T 3 T 1.2% T% T,4% T% T,5% T,6% T,2% T% T,2% T,2% T% T,2% T,2% T% T,2% T,2%	iT T i2 T T 5 i4 T i1 T T i.3% 7% 7% 1.0% 1.0% 7%

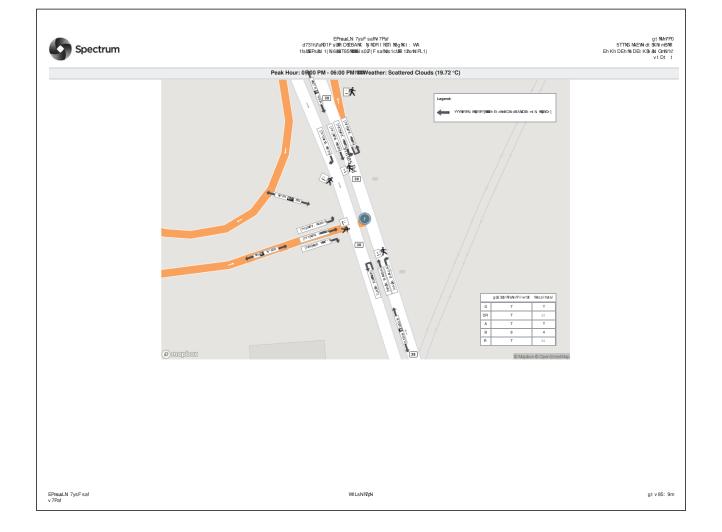
EPhaual N. 7ysFsafN 7Paf d731fv7aND1FsUNR OSEBANKK. NINOR INGTINNEG NKK: WA 1fsUNEPs&N 1(N 6&81785NMMMN SO27(FsafMs1cUNR 12smN PL1) gt NMn⊽PO 5TTNG-NAEWn dt SKNim BNR Eh Kh DEh Na DEt KSa &al GmNi%° v t Dt t

										Turn	ing Movement	Count (7	. WHITI	S RD & HWY 4	01 EB F	AMPS)								
Start Time				N Approx	ich : ND				S App R OSEE	roach ANK ND			NW Ap	proach gNi DNKt : W		E Ap	proach			ORI	W Approa	nh rNKt: W		Int. Total (15 min)	Int. To
start Time	KuLef DUDR	EerP DUA	dspi DUB	o EPra DID	Weel DU	t 00r713eNE7f12	KiLef ALB	EerP AUD	o EPra AUA	Wast AU	t 00r/713eNE7f12	o EPra DR UDR	Weel DR U	t 00rl/13eNE7f12	o EPra BUB	Wasi BU	t 00rl713eNE7f12	KuLef RUA	EerP R IB	dspi R UD	o EPna R UR	Wast R U	t 00r/713eNE7f12		
T4UTUT	64	9T	Т	Т	Т	i G4	58	i 58	T	т	i 6G	т	Т	т	Т	1	т	G4	т	111*	т	т	i 66	G44	
T4U - UT	*6	i T8	Т	T	T	i*9	58	i 5°	T		i 4i	T	T	T	T	4	Т	48	1	i Ti	т	Т	i 4G	- G5	
T4ISTUT	ii6	i T8	Т	T	T	8i 9	G	1-1	T	Т	i*8	T	8	T	T	G	Т	*G	Т	i 85	т	8	8i 4	684	
T4LG-UTT	i G	1	Т	T	T	5GG	5i	i G6	T	Т	i 44	T	T	т	т	i i	T	i TG	Т	i 65	т	T	864	499	8Œ-
TOUTUT	i G*	i - 6	Т	T	T	5T-	5G	886	T	Т	86T	т	T	T	T	i i	T	45	Т	i G6	т	Т	8i *	49G	84G8
T9U - UTT	i 6G	HT	Т	T	T	84G	GG	1-1	T	Т	8T5	T	5	T	T	8	T	i Ti	Т	i 86	T	5	884	4TG	8° T5
TUTUET	i - 6	i 5-	Т	T	T	8*i	Œ	i G6	T	Т	i*G	T	T	T	T	G	T	*5	Т	i 54	T	Т	85T	4i -	8**i
T9LS-UTT	i 48	i 8G	Т	T	T	8*6	- 9	i 66	T	T	88G	T	T	T	T	Т	T	98	1	i 9-	T	Т	869	499	8**i
gKBt %	i																								
i 6UTUT	4T	i - 9	1	T	T	88*	i 6	i 6T	T	Т	i 46	T		т	т	i i	T	i 4G	i	586	т		- Ti	*T6	
i 68 - UT	6T	i - 8	Т	T	T	8i 8	i 9	i 6-	T	Т	i 95	T		т	T	i	т	i Gʻ	i	8*T	т	1	GGF	95-	
i 6 15TUT T	6*	i 4T	Т	T	T	85*	58	111	T	Т	885	T		т	T	G	т	i 6i	Т	8°5	т	1	GG	*16	
i 6125-UTT	46	i 64	Т	T	T	806	8G	8i 6	T	Т	8GF	T	T	т	т		T	i 6*	Т	84-	т	Т	93G	*84	5-9G
i 4UTUT	46	i - G	Т	T	T	85T	GG	8* G	T	T	559	T	6	т	T	G	T	i Si	Т	5TT	т	6	Œi		5644
i 48 - UT	9i	1	Т	T	T	856	i 9	5T9	T	T	586	T	T	т	T	8	T	i*9	Т	585	т	T	- Bi	i T95	5*8-
i 4tSTUTT	66	i - 4	Т	Т	T	885	111	i 4*	T	Т	i*9	T	- 1	т	T	i	т	i 9-	i	5i *	т	1	- T-	*86	5*5-
i 4165 UTT	6*	i 46	Т	Т	T	8G	111	i 64	T	Т	i 96	T	G	т	T	8	т	i 9-	i	5i *	т	G	- T-	*56	5° GG
Grand Total	i 658	88* 4	1	Т	Т	5°5T	-iT	8° G	T		5G -	т	85	т	T	GT	т	8Ti 9	6	5- G	т	85	6*	12954	С
Approach%	GV.	- 9 V G	T,	T,		С	i Gø,	9-18,	T,		С	T,		С	T,		С	56 V 8,	TV.	6514,	T.		С		С
Totals %	i 8V6,	i 4V4,	T,	T,		5TV6,	5¥.	88V,	T,		8614,	T,		T,	T,		T,	i - V6,	T,	84 V G	T,		CES,		С
Heavy	54	- T	T	T		С		44	T		С	T		С	т		С	- G	T	65	T		С		С
Heavy %	815,	818,	T,	T,		С	i \0,	816,	T,		С	T,		С	T,		С	814,	T,	i \0,	T,		С		С
Bicycles	T	1	т	т		С	Т	1	Т		С	T		С	т		С	T	T	T	T		С		С
Bicycle %	T,	T,	T,	T,		C	T,	T,	T,		C	T,		С	T,		C	T,	T,	T,	T,		С		C

EPnauaLN: 7ysFsafN: 7Paf d731fu7aND1FsU8ROSEBANK: NJNORINGTINBGNKt: WA 1fsUNEPs&N:1(Ni6&18785N00000N:s027(FsafNots1cUNR12snNiPL1)

gt Nuhr⊽PO 5TTNG NAEWIdt SKNImBNR Eh Kh DEh Na DEt KSa &al GmNl% vt Dt t

								Р	eak Ho	ur: 08:	00 AM - 09:00 A	WKKKKI MI	eather:	Few Clouds (10	0.29 °C)									
Start Time				N Appro	ach K ND				S App	proach BANK ND			NW A	pproach Bg Nt DNKt : W		E Ap	proach			ORI	W Approa	ch rNKt: W		Int. Total (15 min)
	Kılıef	EerP	dspi	o EPra	Wiscl	t 00rl/13eNE7f12	Kıkef	EerP	o EPra	Váci	t 00rF13eNE7f12	o EPra	Wast	t 00rl/13eNE7f12	o EPra	Wasi	t 00rV13eNE7f12	KiLef	EerP	dspl	o EPra	Wast	t 00nF13eNE7f12	
тритит	i G	i - 6	T	т	T	5T-	5G	886	Т	T	86T	T	T	т	T	1	т	45	Т	i G6	T	Т	8i *	49G
T90-UT	i 6G	HT	T	T	Т	84G	GG	1-*	Т	T	875	T	5	т	T	8	т	i Ti	Т	i 86	T	5	884	4TG
TUTUT	i - 6	i 5-	T	T	Т	8*i	Œ	i G6	Т	T	i*G	T	т	т	T	G	т	*5	Т	i 54	T	Т	85T	4i -
T9UG UTT	i 48	i 8G	т	т	Т	8*6	- 9	i 66	Т	Т	88G	T	т	т	T	Т	т	98	-	i 9-	Т	Т	869	499
Grand Total	6G	- 8-	Т	Т	Т	i i 66	i 9G	6* 4	Т	Т	99i	T	5	Т	Т	- 4	T	5G*	1	-*G	Т	5	*GG	2991
Approach%		G.	T,	T.		С	8T∀,	4° ∀.	T,		С	T.		С	T.		С	54,	TV.	68V.	T,		С	
Totals %	8i VG	i 4\6,	T,	T,		5*,	618,	85 V 5,	T,		8*V,	T.		T,	T,		T,	1114,	T,	i*V.	T,		5i V6,	
PHF	TV 5	TØG	т	T		TV 6	TV4*	TV44	T		Trø-	T		T	т		T	TVB6	TV8-	Tθ	т		T\#9	
Heavy	i 5	14	т	Т		5T	5	88	T		8-	т -		т т	т -		т	i 8	т	14	Т		8*	
Heavy %	8,	516,	T,	T,		816,	i 16,	518,	T,		810,	T,		T,	T,		T,	5VG	T,	84.	T,		5¥,	
Lights	689	- T9	Т	Т		i i 56	i 9i	64-	т		9-6	т		T	т		Т	554	i	- 44	т		41-	
Lights %	*9,	*6\0,	Т,	T,		*4VG	* 9VG	*618,	T,		* 418,	T,		T,	T,		T,	*616,	iTT,	*4V.	T,		*6V,	
Single-Unit Trucks	9		T	T		i 4	8		T		11	T		T	т		T	9	T	i 8	т		8T	
Single-Unit Trucks %	i 18,	iW,	Т,	T,		iV,	i.W.	i 16 ,	T,		i 18,	T,		T,	T,		T,	815,	T,	8,	T,		8V.	
Buses		4	т	T		i 8	1		T		iT	T		т	т		т	5	Т	8	T			
Buses %	TØ,	i 16,	Т,	T,		1,	TV.	i 16,	T,		i.V.	T,		T,	T,		T,	TØ,	T,	TV6,	T,		TV.	
Articulated Trucks	T	1	Т	T		1	T	G	T		G	т		T	т		т	1	T	5	т		G	
Articulated Trucks %	T,	TV6,	Т,	T,		TV.	T,	TV6,	T,		TV.	T,		T,	т,		T,	TV5,	T,	TV,	T,		TNG	
Pedestrians	С	С	С	C	т	С	С	С	С	Т	С	С	5	С	С	6	С	С	C	С	С	5	С	
Pedestrians%	С	С	С	С	Т,	N	С	C	C	T,	N	С	85V.	N	С	ŒW,	N	С	C	С	С	85V,	N	
Bicycles on Crosswalk	С	С	С	С	Т	С	С	C	C	Т	С	С	Т	С	С	1	С	С	C	С	С	Т	С	
Bicycles on Crosswalk%	С	С	С	С	Т,	N	С	C	C	T,	N	С	T,	N	С	4 V ,	N	С	C	С	С	T,	N	
Bicycles on Road	T	Т	Т	T	Т	С	т	T	Т	Т	С	т	Т	С	т	T	С	т	Т	Т	Т	Т	С	
Bicycles on Road%	C	C	С	C	T,	N	C	C	C	T,	N	C	T,	N	C	T,	N	C	C	C	C	T,	N	



EPHAUALNI 7ysFsafNv 7Paf d731fv7aND1FsUMROSEBANK: NJNDRINGRINBgNKt: WA 1fsUMEPs&ul1(Ni6&18T85NNNNNNs027(FsafNots1cUMR12*snNiPL1) gt Nu/m7P0 5TTNG-NAEWN-dt SKNimBNR Eh Kh DEh Na DEt KSa &al GmNi% ∨t Dt t

								Pea	ak Hour	: 05:00	PM - 06:00 PM	NIXIW ea	ther: So	attered Clouds	(19.72	°C)								
Start Time				N Approz	ch ND				S Ap R OSE	proach BANK ND			NW A	pproach Bg Ni DNKt : W		E Ap	proach			ORI	W Approa	ch r NKt : W		Int. Total (15 min)
	KuLef	EerP	dspi	o EPra	Wici	t 00rl/13eNE7f12	Kıkef	EerP	o EPra	Wiscl	t 00rl/13eNE7f12	o EPra	V&cI	t 00rl/13eNE7f12	o EPra	WiscI	t 00rl/13eNE7f12	Kilcef	EerP	dspi	o EPra	Wici	t 00rl/13eNE7f12	1
i 4UTUT	46	i - G	T	T	Т	85T	GG G	8° G	Т	Т	559	T	6	т	T	G	т	i 5i	Т	5TT	т	6	Q5i	
i 48-UT	9i	1	Т	т	Т	856	i 9	5T9	Т	Т	586	T	т	т	T	8	т	i*9	т	585	т	т	- 8i	i T95
i 415TUTT	66	i - 4	Т	т	Т	885	111	i 4*	Т	Т	i*9	T	1	т	T	-	T	i 9-	1	51 *	т	- 1	- T-	*86
i 4LG UTT	6*	i 46	Т	T	Т	8G	111	i 64	Т	Т	i 96	T	G	т	T	8	T	i 9-	- 1	51 *	Т	G	-T-	*56
Grand Total	8*8	6GB	Т	T	Т	*5G	iTT	* CB	Т	Т	i TŒ	T	- 11	T	т		Т	6**	8	i 86i	Т	- 11	i*68	3944
Approach%	5i V5,	6914,	T,	T,		С	٠v.	*TV.	T,		С	T.		С	T,		С	5-16,	TV.	6G&,	T,		С	
Totals %	41/G	i 616,	T,	T,		85¥,	8V,	8G,	T,		8616,	T,		T,	T,		T,	i 4V4,	TV.	58,	T,		G'W,	
PHF	TV	T∜i	T	T		TV-	TV4	TV44	T		TV49	т		T	T		T	T'69	TV	TV 9	T		TVG	
Heavy	G		Т	Т			-	i 4	Т		i 9	т		т т	Т		т т	i G	Т	- 11	т		8-	
Heavy %	i VG.	T\Ø,	T,	T,		1,	1,	i 18,	T,		i VA,	T,		T,	T,		T,	8,	T,	TV.	T,		i V5,	
Lights	899	654	Т	Т		*8-		*5i	Т		i T5T	т		т	T		T	69-	8	i 8- T	Т		i*54	
Lights %	* 916,	** VB.	T,	T,		**.	٠٠.	*916,	T,		*915,	T,		T,	T,		T,	*9,	i TT,	**V.	T,		*914,	
Single-Unit Trucks	G	5	T	T		4	i	4	T		9	T		T	T		T	4	T	G	T		11	
Single-Unit Trucks %	i VG	TV.	T,	T,		TVA,	i,	TVA,	T,		Tθ,	T,		T.	T,		T,	1,	T,	TV5,	T,		TV6,	
Buses	т	8	T	Т		8	T	8	т		8	т		T	T		T	1	T		T		6	
Buses %	T,	TV5.	T,	T,		TVB,	T,	TVB,	T,		TVB,	T,		T.	T,		T,	TV.	T,	TVG	T,		TV6,	
Articulated Trucks	т	т	T	Т		т	T	9	т		9	т		T	T		T	6	T	8	T		9	
Articulated Trucks %	T,	T,	T,	T,		T,	T,	T\θ,	T,		Tθ,	T,		T.	T,		T,	TV.	T,	TVB,	T,		TVG	
Pedestrians	C	С	С	С	T	С	С	С	С	T	С	С	11	С	C	4	С	С	С	C	С	- 11	С	
Pedestrians%	С	С	С	С	T,	N	С	С	С	T,	N	С	5- V ,	N	С	8816,	N	С	C	С	С	5- V ,	N	
Bicycles on Crosswalk	С	С	С	С	Т	С	С	С	С	T	С	С	т	С	С	8	С	С	С	С	С	т	С	
Bicycles on Crosswalk%	С	С	С	С	T,	N	С	С	С	T,	N	С	T,	N	С	6V.	N	С	C	С	С	T,	N	
Bicycles on Road	т	i	Т	Т	T	С	Т	i	T	T	С	т	Т	С	т	T	С	т	T	т	т	т	С	
Bicycles on Road%	С	С	C	С	T,	N	С	C	C	T,	N	С	T,	N	C	T,	N	C	С	C	C	T,	N	

WILsNG17pN

EPneuaLNI7ysFsaf v7Paf gt v 85: 9m

G10udus@MtvCmOuH0 t 1uh Yt nUnd u@UmCABX I NSSTO R0&00HWWW07G RUHCABSIC,@MUyOg,Opi 9000009701 PymOuH0YCULABX UPC0091sUj

DHO 01 1f 9pp 03a0*030 YHN 0H%S0X GV VBGVOVBGH NV,0M3%402c . HBHRH

			N App	oroach STOR				E Ap	proach WWOG				S App	oroach STOR		Int. Total (15 min)	Int. Tota (1 hr)
Start Time	G401 BAT	YOEh BAS	r G10u BAB	: CLe BA	HffQtUn4@thUP	ds4h SAB	YOEn SAT	r G10u SAS	: CLe SA	Hff 0; Un400; HUP	ds4h TAS	G401 TAB	r G10u T <i>A</i> T	: CLe TA	Hff 0: Un400: HUP	`	
роАррАрр	op	ac	р	р	lic	gl	Ιo	р	- 1	07	19	co	р	р	Пр	9I o	
poA aApp	71	ср	р	р	l ol	gc	iр	р	i	7c	il	co	р	р	117	907	
роА9рАрр	7i	l p3	р	р	I 7g	ос	i 3	р	а	I p9	17	IIo	р	- 1	I 9a	3i 3	
роÆваАрр	l ao	I 3o	р	р	9p3	07	i 3	р	р	l pi	l c	IIc	р	р	I 97	a33	I gg9
р7АррАрр	I 9p	ca	р	р	iia	l pp	ii	р	- 1	Hii	l c	l a9	р	р	l oi	al c	I 7ga
р7А.аАрр	Ho	l pg	р	р	ii9	00	99	р	9	Пр	17	113	р	р	I 9i	3ga	I cai
p7A9pApp	I po	117	р	р	iia	gi	Ιo	р	i	ос	iа	I 9p	р	р	l aa	3ac	I c7o
p7A8aApp 566D SH2	cp	l pc	Р	Р	l cc	03	9a	р	I	l pc	90	l a3	р	Р	l cl	Зсс	I c3i
I gAppApp	1 p3	i17	р	р	9i i	g3	3р	р	р	l p3	3g	IIa	р	a	l gl	a7o	
I gAlaApp	117	17i	p	p	9pp	7c	90	p	p	lig	9p	l pa	p	i	I 9a	agi	
I gA9pApp	Hg	i 9p	p	p	93g	79	ip	p	9	l p9	39	li 9	p	р	l gg	gla	
I gASaApp	cc	i al	p	p	9ap	li7	39	р	I	l ol	3g	lii	р	p	1 g7	g7c	i 3ai
I oAppApp	cc	I c9	p	p	i ci	173	al	p	С	i 9a	gc	l gl	р	p	i 9p	oao	igii
I oA aApp	c7	i al	p	p	93c	ilo	gc	p	i	i 7g	39	111	р	p	l a3	07c	i 7ap
I oÆpÆpp	l pl	i 97	p	p	99c	Hi	99	p	р	l 3a	3c	79	р	p	I 9i	gl g	i 7al
I oABaApp	lio	i aa	р	р	97i	00	9i	р	a	l pc	ig	l pa	р	р	I 9I	gii	i o73
Grand Total	I gcg	i g3g	р	р	393i	I aa3	al o	р	9a	i pol	ai i	I cpg	р	7	i 3i 7	8841	8
Approach%	9c6 *	gp6c*	p*		8	oa*	i a*	p*		8	il6a*	o76a*	p*		8	-	8
Totals %	1 c6 *	ic6c*	p*		3c6 *	lo@g*	a67*	p*		i 963*	a6c*	il6g*	p*		io6a*		8
Heavy	3g	a9	р		8	93	11	р		8	С	a9	р		8	-	8
Heavy %	i6o*	i*	p*		8	i 6 *	i 6 °	p*		8	160*	i 67*	p*		8	-	8
Bicycles	1	р	р		8	1	р	р		8	р	р	р		8	-	8
Bicycle %	p6 *	p*	p*		8	p6 *	p*	p*		8	p*	p*	p*		8	-	8

G10utes0Nt ∨CmQuh : UsCQNΦE9 DH. i 9M7% . t 1uh

G10udus0MtvCmCuHOt1Uh YtnUnduGUmCNEKINSSTOROXODHWWOTG RUHCNESIC,OMUyOg,Opi9000008CIRymCuMYCULAXUPC00F1sUj DHG 01 1f 9pp03a0*030 YHN 0H%S0X GV VBGV0VBGH NV,0M3%0D2c . HBHRH

Start Time			N App K I N	oroach STOR					proach WWOG					oroach STOR		Int. Tota (15 min
	G401	YŒ	r G10u	: CLe	Hf f 0: Uh400t HUP	ds4h	YOEh	r G10u	: CLe	Hf f 0t Un400t HUP	ds4h	G401	r G10u	: CLe	Hf f 0t Un400at HUP	
po/8a/pp	l ao	I 3o	р	р	9p3	07	i 3	р	р	l pi	l c	IIc	р	р	I 97	a33
p7 / pp / pp	I 9p	ca	р	р	iia	l pp	ii	р	- 1	lii	l c	I a9	р	р	l oi	al c
p7AtaApp	IIo	l pg	р	р	ii9	00	99	р	9	Пр	17	113	р	р	I 9i	3ga
p7/9p/pp	I po	117	р	р	iia	gi	Ιo	р	i	ос	ia	I 9p	р	р	l aa	3ac
Grand Total	al I	3gg	р	р	C00	9l o	cg	р	g	31 9	71	al g	р	р	aco	1987
Approach%	ai 69*	3060*	p*		8	og67*	i 96 *	p*		8	I 96g*	7g63*	p*		8	-
Totals %	ia6o*	i96a*	p*		3c6 *	l g*	367*	p*		i p67*	36 *	i g*	p*		9p*	-
PHF	p671	p6oc	р		p67	p@c	p609	р		p67a	p671	p673	р		p67o	-
Heavy	19	Ιg	р		ic	Ιp	а	р		Ιa	3	Ιa	р		l c	-
Heavy %	i6a*	963*	p*		9*	96 *	a6 *	p*		96g*	36c*	i6c*	p*		96 *	-
Lights	3c7	Зар	р		c37	9po	cl	р		9c7	00	apl	р		ao7	-
Lights %	co@a*	cg@;*	p*		co*	cg67*	c367*	p*		cg68*	ca6 *	co6 *	p*		cg67*	-
Single-Unit Trucks	0	С	р		Ιg	g	1	р		0	1	7	р		С	-
Single-Unit Trucks %	163*	160*	p*		I @j*	16c*	1*	p*		I 6b*	16 *	l6g*	p*		I €a*	-
Buses	а	3	р		С	i	9	р		a	1	g	р		0	-
Buses %	1*	p6c*	p*		p6c*	p6g*	96 *	p*		16*	16*	16*	p*		16*	-
Articulated Trucks	1	9	р		3	i	1	р		9	i	1	р		9	-
Articulated Trucks %	p6 *	p@*	p*		p63*	p6g*	1.	p*		p6o*	i6a*	p6 *	p*		p6a*	-
Pedestrians	8	8	8	р	8	8	8	8	a	8	8	8	8	р	8	-
Pedestrians%	8	8	8	p*	0	8	8	8	7969*	0	8	8	8	p*	0	-
Bicycles on Crosswalk	8	8	8	р	8	8	8	8	1	8	8	8	8	р	8	-
Bicycles on Crosswalk%	8	8	8	p*	0	8	8	8	Ig6o*	0	8	8	8	p*	0	-
Bicycles on Road	р	р	р	р	8	р	р	р	р	8	р	р	р	р	8	-
Bicycles on Road%	8	8	8	p*	0	8	8	8	p*	0	8	8	8	p*	0	



G10udus@MtvOmOuHOttUuh YtnUndu@UmOWKINSSTOR@.@HWWWOTG RUHOWG1C,@MUy0g,@pi9@@@@RUPWC1FrymOuHOYOULAK UPO@F1sUj

DHO 01 1f 9pp03a0*0360 YHN 0H%S0X GV VBGV0VBGH NV,0M3%0D2c . HBHRH

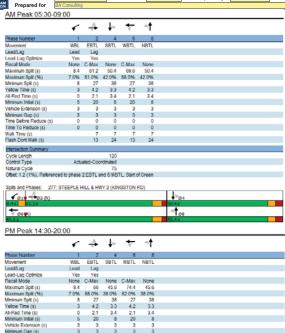
					Peak Hour: 04:45 F	PM - 05:4	5 PMCCCCCC	Veather:	Scatter	ed Clouds (19.72 °	C)					
Start Time			N App K I NG	roach STOR				E App	roach WOG				SApp KIN	oroach STOR		Int. Total (15 min)
	G401	YŒ	r G10u	: CLe	Hf f 0t Un400at HuP	ds4h	YCEh	r G10u	: CLe	Hf f 0: Uh400st HUP	ds4h	G401	r G10u	: CLe	Hf f 0t Un400t HJP	1
IgA8aApp	cc	i al	р	р	9ap	li7	39	р	- 1	l ol	3g	lii	р	р	l g7	g7c
l o/pp/pp	cc	I c9	р	р	i ci	173	al	р	С	i 9a	gc	l gl	р	р	i 9p	oao
loAtaApp	c7	i al	р	р	93c	ilo	gc	р	i	i 7g	39	111	р	р	l a3	o7c
loA9pApp	l pl	i 97	р	р	99c	Hi	99	р	р	I 3a	3с	79	р	р	I 9i	gl g
Grand Total	9co	c99	р	р	I 99p	g3l	l cg	р	Hi	790	i po	300	р	р	g73	2851
Approach%	ic67*	op6 *	p*		8	og@*	i 963*	p*		8	9p 6 9*	gc6o*	p*		8	-
Totals %	196c*	9i6b*	p*		3g6b*	ii6a*	g6c*	p*		ic63*	o69*	Ig6o*	p*		i 3*	
PHF	p6c7	p6c9	р		p6ca	p6o3	p@l	р		p6b9	p@ba	p6b3	р		p6b3	-
Heavy	0	11	р		17	11	I	р		li	I	С	р		Ιp	
Heavy %	167*	16*	p*		I 63*	160*	p6a*	p*		163*	p6a*	16c*	p*		lea*	
Lights	9ср	ci i	р		I 9I i	g9p	Ica	р		7i a	i pg	3g7	р		go3	
Lights %	c76 *	c767*	p*		c76g*	c769*	сс6а*	p*		c76g*	cc6a*	c76 *	p*		c76a*	
Single-Unit Trucks	а	3	р		С	а	1	р		g	1	а	р		g	
Single-Unit Trucks %	I 69*	p63*	p*		p6o*	p67*	p6a*	p*		p6o*	p6a*	1*	p*		p6c*	-
Buses	i	1	р		9	р	р	р		р	р	i	р		i	-
Buses %	p@a*	p6 *	p*		p6 *	p*	p*	p*		p*	p*	p63*	p*		p69*	-
Articulated Trucks	p	g	р		g	g	р	р		g	р	i	р		i	-
Articulated Trucks %	p*	b@*	p*		p6a*	p6c*	p*	p*		p6o*	p*	p63*	p*		p69*	-
Pedestrians	8	8	8	p	8	8	8	8	С	8	8	8	8	p	8	-
Pedestrians%	8	8	8	p*	0	8	8	8	oa*	0	8	8	8	p*	0	-
Bicycles on Crosswalk	8	8	8	p	8	8	8	8	9	8	8	8	8	p	8	-
Bicycles on Crosswalk%	8	8	8	p*	0	8	8	8	i a*	0	8	8	8	p*	0	-
Bicycles on Road	1	р	р	р	8	- 1	р	р	р	8	р	p	p	p	8	-
Bicycles on Road%	8	8	8	p*	0	8	8	8	p*	0	8	8	8	p*	0	-

G10ulss@11 vCmQuh : UsQQ@EB DH. i 9M7% . t 1uh

Appendix D: Signal Timing Plans

Location					ebank Rd	L TIMING F	CLI OICI	
Date	King	2023-		and Ros	C&E No.	41860731		- N
Prepared for	PA C	2023- Consultin			C&E NO.	41800/31	Prepared by	, n
r repared for	DA	OHSUMI	4					
AM Peak 5:30 -9:0	0							
	A	1,-	_	⊲t				
	4	1	¥	\mathcal{A}				
Phase Number	2	- 4	6	8				
Movement	EBTL	SBTL	WBTL	NBTL				
Lead Lag Lead-Lag Optimize								
Recall Mode	C-Max	None	C-Max	None				
Maximum Split (s)	70	30	70	30				
Maximum Split (%)	70.0%	30.0%	70.0%	30.0%				
Minimum Split (s) Yellow Time (s)	28 4.3	28 3.5	28 4.3	28 3.5				
All-Red Time (s)	2.3	3.1	2.3	3.1				
Minimum Initial (s)	20	8	20	8				
Vehicle Extension (s)	3	3	3	3				
Minimum Gap (s) Time Before Reduce (s)	3	3	3	3				
Time To Reduce (s)	0	0	0	0				
Walk Time (s)	7	7	7	7				
Flash Dont Walk (s)	10	14	10	14				
Intersection Summary								
Cycle Length			100					
Control Type Natural Cycle Offset: 57 (57%), Reference Splits and Phases: 276: R	ed to phase		60 and 6:WB			100	14	
Natural Cycle Offset: 57 (57%), Reference Splits and Phases: 276: R	ed to phase	2EBTL	60 and 6:WB			30 s		
Natural Cycle Offset 57 (57%), Reference Splits and Phases: 276: R	ed to phase	2EBTL	60 and 6:WB			305 305		
Natural Cycle Offset: 57 (57%), Reference Splits and Phases: 276: R	ed to phase	2EBTL	60 and 6:WB			30 s		
Natural Cycle Offset 57 (57%), Reference Splits and Phases: 276: R	ed to phase	2EBTL	60 and 6:WB			30 s		
Natural Cycle Offset 57 (57%), Reference Splits and Phases: 276: R	ed to phase	2EBTL RD&H	60 and 6:WB	GSTONE		30 s		
Natural Cycle Offset 57 (57%), Reference Splits and Phases. 276: R 276: R) 283: 276: R 283: 276: R 283: 276: R 284: 276: R 285: 276: R 286:	ed to phase	2EBTL RD 8 H	60 and 6 WB WY 2 (KIN	GSTONE		30 s		
Natural Cycle Othet 57 (57%), Reference Spills and Phases. 276: R 276: R 276: R 278: R 278	COSEBANK	2EBTL RD 8 H	60 and 6:WB	GSTON F		30 s		
Natural Cycle Offset 57 (57%), Reference Spills and Phases. 278 R	:00	PER SETL	60 and 6 WB MY 2 (KIN)	GSTON F		30 s		
Natural Cycle Othet 57 (57%), Reference Spills and Phases. 276: R 276: R 276: R 278: R 278	:00 C-Max 70	2EBTL RD 8 H	60 and 6 WB WY 2 (KIN)	STON F		30 s		
Natural Circle Obste 57 (57%), Reference Spills and Phases 27% F 02 (R) 20 20 20 20 20 20 20 20 20 20 20 20 20	CMax	2EBTL RD & Hi SBTL None 30 30.0%	60 and 6 WB WY 2 (KIN)	8 NBTL None 30 30.0%		30 s		
Natural Cycle Other 57 (57%), Reference Spills and Phases: 276, R 22 (R) 22 (R) 23 (B) 24 (C6 (R) 24 (B) 25 (B) 26 (R) 26 (R) 27 (B) 27 (B) 28 (R) 28	ed to phase coseBANK	2EBTL RD & Hi SBTL None 300 28	60 and 6 WB WY 2 (KIN) 6 WBTL C-Max 70 70 0% 28	8 NBTL None 30.0%		30 s		
Natural Cicle Obste 57 (57%), Reference Spills and Phases 278, E	CMax	2EBTL RD & Hi SBTL None 30 30.0%	60 and 6 WB WY 2 (KIN)	8 NBTL None 30 30.0%		30 s		
Natural Cycle Spitis and Phases 275 F 20 (R) 20 (R)	:00 EBTL C-Max 70 70.0% 43 23 20	4 SBTL None 30 300% 28 3.5 3.1 1.8	60 and 6 WB WY 2 (KIN) 6 WBTL C-Max 70 70 0% 28 43 23 20	8 NBTL None 30.0% 28 3.5 3.1 8		30 s		
Natural Cycle Other 57 (57%), Reference Spile and Phases: 276, E 2 (2 (2) 2 (2	:00 EBTL C-Max 70 70,0% 28 4.3 20 3	4 SBTL None 30 30.9% 28 3.5 3.1 8.3 3.3	60 and 6 WB WY 2 (KIN) 6 WBTL C-Max 70 70.0% 28 43 23 20 3	8 NBTL None 30.0% 28 3.5 3.1 8 3		30 s		
Natural Cycle Spifis and Phases. 275. F. 27. R. 27.	C-Max 700 28 43 20 3 3 3 3	4 4 SBTL None 30 30.0% 28 3 5 3.1 8 3 3 3 3 3 3	60 60 60 60 60 60 60 60 60 60 60 60 60 6	8 NBTL None 30 30.0% 28 3.5 3.1 8 3 3		30 s		
Natural Cycle Other 57 (57%), Reference Spile and Phases: 276 F 27 (2 R) 28 2 R) 29 2 R) 20 R) 20 2 R) 20	2 EBTL C-Max 70 70.0% 43 23 3 0 0	4 SSTL None 3 3 5 3 1 8 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60 60 60 60 60 60 60 60 60 60 60 60 60 6	8 NBTL None 30 30.0% 28 3.5 3.1 8 3 3 3 3 0		30 s		
Natural Cicle Other 57 (57%), Reference Soils and Phases: 278 E 27	2.000 C-Max 70 700% 4.3 20 3 3 3 3 0 0 0 7 7	4 4 SBTL None 30 30.0% 28 3 5 3.1 8 3 3 3 3 3 3	60 60 60 60 60 60 60 60 60 60 60 60 60 6	8 NBTL None 30 30 30 9% 35 5 3.1 8 8 3 3 0 0 0 7 7		30 s		
Natural Cycle Other 57 (57%), Reference Spills and Phases. 276, R 22 (R) Bay To Gr. (R) Bay The Gr. (R) Bay Th	200 C-Max - 70 - 70 - 70 - 3 - 3 - 3 - 3 - 0 0 0 0 0 0 0 0 0 0	4 SBTL None 30 30.0% 28 3.5 3.1 8 3 0 0	60 60 60 60 60 60 60 60 60 60 60 60 60 6	8 8 NBTL None 30 30.0% 3.5 3.1 1 8 8 3 3 0 0 0 0		30 s		
Natural Cycle Other 57 (57%), Reference Soils and Phases: 276 E 22 (2) 23 20 C (2) 24 C (2) 25 C (2) 26 C (2) 26 C (2) 27 C (2) 28 C (2) 2	2.000 C-Max 70 700% 4.3 20 3 3 3 3 0 0 0 7 7	2EBTL RD & HI SBTL SBTL SBTL SBTL SBTL SBTL SBTL SBTL	60 and 6 WB WY 2 (KIN) 6 WB TL C-Max 70 70.0% 28 43 3 20 3 3 3 0 0 7 7 10	8 NBTL None 30 30 30 9% 35 5 3.1 8 8 3 3 0 0 0 7 7		30 s		
Natural Cycle Other 57 (57%), Reference Spills and Phases. 276, 8 22 (R) 23 (R) 24 (G) 24 (R) 25 (G) 26 (R) 26 (R) 26 (R) 27 (G) 28 (R)	:000	4 SBTL None 3 30 30 0 0 7 7 14	60 60 60 60 60 60 60 60 60 60 60 60 60 6	8 NBTL None 30 30 30 9% 35 5 3.1 8 8 3 3 0 0 0 7 7		30 s		
Natural Cycle Other 57 (57%), Reference Spills and Phases. 276. R 20 8 20 8 20 8 PM Peak 14:30-21 Phase Number Movement Lead Lag Defringe Recal Mode Macmum Spill (s) Fills (s) Minimum Ingil (s) Time Spill (s) Time Spill (s) Time Spill (s) Fills (s) Fil	:000	4 SBTL None 3 30 30 0 0 7 7 14	60 and 6 WB WY 2 (KN) WY 2 (KN) WB TL C-Max 70 % 28 3 3 3 3 0 0 7 7 10 1000 rdinated	8 NBTL None 30 30 30 9% 35 5 3.1 8 8 3 3 0 0 0 7 7		30 s		
Natural Cycle Other 57 (57%), Reference Spills and Phases. 276, 8 22 (R) 23 (R) 24 (G) 24 (R) 25 (G) 26 (R) 26 (R) 26 (R) 27 (G) 28 (R)	:000	2EBTL RD & HI 4 SBTL None 30 30.0% 28 35.5 3.1 8 3 3 3 0 0 7 7 14	60 and 6 WB WY 2 (KN) WY 2 (KN) WB TL C-Max 70 70.0% 28 3 3 3 0 0 0 7 10 100 0 0 70 ordinated 65 65	8 NBTL None 30 30,0% 28 3,55 3,1 8 8 3 3 3 7 14	(0)	30 s		

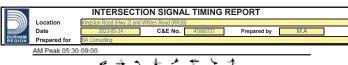
→ _{02 (B)}	₽ *04
79 s	30.5
▼ p6 (R)	< ↑ 08
70 s	303


Weekend Peak 08:00-21:00

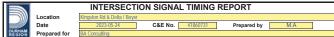
	4	4-	+	√ †
Phase Number	2	4	6	8
Movement	EBTL	SBTL	WBTL.	NBTL.
Lead/Lag				
Lead-Lag Optimize				
Recall Mode	C-Max	None	C-Max	None
Maximum Solit (s)	71	29	71	29
Maximum Split (96)	71,096	29.0%	71.0%	29.0%
Minimum Solit (s)	28	28	28	28
Yellow Time (s)	4.3	3.5	4.3	3.5
All-Red Time (s)	2.3	3.1	2.3	3.1
Minimum Initial (s)	20	8	20	8
Vehicle Extension (s)	3	3	3	3
Minimum Gao (s)	3	3	3	3
Time Before Reduce (s)	0	0	0	0
Time To Reduce (s)	0	0	0	0
Walk Time (s)	7	7	7	7
Flash Dont Walk (s)	10	14	10	14
Intersection Summary				
Cycle Length			100	
Control Type		tuated Co		
	PC.	MARCO LO	60	
Natural Cycle	A.	con .		0
Offset: 92 (92%), Reference	a to phase Z:	EBIL and	D.WBIL,	Start of Cr

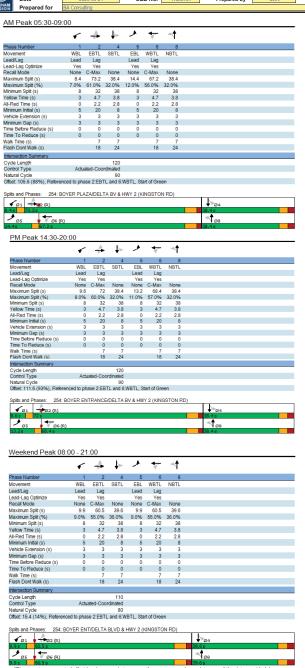
	₩ ₀₄
71 s	29 s
₩ 06 (R)	₫ ps
73.5	29 5

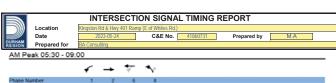
^{*}Please note a concerted effort has been made to ensure the accuracy and completeness of the data provided, however, inadvertent errors or omissions can still occur. Please bring any errors or omissions to the Region's attention.

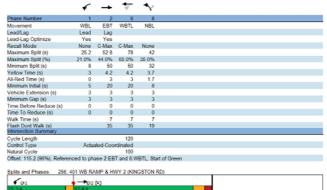


Weekend Peak (08:00 - 21:00) Phase Number WBL EBTL SBTL WBTL NBTL Lead Lag Movement Lead/Lag Lead-Lag Optimize Recall Mode Yes None C-Max None 13.2 51.7 45.1 64.9 45.1 12.0% 47.0% 41.0% 59.0% 41.0% Maximum Split (s) Maximum Split (%) Minimum Split (s) Yellow Time (s) 8 27 38 27 38 3 4.2 3.3 4.2 3.3 All-Red Time (s) Minimum Initial (s) 2.1 3.4 2.1 20 8 20 Vehicle Extension (s) Minimum Gap (s) Time Before Reduce (s) Time To Reduce (s) Walk Time (s) Flash Dont Walk (s) Actuated-Coordinated Natural Cycle 75 Offset: 107.8 (98%), Referenced to phase 2:EBTL and 6:WBTL, Start of Green Splits and Phases: 277: PLAZA ENT/STEEPLE HILL & HWY 2 (KINGSTON RD)



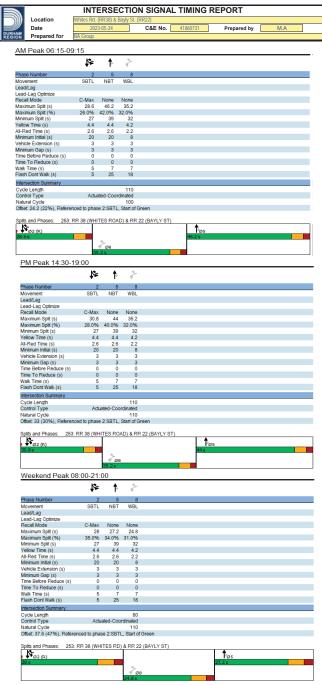

*Please note a concerted effort has been made to ensure the accuracy and completeness of the data provided, however, inadvertent errors or omissions can still occur. Please bring any errors or omissions to the Region's attention.


Date	2023-	05-24		C8	E No.	418	60731		Prepared by	M.A
Prepared for B	A Consultin	g								
AM Peak 05:30-0	9:00									
	¥6	4	1	4>	•	÷	7	‡-		
W	*1		٠,	٠.	-	· ·	_	٠,		
Phase Number Movement	WBL	EBTL.	NBL	SBTL	EBL	WBTL	SBL	NBTL		
.ead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag		
ead-Lag Optimize Recall Mode	Yes None	Yes C-Max	Yes None	Yes Max	Yes None	Yes C-Max	Yes None	Yes		
Maximum Solit (s)	10.8	45.6	14.4	49.2	8.4	48	10.8	52.8		
Aaximum Splt (%)	9.0%	38.0%	12.0%	41.0%	7.0%	40.0%	9.0%	44.0%		
Vinimum Split (s) 'ellow Time (s)	3	4.2	3	4.3	3	4.2	3	4.3		
M-Red Time (s)	0	2.8	0	2.8	0	2.8	0	2.8		
Minimum Initial (s) /ehicle Extension (s)	5	20	5	8	5	20	5	8		
Minimum Gap (s)	3	3	3	3	3	3	3	3		
ime Before Reduce (s)	0	0	0	0	0	0	0	0		
Time To Reduce (s) Valk Time (s)	0	7	0	7	0	7	0	7		
Flash Dont Walk (s)		29		30		29		30		
ntersection Summary										
Cycle Length Control Type	Actus	sted-Coo	120 rdinated							
Natural Cycle			105							
Offset 1.2 (1%), Reference	ed to phase 2	EBTL a	nd 6:WBT	FL, Start o	of Green					
Splits and Phases: 250:	RR 38 (WHI	TES RO/	D) & HW	Y 2 (KIN	GSTON F	RD)				
101 + + 02 (R)					↑ 03	1	P94			
10.8s 45.6s					14.45	49	.2s			
♪ Ø5 💝 Ø6 (R)					07	< † a	18			
8.4 s 48 s					10.8 s	52.8 s				
DM Deel: 44.00 C	0.00									
PM Peak 14:30-2	0:00									
	16	4	1	4-	•	4	/	~‡-		
Phase Number		2	3	- 4	5	В	7			_
Movement	WBL	EBTL	NBL	SBTL	EBL	WBTL	SBL	NBTL		
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag		
Lead-Lag Optimize Recall Mode	Yes None	Yes C-Max	Yes None	Yes	Yes None	Yes C-Max	Yes None	Yes		
Maximum Split (s)	18	45.6	10.8	45.6	12	51.6	9.6	46.8		
Maximum Split (96)	15.0%	38.0%	9.0%	38.0%	10.096	43.0%	8.0%	39.0%		
Minimum Split (s) Yellow Time (s)	8	43	8	45	8	43	8	45		
All-Red Time (s)	0	2.8	0	2.8	0	2.8	0	2.8		
Minimum Initial (s)	5	20	5	8	5	20	5	8		
Vehicle Extension (s) Minimum Gap (s)	3	3	3	3	3	3	3	3		
Time Before Reduce (s)	Ů.	0	0	0	0	0	0	0		
Time To Reduce (s) Walk Time (s)	0	0	0	0	0	0	0	0		
Flash Dont Walk (s)		29		30		29		30		
Intersection Summary										
Cycle Length		ated-Coo	120							
Control Type Natural Cycle	ACIU	ateq-Coo	rdinated 105							
Natural Cycle Offset: 1.2 (1%), Reference	ed to phase:	2 EBTL a	nd 6:WB	TL, Start o	of Green					
	RR 38 (WH									
		TES NO	a mm r	z (nirvos	T.	4	4-2			
#101 +45.6	D2 (R)					0.8 5	45.6 s	1		
Jos ♥ as (x						Va. 2	⊲† _{oe}			
12 s 51.6 s					9	.6s	46.8 s			
Weekend Peak 0	8:00 - 21	:00								
	*6	4	4	-‡⊱	•	*	/	-6		
Phase Number		2	3	4	5	6	7	8		
Movement	WBL	EBTL	NBL	SBTL	EBL	WBTL	38L	NBTL		
Lead/Lag	Lead	Lag	Lead	Lag	Lead	Lag	Lead	Lag		
Lead-Lag Optimize Recall Mode	Yes None	Yes C-Max	Yes None	Yes Max	Yes None	Yes C-Max	Yes None	Yes		
Maximum Splt (s)	9.9	45.1	8.8	46.2	11	44	8.8	46.2		
Maximum Split (%)	9.0%	41.0%	8.0%	42.0%	10.0%	40.0%	8.0%	42.0%		
Minimum Split (s) Yellow Time (s)	8	43	8	4.3	8	4.2	8	4.3		
All-Red Time (s)	0	2.8	0	2.8	0	2.8	0	2.8		
Minimum Initial (s)	5	20	5	8	5	20	5	8		
Vehicle Extension (s) Minimum Gap (s)	3	3	3	3	3	3	3	3		
Time Before Reduce (s)	ō	ō	0	0	0	0	0	ō		
Time To Reduce (s) Walk Time (s)	0	0	0	0 7	0	0	0	0		
Walk Time (s) Flash Dort Walk (s)		29		30		29		30		
Intersection Summary										
Cycle Length			110							
Control Type Natural Cycle	Actu	ated-Coo	rdinated 105							
Offset 1.1 (196), Reference	ed to phase	2:EBTL a	ind 6:WB	TL, Start o	of Green					
							UNION TO	AL DO		
Splits and Phases: 250:	KK 38 (WH	ITES RD	µKK 38 (WHITES	KUAD) 8	HWY 2 (KINGSTO	n KD)		
- 0						1.4				
101 0 02 (R)				_	1	a3 🕏	P24			
- 0					0.01	gg 46.	2 s 1 pe			


^{*}Please note a concerted effort has been made to ensure the accuracy and completeness of the data provided, however, inadvertent errors or omissions can still occur. Please bring any errors or omissions to the Region's attention.

"Please note a concerted effort has been made to ensure the accuracy and completeness of the data provided, however inadvertent errors or omissions can still occur. Please bring any errors or omissions to the Region's attention.

PM Peak 14:30-20	0:00				
	•	→	Ť	^	
Phase Number	1	2	6	8	
Movement	WBL	EBT	WBTL	NBL	
Lead/Lag	Lead	Lag			
Lead-Lag Optimize	Yes	Yes			
Recall Mode	None	C-Max	C-Max	None	
Maximum Split (s)	15.6	70.8	86.4	33.6	
Maximum Split (%)	13.0%	59.0%	72.0%	28.0%	
Minimum Split (s)	8	50	50	32	
Yellow Time (s)	3	4.2	4.2	3.7	
All-Red Time (s)	0	3	3	1.7	
Minimum Initial (s)	5	20	20	8	
Vehicle Extension (s)	3	3	3	3	
Minimum Gap (s)	3	3	3	3	
Time Before Reduce (s)	0	0	0	0	
Time To Reduce (s)	0	0	0	0	
Walk Time (s)		7	7	7	
Flash Dont Walk (s)		35	35	19	
Intersection Summary					
Cycle Length			120		·
Control Type	Actu	ated-Coo	rdinated		
Natural Cycle			100		


Splits and Phases: 256: 401 WB RAMP & HWY 2 (KINGSTON RD)

4	V ^p
6	8
BTL N	IBL
	one
70.4 39	9.6
1.0% 36.0	0%
	32
4.2	3.7
	1.7
20	8
3	3
3	3
0	0
0	0
7	7
35	19
110	
ated	
90	
	BTL N Max No 70.4 3 30.0% 36.1 50 4.2 3 20 3 3 0 0 7 35

*Please note a concerted effort has been made to ensure the accuracy and completeness of the data provided, however, inadvertent errors or omissions can still occur. Please bring any errors or omissions to the Region's attention.

Prepared for MacConsulting Peak OB:30 - 09:00 Name	Peak 06:30 - 09:00					ECTIO
Propared for Six Consulting Section Sectio	Propared for Six Consulting Section Sectio			Whites Ro	J. (RR 38)	and Hwy. 4
Peak 06:30 - 09:00 Namber	Peak 06:30 - 09:00 Namber			BA Consu	ıltina	
Number	Number			DA COIISC	liony	
Number 2 4 6	Number 2 4 6	M Peak	06:30 - 09			
NBT EBL SBT	NBT EBL SBT			Ť	<₽	ŧ
Jag Colmize Mode C.Max None C.Max Jag Colmize Mode C.Max None C.Max Jag Colmize Jag Colmiz	Jag Colmize Mode C.Max None C.Max Jag Colmize Mode C.Max None C.Max Jag Colmize Jag Colmiz	ase Numbe	M.	2	4	6
Mode	Mode	ovement ead/Lag		NBT	EBL	SBT
um Spit (s)	um Spit (s)	rad-Lag Opti	imize			
sum Spit (%)	sum Spit (%)	call Mode ximum Spli	it (s)	C-Max 63.8	None 46.2	C-Max 63.8
Time (a)	Time (a)	aximum Spli	it (%)	58.0%	42.0%	58.0%
Time (a)	Time (a)	nmum Spit blow Time (s	t (8) s)			
© Extension (s) 3 3 3 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	© Extension (s) 3 3 3 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Red Time ((5)	2.2		2.2
am Gap (s) 3 3 3 3 3 1	um Gap (s) 3 3 3 3 3 1	thicle Exten	ision (s)	3	3	3
The Company	The Company	nimum Gap	(5)	3	3	3
Doct Value (a) 14	Doct Value (a) 14 16 14 15 14 15 14 15 15 15	ne To Redu	ice (s)	0	0	0
Section Summary 110	Section Summary 110 17 17 17 17 17 17 1	alk Time (s) ish Dont Wa	alk (s)			
Type	Type	ersection St	ummary			440
Cycle	Cycle	strol Type		Actu	ated-Coo	rdinated
and Phases. 251 RR 38 (WHITES ROAD) 6 401 EB RAMP 20 (b) 20 (c) 2	and Phases. 251 RR 38 (WHITES ROAD) 8 401 EB RAMP 20 (b) 20 (c) 2	ral Cycle	1960) Deference	ad to obo	ro 2-MD1	
De (a) Peak 14:30 - 19:00 Number 2	De (a) Peak 14:30 - 19:00 Number 2					
Number 2	Number 2		ases: 251: F	VR 38 (WH	ITES RO	AD) & 401
Number	Number	1 Ø2 (R)				
Peak 14:30 - 19:00 Number	Peak 14:30 - 19:00 Number	05 (0)				
Number 2 4 6	Number 2 4 6	8.9				
Number 2 4 6	Number 2 4 6	Peak '	14:30 - 19			
New York	New York			†	*	ţ
July 2.00 C-Marx None C-Max Work St (1) 44 55 44 455 44 455 44 455 44 455 44 455 44 455 44 455 44 455 44 455 44 455 44 455 44 455 44 455 44 455 44 455 44 455 45 4	July 2.00 C-Marx None C-Max with Self (s) 44 55 44 with Self (s) 44 53 4 52 28 52 8 with Self (s) 44 53 4 52 28 52 8 52 8 52 8 52 8 52 8 52 8 5	ase Numbe	r.	2	- 4	. 6
April	Lag Cyclinize Model Mode	overnent ad/Lag		NBT	EBL	SBT
Model M	Model M	ad-Lag Opti	mize			
um Spit (s) 44 0% 56 0% 44 0% mm Spit (s) 28 29 28 75 mm (s) 45 3.7 4.5 5 75 mm (s) 4.5 4.5 5 mm (s) 4.5 3.7 4.5 5 mm (s)	um Spit (s) 44 0% 56 0% 44 0% mm Spit (s) 28 29 28 75 mm (s) 45 3.7 45 5 75 mm (s) 45 3.	call Mode:				
Filme (s)	Filme (s)	aximum Split	t (%)	44.0%	56.0%	44.0%
1 filme (s) 2.2 1.8 2.2 min Initial (s) 2.0 B 20 e Cotension (s) 3 3 3 3 min Sept (s) 4 16 14 ctcom Summary 100 ctcom S	1 filme (s) 2.2 1.8 2.2 min Initial (s) 2.0 B 20 e Cotension (s) 3 3 3 3 min Sept (s) 4 16 14 ctcom Summary 100 ctcom S	Mose Tirrae (s	15 C	4.5		4.5
Extension (s) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Extension (s) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Red Time ((8)	2.2	1.8	2.2
um Gap (s) 3 3 3 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	am Gap (s) 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	hicle Exten	I (5) sion (5)	3	3	3
To Reduce (a) 0 0 0 0 (mine) (b) 1	To Reduce (a) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	simum Gap	(5)	3		
Doct Visik (a)	Doct Visik (a)	ne To Redu			0	
ction Summary Length 100 Type	ction Summary Length 100 (F)pe Actualed-Coordinated 100 (F)pe Actualed-Coordinated 110 (F)pe	sik Time (s) ish Dont Wa	alk (s)	14		14
Type	Type	ersection Su	ammary			400
Cycle 10 10 10 10 10 10 10 1	Cycle 100	ntrol Type		Actua	ted-Coor	dinated
and Phases: 251: RR 38 (WHITES ROAD)/RR 38 (WHITES RO) 6 401 EB RAMP 22 (k) 25 (k) 26 (k) 26 (k) 27 (k) 28 (k) 29 (k) 20 (k) 20 (k) 20 (k) 20 (k) 20 (k) 21 (k) 22 (k) 23 (k) 24 (k) 24 (k) 25 (k) 26 (k) 27 (k) 28 (k) 29 (k) 28 (k) 29 (k) 29 (k) 20 (k) 21 (k) 22 (k) 23 (k) 24 (k) 25 (k) 26 (k) 27 (k) 28 (k) 29 (k) 29 (k) 20 (k) 20 (k) 20 (k) 20 (k) 20 (k) 20 (k) 21 (k) 22 (k) 23 (k) 24 (k) 25 (k) 26 (k) 27 (k) 28 (k) 29 (k) 29 (k) 20 (k) 20 (k) 20 (k) 20 (k) 21 (k) 22 (k) 23 (k) 24 (k) 25 (k) 26 (k) 27 (k) 27 (k) 28 (k) 29 (k) 29 (k) 20 (k) 20 (k) 20 (k) 21 (k) 22 (k) 23 (k) 24 (k) 25 (k) 26 (k) 26 (k) 27 (k) 28 (k) 29	and Phases: 251 RR 38 (WHITES ROAD)/RR 38 (WHITES RO) 6 401 EB RAMP 22 (k) 25 (k) 26 (k) 26 (k) 27 (k) 28 (k) 29 (k) 20 (k) 21 (k) 22 (k) 23 (k) 24 (k) 25 (k) 26 (k) 27 (k) 27 (k) 28 (k) 29 (k) 29 (k) 20 (k) 20 (k) 20 (k) 20 (k) 20 (k) 21 (k) 22 (k) 23 (k) 24 (k) 25 (k) 26 (k) 27 (k) 27 (k) 28 (k) 29 (ural Cycle set 8 (8%)	Referenced to	phase 2	NRT and	110 6 SRT Sta
Second Peak (8:00-21:00)	Second Peak (8:00-21:00)					
be (b) bekend Peak (8:00-21:00) Number	be (b) bekend Peak (8:00-21:00) Number		1905 Z31 N	n so juni	IES NU	DJINN 30 I
Number 2 4 6	Number 2 4 6	(BZ (N)				
Number 2 4 6	Number 2 4 6	D6 (R)				
Number 2 4 6	Number 2 4 6	akand	Deak (9-0	00.21-0	n)	
Number	Number	CENCIIG	T Can (o.c			1
ment NBT EBL SBT	ment NST EBL SST			- 1	4	+
Lag (Lag Optimize) Mode	Ling Ling Ling Ling Optimize Mode C Max None C Max um Spit (s) 455 60.5 49.5 um Spit (s) 45.9 5.0 5.40.6 um Spit (s) 45.9 5.0 5.40.6 um Spit (s) 45.9 7.45.4 Um (s) 45.3 7.45.5 Um (s) 45.3 8.3 8.3 Um (s) 45.3 8.	overnent	r .	NBT	FBI.	SBT
Mode	Mode	ad/Lag			Loc	
num Spit (s) 46 5 60.5 46 5 unn Spit (s) 45 00.5 46 95 unn Spit (s) 28 29 28 Unn Spit (s) 28 29 28 Unn Spit (s) 45 3.7 4.5 Unn Spit (s) 3 3 3 3 Unn Gap (s) 0 0 0 Unn Grade (s) 14 18 14 Unn Grade (s) 14 18 14 Unn Grade (s) 14 18 14 Unn Grade (s) 15 U	num Spit (s) 46 5 60.5 49 6 mum Spit (s) 45 0% 550.5 49 6 mum Spit (s) 28 29 28 mum Spit (s) 28 29 28 mum Spit (s) 28 29 28 mum Spit (s) 45 3.7 4.5 mum Spit (s) 45 3.7 4.5 mum Spit (s) 20 8 20 mum Spit (s) 20 0 0 mum Spit (s) 20 0 0 0 0 mum Spit (s) 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ecall Mode				
um Spit (s) 28 29 28 If time (s) 2, 2 1, 8 2, 2 If time (s) 2, 2 1, 8 2, 2 Um Initial (s) 20 8 20 Initial (s) 20 8 20 Initial (s) 3 3 3 Um Gap (s) 3 0 0 Um Control (s) 0 0 0 Um Control (s) 0 0 0 Um Control (s) 0 0 0 Um Control (s) 1 0 0 Um Control (s)	um Spit (s) 28 29 28 If time (s) 2, 2 1, 8 2, 2 If time (s) 2, 2 1, 8 2, 2 Um Initial (s) 20 8 20 Initial (s) 20 8 20 Initial (s) 3 3 3 Um Gap (s) 3 0 0 Um Control (s) 0 0 0 Um Control (s) 0 0 0 Um Control (s) 0 0 0 Um Control (s) 1 0 0 Um Control (s)	aximum Spli	it (s)			
** Time (s)	** Time (s)	nimum Split	t (s)	28	29	28
um Initial (s) 20 8 20 6 Extension (s) 3 3 3 3 am Gaip (s) 3 3 3 3 3 am Gaip (s) 3 3 3 3 3 am Gaip (s) 4 5 3 3 3 3 am Gaip (s) 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	um Initial (s) 20 8 20 6 Extension (s) 3 3 3 3 am Gaip (s) 3 3 3 3 3 am Gaip (s) 3 3 3 3 3 am Gaip (s) 4 5 3 3 3 3 am Gaip (s) 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	flow Time (Red Time)	8)	4.5		
am Gap (s) 3 3 3 8 Belletine Reduce (s) 0 0 0 0 To Reduce (s) 0 0 0 0 To Reduce (s) 7 7 7 Dont Walk (s) 14 15 14 Control (s) 15 15 15 15 15 15 15 15 15 15 15 15 15	am Gap (s) 3 3 3 8 Belletine Reduce (s) 0 0 0 0 To Reduce (s) 0 0 0 0 To Reduce (s) 7 7 7 Dont Walk (s) 14 15 14 Control (s) 15 15 15 15 15 15 15 15 15 15 15 15 15	inimum Initia	af (s)	20	8	20
To Readuse (a) 0 0 0 Time (b) 0 7 7 7 Time (b) 1 7 7 7 Toolt Walk (c) 14 18 14 Toolt Walk (c) 14 18 18 18 Toolt Walk (c) 14 18 18 18 Toolt Walk (c) 14 18 18 18 18 18 18 18 18 18 18 18 18 18	To Readuse (a) 0 0 0 Time (b) 0 7 7 7 Time (b) 17 7 7 7 Toolt Walk (c) 14 16 14 Tool Tool Tool Tool Tool Tool Tool Tool	micie Exteni mimum Gap	sion (s)	3		3
Dont Walk (s)	Dont Walk (s) 14 16 14 Social Sunnaray Length 110 I Type Actuated-Coordinated Coordinated Clycle 60 Let 2(22's), Referenced to phase 2:NBT and 6:SBT, Start of Green and Phases 251: RR 38 (WHITES RD) 6:HWY 401 EB RAMP 02 (N) 04 Social	ne Before R	Reduce (s)	0	0	0
cetion Summary 110 110 110 110 110 110 110 1	cetion Summary 110 Longth Actuated Cocordinated 10 (16) 10 (1	alk Time (s)	Lo (a)	7	7	7
Length 110 01 Tiple Actuated-Coordinated 6 10 Type 2 742 (27%), Referenced to phase 2 NBT and 6 SBT, Start of Creen and Phases 251 RR 38 (WHITES RD) 5 HWY 401 EB RAMP 02 (0) 03 (0) 05 E	Length 110 Of Type Actuated-Coordinated 6 of Cycle 2251, Referenced to phase 2 NBT and 6 SBT, Start of Creen and Phases 251 RR 38 (WHITES RD) 6 HWY 401 EB RAMP OZ (0)			14	16	14
CType	CType	vole Length	unmary			
1: 44.2 (22%). Referenced to phase 2:NBT and 6:SBT, Start of Green and Phases: 251 RR 38 (WHITES RD) & HWY 401 EB RAMP 02:(4) 03:04	1: 44.2 (22%). Referenced to phase 2:NBT and 6:SBT, Start of Green and Phases: 251 RR 38 (WHITES RD) 6:HWY 401 EB RAMP 02:(4) 03:05	ontrol Type		Actu	sted-Coo	rdinated
and Phases: 251: RR 38 (WHITES RD) & HWY 401 E8 RAMP	and Phases: 251: RR 38 (WHITES RD) & HWY 401 E8 RAMP	mrai Cycle feet 24,2 (2	22%), Reference	ced to pha	se 2 NB1	
02 (R) 04 60.5¢	02 (R) 0.5 g	its and Pho				
E 0.5E	E 0.51	torm:	201 F		- Las nL	
Ø6 (R)	06 (R)	1 02 pt)				_
		Ø6 (R)				

*Please note a concerted effort has been made to ensure the accuracy and completeness of the data provided, however, inadvertent errors or omissions can still occur. Please bring any errors or omissions to the Region's attention.

*Please note a concerted effort has been made to ensure the accuracy and completeness of the data provided, however, inadvertent errors or omissions can still occur. Please bring any errors or omissions to the Region's attention.

Appendix E: Synchro Analysis Worksheets

Existing AM Peak Hour

	-	•	•	←	4	1			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	^	7	ሻ	^	W				
Traffic Volume (veh/h)	620	5	0	815	5	0			
Future Volume (Veh/h)	620	5	0	815	5	0			
Sign Control	Free			Free	Stop				
Grade	0%			0%	0%				
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87			
Hourly flow rate (vph)	713	6	0	937	6	0			
Pedestrians					5				
Lane Width (m)					3.3				
Walking Speed (m/s)					1.2				
Percent Blockage					0				
Right turn flare (veh)									
Median type	None			None					
Median storage veh)									
Upstream signal (m)				153					
pX, platoon unblocked					0.91				
vC, conflicting volume			724		1186	362			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol			724		1000	362			
tC, single (s)			4.1		7.1	6.9			
tC, 2 stage (s)									
tF(s)			2.2		3.6	3.3			
p0 queue free %			100		97	100			
cM capacity (veh/h)			884		199	639			
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1		
Volume Total	356	356	6	0	468	468	6		
Volume Left	0	0	0	0	0	0	6		
Volume Right	0	0	6	0	0	0	0		
cSH	1700	1700	1700	1700	1700	1700	199		
Volume to Capacity	0.21	0.21	0.00	0.00	0.28	0.28	0.03		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.7		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	23.7		
Lane LOS	0.0	3.0	0.0	0.0	0.0	3.0	C		
Approach Delay (s)	0.0			0.0			23.7		
Approach LOS							С		
Intersection Summary									
Average Delay			0.1						
Intersection Capacity Utiliza	ation		32.5%	IC	CU Level	of Service		Α	
Analysis Period (min)			15						

Movement		•	-	\rightarrow	•	←	*	4	†	1	-	↓	4
Traffic Volume (vph) 30 525 10 15 740 65 0 0 5 95 5 120 Putture Volume (vph) 30 525 10 15 740 65 0 0 5 95 5 120 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 30 525 10 15 740 65 0 0 5 95 5 120 Putture Volume (vph) 30 525 10 15 740 65 0 0 5 95 5 120 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	Lane Configurations	*	∱ Ъ		ሻ	↑ 1>		ሻ	1₃		ሻ	1	
Ideal Flow (vphpl)	Traffic Volume (vph)	30	525	10	15	740	65	0		5	95	5	120
Lane Width 3.3 3.5 3.5 3.5 3.3 3.5 3.5 3.3 3.5 3.5	Future Volume (vph)	30	525	10	15	740	65	0	0	5	95	5	120
Total Lost time (s)	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor 1.00 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 Friph, pedibikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Frpb, ped/bikes	Total Lost time (s)	5.6	5.6		5.6	5.6			5.6		5.6	5.6	
Fipb, ped/bikes	Lane Util. Factor	1.00	0.95		1.00	0.95			1.00		1.00	1.00	
Fit Protected	Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Fit Protected 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00	Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Satd. Flow (prot) 1688 3426 1745 3420 1597 1694 1609	Frt	1.00	1.00		1.00	0.99			0.85		1.00	0.86	
Fit Permitted 0.30 1.00 0.42 1.00 1.00 0.75 1.00 Satd. Flow (perm) 526 3426 775 3420 1597 1344 1609 Peak-hour factor, PHF 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.8	Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	1.00	
Sattd. Flow (perm) 526 3426 775 3420 1597 1344 1609 Peak-hour factor, PHF 0.88 0.80 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Satd. Flow (prot)	1688	3426		1745	3420			1597		1694	1609	
Peak-hour factor, PHF	Flt Permitted	0.30	1.00		0.42	1.00			1.00		0.75	1.00	
Adj. Flow (vph) 34 597 11 17 841 74 0 0 6 6 108 6 136 RTOR Reduction (vph) 0 1 0 0 5 0 0 5 0 0 116 0 Cane Group Flow (vph) 34 607 0 17 910 0 0 1 0 108 26 0 CANE (#hr) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Satd. Flow (perm)	526	3426		775	3420			1597		1344	1609	
Adj. Flow (vph) 34 597 11 17 841 74 0 0 6 6 108 6 136 RTOR Reduction (vph) 0 1 0 0 5 0 0 5 0 0 116 0 Cane Group Flow (vph) 34 607 0 17 910 0 0 1 0 108 26 0 CANE (#hr) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
RTOR Reduction (vph) 0 1 0 0 5 0 0 5 0 0 116 0 1 10 108 26 0 Confl. Peds. (#hr) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5													
Lane Group Flow (vph) 34 607 0 17 910 0 0 1 0 18 26 0 Confl. Peds. (#hr) 5 5 5 Heavy Vehicles (%) 3% 4% 0% 0% 3% 1% 0% 0% 0% 3% 0% 0% Bus Blockages (#hr) 0 0 11 0 0 11 0 0 0 0 0 0 0 0 Turn Type Perm NA Perm NA Perm NA Perm NA Perm NA Perm NA Perm HA Perm NA													
Confi. Peds. (#/hr) 5		-		-	-		-	-		-	-		
Heavy Vehicles (%)			001	U	- 11	010		v		U	100	20	U
Bus Blockages (#/hr)			4%	0%	0%	3%		0%	0%	0%	3%	0%	0%
Turn Type											- , -		
Protected Phases 2 6 8 4 Permitted Phases 2 6 8 4 Actuated Green, G (s) 73.4 73.4 73.4 73.4 73.4 13.4 13.4 13.4 13.4 14.4 14.4 14.4 1													
Permitted Phases 2 6 8 4 Actuated Green, G (s) 73.4 73.4 73.4 73.4 73.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 1		1 01111						. 0					
Actuated Green, G (s) 73.4 73.4 73.4 73.4 13.4 13.4 13.4 14.4 14.4 14.4 14.4 1	Permitted Phases	2			6			8			4		
Effective Green, g (s) 74.4 74.4 74.4 74.4 14.4 14.4 14.4 14.4			73.4			73.4			13.4		13.4	13.4	
Actuated g/C Ratio 0.74 0.74 0.74 0.74 0.14 0.14 0.14 0.14 Clearance Time (s) 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.						74.4						14.4	
Clearance Time (s) 6.6 6.2 2 2.4 2.2 2.3 4.2		0.74	0.74		0.74	0.74			0.14		0.14	0.14	
Vehicle Extension (s) 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.56 0.11 Uniformedial Delay, d1 3.5 4.0 3.4 4.5 36.7 39.8 37.2 2 3.0 3.0 3.0 3.0 3.0 3.0 0.0 0.0 3.5 0.2 3.0 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.					6.6							6.6	
Lane Grp Cap (vph) 391 2548 576 2544 229 193 231 v/s Ratio Prot 0.18 c0.27 0.00 0.02 v/s Ratio Prot 0.06 0.02 c0.08 v/s Ratio Prot 0.06 0.02 c0.08 v/s Ratio Prot 0.06 0.09 0.24 0.03 0.36 0.00 0.56 0.11 Uniform Delay, d1 3.5 4.0 3.4 4.5 36.7 39.8 37.2 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		3.0	3.0		3.0	3.0			3.0		3.0	3.0	
v/s Ratio Prot 0.18 c0.27 0.00 0.02 v/s Ratio Perm 0.06 0.02 c0.08 v/c Ratio 0.09 0.24 0.03 0.36 0.00 0.56 0.11 Uniform Delay, d1 3.5 4.0 3.4 4.5 36.7 39.8 37.2 Progression Factor 1.00 3.5 0.2 2.00 2.00 3.9 4.2 3.4 4.9 36.7 43.3 37.4 4.00 A.00 A.00 A.00		391	2548		576	2544			229		193	231	
v/s Ratio Perm 0.06 0.02 c0.08 v/c Ratio 0.09 0.24 0.03 0.36 0.00 0.56 0.11 Uniform Delay, d1 3.5 4.0 3.4 4.5 36.7 39.8 37.2 Progression Factor 1.00		001			0.0						100		
v/c Ratio 0.09 0.24 0.03 0.36 0.00 0.56 0.11 Uniform Delay, d1 3.5 4.0 3.4 4.5 36.7 39.8 37.2 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.4 0.2 0.1 0.4 0.0 3.5 0.2 Delay (s) 3.9 4.2 3.4 4.9 36.7 43.3 37.4 Level of Service A A A A D D D Approach LOS 4.2 4.8 36.7 40.0 A A A D D D Intersection Summary HCM 2000 Control Delay 9.5 HCM 2000 Level of Service A A A A A A A A A A B A B A B A B B A B B B B		0.06	0.10		0.02	00.21			0.00		c0.08	0.02	
Uniform Delay, d1 3.5 4.0 3.4 4.5 36.7 39.8 37.2 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			0.24			0.36			0.00			0.11	
Progression Factor 1.00 3.5 0.2 2 2 2.2 2.3 4.2 4.8 36.7 40.0 40.0 Approach LOS A A A D A A D D <td></td>													
Incremental Delay, d2													
Delay (s) 3.9 4.2 3.4 4.9 36.7 43.3 37.4 Level of Service A A A A D D D Approach Delay (s) 4.2 4.8 36.7 40.0 Approach LOS A A D D Intersection Summary HCM 2000 Control Delay 9.5 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.39 Actuated Cycle Length (s) 100.0 Sum of lost time (s) 11.2 Intersection Capacity Utilization 46.2% ICU Level of Service A Analysis Period (min) 15													
Level of Service A A A A D D D Approach Delay (s) 4.2 4.8 36.7 40.0 Approach LOS A A D D Intersection Summary HCM 2000 Control Delay 9.5 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.39 Actuated Cycle Length (s) 100.0 Sum of lost time (s) 11.2 Intersection Capacity Utilization 46.2% ICU Level of Service A Analysis Period (min) 15													
Approach Delay (s) 4.2 4.8 36.7 40.0 Approach LOS A A D D Intersection Summary HCM 2000 Control Delay 9.5 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.39													
Approach LOS A A D D Intersection Summary 9.5 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.39 Actuated Cycle Length (s) 100.0 Sum of lost time (s) 11.2 Intersection Capacity Utilization 46.2% ICU Level of Service A Analysis Period (min) 15		- / /			/ (_	
HCM 2000 Control Delay 9.5 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.39 Actuated Cycle Length (s) 100.0 Sum of lost time (s) 11.2 Intersection Capacity Utilization 46.2% ICU Level of Service A Analysis Period (min) 15													
HCM 2000 Control Delay 9.5 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.39 Actuated Cycle Length (s) 100.0 Sum of lost time (s) 11.2 Intersection Capacity Utilization 46.2% ICU Level of Service A Analysis Period (min) 15	Intersection Summary												
HCM 2000 Volume to Capacity ratio 0.39 Actuated Cycle Length (s) 100.0 Sum of lost time (s) 11.2 Intersection Capacity Utilization 46.2% ICU Level of Service A Analysis Period (min) 15 ICU Level of Service A				9.5	ш	CM 2000	Level of	Service		Δ			
Actuated Cycle Length (s) 100.0 Sum of lost time (s) 11.2 Intersection Capacity Utilization 46.2% ICU Level of Service A Analysis Period (min) 15		city ratio			П	ON 2000	LGACI OI	OCI VICE		А			
Intersection Capacity Utilization 46.2% ICU Level of Service A Analysis Period (min) 15		iony rano			0	um of lost	time (c)			11.2			
Analysis Period (min) 15		ation											
		20011			ic	O LOVOI (J. 361 VICE	,		Λ			
				10									

Synchro 10 Report EXAM.syn

70 300

1900 1900

3.3

2.0 6.0

1 00

1.00

1.00

0.95

1675

0.34

594 3400

0.91

0

77 330

15

0

5

42.9

0.37

3.0

269 1122

0.01

0.29

24.9

0.81

pm+pt

EBT

3.5

0.95

1.00

1.00

1 00

1.00

3400

1.00

0.91

0

NA

38.6 38.6

39.6

0.33

3.0

0.10

0.29

29.8

0.82

0.6

25.0

24.5

С

350

1900

3.3 3.3

6.0

1 00

1.00

1.00 0.95

1505

1.00

0.91 0.91

127

258

5

0 0

39.6 50.4

0.33

3.0

496

0.52

32.5 28.1

0.65

3.8

24.8

29.1

0.63

15

102.5%

Perm pm+pt

295

1900

2.0

1 00

1.00

1692

0.49

875 3466

324

49.4

0.42 0.36

3.0

427 1244

c0.06 c0.18

0.26

0.76

1.00

35.6

5

WBT

565

1900

3.5

6.0 6.0

0.95

1.00

1.00

1.00

3466

1.00

0.91

621 390

621

Λ

NA Perm pm+pt

42.1 42.1

43.1

3.0

0.50 0.37

30.0

1.00

31.5

32.2

6

355

1900

3.3

1 00

1.00

0.85

1.00

1490

1.00

1490

0.91

190

200

43.1

0.36

3.0

535

28.5

1.00

20

30.5

HCM 2000 Level of Service

Sum of lost time (s)

ICU Level of Service

15

155 440

1900

3.3

2.0

100 091

1.00

1.00

1 00

1.00

1818 5079

0.13

238 5079

0.91

170

10

56.2

57.5

0.48

3.0

265

c0.06

0.25

0.64

18.0

1.00

5.2

23.2

1900

3.5

6.1

1.00 0.98

1.00

1.00 0.85

1.00

1.00

0.91

484

484

45.7

46.7

0.39

7.1

3.0

1976

0.10

0.24

24.7

1.00

0.3

25.0

23.7

С

435

1900

3.3

2.0

1 00

1.00

1.00 0.95

1456

1.00 0.47

1456

0.91

172

306

53.5

0.46

3.0

3.0

673

0.03

0.45

22.0 20.8

1.00

0.5 0.6

22.4

G

NA pm+ov

15

150 1205

1900

3.3

2.0

1 00 0 91

1.00

1.00

1 00

1722

845 5079

0.91

165 1324

165 1324

15

Λ

50.8

52.8

0.44

3.0

3.0

436 1862

0.03 c0.26

0.38

1.00

21.4

Movement

Lane Configurations

Traffic Volume (vph)

Lane Width

Future Volume (vph)

Ideal Flow (vphpl)

Total Lost time (s)

Lane Util. Factor

Frpb, ped/bikes

Flpb, ped/bikes

Flt Protected

Flt Permitted

Satd. Flow (prot)

Satd. Flow (perm)

Adj. Flow (vph)

Peak-hour factor, PHF

RTOR Reduction (vph)

Lane Group Flow (vph)

Confl. Peds. (#/hr)

Protected Phases

Permitted Phases

Actuated Green, G (s) Effective Green, g (s)

Actuated g/C Ratio

Clearance Time (s)

Lane Grp Cap (vph)

v/s Ratio Prot

v/c Ratio

Delay (s) Level of Service Approach Delay (s)

v/s Ratio Perm

Uniform Delay, d1

Progression Factor

Approach LOS

Incremental Delay, d2

Intersection Summary
HCM 2000 Control Delay

Actuated Cycle Length (s)

Analysis Period (min)

c Critical Lane Group

Intersection Capacity Utilization

HCM 2000 Volume to Capacity ratio

Vehicle Extension (s)

Turn Type

Heavy Vehicles (%)

Bus Blockages (#/hr)

Frt

1900

3.5

6.1

1.00 1.00

1.00

1.00

5079 1488

1.00 1.00

0.91

0 75

Λ

NA Perm

43.0 43.0

44.0 44.0

0.37 0.37

7.1

3.0 3.0

0.71 0.09

32.6 24.9

1.00 1.00

2.3 0.3

34.9 25.3

32.8

С

115

1900

3.3

6.1

1 00

0.98

0.85

1.00

1488

0.91

51

10

7.1

545

0.03

		-	*	₩.	-	_	7	- 1		*	*	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	∱ }		7	ħβ		ሻ	1>		ሻ	1>	
Traffic Volume (vph)	40	575	5	30	775	30	5	0	20	125	0	35
Future Volume (vph)	40	575	5	30	775	30	5	0	20	125	0	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.3	5.3		2.0	5.3		5.7	5.7		5.7	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.98		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	0.99		1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1671	3429		1631	3475		1454	1560		1675	1521	
Flt Permitted	0.30	1.00		0.36	1.00		0.73	1.00		0.74	1.00	
Satd. Flow (perm)	531	3429		622	3475		1118	1560		1308	1521	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	47	676	6	35	912	35	6	0	24	147	0	41
RTOR Reduction (vph)	0	0	0	0	1	0	0	20	0	0	34	0
Lane Group Flow (vph)	47	682	0	35	946	0	6	4	0	147	7	0
Confl. Peds. (#/hr)	5					5			10	10		
Heavy Vehicles (%)	4%	4%	0%	7%	2%	3%	20%	0%	0%	3%	0%	5%
Bus Blockages (#/hr)	0	0	0	0	0	13	0	0	0	0	0	0
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	80.2	80.2		87.2	87.2		19.8	19.8		19.8	19.8	
Effective Green, g (s)	81.2	81.2		88.2	88.2		20.8	20.8		20.8	20.8	
Actuated g/C Ratio	0.68	0.68		0.74	0.74		0.17	0.17		0.17	0.17	
Clearance Time (s)	6.3	6.3		3.0	6.3		6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	359	2320		499	2554		193	270		226	263	
v/s Ratio Prot		0.20		0.00	c0.27			0.00			0.00	
v/s Ratio Perm	0.09			0.05			0.01			c0.11		
v/c Ratio	0.13	0.29		0.07	0.37		0.03	0.02		0.65	0.03	
Uniform Delay, d1	6.9	7.8		4.5	5.8		41.2	41.1		46.2	41.2	
Progression Factor	1.00	1.00		0.78	0.71		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.8	0.3		0.1	0.4		0.1	0.0		6.5	0.0	
Delay (s)	7.6	8.2		3.5	4.5		41.3	41.1		52.8	41.2	
Level of Service	Α	Α		Α	Α		D	D		D	D	
Approach Delay (s)		8.1			4.4			41.2			50.2	
Approach LOS		Α			Α			D			D	
Intersection Summary												
HCM 2000 Control Delay			10.9	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.43									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			13.0			
Intersection Capacity Utiliza	tion		56.0%	IC	CU Level	of Service)		В			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis

3: Site Access (East)/Steeple Hill & Kingston Road

 Whites / Kingston SW
 Synchro 10 Report

 BA Group - TCS
 EXAM.syn

Whites / Kingston SW BA Group - TCS Synchro 10 Report EXAM.syn

Existing AM Peak Hour

Existing	AM	Peak	Hou
----------	----	------	-----

	1	•	†	1	-	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
ane Configurations		7	^	#	*	414		
Fraffic Volume (vph)	95	315	590	80	465	510		
uture Volume (vph)	95	315	590	80	465	510		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
ane Width	3.3	3.3	3.5	3.3	3.3	3.5		
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	0.95	1.00	0.91	0.91		
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.99		
Satd. Flow (prot)	1662	1516	3500	1476	1542	3308		
Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.99		
Satd. Flow (perm)	1662	1516	3500	1476	1542	3308		
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91		
Adj. Flow (vph)	104	346	648	88	511	560		
RTOR Reduction (vph)	0	41	040	54	0	0		
Lane Group Flow (vph)	104	305	648	34	347	724		
Confl. Peds. (#/hr)	101	000	0-10	5	5	724		
Heavy Vehicles (%)	5%	3%	2%	4%	3%	2%		
Turn Type	Perm	pm+ov	NA	Perm	Split	NA		
Protected Phases	1 61111	2	5	1 Cilli	2	2		
Permitted Phases	8	8	J	5	2	2		
Actuated Green, G (s)	12.4	63.1	26.5	26.5	50.7	50.7		
Effective Green, g (s)	13.4	65.1	27.5	27.5	51.7	51.7		
Actuated g/C Ratio	0.12	0.59	0.25	0.25	0.47	0.47		
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
	202	979	875	369	724	1554		
Lane Grp Cap (vph) v/s Ratio Prot	202	0.15	c0.19	309	c0.23	0.22		
v/s Ratio Prot v/s Ratio Perm	c0.06	0.15	CU. 19	0.02	00.23	U.ZZ		
v/c Ratio	0.51	0.05	0.74	0.02	0.48	0.47		
Uniform Delay, d1	45.3	11.2	38.0	31.7	19.9	19.8		
Progression Factor	1.00	1.00	1.00	1.00	1,11	1,11		
Incremental Delay, d2	2.2	0.2	3.4	0.1	2.2	1.11		
Delay (s)	47.5	11.4	41.4	31.8	24.4	22.9		
Level of Service	47.5 D	11.4 B	41.4 D	31.0 C	24.4 C	22.9 C		
Approach Delay (s)	19.7	В	40.2	U	U	23.4		
Approach Delay (s) Approach LOS	19.7 B		40.2 D			23.4 C		
••	В		Ŋ			U		
ntersection Summary								
HCM 2000 Control Delay			28.2	Н	CM 2000	Level of Servi	ce	С
HCM 2000 Volume to Capa	acity ratio		0.57					
Actuated Cycle Length (s)			110.0		um of lost			18.4
Intersection Capacity Utiliza	ation		57.8%	IC	CU Level of	of Service		В
Analysis Period (min)			15					
Critical Lane Group								

Intersection Capacity Utilization	57.8%	ICU Level of Service	В
Analysis Period (min)	15		
c Critical Lane Group			

J. Highway +01 W	D OII-I (c	лпр с	ranga	.011 110	au			Exioting 7 tivi 1 call 1 loa
	-	\rightarrow	•	←	4	<i>></i>		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	† 19		Ť	^	ሻሻ	7		
Traffic Volume (vph)	805	5	335	590	540	85		
Future Volume (vph)	805	5	335	590	540	85		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.5	3.5	3.3	3.5	3.3	3.3		
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4		
Lane Util, Factor	0.95		1.00	0.95	0.97	1.00		
Frt	1.00		1.00	1.00	1.00	0.85		
Flt Protected	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3425		1711	3500	3286	1531		
Flt Permitted	1.00		0.21	1.00	0.95	1.00		
Satd. Flow (perm)	3425		369	3500	3286	1531		
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87		
Adj. Flow (vph)	925	6	385	678	621	98		
RTOR Reduction (vph)	1	0	0	0	0	29		
Lane Group Flow (vph)	930	0	385	678	621	69		
Heavy Vehicles (%)	4%	25%	2%	2%	3%	2%		
Turn Type	NA		pm+pt	NA	Prot	Perm		
Protected Phases	2		1	6	8	1 01111		
Permitted Phases			6			8		
Actuated Green, G (s)	55.7		79.1	79.1	28.3	28.3		
Effective Green, g (s)	56.7		80.1	80.1	29.3	29.3		
Actuated g/C Ratio	0.47		0.67	0.67	0.24	0.24		
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4		
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	1618		485	2336	802	373		
v/s Ratio Prot	c0.27		c0.14	0.19	c0.19	373		
v/s Ratio Perm	00.21		0.39	0.13	CO. 13	0.05		
v/c Ratio	0.58		0.79	0.29	0.77	0.03		
Uniform Delay, d1	22.9		14.8	8.2	42.3	35.9		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
Incremental Delay, d2	1.5		8.7	0.3	4.7	0.2		
Delay (s)	24.4		23.5	8.5	47.0	36.1		
Level of Service	24.4 C		23.5 C	6.5 A	47.0 D	D D		
Approach Delay (s)	24.4		C	13.9	45.5	D		
Approach LOS	24.4 C			13.9 B	45.5 D			
	C			Б	D			
Intersection Summary								
HCM 2000 Control Delay			25.9	H	CM 2000	Level of Service	ce C	
HCM 2000 Volume to Capa	acity ratio		0.67					
Actuated Cycle Length (s)			120.0		um of lost		12.6	
Intersection Capacity Utiliza	ation		68.5%	IC	U Level of	of Service	С	
Analysis Period (min)			15					

c Critical Lane Group

Synchro 10 Report

EXAM.syn

	•	•	1	†	Į.	✓		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ħ₩	7		^	^			
Traffic Volume (vph)	595	350	0	905	625	0		
Future Volume (vph)	595	350	0	905	625	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.3	3.3	3.5	3.5	3.5	3.5		
Total Lost time (s)	4.5	4.5		5.7	5.7			
Lane Util. Factor	0.97	0.91		0.95	0.95			
Frpb, ped/bikes	1.00	1.00		1.00	1.00			
Flpb, ped/bikes	1.00	1.00		1.00	1.00			
Frt	0.99	0.85		1.00	1.00			
Flt Protected	0.96	1.00		1.00	1.00			
Satd. Flow (prot)	3295	1379		3570	3570			
Flt Permitted	0.96	1.00		1.00	1.00			
Satd. Flow (perm)	3295	1379		3570	3570			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	626	368	0.00	953	658	0.50		
RTOR Reduction (vph)	8	151	0	0	0	0		
Lane Group Flow (vph)	677	158	0	953	658	0		
Confl. Peds. (#/hr)	011	100	5	000	000	5		
Heavy Vehicles (%)	2%	3%	0%	0%	0%	0%		
Turn Type	Prot	Perm		NA	NA			
Protected Phases	4	1 01111		2	6			
Permitted Phases	-	4		_	0			
Actuated Green, G (s)	29.1	29.1		68.7	68.7			
Effective Green, g (s)	30.1	30.1		69.7	69.7			
Actuated g/C Ratio	0.27	0.27		0.63	0.63			
Clearance Time (s)	5.5	5.5		6.7	6.7			
Vehicle Extension (s)	3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)	901	377		2262	2262			
v/s Ratio Prot	c0.21	011		c0.27	0.18			
v/s Ratio Perm	00.21	0.11		00.21	0.10			
v/c Ratio	0.75	0.42		0.42	0.29			
Uniform Delay, d1	36.5	32.8		10.1	9.1			
Progression Factor	1.00	1.00		0.35	1.00			
Incremental Delay, d2	3.6	0.8		0.5	0.3			
Delay (s)	40.1	33.5		4.0	9.4			
Level of Service	D	C		Α.	A			
Approach Delay (s)	38.1			4.0	9.4			
Approach LOS	D			A	A			
Intersection Summary								
HCM 2000 Control Delay			18.4	Н	CM 2000	Level of Service	В	
HCM 2000 Volume to Capa	city ratio		0.52		J.VI 2000	20.0101001100		
Actuated Cycle Length (s)	ony radio		110.0	S	um of lost	time (s)	10.2	
Intersection Capacity Utiliza	ition		54.2%			of Service	A	
Analysis Period (min)			15	- 10			•	
c Critical Lane Group			.,					

	→	-	*	1	←	*	4	†	1	-	ļ.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	*	^	7	7	^	7	75	1>		7	1>	
Traffic Volume (vph)	130	745	10	20	1000	110	25	0	15	50	5	190
Future Volume (vph)	130	745	10	20	1000	110	25	0	15	50	5	190
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.9	5.9	5.6	5.6		5.3	5.3	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.97	1.00	0.98		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1733	3433	1548	1621	3466	1533	1785	1467		1758	1559	
Flt Permitted	0.19	1.00	1.00	0.32	1.00	1.00	0.32	1.00		0.75	1.00	
Satd. Flow (perm)	340	3433	1548	541	3466	1533	606	1467		1380	1559	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	157	898	12	24	1205	133	30	0.00	18	60	6	229
RTOR Reduction (vph)	0	0.00	3	0	0	34	0	16	0	0	164	(
Lane Group Flow (vph)	157	898	9	24	1205	99	30	2	0	60	71	(
Confl. Peds. (#/hr)	5	030	5	5	1200	5	30		5	5	7.1	,
Heavy Vehicles (%)	3%	4%	0%	10%	3%	1%	0%	0%	7%	1%	0%	3%
		NA	Perm		NA	Perm	Perm	NA	1 /0	Perm	NA	3/
Turn Type	pm+pt		Pellii	pm+pt	NA 6	Perm	Perm			Pellii	NA 4	
Protected Phases	5	2	0	1	Ö	0	0	8		4	4	
Permitted Phases	2 85.1	78.5	78.5	6 77.1	73.5	6 73.5	8 11.4	11.4		4 11.7	11.7	
Actuated Green, G (s)												
Effective Green, g (s)	86.1	79.5	79.5	79.1	74.5	74.5	12.4	12.4		12.7	12.7	
Actuated g/C Ratio	0.78	0.72	0.72	0.72	0.68	0.68	0.11	0.11		0.12	0.12	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.6	6.6		6.3	6.3	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	387	2481	1118	434	2347	1038	68	165		159	179	
v/s Ratio Prot	c0.04	0.26		0.00	c0.35			0.00			0.05	
v/s Ratio Perm	0.28		0.01	0.04		0.06	c0.05			0.04		
v/c Ratio	0.41	0.36	0.01	0.06	0.51	0.10	0.44	0.01		0.38	0.40	
Uniform Delay, d1	4.6	5.7	4.3	4.4	8.8	6.1	45.6	43.4		45.0	45.1	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.7	0.4	0.0	0.1	0.8	0.2	4.5	0.0		1.5	1.5	
Delay (s)	5.3	6.1	4.3	4.5	9.6	6.3	50.1	43.4		46.5	46.6	
Level of Service	Α	Α	Α	Α	Α	Α	D	D		D	D	
Approach Delay (s)		6.0			9.2			47.6			46.6	
Approach LOS		Α			Α			D			D	
Intersection Summary												
HCM 2000 Control Delay			12.6	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.49									
Actuated Cycle Length (s)			110.0		um of los				13.5			
Intersection Capacity Utiliz	ation		69.3%	IC	CU Level	of Service)		С			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	\rightarrow	*	1	-	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	^	7	ሻ	^	W				
Traffic Volume (veh/h)	1365	40	10	965	10	20			
Future Volume (Veh/h)	1365	40	10	965	10	20			
Sign Control	Free			Free	Stop				
Grade	0%			0%	0%				
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96			
Hourly flow rate (vph)	1422	42	10	1005	10	21			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None			None					
Median storage veh)									
Upstream signal (m)				153					
pX, platoon unblocked					0.87				
vC, conflicting volume			1464		1944	711			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol			1464		1786	711			
tC, single (s)			4.1		6.8	7.0			
tC, 2 stage (s)									
tF (s)			2.2		3.5	3.3			
p0 queue free %			98		84	94			
cM capacity (veh/h)			467		63	369			
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1		
Volume Total	711	711	42	10	502	502	31		
Volume Left	0	0	0	10	0	0	10		
Volume Right	0	0	42	0	0	0	21		
cSH	1700	1700	1700	467	1700	1700	144		
Volume to Capacity	0.42	0.42	0.02	0.02	0.30	0.30	0.22		
Queue Length 95th (m)	0.0	0.0	0.0	0.5	0.0	0.0	6.2		
Control Delay (s)	0.0	0.0	0.0	12.9	0.0	0.0	36.7		
Lane LOS				В			Е		
Approach Delay (s)	0.0			0.1			36.7		
Approach LOS							Е		
Intersection Summary									
Average Delay			0.5						
Intersection Capacity Utilizat	ion		47.7%	IC	CU Level	of Service		Α	
Analysis Period (min)			15						

Synchro 10 Report EXPM.syn Whites / Kingston SW BA Group - TCS

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

Existing PM Peak Hour

	*	-	*	1	←	*	1	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
ane Configurations	1	† î>		ň	† }		ň	î»		7	î»	
Fraffic Volume (vph)	130	1330	5	5	900	70	5	5	15	60	0	7
Future Volume (vph)	130	1330	5	5	900	70	5	5	15	60	0	7
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	190
ane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3
Total Lost time (s)	5.4	5.4		5.4	5.4		5.2	5.2		5.2	5.2	
ane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
rpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	0.98	
Ipb, ped/bikes	0.99	1.00		1.00	1.00		0.99	1.00		1.00	1.00	
rt	1.00	1.00		1.00	0.99		1.00	0.89		1.00	0.85	
It Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1733	3533		1745	3486		1732	1664		1745	1549	
It Permitted	0.27	1.00		0.17	1.00		0.71	1.00		0.74	1.00	
Satd. Flow (perm)	485	3533		306	3486		1292	1664		1366	1549	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.
Adj. Flow (vph)	138	1415	5	5	957	74	5	5	16	64	0.54	0.
RTOR Reduction (vph)	0	0	0	0	3	0	0	14	0	04	67	
ane Group Flow (vph)	138	1420	0	5	1028	0	5	7	0	64	7	
Confl. Peds. (#/hr)	10	1420	U	J.	1020	10	5	- 1	U	04	ı	
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	1
Bus Blockages (#/hr)	0 %	0	11	0 /0	0	11	0 /0	0 %	0 /0	0 /6	0 /6	
		NA	- 11		NA	- 11		NA	U		NA	
Furn Type	Perm			Perm			Perm			Perm		
Protected Phases	0	2		0	6		0	8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	78.5	78.5		78.5	78.5		8.9	8.9		8.9	8.9	
Effective Green, g (s)	79.5	79.5		79.5	79.5		9.9	9.9		9.9	9.9	
Actuated g/C Ratio	0.80	0.80		0.80	0.80		0.10	0.10		0.10	0.10	
Clearance Time (s)	6.4	6.4		6.4	6.4		6.2	6.2		6.2	6.2	
/ehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
ane Grp Cap (vph)	385	2808		243	2771		127	164		135	153	
/s Ratio Prot		c0.40			0.29			0.00			0.00	
/s Ratio Perm	0.28			0.02			0.00			c0.05		
/c Ratio	0.36	0.51		0.02	0.37		0.04	0.04		0.47	0.05	
Jniform Delay, d1	2.9	3.5		2.1	3.0		40.7	40.8		42.6	40.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
ncremental Delay, d2	2.6	0.7		0.2	0.4		0.1	0.1		2.6	0.1	
Delay (s)	5.5	4.2		2.3	3.4		40.9	40.9		45.2	40.9	
evel of Service	Α	Α		Α	Α		D	D		D	D	
Approach Delay (s)		4.3			3.4			40.9			42.9	
Approach LOS		Α			Α			D			D	
ntersection Summary												
HCM 2000 Control Delay			6.2	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.50									
Actuated Cycle Length (s)			100.0	Sı	um of lost	time (s)			10.6			
ntersection Capacity Utiliza	tion		77.7%		U Level				D			
Analysis Period (min)			15									
: Critical Lane Group												

Intersection Summary				
HCM 2000 Control Delay	6.2	HCM 2000 Level of Service	A	
HCM 2000 Volume to Capacity ratio	0.50			
Actuated Cycle Length (s)	100.0	Sum of lost time (s)	10.6	
Intersection Capacity Utilization	77.7%	ICU Level of Service	D	
Analysis Period (min)	15			
0.31. 11. 0				

Whites / Kingston SW BA Group - TCS

Synchro 10 Report EXPM.syn

5

79

55

10

Perm

7.1

3.0

0.5

1688

32.5 28.5 **HCM Signalized Intersection Capacity Analysis**

Approdon Loo		/ \		_
Intersection Summary				
HCM 2000 Control Delay	20.0	HCM 2000 Level of Service	В	
HCM 2000 Volume to Capacity ratio	0.69			
Actuated Cycle Length (s)	120.0	Sum of lost time (s)	13.0	
Intersection Capacity Utilization	90.5%	ICU Level of Service	E	
Analysis Period (min)	15			
c Critical Lane Group				

Whites / Kingston SW Synchro 10 Report BA Group - TCS EXPM.syn Whites / Kingston SW Synchro 10 Report BA Group - TCS EXPM.svn

Movement EBT

WBT Lane Configurations Traffic Volume (vph) 230 Future Volume (vph) 195 1000 395 255 735 545 230 955 740 190 730 130 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Lane Width 3.3 3.5 3.3 3.3 3.5 3.3 3.3 3.5 3.3 3.3 3.5 3.3 Total Lost time (s) 2.0 6.0 6.0 2.0 6.0 6.0 2.0 6.1 2.0 2.0 6.1 6.1 Lane Util. Factor 1 00 0.95 1 00 1 00 0.95 1 00 1 00 0.91 1 00 1 00 0.91 1.00 Frpb, ped/bikes 1.00 1.00 1.00 0.98 0.98 Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 00 0.85 1 00 1 00 0.85 1 00 1 00 0.85 Flt Protected 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1742 Satd. Flow (prot) 3535 1527 1727 3535 1512 1744 5079 1514 1744 5129 1459 Flt Permitted 0.28 1.00 1.00 0.10 1.00 1.00 0.27 1.00 1.00 0.19 1.00 1.00 Satd. Flow (perm) 509 3535 3535 1512 496 5079 1514 349 5129 1459 Peak-hour factor, PHF 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 Adj. Flow (vph) 562 237 763 753

RTOR Reduction (vph) 0 125 118 109 0 111 Lane Group Flow (vph) 201 1031 282 263 758 237 985 654 196 753 Confl. Peds. (#/hr) 20 10 10 20 10 20 20 Heavy Vehicles (%) Bus Blockages (#/hr) 0 Λ 0 Λ Λ Λ 0 Λ Λ Turn Type pm+pt NA Perm pm+pt NA Perm pm+pt NA pm+ov NA

Permitted Phases 47.9 38.9 38.9 56.6 44.6 44.6 47.5 39.7 54.4 45.1 38.5 38.5 Actuated Green, G (s) Effective Green, g (s) 39.9 39.9 57.6 45.6 45.6 49.5 40.7 56.4 47.1 39.5 39.5 Actuated g/C Ratio 0.42 0.33 0.33 0.48 0.38 0.38 0.41 0.34 0.47 0.39 0.33 0.33 Clearance Time (s) 7.1 3.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

1343

31.1

574

42.4

41.1

33.9

46.9

57.2

6

Lane Grp Cap (vph) 314 1175 286 296 1722 711 225 480 v/s Ratio Prot 0.05 0.12 0.21 0.19 c0.12 c0.06 0.15 c0.29 c0.06 v/s Ratio Perm 0.32 0.27 0.31 v/c Ratio 0.64 0.88 0.56 0.92 0.56 0.77 0.80 0.57 0.92 0.87 0.45 0.11 23.7 32.7 26.8 32.5 29.7 Uniform Delay, d1 37.7 32.8 34.0 29.4 28.5 31.6 28.1 Progression Factor 0.79 0.76 0.54 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 3.5 76 34 32.5 97 143 17.2 28.7 0.9

66.5

507

21.0

36.4

D

22.3

Approach Delay (s) 30.8 41.0 39.8 36.5 Approach LOS D D D Intersection Summary HCM 2000 Control Delay 37.2 HCM 2000 Level of Service D

HCM 2000 Volume to Capacity ratio 0.90 120.0 Actuated Cycle Length (s) Sum of lost time (s) Intersection Capacity Utilization 104.5% ICU Level of Service G Analysis Period (min) 15

c Critical Lane Group

Protected Phases

Delay (s)

Level of Service

c Critical Lane Group

Existing PM Peak Hour Movement SBT Lane Configurations 410 Traffic Volume (vph) Future Volume (vph) 195 640 475 205 935 410 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Width 3.3 3.3 3.5 3.3 3.3 3.5 Total Lost time (s) 5.4 6.0 6.0 6.0 6.0 6.0 Lane Util. Factor 1.00 1.00 0.95 1.00 0.91 0.91 Frpb, ped/bikes 1.00 1.00 1.00 Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1 00 1.00 Flt Protected 0.95 1.00 1.00 1.00 0.95 0.97 Satd. Flow (prot) 1745 1546 1572 3298 3535 1527 Flt Permitted 0.97 0.95 1.00 1.00 1.00 0.95 Satd. Flow (perm) 1745 1546 1527 1572 3298 Peak-hour factor, PHF 0.90 0.90 0.90 0.90 0.90 0.90 Adj. Flow (vph) 528 RTOR Reduction (vph) 52 170 Lane Group Flow (vph) 217 659 528 519 976 58 Confl. Peds. (#/hr) 10 10 Heavy Vehicles (%) Turn Type Perm pm+ov NA Perm Split Protected Phases Permitted Phases 8 Actuated Green, G (s) 18.9 65.7 23.9 23.9 46.8 46.8 Effective Green, g (s) 19.9 67.7 24.9 24.9 47.8 47.8 Actuated g/C Ratio 0.62 0.23 0.23 0.43 0.43 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 315 1035 800 345 683 1433 0.30 v/s Ratio Prot c0.28 c0.15 c0.33 v/s Ratio Perm 0.12 0.04 0.15 v/c Ratio Uniform Delay, d1 42.2 13.4 38.7 34.2 26.3 25.0 Progression Factor 1.00 1.00 Incremental Delay, d2 6.2 1.3 2.1 0.2 7.8 2.6 48.3 14.7 40.8 34.0 27.6 Delay (s) Level of Service D В D С Approach Delay (s) 22.5 29.8 Approach LOS С D Intersection Summary HCM 2000 Control Delay 29.9 HCM 2000 Level of Service С HCM 2000 Volume to Capacity ratio 0.73 18.4 Actuated Cycle Length (s) 110.0 Sum of lost time (s) Intersection Capacity Utilization ICU Level of Service 70.7% Analysis Period (min) 15

ane Configurations artific Volume (vph) 1685		-	*	1	•	1			
raffic Volume (vph) 1685 25 260 865 525 75 uture Volume (vph) 1685 25 260 865 525 75 uture Volume (vph) 1685 25 260 865 525 75 ane Vidine (vph) 1900 1900 1900 1900 1900 1900 ane Width 3.5 3.5 3.3 3.5 3.3 3.3 3.3 otal Lost time (s) 6.2 2.0 6.2 4.4 4.4 ane Util. Factor 0.95 1.00 0.95 0.97 1.00 rt 1.00 1.00 1.00 1.00 0.85 tt Protected 1.00 0.95 1.00 0.95 1.00 atd. Flow (prot) 3527 1694 3535 3351 1531 tt Permitted 1.00 0.06 1.00 0.95 1.00 atd. Flow (perm) 3527 107 3535 3351 1531 atd. Flow (perm) 3527 107 3535 3351 1531 otal Lost (perm) 3527 107 3535 3351 1531 ane Group Flow (vph) 1774 26 274 911 553 79 TOR Reduction (vph) 1799 0 274 911 553 79 TOR Reduction (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1799 0 274 911 553 54 ane Group Flow (vph) 1898 305 124 4 24 4 flective Green, g (s) 63.6 83.0 83.0 24.4 24.4 flective Green, g (s) 64.6 84.0 84.0 84.0 25.4 25.4 ctuated green, g (s) 64.6 84.0 84.0 84.0 25.4 25.4 ctuated green, g (s) 64.6 84.0 84.0 84.0 25.4 25.4 ctuated green, g (s) 64.6 84.0 84.0 84.0 25.4 25.4 ctuated green, g (s) 64.6 84.0 84.0 84.0 25.4 24.4 flective Green, g (s) 64.6 84.0 84.0 84.0 25.4 24.4 flective Green, g (s) 64.6 84.0 84.0 84.0 25.4 25.4 ctuated green, g (s) 64.6 84.0 84.0 84.0 25.4 24.4 flective Green, g (s) 64.6 84.0 84.0 84.0 25.4 25.4 ctuated green, g (s) 64.6 84.0 84.0 84.0 84.0 84.0 84.0 84.0 84.0	Movement	EBT	EBR	WBL	WBT	NBL	NBR		
uture Volume (vph) 1685 25 260 865 525 75 eal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 anne Width 3.5 3.5 3.3 3.5 3.3 3.3 otal Lost time (s) 6.2 2.0 6.2 4.4 4.4 ane Util. Factor 0.95 1.00 0.95 0.97 1.00 tt 7.00 1.00 1.00 1.00 0.05 tt Protected 1.00 0.95 1.00 0.95 1.00 atd. Flow (prot) 3527 1694 3535 3351 1531 tt Permitted 1.00 0.06 1.00 0.95 1.00 atd. Flow (perm) 3527 107 3535 3351 1531 atd. Flow (perm) 3527 107 3535 3351 1531 atd. Flow (prot) 1774 26 274 911 553 79 TOR Reduction (vph) 1 0 0 0 0 25 ane Group Flow (vph) 1799 0 274 911 553 54 eavy Vehicles (%) 1% 0% 3% 1% 1% 2% urn Type NA pm+pt NA Prot Perm rotected Phases 2 1 6 8 cutuated Green, G (s) 63.6 83.0 83.0 24.4 24.4 ffective Green, g (s) 64.6 84.0 84.0 25.4 25.4 cutuated Green, G (s) 63.6 83.0 3.0 3.0 3.0 ane Group (vph) 1898 305 2474 709 324 selarance Time (s) 7.2 3.0 7.2 5.4 5.4 ehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 ane Group (vph) 1898 305 2474 709 324 selarance Time (s) 7.2 3.0 7.2 5.4 5.4 ehicle Extension (s) 3.7 66.8 7.7 50.1 38.9 evel of Service D E A D D proproach LoS D CC D tersection Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C CM 2000 Volume to Capacity ratio 0.90 clusted Cycle Length (s) 120.0 Sum of lost time (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E	Lane Configurations	↑ ↑		7	^	ሻሻ	7		
leal Flow (vphpl)	Traffic Volume (vph)			260					
ane Width	uture Volume (vph)	1685	25	260	865	525	75		
otal Lost time (s) 6.2 2.0 6.2 4.4 4.4 ane Util. Factor 0.95 1.00 0.95 0.97 1.00 ant Util. Factor 0.95 1.00 0.95 0.97 1.00 att Permitted 1.00 0.95 1.00 0.95 1.00 att. Flow (pert) 3527 1694 3535 3351 1531 att. Flow (perm) 3527 107 3535 3351 1531 att. Flow (perm) 3527 107 3535 3351 1531 eak-hour factor, PHF 0.95	deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
ane Util. Factor	ane Width	3.5	3.5	3.3	3.5	3.3	3.3		
tt Protected 1.00 1.00 1.00 1.00 0.85 tt Protected 1.00 0.95 1.00 0.95 1.00 atd. Flow (prot) 3527 1694 3535 3351 1531 tt Permitted 1.00 0.06 1.00 0.95 1.00 atd. Flow (perm) 3527 107 3535 3351 1531 eak-hour factor, PHF 0.95 0.95 0.95 0.95 0.95 0.95 dif, Flow (poth) 1774 26 274 911 553 79 TOR Reduction (vph) 1 0 0 0 0 25 ane Group Flow (vph) 1799 0 274 911 553 54 eavy Vehicles (%) 1% 0% 3% 1% 15% 2% um Type NA pm+pt NA Prot Perm rotected Phases 2 1 6 8 ermitted Phases 6 8 ctuated Green, G (s) 63.6 83.0 83.0 24.4 24.4 ffective Green, g (s) 64.6 84.0 84.0 25.4 25.4 ctuated g/C Ratio 0.54 0.70 0.70 0.71 0.21 0.21 learance Time (s) 7.2 3.0 7.2 5.4 5.4 elearance Time (s) 7.2 3.0 3.0 3.0 3.0 ane Gry Cap (vph) 1898 305 2474 709 324 s Ratio Port 0.51 c0.13 0.26 c0.17 s Ratio Perm 0.50 0.90 0.37 0.78 0.17 nifrom Delay, d1 26.1 39.8 7.3 44.7 38.6 roteresction Summary CM 2000 Control Delay 37.7 66.8 7.7 50.1 38.9 retresction Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C C CM 2000 Volume to Capacity ratio cutaled Greently Unitization 88.9% ICU Level of Service E E letrsection Capacity Utilization 188.9% ICU Level of Service E	Total Lost time (s)	6.2		2.0	6.2	4.4	4.4		
the Protected 1.00 0.95 1.00 0.95 1.00 atd. Flow (prot) 3527 1694 3535 3351 1531 1531 1531 1531 1531 153	ane Util. Factor	0.95		1.00	0.95	0.97	1.00		
atd. Flow (prot) 3527 1694 3535 3351 1531 It Permitted 1.00 0.06 1.00 0.95 1.00 atd. Flow (perm) 3527 107 3535 3351 1531 eak-hour factor, PHF 0.95 0.95 0.95 0.95 0.95 0.95 dj. Flow (vph) 1774 26 274 911 553 79 TOR Reduction (vph) 1 0 0 0 0 25 eax-y Vehicles (%) 1% 0% 3% 1% 1% 2% eavry Vehicles (%) 1% 0% 3% 1% 1% 2% eavry Vehicles (%) 1% 0% 3% 1% 1% 2% eavry Vehicles (%) 1% 0% 3% 1% 1% 2% eavry Vehicles (%) 1% 0% 3% 1% 1% 2% eavry Vehicles (%) 1% 0% 3% 1% 1% 1% 2% eavry Vehicles (%) 1% 0% 1% 1% 1% 2% eavry Vehicles (%) 1% 0% 1% 1% 1% 2% eavry Vehicles (%) 1% 0% 1% 1% 1% 2% eavry Vehicles (%) 1% 0% 1% 1% 1% 2% eavry Vehicles (%) 1% 0% 1% 1% 1% 2% eavry Vehicles (%) 1% 0% 1% 1% 1% 2% eavry Vehicles (%) 1% 0% 1% 1% 1% 2% eavry Vehicles (%) 1% 0% 1% 1% 1% 2% eavry Vehicles (%) 1% 0% 1% 1% 1% 2% eavry Vehicles (%) 1% 0% 1% 1% 1% 1% 2% eavry Vehicles (%) 1	rt	1.00		1.00	1.00	1.00	0.85		
the Permitted	It Protected	1.00		0.95	1.00	0.95	1.00		
atd. Flow (perm) 3527 107 3535 3351 1531 eak-hour factor, PHF 0.95 0.95 0.95 0.95 0.95 0.95 dij. Flow (vph) 1774 26 274 911 553 79 TOR Reduction (vph) 1 0 0 0 0 25 ane Group Flow (vph) 1799 0 274 911 553 54 eavy Vehicles (%) 1% 0% 3% 1% 1% 2% um Type NA pm+pt NA Prot Perm rotected Phases 2 1 1 6 8 emitted Phases 6 8 ctuated Green, G (s) 63.6 83.0 83.0 24.4 24.4 ffective Green, g (s) 64.6 84.0 84.0 25.4 25.4 ctuated g/C Ratio 0.54 0.70 0.70 0.21 0.21 learance Time (s) 7.2 3.0 7.2 5.4 5.4 elacible Extension (s) 3.0 3.0 3.0 3.0 3.0 ane Grp Cap (vph) 1898 305 2474 709 324 s Ratio Port 0.51 c0.13 0.26 c0.17 s Ratio Perm 0.50 c Ratio 0.95 0.90 0.37 0.78 0.17 niform Delay, d1 26.1 39.8 7.3 44.7 38.6 rogression Factor 1.00 1.00 1.00 1.00 cremental Delay, d2 11.6 27.0 0.4 5.4 0.2 elay (s) 37.7 66.8 7.7 50.1 38.9 evel of Service D E A D D pproach Delay (s) 37.7 21.4 48.7 pproach LOS D CM 2000 Volume to Capacity ratio cutaled Cycle Length (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E E letrsection Service E	Satd. Flow (prot)	3527		1694	3535	3351	1531		
eak-hour factor, PHF	It Permitted	1.00		0.06	1.00	0.95	1.00		
dj. Flow (vph) 1774 26 274 911 553 79 TOR Reduction (vph) 1 0 0 0 0 25 ane Group Flow (vph) 1799 0 274 911 553 54 eavy Vehicles (%) 1% 0% 3% 1% 1% 2% um Type NA pm+pt NA Prome Perm rotected Phases 2 1 6 8 ctuated Green, G (s) 63.6 83.0 83.0 24.4 24.4 ffective Green, g (s) 64.6 84.0 84.0 25.4 25.4 ctuated g/C Ratio 0.54 0.70 0.70 0.21 0.21 learance Time (s) 7.2 3.0	Satd. Flow (perm)	3527		107	3535	3351	1531		
TOR Reduction (vph) 1 0 0 0 0 25 ane Group Flow (vph) 1799 0 274 911 553 54 are group Flow (vph) 1799 0 274 911 553 54 are avry Vehicles (%) 1% 0% 3% 1% 1% 2% urn Type NA pm+pt NA Prot Perm rotected Phases 2 1 6 8 armitted Phases 6 8 cutated Green, G (s) 63.6 83.0 83.0 24.4 24.4 ffective Green, g (s) 64.6 84.0 84.0 25.4 25.4 cutated g/C Ratio 0.54 0.70 0.70 0.70 0.21 0.21 alearance Time (s) 7.2 3.0 7.2 5.4 5.4 elearance Time (s) 7.2 3.0 7.2 5.4 5.4 eleicle Extension (s) 3.0 3.0 3.0 3.0 3.0 ane Grp Cap (vph) 1898 305 2474 709 324 s Ratio Prot c0.51 c0.13 0.26 c0.17 s Ratio Prot 0.95 0.90 0.37 0.78 0.17 niform Delay, d1 26.1 39.8 7.3 44.7 38.6 rogression Factor 1.00 1.00 1.00 1.00 cremental Delay, d2 11.6 27.0 0.4 5.4 0.2 elay (s) 37.7 66.8 7.7 50.1 38.9 evel of Service D E A D D proproach LOS D C D tersection Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C CM 2000 Volume to Capacity ratio cutated Cycle Length (s) 120.0 letersection Capacity Utilization 88.9% ICU Level of Service E	Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
ane Group Flow (vph) 1799 0 274 911 553 54 eavy Vehicles (%) 19% 0% 3% 11% 17% 2% um Type NA pm+pt NA Prot Perm rotected Phases 2 1 1 6 8 ermitted Phases 6 8 ctuated Green, G (s) 63.6 83.0 83.0 24.4 24.4 ffective Green, g (s) 64.6 84.0 84.0 25.4 25.4 ctuated g/C Ratio 0.54 0.70 0.70 0.21 0.21 learance Time (s) 7.2 3.0 7.2 5.4 5.4 elicicle Extension (s) 3.0 3.0 3.0 3.0 3.0 ane Grp Cap (vph) 1898 305 2474 709 324 s Ratio Prot c0.51 c0.13 0.26 c0.17 s Ratio Perm 0.50 c Ratio 0.95 0.90 0.37 0.78 0.17 niform Delay, d1 26.1 39.8 7.3 44.7 38.6 rogression Factor 1.00 1.00 1.00 1.00 1.00 rogression Factor 2.00 1.00 1.00 1.00 1.00 remental Delay, d2 11.6 27.0 0.4 5.4 0.2 elay (s) 37.7 66.8 7.7 50.1 38.9 evel of Service D E A D D proproach Delay (s) 37.7 21.4 48.7 pproach LOS D C D tersection Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C CM 2000 Volume to Capacity ratio cutated Cycle Length (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E	Adj. Flow (vph)	1774	26	274	911	553			
eavy Vehicles (%) 1% 0% 3% 1% 1% 2% um Type NA pm+pt NA Prot Perm rotocleded Phases 2 1 6 8 emitted Phases 6 8 8 ctuated Green, G (s) 63.6 83.0 83.0 24.4 24.4 ffective Green, g (s) 64.6 84.0 84.0 25.4 25.4 ctuated g/C Ratio 0.54 0.70 0.70 0.21 0.21 learance Time (s) 7.2 3.0 7.2 5.4 5.4 ehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 sinc Group (rph) 1898 305 2474 709 324 s s Ratio Port c0.51 c0.13 0.26 c0.17 s Ratio 0.04 c c c 17 s Ratio 0.04 c c c 0.17 s Ratio 0.04	RTOR Reduction (vph)	1	0						
um Type	Lane Group Flow (vph)	1799	0	274	911	553			
rotecled Phases 2 1 6 8 ermitted Phases 6 8 ctuated Green, G (s) 63.6 83.0 83.0 24.4 24.4 ffective Green, g (s) 64.6 84.0 84.0 25.4 25.4 ctuated g/C Ratio 0.54 0.70 0.70 0.21 0.21 learance Time (s) 7.2 3.0 7.2 5.4 5.4 eleide Extension (s) 3.0 3.0 3.0 3.0 3.0 ane Grp Cap (vph) 1898 305 2474 709 324 s Ratio Prot 0.51 0.13 0.26 0.17 s Ratio Prot 0.51 0.013 0.26 0.17 s Ratio Perm 0.50 0.90 0.37 0.78 0.17 niform Delay, d1 26.1 39.8 7.3 44.7 38.6 rogression Factor 1.00 1.00 1.00 1.00 1.00 cremental Delay, d2 11.6 27.0 0.4 5.4 0.2 elay (s) 37.7 66.8 7.7 50.1 38.9 evel of Service D E A D D proproach Delay (s) 37.7 21.4 48.7 pproach LOS D C D tersection Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C CM 2000 Volume to Capacity ratio 0.90 ctuated Cycle Length (s) 12.0 Sum of lost time (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E	Heavy Vehicles (%)	1%	0%	3%	1%	1%	2%		
ermitted Phases 6 8 8 8 ctuated Green, G (s) 63.6 83.0 83.0 24.4 24.4 4 4 6 6 6 6 8.0 84.0 25.4 25.4 6 6 84.0 84.0 25.4 25.4 6 6 84.0 84.0 25.4 25.4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Turn Type	NA		pm+pt	NA	Prot	Perm		
ctuated Green, G (s) 63.6 83.0 83.0 24.4 24.4 ffective Green, g (s) 64.6 84.0 84.0 25.4 25.4 25.4 ctuated g/C Ratio 0.54 0.70 0.70 0.21 0.21 clearance Time (s) 7.2 3.0 7.2 5.4 5.4 ehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 ane Grp Cap (vph) 1898 305 2474 709 324 s 8 Ratio Prot c0.51 c0.13 0.26 c0.17 s Ratio Perm 0.50 0.04 c Ratio 0.95 0.90 0.37 0.78 0.17 c Ratio 0.95 0.90 0.90 0.90 0.90 0.90 0.90 0.90	Protected Phases	2		1	6	8			
ffective Green, g (s) 64.6 84.0 84.0 25.4 25.4 ctuated g/C Ratio 0.54 0.70 0.70 0.70 0.21 0.21 learance Time (s) 7.2 3.0 7.2 5.4 5.4 shicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 and Grp Cap (vph) 1898 305 2474 709 324 shicle Port 0.51 0.13 0.26 0.17 shicle Perm 0.50 0.04 change of Cap (vph) 1898 305 2474 709 324 shicle Perm 0.50 0.04 change of Cap (vph) 1898 305 2474 709 324 shicle Perm 0.50 0.04 change of Cap (vph) 1898 305 2474 709 324 shicle Perm 0.50 0.04 change of Cap (vph) 1898 305 2474 709 324 shicle Perm 0.50 0.04 change of Cap (vph) 1.00 1.01 0.04 change of Cap (vph) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Permitted Phases						8		
ctuated g/C Ratio 0.54 0.70 0.70 0.21 0.21 learance Time (s) 7.2 3.0 7.2 5.4 5.4 ehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 ane Grp Cap (vph) 1898 305 2474 709 324 s Ratio Port c0.51 c0.13 0.26 c0.17 s Ratio Perm 0.50 0.90 0.37 0.78 0.17 niform Delay, d1 26.1 39.8 7.3 44.7 38.6 rogression Factor 1.00 1.00 1.00 1.00 1.00 cremental Delay, d2 11.6 27.0 0.4 5.4 0.2 elay (s) 37.7 66.8 7.7 50.1 38.9 evel of Service D E A D D pproach Delay (s) 37.7 21.4 48.7 2 pproach LOS D C D C tersection Summary	Actuated Green, G (s)	63.6		83.0	83.0	24.4	24.4		
learance Time (s)	ffective Green, g (s)			84.0	84.0	25.4			
ehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 ane Grp Cap (vph) 1898 305 2474 709 324 s 8 Ratio Prot co.51 co.13 0.26 co.17 s Ratio Prot 0.50 0.04 c Ratio 0.95 0.90 0.37 0.78 0.17 s Ratio Delay, cl 26.1 39.8 7.3 44.7 38.6 rorgersion Factor 1.00 1.00 1.00 1.00 1.00 cremental Delay, d2 11.6 27.0 0.4 5.4 0.2 elay (s) 37.7 66.8 7.7 50.1 38.9 evel of Service D E A D D D proach Delay (s) 37.7 21.4 48.7 pproach LOS D C D Extensection Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C C C C D Sum of lost time (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E E C C C C C C C C C C C C C C C C C	ctuated g/C Ratio	0.54		0.70	0.70	0.21	0.21		
ane Grp Cap (vph) 1898 305 2474 709 324 s Ratio Prot c0.51 c0.13 0.26 c0.17 s Ratio Perm 0.50 0.90 0.37 0.78 0.17 niform Delay, d1 26.1 39.8 7.3 44.7 38.6 rogression Factor 1.00 1.00 1.00 1.00 1.00 cremental Delay, d2 11.6 27.0 0.4 5.4 0.2 elay (s) 37.7 66.8 7.7 50.1 38.9 evel of Service D E A D D pproach Delay (s) 37.7 21.4 48.7 pproach LOS D C D tersection Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C CM 2000 Volume to Capacity ratio cuated Cycle Length (s) 12.0 tersection Capacity Utilization 88.9% ICU Level of Service E Experience Service C CL 2000 Service C	Clearance Time (s)					5.4			
S Ratio Prot C0.51 C0.13 O.26 C0.17	ehicle Extension (s)	3.0		3.0	3.0	3.0	3.0		
S Ratio Perm 0.50 0.04 c Ratio 0.95 0.90 0.37 0.78 0.17 niform Delay, d1 26.1 39.8 7.3 44.7 38.6 rogression Factor 1.00 1.00 1.00 1.00 1.00 cremental Delay, d2 11.6 27.0 0.4 5.4 0.2 elay (s) 37.7 66.8 7.7 50.1 38.9 evel of Service D E A D D pproach Delay (s) 37.7 21.4 48.7 pproach LOS D C D tersection Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C CM 2000 Volume to Capacity ratio 0.90 cluated Cycle Length (s) 12.0 Sum of lost time (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E	ane Grp Cap (vph)	1898		305	2474	709	324		
C Ratio	//s Ratio Prot	c0.51		c0.13	0.26	c0.17			
niform Delay, d1 26.1 39.8 7.3 44.7 38.6 rogression Factor 1.00 1.00 1.00 1.00 1.00 1.00 cremental Delay, d2 11.6 27.0 0.4 5.4 0.2 elay (s) 37.7 66.8 7.7 50.1 38.9 evel of Service D E A D D D proach Delay (s) 37.7 21.4 48.7 eproach LOS D C D Etersection Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C C M 2000 Volume to Capacity ratio 0.90 ctuated Cycle Length (s) 12.0 Sum of lost time (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E	/s Ratio Perm			0.50			0.04		
rogression Factor 1.00 1.00 1.00 1.00 1.00 1.00 cremental Delay, d2 11.6 27.0 0.4 5.4 0.2 elay (s) 37.7 66.8 7.7 50.1 38.9 evel of Service D E A D D D eproach Delay (s) 37.7 21.4 48.7 eproach LOS D C D etersection Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C C M 2000 Volume to Capacity ratio 0.90 cutated Cycle Length (s) 12.0 Sum of lost time (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E	//c Ratio	0.95		0.90	0.37	0.78	0.17		
coremental Delay, d2 11.6 27.0 0.4 5.4 0.2 elay (s) 37.7 66.8 7.7 50.1 38.9 evel of Service D E A D D pproach Delay (s) 37.7 21.4 48.7 P pproach LOS D C D C tersection Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C CM 2000 Volume to Capacity ratio cutated Cycle Length (s) 0.90 cutated Cycle Length (s) 12.0 stersection Capacity Utilization 88.9% ICU Level of Service E	Jniform Delay, d1				7.3	44.7	38.6		
elay (s) 37.7 66.8 7.7 50.1 38.9 avel of Service D E A D D pproach Delay (s) 37.7 21.4 48.7 pproach LOS D C D tersection Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C CM 2000 Volume to Capacity ratio 0.90 cutated Cycle Length (s) 120.0 Sum of lost time (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E	Progression Factor	1.00		1.00	1.00	1.00	1.00		
evel of Service D E A D D pproach Delay (s) 37.7 21.4 48.7	ncremental Delay, d2								
pproach Delay (s) 37.7 pproach LOS 21.4 pproach LOS 48.7 pproach LOS tersection Summary Let Section Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C CM 2000 Volume to Capacity ratio 0.90 ctuated Cycle Length (s) 120.0 Sum of lost time (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E	Delay (s)								
D	Level of Service			Е			D		
tersection Summary CM 2000 Control Delay 34.3 HCM 2000 Level of Service C CM 2000 Volume to Capacity ratio 0.90 ctuated Cycle Length (s) 120.0 Sum of lost time (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E	Approach Delay (s)	37.7				48.7			
CM 2000 Control Delay 34.3 HCM 2000 Level of Service C CM 2000 Volume to Capacity ratio 0.90 ctuated Cycle Length (s) 120.0 Sum of lost time (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E	Approach LOS	D			С	D			
CM 2000 Volume to Capacity ratio 0.90 ctuated Cycle Length (s) 120.0 Sum of lost time (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E	ntersection Summary								
CM 2000 Volume to Capacity ratio 0.90 ctuated Cycle Length (s) 120.0 Sum of lost time (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E	HCM 2000 Control Delay			34.3	Н	CM 2000	Level of Service	e	С
ctuated Cycle Length (s) 120.0 Sum of lost time (s) 12.6 tersection Capacity Utilization 88.9% ICU Level of Service E		acity ratio							
tersection Capacity Utilization 88.9% ICU Level of Service E	Actuated Cycle Length (s)	,			S	um of los	t time (s)		12.6
		ation		88.9%					Е
	Analysis Period (min)			15					

c Critical Lane Group

 Whites / Kingston SW
 Synchro 10 Report

 BA Group - TCS
 EXPM.syn

Whites / Kingston SW BA Group - TCS

Synchro 10 Report

EXPM.syn

	•	*	1	†	Ţ	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	ሻሃ	7		^	^				
Traffic Volume (vph)	1260	700	0	1115	645	0			
Future Volume (vph)	1260	700	0	1115	645	0			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.3	3.3	3.5	3.5	3.5	3.5			
Total Lost time (s)	4.5	4.5		5.7	5.7				
Lane Util. Factor	0.97	0.91		0.95	0.95				
Frpb, ped/bikes	1.00	1.00		1.00	1.00				
Flpb, ped/bikes	1.00	1.00		1.00	1.00				
Frt	0.99	0.85		1.00	1.00				
Flt Protected	0.96	1.00		1.00	1.00				
Satd. Flow (prot)	3368	1407		3570	3570				
Flt Permitted	0.96	1.00		1.00	1.00				
Satd. Flow (perm)	3368	1407		3570	3570				
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91			
Adj. Flow (vph)	1385	769	0	1225	709	0			
RTOR Reduction (vph)	5	43	0	0	0	0			
Lane Group Flow (vph)	1480	626	0	1225	709	0			
Confl. Peds. (#/hr)			10			10			
Heavy Vehicles (%)	0%	1%	0%	0%	0%	0%			
Turn Type	Prot	Perm		NA	NA				
Protected Phases	4			2	6				
Permitted Phases	-	4		_					
Actuated Green, G (s)	49.1	49.1		38.7	38.7				
Effective Green, g (s)	50.1	50.1		39.7	39.7				
Actuated g/C Ratio	0.50	0.50		0.40	0.40				
Clearance Time (s)	5.5	5.5		6.7	6.7				
Vehicle Extension (s)	3.0	3.0		3.0	3.0				
Lane Grp Cap (vph)	1687	704		1417	1417				
v/s Ratio Prot	0.44			c0.34	0.20				
v/s Ratio Perm	• • • • • • • • • • • • • • • • • • • •	c0.44							
v/c Ratio	0.88	0.89		0.86	0.50				
Uniform Delay, d1	22.2	22.4		27.7	22.7				
Progression Factor	1.00	1.00		1.00	1.00				
Incremental Delay, d2	5.5	13.1		7.2	1.3				
Delay (s)	27.7	35.5		34.9	24.0				
Level of Service	С	D		С	С				
Approach Delay (s)	30.1			34.9	24.0				
Approach LOS	С			С	С				
Intersection Summary									
HCM 2000 Control Delay			30.5	Н	CM 2000	Level of Servic	е	С	
HCM 2000 Volume to Capaci	ity ratio		0.88						
Actuated Cycle Length (s)			100.0	S	um of lost	time (s)		10.2	
Intersection Capacity Utilization	on		89.3%	IC	CU Level o	of Service		Е	
Analysis Period (min)			15						
c Critical Lane Group									

	۶	→	*	1	←	*	4	†	1	1	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	7	^	7	, N	ĵ.,		7	î»	
Traffic Volume (vph)	135	1470	45	70	1225	95	165	20	130	100	10	145
Future Volume (vph)	135	1470	45	70	1225	95	165	20	130	100	10	145
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.7	5.7	5.6	5.6		5.6	5.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.98		1.00	0.97	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3535	1541	1785	3535	1517	1761	1604		1773	1570	
Flt Permitted	0.15	1.00	1.00	0.11	1.00	1.00	0.57	1.00		0.58	1.00	
Satd. Flow (perm)	278	3535	1541	203	3535	1517	1061	1604		1089	1570	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	138	1500	46	71	1250	97	168	20	133	102	10	148
RTOR Reduction (vph)	0	0	18	0	0	30	0	106	0	0	118	0
Lane Group Flow (vph)	138	1500	28	71	1250	67	168	47	0	102	40	0
Confl. Peds. (#/hr)	10	1000	5	5	1200	10	10		5	5		10
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA.	Perm	Perm	NA	070	Perm	NA	070
Protected Phases	5	2	1 Gilli	1	6	I GIIII	1 Gilli	8		1 GIIII	4	
Permitted Phases	2		2	6	0	6	8			4		
Actuated Green, G (s)	75.3	66.5	66.5	69.5	63.7	63.7	21.2	21.2		21.2	21.2	
Effective Green, g (s)	76.3	67.5	67.5	71.5	64.7	64.7	22.2	22.2		22.2	22.2	
Actuated g/C Ratio	0.69	0.61	0.61	0.65	0.59	0.59	0.20	0.20		0.20	0.20	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.7	6.7	6.6	6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	327	2169	945	229	2079	892	214	323		219	316	
v/s Ratio Prot	c0.04	c0.42	340	0.02	0.35	092	214	0.03		219	0.03	
v/s Ratio Perm	0.25	CU.42	0.02	0.02	0.33	0.04	c0.16	0.03		0.09	0.03	
v/c Ratio	0.42	0.69	0.02	0.16	0.60	0.04	0.79	0.15		0.09	0.13	
	9.0	14.3	8.4	10.4	14.4	9.8	41.6	36.1		38.7	36.0	
Uniform Delay, d1												
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.9	1.8	0.1	0.8	1.3	0.2	17.0	0.2		1.6	0.2	
Delay (s)	9.9	16.1	8.4	11.2	15.7	9.9	58.7	36.3		40.2	36.1	
Level of Service	Α	В	Α	В	В	Α	Е	D		D	D	
Approach Delay (s)		15.4			15.1			48.0			37.7	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			19.7	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Cap	acity ratio		0.70									
Actuated Cycle Length (s)			110.0		um of lost				13.5			
Intersection Capacity Utiliz	ation		83.3%	IC	U Level	of Service	•		Е			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

Whites / Kingston SW BA Group - TCS Synchro 10 Report EXPM.syn Whites / Kingston SW BA Group - TCS

HCIVI Unsign	ialized intersection Capacity An	ıaıysı
2: Site Acce	ss (West) & Kingston Road	

	-	*	1	—	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	^	7	7	^	W				
Traffic Volume (veh/h)	710	5	0	910	5	0			
Future Volume (Veh/h)	710	5	0	910	5	0			
Sign Control	Free			Free	Stop				
Grade	0%			0%	0%				
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87			
lourly flow rate (vph)	816	6	0	1046	6	0			
Pedestrians					5				
ane Width (m)					3.3				
Valking Speed (m/s)					1.2				
Percent Blockage					0				
Right turn flare (veh)									
Median type	None			None					
Median storage veh)									
Jpstream signal (m)				153					
X, platoon unblocked					0.90				
C, conflicting volume			827		1344	413			
C1, stage 1 conf vol									
C2, stage 2 conf vol									
Cu, unblocked vol			827		1156	413			
C, single (s)			4.1		7.1	6.9			
C, 2 stage (s)									
F (s)			2.2		3.6	3.3			
00 queue free %			100		96	100			
M capacity (veh/h)			810		154	592			
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1		
/olume Total	408	408	6	0	523	523	6		
/olume Left	0	0	0	0	0	0	6		
/olume Right	0	0	6	0	0	0	0		
SH	1700	1700	1700	1700	1700	1700	154		
/olume to Capacity	0.24	0.24	0.00	0.00	0.31	0.31	0.04		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	1.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	29.2		
ane LOS	0.0	0.0	0.0	0.0	0.0	0.0	D D		
Approach Delay (s)	0.0			0.0			29.2		
Approach LOS	0.0			0.0			D D		
ntersection Summary									
Average Delay			0.1						
ntersection Capacity Utiliza	ation		35.2%	IC	U Level	of Service		Α	
Analysis Period (min)			15						
,									

Whites / Kingston SW BA Group - TCS Synchro 10 Report FBAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

Future Background AM Peak Hour

	•	→	*	1	←	4	4	†	/	1	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† 1>		ሻ	† 1>		ሻ	1>		- 1	1 >	
Traffic Volume (vph)	30	615	10	15	835	65	0	0	5	95	5	120
Future Volume (vph)	30	615	10	15	835	65	0	0	5	95	5	120
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.6	5.6		5.6	5.6			5.6		5.6	5.6	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99			0.85		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)	1689	3427		1745	3425			1597		1694	1609	
Flt Permitted	0.26	1.00		0.38	1.00			1.00		0.75	1.00	
Satd. Flow (perm)	462	3427		691	3425			1597		1344	1609	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adi. Flow (vph)	34	699	11	17	949	74	0	0	6	108	6	136
RTOR Reduction (vph)	0	1	0	0	4	0	0	5	0	0	116	0
Lane Group Flow (vph)	34	709	0	17	1019	0	0	1	0	108	26	0
Confl. Peds. (#/hr)	5	7 00	ŭ	•	1010	5			·	100		Ū
Heavy Vehicles (%)	3%	4%	0%	0%	3%	1%	0%	0%	0%	3%	0%	0%
Bus Blockages (#/hr)	0	0	11	0	0	11	0	0	0	0	0	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 01111	2		. 0	6		. 0	8		1 01111	4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	73.4	73.4		73.4	73.4		Ū	13.4		13.4	13.4	
Effective Green, g (s)	74.4	74.4		74.4	74.4			14.4		14.4	14.4	
Actuated g/C Ratio	0.74	0.74		0.74	0.74			0.14		0.14	0.14	
Clearance Time (s)	6.6	6.6		6.6	6.6			6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)	343	2549		514	2548			229		193	231	
v/s Ratio Prot	070	0.21		317	c0.30			0.00		100	0.02	
v/s Ratio Perm	0.07	0.21		0.02	00.00			0.00		c0.08	0.02	
v/c Ratio	0.10	0.28		0.02	0.40			0.00		0.56	0.11	
Uniform Delay, d1	3.5	4.1		3.4	4.7			36.7		39.8	37.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Incremental Delay, d2	0.6	0.3		0.1	0.5			0.0		3.5	0.2	
Delay (s)	4.1	4.4		3.5	5.1			36.7		43.3	37.4	
Level of Service	A	A		Α	A			D		D	D	
Approach Delay (s)	71	4.4		/ (5.1			36.7			40.0	
Approach LOS		Α.			Α.1			D			TO.0	
••		/ (,,							
Intersection Summary			0.0		014 0000	Laurel of C	0					
HCM 2000 Control Delay			9.2	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.43	_					44.0			
Actuated Cycle Length (s)			100.0	S	um of lost				11.2			
	e .		40 50/									
Intersection Capacity Utiliza Analysis Period (min)	tion		46.5% 15	IC	CU Level of	of Service			Α			

Whites / Kingston SW BA Group - TCS

c Critical Lane Group

	•	\rightarrow	*	1	←	•	1	1	1	-	Į.	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	7	ተተተ	7	ሻ	ተተተ	7
Traffic Volume (vph)	75	375	360	295	645	360	165	465	440	150	1300	120
Future Volume (vph)	75	375	360	295	645	360	165	465	440	150	1300	120
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3
Total Lost time (s)	2.0	6.0	6.0	2.0	6.0	6.0	2.0	6.1	2.0	2.0	6.1	6.1
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1675	3400	1503	1692	3466	1486	1818	5079	1455	1722	5079	1486
Flt Permitted	0.32	1.00	1.00	0.46	1.00	1.00	0.13	1.00	1.00	0.42	1.00	1.00
Satd. Flow (perm)	572	3400	1503	814	3466	1486	238	5079	1455	768	5079	1486
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	82	412	396	324	709	396	181	511	484	165	1429	132
RTOR Reduction (vph)	0	0	121	0	0	147	0	0	205	0	0	73
Lane Group Flow (vph)	82	412	275	324	709	249	181	511	279	165	1429	59
Confl. Peds. (#/hr)	15		5	5		15	10		15	15		10
Heavy Vehicles (%)	4%	5%	2%	3%	3%	2%	1%	1%	4%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	2	0	0	4
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases	2		2	6		6	8		8	4		4
Actuated Green, G (s)	66.0	61.0	61.0	73.0	65.0	65.0	52.6	40.9	49.9	47.2	38.2	38.2
Effective Green, g (s)	68.0	62.0	62.0	74.0	66.0	66.0	53.9	41.9	51.9	49.2	39.2	39.2
Actuated g/C Ratio	0.49	0.44	0.44	0.53	0.47	0.47	0.38	0.30	0.37	0.35	0.28	0.28
Clearance Time (s)	3.0	7.0	7.0	3.0	7.0	7.0	3.0	7.1	3.0	3.0	7.1	7.1
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	325	1505	665	492	1633	700	234	1520	539	338	1422	416
v/s Ratio Prot	0.01	0.12		c0.05	c0.20		c0.07	0.10	0.04	0.03	c0.28	
v/s Ratio Perm	0.11		0.18	0.30		0.17	0.23		0.15	0.14		0.04
v/c Ratio	0.25	0.27	0.41	0.66	0.43	0.36	0.77	0.34	0.52	0.49	1.00	0.14
Uniform Delay, d1	19.8	24.7	26.6	21.9	24.6	23.5	29.4	38.2	34.3	32.6	50.4	37.8
Progression Factor	0.79	0.91	0.85	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.4	0.4	1.8	3.2	0.8	1.4	14.7	0.6	0.8	1.1	25.1	0.7
Delay (s)	16.1	23.0	24.5	25.1	25.4	24.9	44.1	38.8	35.1	33.7	75.5	38.5
Level of Service	В	С	С	С	С	С	D	D	D	С	Е	D
Approach Delay (s)		23.0			25.2			38.1			68.6	
Approach LOS		С			С			D			Е	
Intersection Summary												
HCM 2000 Control Delay			42.1	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Cap	acity ratio		0.67									
Actuated Cycle Length (s)			140.0		um of los				16.1			
Intersection Capacity Utiliz	ation		103.1%	IC	CU Level	of Service	Э		G			
Analysis Period (min)			15									

Whites / Kingston SW BA Group - TCS Synchro 10 Report FBAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

Future Background AM Peak Hour

	•	-	\rightarrow	•	←	*	\blacktriangleleft	1	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ħβ		7	ħβ		ሻ	1>		ሻ	1>	
Traffic Volume (vph)	40	665	5	30	870	30	5	0	20	125	0	35
Future Volume (vph)	40	665	5	30	870	30	5	0	20	125	0	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.3	5.3		2.0	5.3		5.7	5.7		5.7	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		0.99	1.00	
Frt	1.00	1.00		1.00	1.00		1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1671	3430		1631	3477		1454	1557		1672	1521	
Flt Permitted	0.27	1.00		0.32	1.00		0.73	1.00		0.74	1.00	
Satd. Flow (perm)	467	3430		551	3477		1118	1557		1305	1521	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	47	782	6	35	1024	35	6	0	24	147	0	41
RTOR Reduction (vph)	0	0	0	0	1	0	0	20	0	0	34	0
Lane Group Flow (vph)	47	788	0	35	1058	0	6	4	0	147	7	0
Confl. Peds. (#/hr)	5		-			5	-		10	10		
Heavy Vehicles (%)	4%	4%	0%	7%	2%	3%	20%	0%	0%	3%	0%	5%
Bus Blockages (#/hr)	0	0	0	0	0	13	0	0	0	0	0	0
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases		2		1	6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	97.3	97.3		105.4	105.4		21.6	21.6		21.6	21.6	
Effective Green, g (s)	98.3	98.3		106.4	106.4		22.6	22.6		22.6	22.6	
Actuated g/C Ratio	0.70	0.70		0.76	0.76		0.16	0.16		0.16	0.16	
Clearance Time (s)	6.3	6.3		3.0	6.3		6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	327	2408		465	2642		180	251		210	245	
v/s Ratio Prot	521	0.23		0.00	c0.30		100	0.00		210	0.00	
v/s Ratio Perm	0.10	0.20		0.05	00.00		0.01	0.00		c0.11	0.00	
v/c Ratio	0.14	0.33		0.03	0.40		0.01	0.02		0.70	0.03	
Uniform Delay, d1	6.9	8.1		4.4	5.8		49.5	49.3		55.5	49.4	
Progression Factor	1.00	1.00		0.77	0.73		1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.9	0.4		0.77	0.73		0.1	0.0		9.8	0.0	
Delay (s)	7.8	8.4		3.5	4.7		49.6	49.4		65.3	49.5	
Level of Service	7.0 A	Α.4		3.5 A	4.7 A		43.0 D	43.4 D		03.3 E	49.5 D	
Approach Delay (s)	^	8.4		^	4.6		D	49.4			61.8	
Approach LOS		0.4 A			4.0 A			49.4 D			01.0 E	
**								D				
Intersection Summary												
HCM 2000 Control Delay			11.7	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.46									
Actuated Cycle Length (s)			140.0		um of lost				13.0			
Intersection Capacity Utiliza	tion		56.0%	IC	U Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

	√	_	T		-	¥		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	ሻ	7	44	7	*	414		
Traffic Volume (vph)	95	315	620	80	465	535		
Future Volume (vph)	95	315	620	80	465	535		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.3	3.3	3.5	3.3	3.3	3.5		
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	0.95	1.00	0.91	0.91		
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.99		
Satd. Flow (prot)	1662	1516	3500	1476	1542	3312		
Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.99		
Satd. Flow (perm)	1662	1516	3500	1476	1542	3312		
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91		
Adj. Flow (vph)	104	346	681	88	511	588		
RTOR Reduction (vph)	0	37	0	50	0	0		
Lane Group Flow (vph)	104	309	681	38	358	741		
Confl. Peds. (#/hr)				5	5			
Heavy Vehicles (%)	5%	3%	2%	4%	3%	2%		
Turn Type	Perm	pm+ov	NA	Perm	Split	NA		
Protected Phases		2	5		2	2		
Permitted Phases	8	8		5				
Actuated Green, G (s)	12.4	62.1	27.5	27.5	49.7	49.7		
Effective Green, g (s)	13.4	64.1	28.5	28.5	50.7	50.7		
Actuated g/C Ratio	0.12	0.58	0.26	0.26	0.46	0.46		
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	202	966	906	382	710	1526		
v/s Ratio Prot		0.15	c0.19		c0.23	0.22		
v/s Ratio Perm	c0.06	0.06		0.03				
v/c Ratio	0.51	0.32	0.75	0.10	0.50	0.49		
Uniform Delay, d1	45.3	11.8	37.5	31.0	20.8	20.6		
Progression Factor	1.00	1.00	1.00	1.00	0.95	0.94		
Incremental Delay, d2	2.2	0.2	3.6	0.1	2.5	1.1		
Delay (s)	47.5	12.0	41.0	31.1	22.2	20.4		
Level of Service	D	В	D	С	С	С		
Approach Delay (s)	20.2		39.9			21.0		
Approach LOS	С		D			С		
ntersection Summary								
HCM 2000 Control Delay			27.1	Н	CM 2000	Level of Servic	e	С
HCM 2000 Volume to Cap	acity ratio		0.59					
Actuated Cycle Length (s)			110.0	S	um of lost	t time (s)		18.4
Intersection Capacity Utiliz	ation		58.6%			of Service		В
Analysis Period (min)			15					
c Critical Lane Group								

MOVOITION	LDI	LDIT	TTDL	****	INDL	INDIX			
Lane Configurations	† 13		ሻ	^	77	7			
Traffic Volume (vph)	885	10	350	630	575	90			
Future Volume (vph)	885	10	350	630	575	90			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.5	3.5	3.3	3.5	3.3	3.3			
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4			
Lane Util. Factor	0.95		1.00	0.95	0.97	1.00			
Frt	1.00		1.00	1.00	1.00	0.85			
Flt Protected	1.00		0.95	1.00	0.95	1.00			
Satd. Flow (prot)	3420		1711	3500	3286	1531			
Flt Permitted	1.00		0.15	1.00	0.95	1.00			
Satd. Flow (perm)	3420		265	3500	3286	1531			
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87			
Adj. Flow (vph)	1017	11	402	724	661	103			
RTOR Reduction (vph)	1	0	0	0	0	28			
Lane Group Flow (vph)	1027	0	402	724	661	75			
Heavy Vehicles (%)	4%	25%	2%	2%	3%	2%			
Turn Type	NA		pm+pt	NA	Prot	Perm			
Protected Phases	2		1	6	8				
Permitted Phases			6			8			
Actuated Green, G (s)	50.5		77.7	77.7	29.7	29.7			
Effective Green, g (s)	51.5		78.7	78.7	30.7	30.7			
Actuated g/C Ratio	0.43		0.66	0.66	0.26	0.26			
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4			
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	1467		477	2295	840	391			
v/s Ratio Prot	c0.30		c0.18	0.21	c0.20				
v/s Ratio Perm			0.38			0.05			
v/c Ratio	0.70		0.84	0.32	0.79	0.19			
Uniform Delay, d1	28.0		25.7	9.0	41.6	34.9			
Progression Factor	1.00		1.00	1.00	1.00	1.00			
Incremental Delay, d2	2.8		12.8	0.4	4.9	0.2			
Delay (s)	30.8		38.4	9.3	46.5	35.2			
Level of Service	С		D	Α	D	D			
Approach Delay (s)	30.8			19.7	45.0				
Approach LOS	С			В	D				
Intersection Summary									
HCM 2000 Control Delay			30.2	Н	CM 2000	Level of Service	ce	С	
HCM 2000 Volume to Capac	city ratio		0.75						
Actuated Cycle Length (s)	·		120.0	S	um of lost	t time (s)	12	2.6	
Intersection Capacity Utilizat	tion		72.7%	IC	U Level	of Service		С	
Analysis Period (min)			15						
c Critical Lane Group									

c Critical Lane Group

	•	*	1	†	Ţ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻሻ	77		^	^		
Traffic Volume (vph)	630	370	0	935	630	0	
Future Volume (vph)	630	370	0	935	630	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width	3.3	3.3	3.5	3.5	3.5	3.5	
Total Lost time (s)	4.5	4.5	0.0	5.7	5.7	0.0	
Lane Util. Factor	0.97	0.88		0.95	0.95		
Frpb, ped/bikes	1.00	1.00		1.00	1.00		
Flpb, ped/bikes	1.00	1.00		1.00	1.00		
Frt	1.00	0.85		1.00	1.00		
Flt Protected	0.95	1.00		1.00	1.00		
Satd. Flow (prot)	3319	2668		3570	3570		
Flt Permitted	0.95	1.00		1.00	1.00		
Satd. Flow (perm)	3319	2668		3570	3570		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	663	389	0.95	984	663	0.95	
RTOR Reduction (vph)	003	265	0	984	003	0	
Lane Group Flow (vph)	663	124	0	984	663	0	
1 (1 /	003	124	5	904	003	5	
Confl. Peds. (#/hr) Heavy Vehicles (%)	2%	3%	0%	0%	0%	0%	
			0%			U%	
Turn Type	Prot 4	Perm		NA	NA		
Protected Phases	4	4		2	6		
Permitted Phases	00.5			00.0	00.0		
Actuated Green, G (s)	28.5	28.5		69.3	69.3		
Effective Green, g (s)	29.5	29.5		70.3	70.3		
Actuated g/C Ratio	0.27	0.27		0.64	0.64		
Clearance Time (s)	5.5	5.5		6.7	6.7		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)	890	715		2281	2281		
v/s Ratio Prot	c0.20			c0.28	0.19		
v/s Ratio Perm		0.05					
v/c Ratio	0.74	0.17		0.43	0.29		
Uniform Delay, d1	36.8	30.9		9.9	8.8		
Progression Factor	1.00	1.00		0.34	1.00		
Incremental Delay, d2	3.4	0.1		0.5	0.3		
Delay (s)	40.2	31.0		3.9	9.1		
Level of Service	D	С		Α	Α		
Approach Delay (s)	36.8			3.9	9.1		
Approach LOS	D			Α	Α		
Intersection Summary							
HCM 2000 Control Delay			18.0	H	CM 2000	Level of Service	В
HCM 2000 Volume to Capa	city ratio		0.52				
Actuated Cycle Length (s)	,		110.0	Sı	um of lost	time (s)	10.2
Intersection Capacity Utiliza	ition		52.3%	IC	U Level o	of Service	Α
Analysis Period (min)			15				
c Critical Lane Group							

Whites / Kingston SW BA Group - TCS Synchro 10 Report FBAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis
9: Car Dealer Site Access/Delta Boulevard & Kingston Road

Future Background AM Peak Hour

	۶	→	*	•	—	4	1	1	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	ሻ	^	7	ሻ	1•		ሻ	î»	
Traffic Volume (vph)	130	825	10	20	1075	110	25	0	15	55	5	200
Future Volume (vph)	130	825	10	20	1075	110	25	0	15	55	5	200
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.9	5.9	5.6	5.6		5.3	5.3	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.97	1.00	0.98		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1733	3433	1548	1622	3466	1533	1785	1467		1758	1558	
Flt Permitted	0.16	1.00	1.00	0.28	1.00	1.00	0.30	1.00		0.75	1.00	
Satd. Flow (perm)	292	3433	1548	484	3466	1533	569	1467		1380	1558	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	157	994	12	24	1295	133	30	0	18	66	6	241
RTOR Reduction (vph)	0	0	3	0	0	32	0	16	0	0	157	0
Lane Group Flow (vph)	157	994	9	24	1295	101	30	2	0	66	90	0
Confl. Peds. (#/hr)	5		5	5		5			5	5		
Heavy Vehicles (%)	3%	4%	0%	10%	3%	1%	0%	0%	7%	1%	0%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2		2	6		6	8			4		
Actuated Green, G (s)	84.3	77.7	77.7	75.6	72.0	72.0	12.2	12.2		12.5	12.5	
Effective Green, g (s)	85.3	78.7	78.7	77.6	73.0	73.0	13.2	13.2		13.5	13.5	
Actuated g/C Ratio	0.78	0.72	0.72	0.71	0.66	0.66	0.12	0.12		0.12	0.12	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.6	6.6		6.3	6.3	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	361	2456	1107	389	2300	1017	68	176		169	191	
v/s Ratio Prot	c0.04	0.29		0.00	c0.37			0.00			c0.06	
v/s Ratio Perm	0.30		0.01	0.04		0.07	0.05			0.05		
v/c Ratio	0.43	0.40	0.01	0.06	0.56	0.10	0.44	0.01		0.39	0.47	
Uniform Delay, d1	5.7	6.3	4.5	4.9	9.9	6.7	45.0	42.7		44.5	44.9	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.8	0.5	0.0	0.1	1.0	0.2	4.5	0.0		1.5	1.8	
Delay (s)	6.5	6.8	4.5	4.9	10.9	6.9	49.5	42.7		46.0	46.8	
Level of Service	Α	Α	Α	Α	В	Α	D	D		D	D	
Approach Delay (s)		6.7			10.5			46.9			46.6	
Approach LOS		Α			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			13.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Cap	acity ratio		0.54									
Actuated Cycle Length (s)			110.0	S	um of los	t time (s)			13.5			
Intersection Capacity Utiliz	ation		71.4%	IC	U Level	of Service)		С			
Analysis Period (min)			15									

c Critical Lane Group

Whites / Kingston SW BA Group - TCS

	\rightarrow	*	1	-	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	^	7	ሻ	^	W				
Traffic Volume (veh/h)	1530	40	10	1075	10	20			
Future Volume (Veh/h)	1530	40	10	1075	10	20			
Sign Control	Free			Free	Stop				
Grade	0%			0%	0%				
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96			
Hourly flow rate (vph)	1594	42	10	1120	10	21			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None			None					
Median storage veh)									
Upstream signal (m)				153					
pX, platoon unblocked					0.86				
vC, conflicting volume			1636		2174	797			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol			1636		2042	797			
tC, single (s)			4.1		6.8	7.0			
tC, 2 stage (s)									
tF (s)			2.2		3.5	3.3			
p0 queue free %			98		76	94			
cM capacity (veh/h)			402		42	323			
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1		
Volume Total	797	797	42	10	560	560	31		
Volume Left	0	0	0	10	0	0	10		
Volume Right	0	0	42	0	0	0	21		
cSH	1700	1700	1700	402	1700	1700	102		
Volume to Capacity	0.47	0.47	0.02	0.02	0.33	0.33	0.30		
Queue Length 95th (m)	0.0	0.0	0.0	0.6	0.0	0.0	9.2		
Control Delay (s)	0.0	0.0	0.0	14.2	0.0	0.0	54.8		
Lane LOS				В			F		
Approach Delay (s)	0.0			0.1			54.8		
Approach LOS							F		
Intersection Summary									
Average Delay									
			0.7						
Intersection Capacity Utiliza	tion		52.3%	IC	CU Level	of Service		Α	

Whites / Kingston SW BA Group - TCS Synchro 10 Report FBPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

Future Background PM Peak Hour

	*	-	•	•	-	*	1	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑ 1>		ሻ	∱ }		ሻ	1>		ሻ	1>	
Traffic Volume (vph)	130	1495	5	5	1010	70	5	5	15	60	0	70
Future Volume (vph)	130	1495	5	5	1010	70	5	5	15	60	0	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.4	5.4		5.4	5.4		5.2	5.2		5.2	5.2	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	0.98	
Flpb, ped/bikes	0.99	1.00		1.00	1.00		0.99	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99		1.00	0.89		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1735	3533		1745	3491		1732	1664		1745	1549	
Flt Permitted	0.23	1.00		0.13	1.00		0.71	1.00		0.74	1.00	
Satd. Flow (perm)	424	3533		244	3491		1292	1664		1366	1549	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adi, Flow (vph)	138	1590	5	5	1074	74	5	5	16	64	0.54	74
RTOR Reduction (vph)	0	0	0	0	3	0	0	14	0	0	67	0
Lane Group Flow (vph)	138	1595	0	5	1145	0	5	7	0	64	7	0
Confl. Peds. (#/hr)	10	1000	U	J	1140	10	5	1	U	04	- 1	5
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	1%
Bus Blockages (#/hr)	0 /0	0	11	0 /8	0	11	0.70	0.70	0.70	0 /8	0.70	0
	Perm	NA	- 11	Perm	NA NA	- ''	Perm	NA		Perm	NA	
Turn Type Protected Phases	Pellii	NA 2		Pellii	NA 6		Pellii	NA 8		Pellii	INA 4	
Permitted Phases	2	2		6	0		8	0		4	4	
	78.5	70.5			78.5		8.9	8.9		8.9	8.9	
Actuated Green, G (s)	79.5	78.5 79.5		78.5 79.5	79.5		9.9	9.9		9.9	9.9	
Effective Green, g (s)	0.80	0.80			0.80			0.10		0.10	0.10	
Actuated g/C Ratio				0.80			0.10					
Clearance Time (s)	6.4	6.4		6.4	6.4		6.2	6.2		6.2	6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	337	2808		193	2775		127	164		135	153	
v/s Ratio Prot		c0.45			0.33			0.00			0.00	
v/s Ratio Perm	0.33			0.02			0.00			c0.05		
v/c Ratio	0.41	0.57		0.03	0.41		0.04	0.04		0.47	0.05	
Uniform Delay, d1	3.1	3.8		2.1	3.1		40.7	40.8		42.6	40.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.7	0.8		0.2	0.5		0.1	0.1		2.6	0.1	
Delay (s)	6.8	4.7		2.4	3.6		40.9	40.9		45.2	40.9	
Level of Service	Α	Α		Α	Α		D	D		D	D	
Approach Delay (s)		4.8			3.6			40.9			42.9	
Approach LOS		Α			Α			D			D	
Intersection Summary												
HCM 2000 Control Delay			6.4	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.56									
Actuated Cycle Length (s)			100.0	S	um of los	time (s)			10.6			
Intersection Capacity Utiliza	ation		82.2%	IC	U Level	of Service)		Е			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

	•	\rightarrow	*	1	—	•	1	1		-	Į.	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	7	^	7	J.	ተተተ	7	ሻ	ተተተ	7
Traffic Volume (vph)	205	1125	425	255	830	565	240	1015	750	190	780	135
Future Volume (vph)	205	1125	425	255	830	565	240	1015	750	190	780	135
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3
Total Lost time (s)	2.0	6.0	6.0	2.0	6.0	6.0	2.0	6.1	2.0	2.0	6.1	6.1
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1743	3535	1525	1728	3535	1507	1744	5079	1512	1744	5129	1457
Flt Permitted	0.21	1.00	1.00	0.09	1.00	1.00	0.22	1.00	1.00	0.16	1.00	1.00
Satd. Flow (perm)	383	3535	1525	161	3535	1507	412	5079	1512	291	5129	1457
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	211	1160	438	263	856	582	247	1046	773	196	804	139
RTOR Reduction (vph)	0	0	201	0	0	179	0	0	110	0	0	70
Lane Group Flow (vph)	211	1160	237	263	856	403	247	1046	663	196	804	69
Confl. Peds. (#/hr)	20		10	10		20	10		20	20		10
Heavy Vehicles (%)	0%	1%	0%	1%	1%	0%	0%	1%	0%	0%	0%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	2	0	0	4
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases	2		2	6		6	8		8	4		4
Actuated Green, G (s)	53.2	42.2	42.2	64.0	50.0	50.0	61.5	44.4	63.2	56.3	41.8	41.8
Effective Green, g (s)	55.2	43.2	43.2	65.0	51.0	51.0	62.9	45.4	65.2	58.3	42.8	42.8
Actuated g/C Ratio	0.39	0.31	0.31	0.46	0.36	0.36	0.45	0.32	0.47	0.42	0.31	0.31
Clearance Time (s)	3.0	7.0	7.0	3.0	7.0	7.0	3.0	7.1	3.0	3.0	7.1	7.1
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	267	1090	470	296	1287	548	357	1647	704	282	1568	445
v/s Ratio Prot	0.07	c0.33		0.13	0.24		c0.09	0.21	c0.13	c0.08	0.16	
v/s Ratio Perm	0.24		0.16	0.29		0.27	0.22		0.31	0.21		0.05
v/c Ratio	0.79	1.06	0.51	0.89	0.67	0.74	0.69	0.64	0.94	0.70	0.51	0.15
Uniform Delay, d1	30.6	48.4	39.6	41.9	37.3	38.7	26.1	40.3	35.6	28.6	40.0	35.4
Progression Factor	1.24	0.89	0.87	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	10.7	42.1	2.7	25.8	2.7	8.5	5.7	1.9	20.9	7.2	1.2	0.7
Delay (s)	48.6	85.2	37.1	67.7	40.1	47.2	31.8	42.1	56.5	35.8	41.2	36.2
Level of Service	D	F	D	Е	D	D	С	D	E	D	D	D
Approach Delay (s)	_	69.3	_	=	46.8	=	-	46.3		_	39.7	_
Approach LOS		Е			D			D			D	
Intersection Summary												
HCM 2000 Control Delay	/		51.5	Н	CM 2000	I evel of	Service		D			
HCM 2000 Volume to Ca			0.96		OW 2000	LOVOI OI	0011100					
			140.0	S	um of los	t time (s)			16.1			
							9					
							-		Ŭ			
			.0									
Actuated Cycle Length (s Intersection Capacity Uti Analysis Period (min) c Critical Lane Group			140.0 106.1% 15		um of los CU Level		9		16.1 G			

Whites / Kingston SW BA Group - TCS Synchro 10 Report FBPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

Future Background PM Peak Hour

	•	→	\rightarrow	•	—	4	1	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† 1>		ሻ	† }		ሻ	1>		ች	1>	
Traffic Volume (vph)	95	1420	35	105	1000	100	35	20	140	195	15	50
Future Volume (vph)	95	1420	35	105	1000	100	35	20	140	195	15	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.3	5.3		2.0	5.3		5.7	5.7		3.5	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	0.99	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99		1.00	0.87		1.00	0.88	
Flt Protected	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Satd. Flow (prot)	1825	3523		1837	3472		1837	1587		1831	1662	
Flt Permitted	0.24	1.00		0.09	1.00		0.71	1.00		0.26	1.00	
Satd. Flow (perm)	430	3523		172	3472		1308	1587		482	1662	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	100	1495	37	111	1053	105	37	21	147	205	16	53
RTOR Reduction (vph)	0	1	0	0	4	0	0	132	0	0	42	0
Lane Group Flow (vph)	100	1531	0	111	1154	0	37	36	0	205	27	0
Confl. Peds. (#/hr)	10					10			15	15		
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	13	0	0	0	0	0	0
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Protected Phases		2		1	6			8		7	4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	86.3	86.3		98.5	98.5		13.5	13.5		28.5	28.5	
Effective Green, g (s)	87.3	87.3		99.5	99.5		14.5	14.5		29.5	29.5	
Actuated g/C Ratio	0.62	0.62		0.71	0.71		0.10	0.10		0.21	0.21	
Clearance Time (s)	6.3	6.3		3.0	6.3		6.7	6.7		4.5	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	268	2196		243	2467		135	164		212	350	
v/s Ratio Prot		c0.43		0.03	c0.33			0.02		c0.08	0.02	
v/s Ratio Perm	0.23			0.29			0.03			c0.12		
v/c Ratio	0.37	0.70		0.46	0.47		0.27	0.22		0.97	0.08	
Uniform Delay, d1	12.9	17.5		14.9	8.8		57.9	57.6		51.5	44.3	
Progression Factor	1.00	1.00		3.38	0.60		1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.9	1.9		1.1	0.5		1.1	0.7		51.8	0.1	
Delay (s)	16.9	19.4		51.6	5.8		59.0	58.3		103.3	44.4	
Level of Service	В	В		D	Α		Е	Е		F	D	
Approach Delay (s)		19.3			9.8			58.4			88.5	
Approach LOS		В			Α			Е			F	
Intersection Summary												
HCM 2000 Control Delay			23.7	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.75									
Actuated Cycle Length (s)			140.0	S	um of los	t time (s)			16.5			
Intersection Capacity Utilizat	ion		92.1%			of Service			F			
Analysis Period (min)			15									

Whites / Kingston SW BA Group - TCS

ioni oignanzoa intoroc	outer Supusity / triaryole
: Whites Road & Bayly	/ Street

	•	4	†	~	/	ļ.			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ች	7	^	7	*	414			Т
Traffic Volume (vph)	195	640	505	205	935	435			
Future Volume (vph)	195	640	505	205	935	435			
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
_ane Width	3.3	3.3	3.5	3.3	3.3	3.5			
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0			
ane Util. Factor	1.00	1.00	0.95	1.00	0.91	0.91			
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00			
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.97			
Satd. Flow (prot)	1745	1546	3535	1527	1572	3300			
Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.97			
Satd. Flow (perm)	1745	1546	3535	1527	1572	3300			
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90			_
Adj. Flow (vph)	217	711	561	228	1039	483			
RTOR Reduction (vph)	0	46	0	160	0	0			
ane Group Flow (vph)	217	665	561	68	519	1003			
Confl. Peds. (#/hr)		000	001	10	10	1000			
Heavy Vehicles (%)	0%	1%	1%	0%	1%	1%			
Turn Type	Perm	pm+ov	NA	Perm	Split	NA			_
Protected Phases	1 01111	2	5	1 01111	2	2			
Permitted Phases	8	8	U	5	_				
Actuated Green, G (s)	18.9	65.0	24.6	24.6	46.1	46.1			
Effective Green, q (s)	19.9	67.0	25.6	25.6	47.1	47.1			
Actuated g/C Ratio	0.18	0.61	0.23	0.23	0.43	0.43			
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
ane Grp Cap (vph)	315	1025	822	355	673	1413			_
//s Ratio Prot	0.0	c0.28	c0.16	000	c0.33	0.30			
//s Ratio Perm	0.12	0.15	00.10	0.04	00.00	0.00			
//c Ratio	0.69	0.65	0.68	0.19	0.77	0.71			
Uniform Delay, d1	42.2	13.9	38.5	33.9	26.8	25.8			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
ncremental Delay, d2	6.2	1.4	2.4	0.3	8.3	3.0			
Delay (s)	48.3	15.3	40.8	34.2	35.2	28.9			
_evel of Service	70.5 D	10.5 B	70.0 D	C	D	C C			
Approach Delay (s)	23.0		38.9	3		31.0			
Approach LOS	C		D			C			
ntersection Summary									
HCM 2000 Control Delay			30.7	Н	CM 2000	Level of Serv	ice	С	Т
HCM 2000 Volume to Capacit	tv ratio		0.75						
Actuated Cycle Length (s)	,		110.0	S	um of lost	time (s)		18.4	
ntersection Capacity Utilization	on		70.9%			of Service		C	
Analysis Period (min)			15	- 10					
Critical Lane Group									

Synchro 10 F	Report
FBPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ram	p).syn

Future Background PM Peak Hour

	\rightarrow	*	1	-	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	↑ î»		7	^	ሻሻ	7			
Traffic Volume (vph)	1810	25	275	925	575	80			
Future Volume (vph)	1810	25	275	925	575	80			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.5	3.5	3.3	3.5	3.3	3.3			
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4			
Lane Util. Factor	0.95		1.00	0.95	0.97	1.00			
Frt	1.00		1.00	1.00	1.00	0.85			
Flt Protected	1.00		0.95	1.00	0.95	1.00			
Satd. Flow (prot)	3528		1694	3535	3351	1531			
Flt Permitted	1.00		0.05	1.00	0.95	1.00			
Satd. Flow (perm)	3528		90	3535	3351	1531			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95			
Adj. Flow (vph)	1905	26	289	974	605	84			
RTOR Reduction (vph)	0	0	0	0	0	20			
Lane Group Flow (vph)	1931	0	289	974	605	64			
Heavy Vehicles (%)	1%	0%	3%	1%	1%	2%			
Turn Type	NA		pm+pt	NA	Prot	Perm			
Protected Phases	2		1	6	8				
Permitted Phases	_		6			8			
Actuated Green, G (s)	76.3		101.1	101.1	26.3	26.3			
Effective Green, q (s)	77.3		102.1	102.1	27.3	27.3			
Actuated g/C Ratio	0.55		0.73	0.73	0.20	0.20			
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4			
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	1947		326	2578	653	298			
v/s Ratio Prot	c0.55		c0.14	0.28	c0.18	200			
v/s Ratio Perm	00.00		0.50	0.20	00.10	0.04			
v/c Ratio	0.99		0.89	0.38	0.93	0.21			
Uniform Delay, d1	31.0		48.3	7.1	55.4	47.3			
Progression Factor	1.00		1.00	1.00	1.00	1.00			
Incremental Delay, d2	18.5		23.8	0.4	19.2	0.4			
Delay (s)	49.5		72.1	7.5	74.5	47.7			
Level of Service	49.5 D		72.1	7.5 A	74.5 E	D D			
Approach Delay (s)	49.5		_	22.3	71.3				
Approach LOS				C	F				
Intersection Summary									
HCM 2000 Control Delay			44.5	Н	CM 2000	Level of Service	2	D	
HCM 2000 Volume to Capa	ocity ratio		0.95	П	OIVI 2000	Level of Selvice		D	
Actuated Cycle Length (s)	acity ratio		140.0	0	um of los	t time (s)		12.6	
Intersection Capacity Utiliza	ation		94.6%			of Service		12.0 F	
Analysis Period (min)	uuUII		15	IC	O LEVEL	OF VICE			
c Critical Lane Group			13						
o ontiour Laire Oroup									

	•	*	1	Ť	¥	∢		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	77	77		^	^			
Traffic Volume (vph)	1335	700	0	1145	670	0		
Future Volume (vph)	1335	700	0	1145	670	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.3	3.3	3.5	3.5	3.5	3.5		
Total Lost time (s)	4.5	4.5		5.7	5.7			
Lane Util. Factor	0.97	0.88		0.95	0.95			
Frpb, ped/bikes	1.00	1.00		1.00	1.00			
Flpb, ped/bikes	1.00	1.00		1.00	1.00			
Frt	1.00	0.85		1.00	1.00			
Flt Protected	0.95	1.00		1.00	1.00			
Satd. Flow (prot)	3385	2720		3570	3570			
Flt Permitted	0.95	1.00		1.00	1.00			
Satd. Flow (perm)	3385	2720		3570	3570			
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91		
Adj. Flow (vph)	1467	769	0	1258	736	0		
RTOR Reduction (vph)	0	69	0	0	0	0		
Lane Group Flow (vph)	1467	700	0	1258	736	0		
Confl. Peds. (#/hr)			10			10		
Heavy Vehicles (%)	0%	1%	0%	0%	0%	0%		
Turn Type	Prot	Perm		NA	NA			
Protected Phases	4			2	6			
Permitted Phases		4						
Actuated Green, G (s)	48.9	48.9		38.9	38.9			
Effective Green, q (s)	49.9	49.9		39.9	39.9			
Actuated g/C Ratio	0.50	0.50		0.40	0.40			
Clearance Time (s)	5.5	5.5		6.7	6.7			
Vehicle Extension (s)	3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)	1689	1357		1424	1424			
v/s Ratio Prot	c0.43			c0.35	0.21			
v/s Ratio Perm		0.26						
v/c Ratio	0.87	0.52		0.88	0.52			
Uniform Delay, d1	22.2	16.9		27.9	22.8			
Progression Factor	1.00	1.00		1.00	1.00			
Incremental Delay, d2	5.0	0.3		8.3	1.3			
Delay (s)	27.2	17.2		36.2	24.1			
Level of Service	С	В		D	С			
Approach Delay (s)	23.8			36.2	24.1			
Approach LOS	С			D	С			
Intersection Summary								
HCM 2000 Control Delay			27.5	Н	CM 2000	Level of Service	С	
HCM 2000 Volume to Capa	acity ratio		0.88					
Actuated Cycle Length (s)			100.0	S	um of lost	time (s)	10.2	
Intersection Capacity Utiliza	ation		84.9%		CU Level o		Е	
Analysis Period (min)			15					
c Critical Lane Group								

Whites / Kingston SW BA Group - TCS Synchro 10 Report FBPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 9: Car Dealer Site Access/Delta Boulevard & Kingston Road

Future Background PM Peak Hour

o. Gar Board Gree	•	_	_	_	←	4	•	†	<i>></i>	Ţ	ī	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	7	44	7	NOL.	1	NUIX) j	1	ODI
Traffic Volume (vph)	145	1595	45	70	1335	95	165	20	130	100	10	150
Future Volume (vph)	145	1595	45	70	1335	95	165	20	130	100	10	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.7	5.7	5.6	5.6	1000	5.6	5.6	1000
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.98		1.00	0.97	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3535	1541	1785	3535	1517	1761	1604		1773	1569	
Flt Permitted	0.12	1.00	1.00	0.08	1.00	1.00	0.56	1.00		0.59	1.00	
Satd. Flow (perm)	221	3535	1541	155	3535	1517	1043	1604		1092	1569	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	148	1628	46	71	1362	97	168	20	133	102	10	153
RTOR Reduction (vph)	0	0	18	0	0	29	0	106	0	0	122	0
Lane Group Flow (vph)	148	1628	28	71	1362	68	168	47	0	102	41	0
Confl. Peds. (#/hr)	10	1020	5	5	1302	10	100	41	5	5	41	10
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA	0 /0	Perm	NA	0 /0
Protected Phases	рш+рt 5	2	Fellil	рит+рі 1	6	FeIIII	Fellii	8		Fellii	4	
Permitted Phases	2		2	6	U	6	8	0		4	4	
Actuated Green, G (s)	75.1	66.3	66.3	68.6	62.8	62.8	21.4	21.4		21.4	21.4	
Effective Green, g (s)	76.1	67.3	67.3	70.6	63.8	63.8	22.4	22.4		22.4	22.4	
Actuated g/C Ratio	0.69	07.3	0.61	0.64	0.58	0.58	0.20	0.20		0.20	0.20	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.7	6.7	6.6	6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	302	2162	942	200	2050	879	212	326		222	319	
v/s Ratio Prot			942		0.39	0/9	212	0.03		222	0.03	
	c0.05 0.29	c0.46	0.02	0.02	0.39	0.05	-0.40	0.03		0.09	0.03	
v/s Ratio Perm v/c Ratio	0.29	0.75	0.02	0.21	0.66	0.05	c0.16 0.79	0.14		0.09	0.13	
	11.1		8.4					35.9		38.5	35.8	
Uniform Delay, d1		15.4		12.5	15.8 1.00	10.2	41.6					
Progression Factor	1.00	1.00	1.00	1.00		1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2			0.1	1.1	1.7		18.1				36.0	
Delay (s)	12.4 B	17.9 B	8.5	13.0 B	17.5	10.3 B	59.7 E	36.1		40.0 D	36.0 D	
Level of Service	В	17.2	Α	В	B 16.9	В	E	D 48.5		D	37.5	
Approach Delay (s)		17.2 B			16.9 B			48.5 D			37.5 D	
Approach LOS		В			В			U			D	
Intersection Summary												
HCM 2000 Control Delay			21.0	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Cap	acity ratio		0.75									
Actuated Cycle Length (s)			110.0		um of lost				13.5			
Intersection Capacity Utiliz	ation		86.9%	IC	U Level	of Service)		Е			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

Whites / Kingston SW BA Group - TCS

	-	*	1	—	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	^	7	ሻ	^	W				
Traffic Volume (veh/h)	755	0	0	1030	0	0			
Future Volume (Veh/h)	755	0	0	1030	0	0			
Sign Control	Free			Free	Stop				
Grade	0%			0%	0%				
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87			
Hourly flow rate (vph)	868	0	0	1184	0	0			
Pedestrians					5				
ane Width (m)					3.3				
Walking Speed (m/s)					1.2				
Percent Blockage					0				
Right turn flare (veh)									
Median type	None			None					
Median storage veh)									
Jpstream signal (m)				153					
X, platoon unblocked					0.78				
C, conflicting volume			873		1465	439			
C1, stage 1 conf vol									
C2, stage 2 conf vol									
Cu, unblocked vol			873		1023	439			
C, single (s)			4.1		7.1	6.9			
C, 2 stage (s)									
F (s)			2.2		3.6	3.3			
o0 queue free %			100		100	100			
cM capacity (veh/h)			778		164	569			
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1		
/olume Total	434	434	0	0	592	592	0		
/olume Left	0	0	0	0	0	0	0		
/olume Right	0	0	0	0	0	0	0		
SH	1700	1700	1700	1700	1700	1700	1700		
Volume to Capacity	0.26	0.26	0.00	0.00	0.35	0.35	0.00		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
ane LOS							Α		
Approach Delay (s)	0.0			0.0			0.0		
Approach LOS							Α		
Intersection Summary									
Average Delay			0.0						
ntersection Capacity Utiliza	ation		31.8%	IC	U Level	of Service		Α	
Analysis Period (min)			15						

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

Future Total (5 Year) AM Peak Hour

•	•	←	*	4	†	1	-	ļ	1
EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	Ť	ħ₽		7	ĵ»		7	- ↑	
10	15	950	65	0	0	5	95	5	120
10	15	950	65	0	0	5	95	5	120
1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
	5.6	5.6			5.6		5.6	5.6	
	1.00	0.95			1.00		1.00	1.00	
	1.00	1.00			1.00		1.00	1.00	
	1.00	1.00			1.00		1.00	1.00	
	1.00	0.99			0.85		1.00	0.86	
	0.95	1.00			1.00		0.95	1.00	
	1745	3429			1597		1694	1609	
	0.36	1.00			1.00		0.75	1.00	
	656	3429			1597		1344	1609	
0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
11	17	1080	74	0	0	6	108	6	136
0	0	4	0	0	5	0	0	99	0
0	17	1150	0	0	1	0	108	43	0
			5						
0%	0%	3%	1%	0%	0%	0%	3%	0%	0%
11	0	0	11	0	0	0	0	0	0
	Perm	NA		Perm	NA		Perm	NA	
		6			8		. 0	4	
	6			8			4		
	73.4	73.4		-	13.4		13.4	13.4	
	74.4	74.4			14.4		14.4	14.4	
	0.74	0.74			0.14		0.14	0.14	
	6.6	6.6			6.6		6.6	6.6	
	3.0	3.0			3.0		3.0	3.0	
	488	2551			229		193	231	
	700	c0.34			0.00		100	0.03	
	0.03	00.04			0.00		c0.08	0.00	
	0.03	0.45			0.00		0.56	0.18	
	3.4	4.9			36.7		39.8	37.6	
	1.00	1.00			1.00		1.00	1.00	
	0.1	0.6			0.0		3.5	0.4	
	3.5	5.5			36.7		43.3	38.0	
	Α.	Α.			D		TO.0	D	
	^	5.5			36.7		D	40.3	
		3.5 A			30.7 D			40.3 D	
		^			D			D	
9.1 0.47	Н	CM 2000	Level of S	Service		Α			
100.0	C	um of los	time (c)			11.2			
	IC	o Level (o service			А			
10									
	49.6% 15								

Whites / Kingston SW BA Group - TCS

105 105	EBT ↑↑ 405	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
105 105		#						HUIT	ODL	301	ODK
105	405		7	^	7	7	^ ^	7	ሻ	ተተተ	7
		800	295	685	360	230	465	440	150	1300	125
	405	800	295	685	360	230	465	440	150	1300	125
1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3
											6.1
											1.00
											0.98
											1.00
											0.85
											1.00
											1486
											1.00
											1486
0.91	0.91			0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
											137
-	-			-			-		-	-	72
	445			753			511			1429	65
											10
											1%
0		0	0		0	0		2	0		4
pm+pt		pm+ov	pm+pt		Perm	pm+pt		pm+ov	pm+pt		Perm
	2		1	6			8		7	4	
											4
											38.9
											39.9
											0.28
											7.1
											3.0
265	1335	798	424	1460	626	317	1625	569	407	1447	423
0.02	0.13	c0.14	c0.05	0.22		0.11	0.10	0.04	0.04	c0.28	
0.17		0.41	0.31		0.17	0.24		0.17	0.12		0.04
											0.15
24.7	29.7	33.0	28.2	29.9	28.4	27.9	36.0	32.7		49.8	37.4
0.85	0.86	0.83	1.00		1.00	1.00	1.00	1.00		1.00	1.00
			8.0							20.9	0.8
21.7	25.8	69.0	36.1	31.2	30.3	41.0	36.5	33.7	29.9	70.7	38.2
С		Е	D		С	D	D	С	С	Е	D
	D			С			D			Е	
		47.3	Н	CM 2000	Level of	Service		D			
ity ratio		1.00									
		140.0	S	um of lost	time (s)			16.1			
ion		109.0%			(-)	9		G			
		15									
	2.0 1.00 1.00 1.00 1.00 1.00 0.95 1676 0.28 494 0.91 115 0 115 5 2 59.0 61.0 0.44 3.0 3.0 265 0.02 0.17 0.43 24.7 C	2.0 6.0 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.96 1.00 0.97 0.91 115 445 0 0 0 0.91 0.91 115 445 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.0 6.0 2.0 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.0 6.0 2.0 2.0 1.00	2.0 6.0 2.0 2.0 6.0 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 0.00 0.95 0.00 0.95 0.00 0.95 0.00 0.95 0.00 0.95 0.00 0.95 0.00 0.95 0.00 0.95 0.00 0.00 0.95 0.00 0.95 0.00 0.95	2.0	2.0	2.0	2.0	2.0	2.0

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

Future Total (5 Year) AM Peak Hour

	۶	-	\rightarrow	•	-	*	4	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† î>		ሻ	∱ }		ሻ	1>		ሻ	1>	
Traffic Volume (vph)	40	650	65	155	855	30	140	0	535	125	0	35
Future Volume (vph)	40	650	65	155	855	30	140	0	535	125	0	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.3	5.3		2.0	5.3		5.7	5.7		5.7	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.99		1.00	0.99		1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1673	3398		1631	3477		1454	1557		1694	1521	
Flt Permitted	0.21	1.00		0.16	1.00		0.73	1.00		0.19	1.00	
Satd. Flow (perm)	378	3398		283	3477		1118	1557		332	1521	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adi, Flow (vph)	47	765	76	182	1006	35	165	0.00	629	147	0.00	41
RTOR Reduction (vph)	0	5	0	0	2	0	0	168	0	0	22	0
Lane Group Flow (vph)	47	836	0	182	1039	0	165	461	0	147	19	0
Confl. Peds. (#/hr)	5	000	U	102	1000	5	100	101	10	10	10	U
Heavy Vehicles (%)	4%	4%	0%	7%	2%	3%	20%	0%	0%	3%	0%	5%
Bus Blockages (#/hr)	0	0	0	0	0	13	0	0	0	0	0	0
Turn Type	Perm	NA		pm+pt	NA	- 10	Perm	NA		Perm	NA	
Protected Phases	r cilli	2		рин - рг	6		I CIIII	8		I CIIII	4	
Permitted Phases	2			6	U		8	0		4	4	
Actuated Green, G (s)	48.5	48.5		64.8	64.8		62.2	62.2		62.2	62.2	
Effective Green, g (s)	49.5	49.5		65.8	65.8		63.2	63.2		63.2	63.2	
Actuated g/C Ratio	0.35	0.35		0.47	0.47		0.45	0.45		0.45	0.45	
Clearance Time (s)	6.3	6.3		3.0	6.3		6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	133	1201		270	1634 0.30		504	702		149	686	
v/s Ratio Prot	0.40	c0.25		c0.07	0.30		0.45	0.30		-0.44	0.01	
v/s Ratio Perm	0.12	0.70		0.25	0.04		0.15	0.00		c0.44	0.00	
v/c Ratio	0.35	0.70		0.67	0.64		0.33	0.66		0.99	0.03	
Uniform Delay, d1	33.4	38.8		25.7	28.0		24.7	29.9		38.0	21.3	
Progression Factor	1.00	1.00		1.74	0.70		1.00	1.00		1.00	1.00	
Incremental Delay, d2	7.2	3.3		5.7	1.7		0.4	2.2		69.1	0.0	
Delay (s)	40.6	42.1		50.4	21.4		25.1	32.2		107.1	21.3	
Level of Service	D	D		D	C		С	C		F	C	
Approach Delay (s)		42.1			25.7			30.7			88.4	
Approach LOS		D			С			С			F	
Intersection Summary												
HCM 2000 Control Delay			35.5	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.83									
Actuated Cycle Length (s)			140.0	S	um of lost	t time (s)			13.0			
Intersection Capacity Utiliza	ation		100.7%	IC	U Level	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

Whites Road & Ba	yly Str	eet					
		4	+	→	7	П	

	•	_	- 1		-	+			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ሻ	7	44	7	ሻ	4∱			
Traffic Volume (vph)	95	315	615	80	495	520			
Future Volume (vph)	95	315	615	80	495	520			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.3	3.3	3.5	3.3	3.3	3.5			
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0			
Lane Util. Factor	1.00	1.00	0.95	1.00	0.91	0.91			
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00			
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.99			
Satd. Flow (prot)	1662	1516	3500	1476	1542	3305			
Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.99			
Satd. Flow (perm)	1662	1516	3500	1476	1542	3305			
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91			
Adj. Flow (vph)	104	346	676	88	544	571			
RTOR Reduction (vph)	0	37	0	51	0	0			
Lane Group Flow (vph)	104	309	676	37	364	751			
Confl. Peds. (#/hr)				5	5				
Heavy Vehicles (%)	5%	3%	2%	4%	3%	2%			
Turn Type	Perm	pm+ov	NA	Perm	Split	NA			
Protected Phases		2	5		2	2			
Permitted Phases	8	8		5					
Actuated Green, G (s)	12.4	62.3	27.3	27.3	49.9	49.9			
Effective Green, g (s)	13.4	64.3	28.3	28.3	50.9	50.9			
Actuated g/C Ratio	0.12	0.58	0.26	0.26	0.46	0.46			
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	202	968	900	379	713	1529			
v/s Ratio Prot		0.15	c0.19		c0.24	0.23			
v/s Ratio Perm	c0.06	0.06		0.02					
v/c Ratio	0.51	0.32	0.75	0.10	0.51	0.49			
Uniform Delay, d1	45.3	11.7	37.6	31.1	20.8	20.5			
Progression Factor	1.00	1.00	1.00	1.00	0.92	0.91			
Incremental Delay, d2	2.2	0.2	3.6	0.1	2.5	1.1			
Delay (s)	47.5	11.9	41.2	31.2	21.6	19.8			
Level of Service	D	В	D	С	С	В			
Approach Delay (s)	20.1		40.0			20.4			
Approach LOS	С		D			С			
Intersection Summary									
HCM 2000 Control Delay			26.8	Н	ICM 2000	Level of Service	•	С	
HCM 2000 Volume to Capa	city ratio		0.59						
Actuated Cycle Length (s)			110.0	S	um of lost	time (s)		18.4	
Intersection Capacity Utiliza	ation		58.8%	IC	CU Level	of Service		В	
Analysis Period (min)			15						
c Critical Lane Group									

Future Total (5 Year) AM Peak Hour

Whites / Kingston SW	Synchro 10 Repo
BA Group - TCS	FTAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp),s

ů ,								
	-	\rightarrow	•	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	† 1>		ሻ	^ ^	ሻሻ	7		
Traffic Volume (vph)	915	10	350	645	600	90		
Future Volume (vph)	915	10	350	645	600	90		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.5	3.5	3.3	3.5	3.3	3.3		
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4		
Lane Util. Factor	0.95		1.00	0.95	0.97	1.00		
Frt	1.00		1.00	1.00	1.00	0.85		
Flt Protected	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3420		1711	3500	3286	1531		
Flt Permitted	1.00		0.13	1.00	0.95	1.00		
Satd. Flow (perm)	3420		230	3500	3286	1531		
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87		
Adj. Flow (vph)	1052	11	402	741	690	103		
RTOR Reduction (vph)	1	0	0	0	0	27		
Lane Group Flow (vph)	1062	0	402	741	690	76		
Heavy Vehicles (%)	4%	25%	2%	2%	3%	2%		
Turn Type	NA		pm+pt	NA	Prot	Perm		
Protected Phases	2		1	6	8			
Permitted Phases			6			8		
Actuated Green, G (s)	49.1		76.9	76.9	30.5	30.5		
Effective Green, g (s)	50.1		77.9	77.9	31.5	31.5		
Actuated g/C Ratio	0.42		0.65	0.65	0.26	0.26		
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4		
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	1427		467	2272	862	401		
v/s Ratio Prot	c0.31		c0.18	0.21	c0.21			
v/s Ratio Perm			0.37			0.05		
v/c Ratio	0.74		0.86	0.33	0.80	0.19		
Uniform Delay, d1	29.5		28.7	9.4	41.3	34.4		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
Incremental Delay, d2	3.6		14.9	0.4	5.4	0.2		
Delay (s)	33.1		43.6	9.8	46.7	34.6		
Level of Service	C		D	A	D	С		
Approach Delay (s)	33.1			21.7	45.1			
Approach LOS	С			С	D			
Intersection Summary								
HCM 2000 Control Delay			31.9	Н	CM 2000	Level of Service	е	С
HCM 2000 Volume to Cap	acity ratio		0.78					
Actuated Cycle Length (s)			120.0		um of lost		12	2.6
Intersection Capacity Utiliz	ation		74.3%	IC	CU Level of	of Service		D
Analysis Period (min)			15					
c Critical Lane Group								

	•	*	1	1	Į.	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	ሻሻ	77		^	^				
Traffic Volume (vph)	700	370	0	930	645	0			
Future Volume (vph)	700	370	0	930	645	0			
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
ane Width	3.3	3.3	3.5	3.5	3.5	3.5			
otal Lost time (s)	4.5	4.5		5.7	5.7				
ane Util. Factor	0.97	0.88		0.95	0.95				
rpb, ped/bikes	1.00	1.00		1.00	1.00				
lpb, ped/bikes	1.00	1.00		1.00	1.00				
rt	1.00	0.85		1.00	1.00				
t Protected	0.95	1.00		1.00	1.00				
atd. Flow (prot)	3319	2668		3570	3570				
Permitted	0.95	1.00		1.00	1.00				
atd. Flow (perm)	3319	2668		3570	3570				
eak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95			
dj. Flow (vph)	737	389	0.93	979	679	0.33			
TOR Reduction (vph)	0	246	0	0	0/9	0			
ane Group Flow (vph)	737	143	0	979	679	0			
onfl. Peds. (#/hr)	131	140	5	313	013	5			
eavy Vehicles (%)	2%	3%	0%	0%	0%	0%			
	Prot	Perm	0 /0	NA	NA	0 /0			
rn Type	4	Perm		2	1NA 6				
otected Phases	4	4		2	р				
	31.1			CC 7	CC 7				
tuated Green, G (s)		31.1		66.7	66.7				
fective Green, g (s)	32.1 0.29	32.1 0.29		67.7	67.7 0.62				
tuated g/C Ratio				0.62					
earance Time (s)	5.5	5.5		6.7	6.7				
ehicle Extension (s)	3.0	3.0		3.0	3.0				
ane Grp Cap (vph)	968	778		2197	2197				
Ratio Prot	c0.22	0.05		c0.27	0.19				
Ratio Perm	0 ==	0.05		0.45					
c Ratio	0.76	0.18		0.45	0.31				
niform Delay, d1	35.5	29.2		11.2	10.0				
ogression Factor	1.00	1.00		0.34	1.00				
cremental Delay, d2	3.6	0.1		0.6	0.4				
elay (s)	39.0	29.3		4.4	10.4				
evel of Service	D	С		Α	В				
oproach Delay (s)	35.7			4.4	10.4				
proach LOS	D			Α	В				
tersection Summary									
CM 2000 Control Delay			18.5	Н	CM 2000	Level of Servic	9	В	
CM 2000 Volume to Capa	acity ratio		0.55						
ctuated Cycle Length (s)	,		110.0	S	um of lost	time (s)		10.2	
tersection Capacity Utiliza	ation		60.8%	IC	U Level o	of Service		В	
nalysis Period (min)			15						
: Critical Lane Group									

Whites / Kingston SW BA Group - TCS FTAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 9: Car Dealer Site Access/Delta Boulevard & Kingston Road

Future Total (5 Year) AM Peak Hour

	*	-	*	•	-	*	1	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	7	^	7	7	ĵ»		7	î,	
Traffic Volume (vph)	130	855	10	20	1115	110	25	0	15	55	5	200
Future Volume (vph)	130	855	10	20	1115	110	25	0	15	55	5	200
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.9	5.9	5.6	5.6		5.3	5.3	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.97	1.00	0.98		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1733	3433	1548	1622	3466	1533	1785	1467		1758	1558	
Flt Permitted	0.15	1.00	1.00	0.27	1.00	1.00	0.30	1.00		0.75	1.00	
Satd. Flow (perm)	272	3433	1548	463	3466	1533	569	1467		1380	1558	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	157	1030	12	24	1343	133	30	0	18	66	6	241
RTOR Reduction (vph)	0	0	3	0	0	32	0	16	0	0	155	0
Lane Group Flow (vph)	157	1030	9	24	1343	101	30	2	0	66	92	0
Confl. Peds. (#/hr)	5		5	5		5			5	5		
Heavy Vehicles (%)	3%	4%	0%	10%	3%	1%	0%	0%	7%	1%	0%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2		2	6		6	8			4		
Actuated Green, G (s)	84.3	77.7	77.7	75.6	72.0	72.0	12.2	12.2		12.5	12.5	
Effective Green, g (s)	85.3	78.7	78.7	77.6	73.0	73.0	13.2	13.2		13.5	13.5	
Actuated g/C Ratio	0.78	0.72	0.72	0.71	0.66	0.66	0.12	0.12		0.12	0.12	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.6	6.6		6.3	6.3	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	347	2456	1107	375	2300	1017	68	176		169	191	
v/s Ratio Prot	c0.04	0.30		0.00	c0.39			0.00			c0.06	
v/s Ratio Perm	0.31		0.01	0.04		0.07	0.05			0.05		
v/c Ratio	0.45	0.42	0.01	0.06	0.58	0.10	0.44	0.01		0.39	0.48	
Uniform Delay, d1	6.2	6.4	4.5	4.9	10.2	6.7	45.0	42.7		44.5	45.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	0.9	0.5	0.0	0.1	1.1	0.2	4.5	0.0		1.5	1.9	
Delay (s)	7.2	6.9	4.5	4.9	11.3	6.9	49.5	42.7		46.0	46.9	
Level of Service	Α	Α	Α	Α	В	Α	D	D		D	D	
Approach Delay (s)		6.9			10.8			46.9			46.7	
Approach LOS		Α			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			13.5	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.55									
Actuated Cycle Length (s)			110.0		um of lost				13.5			
Intersection Capacity Utiliza	ition		72.5%	IC	CU Level	of Service	;		С			
Analysis Period (min)			15									

HCM 2000 Control Delay	13.5	HCM 2000 Level of Service	В	
HCM 2000 Volume to Capacity ratio	0.55			
Actuated Cycle Length (s)	110.0	Sum of lost time (s)	13.5	
Intersection Capacity Utilization	72.5%	ICU Level of Service	С	
Analysis Period (min)	15			
c Critical Lano Group				

Whites / Kingston SW BA Group - TCS

ite Access (West) & Kir	าgston	Road				
	→	•	•	←	1	~	
	EDT	EDD	MAZDI	MADT	NIDI	MDD	

	-	*	₩		7	- 7			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	^	7	ሻ	^	W				
Traffic Volume (veh/h)	770	0	0	1050	0	0			
Future Volume (Veh/h)	770	0	0	1050	0	0			
Sign Control	Free			Free	Stop				
Grade	0%			0%	0%				
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87			
Hourly flow rate (vph)	885	0	0	1207	0	0			
Pedestrians					5				
Lane Width (m)					3.3				
Walking Speed (m/s)					1.2				
Percent Blockage					0				
Right turn flare (veh)									
Median type	None			None					
Median storage veh)									
Upstream signal (m)				153					
pX, platoon unblocked					0.77				
vC, conflicting volume			890		1494	448			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol			890		1041	448			
tC, single (s)			4.1		7.1	6.9			
tC, 2 stage (s)									
tF (s)			2.2		3.6	3.3			
p0 queue free %			100		100	100			
cM capacity (veh/h)			767		158	562			
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1		
Volume Total	442	442	0	0	604	604	0		
Volume Left	0	0	0	0	0	0	0		
Volume Right	0	0	0	0	0	0	0		
cSH	1700	1700	1700	1700	1700	1700	1700		
Volume to Capacity	0.26	0.26	0.00	0.00	0.35	0.35	0.00		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Lane LOS							Α		
Approach Delay (s)	0.0			0.0			0.0		
Approach LOS							Α		
Intersection Summary									
Average Delay			0.0						
Intersection Capacity Utiliza	ation		32.4%	IC	CU Level	of Service		Α	
Analysis Period (min)			15						

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

Future Total (10 Year) AM Peak Hour

	•	→	*	•	•	*	1	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ↑		ሻ	↑ ↑		ሻ	1>		ሻ	1>	
Traffic Volume (vph)	30	670	10	15	970	65	0	0	5	95	5	120
Future Volume (vph)	30	670	10	15	970	65	0	0	5	95	5	120
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.6	5.6		5.6	5.6			5.6		5.6	5.6	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99			0.85		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)	1690	3427		1745	3430			1597		1694	1609	
Flt Permitted	0.22	1.00		0.35	1.00			1.00		0.75	1.00	
Satd. Flow (perm)	383	3427		643	3430			1597		1344	1609	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	34	761	11	17	1102	74	0	0	6	108	6	136
RTOR Reduction (vph)	0	1	0	0	4	0	0	5	0	0	95	0
Lane Group Flow (vph)	34	771	0	17	1172	0	0	1	0	108	47	0
Confl. Peds. (#/hr)	5		-	**		5	-		-		**	_
Heavy Vehicles (%)	3%	4%	0%	0%	3%	1%	0%	0%	0%	3%	0%	0%
Bus Blockages (#/hr)	0	0	11	0	0	11	0	0	0	0	0	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 01111	2		1 01111	6		1 01111	8		1 01111	4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	73.4	73.4		73.4	73.4		U	13.4		13.4	13.4	
Effective Green, g (s)	74.4	74.4		74.4	74.4			14.4		14.4	14.4	
Actuated g/C Ratio	0.74	0.74		0.74	0.74			0.14		0.14	0.14	
Clearance Time (s)	6.6	6.6		6.6	6.6			6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
	284	2549		478	2551			229		193	231	
Lane Grp Cap (vph) v/s Ratio Prot	284	0.23		4/8	c0.34			0.00		193	0.03	
	0.00	0.23		0.03	00.34			0.00		-0.00	0.03	
v/s Ratio Perm	0.09	0.20			0.40			0.00		c0.08	0.00	
v/c Ratio	0.12	0.30		0.04	0.46			0.00		0.56	0.20	
Uniform Delay, d1	3.6	4.2		3.4	5.0			36.7		39.8	37.7	
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Incremental Delay, d2	0.9	0.3		0.1	0.6			0.0		3.5	0.4	
Delay (s)	4.5	4.5		3.5	5.6			36.7		43.3	38.2	
Level of Service	Α	Α		Α	A			D		D	D	
Approach Delay (s)		4.5			5.5			36.7			40.4	
Approach LOS		Α			Α			D			D	
Intersection Summary												
HCM 2000 Control Delay			9.1	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	ity ratio		0.48		OW 2000	LOVOI OI	001 V100		7.			
Actuated Cycle Length (s)	,		100.0	S	um of lost	time (s)			11.2			
Intersection Capacity Utilizati	on		50.2%		CU Level				Α			
Analysis Period (min)	011		15	ic	O LEVEI (J. 361 VICE			А			
raidijoio i ciicu (iiiiii)			10									

Whites / Kingston SW BA Group - TCS

•	-	*	•	_	_	1	T		-	+	*
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ሻ	^	7	ሻ	^	7	7	^	7	ሻ	ተተተ	7
											125
											125
											1900
											3.3
											6.1
											1.00
											0.98
											1.00
	1.00	0.85	1.00		0.85		1.00	0.85	1.00	1.00	0.85
0.95	1.00	1.00		1.00		1.00	1.00	1.00		1.00	1.00
1676	3400	1503	1692	3466	1486	1818	5079	1454	1722	5079	1486
0.27	1.00	1.00	0.41	1.00	1.00	0.13	1.00	1.00	0.43	1.00	1.00
479	3400	1503	733	3466	1486	238	5079	1454	781	5079	1486
0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
115	456	885	324	769	396	258	522	489	165	1462	137
0	0	187	0	0	135	0	0	176	0	0	71
115	456	698	324	769	261	258	522	313	165	1462	66
15		5	5		15	10		15	15		10
4%	5%	2%	3%	3%	2%	1%	1%	4%	1%	1%	1%
0	0	0	0	0	0	0	0	2	0	0	4
pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA	Perm
	2		1	6		3	8	1	7	4	
2		2	6		6	8		8	4		4
59.0	54.0	54.0	66.0	58.0	58.0	59.9	43.8	52.8	53.3	40.2	40.2
61.0	55.0	55.0	67.0	59.0	59.0	60.9	44.8	54.8	55.3	41.2	41.2
0.44	0.39	0.39	0.48	0.42	0.42	0.43	0.32	0.39	0.39	0.29	0.29
				7.0		3.0		3.0	3.0		7.1
				3.0		3.0		3.0	3.0		3.0
											437
		000			020						-101
	0.10	c0 46		U.LL	0.18		0.10			00.20	0.04
	0.34			0.53			0.32			0.08	0.15
											36.5
											1.00
											0.7
											37.2
											D
U					U			•	U		D
	F			C			D			E	
		5/1.8	Ш	2M 2000	Lovel of	Sorvico		D			
ity ratio			П	JIVI 2000	FGAGI OI	OGI VICE		U			
nty radio			9	ım of loci	time (c)			16.1			
ion					(-)						
1011			IC	O FEAGL	VI OCI AICE	,		п			
		15									
	105 105 105 1900 3.3 2.0 1.00 1.00 1.00 1.00 1.00 1.01 105 1676 0.27 479 0.91 115 0 115 4% 0 pm+pt 5 2 59.0 61.0	EBL EBT 105 415 105 415 1090 1900 3.3 3.5 2.0 6.0 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 479 3400 0.27 1.00 479 3400 0.91 0.91 115 456 0 0 0 115 456 15 4% 5% 0 0 0 pm+pt NA 5 2 2 59.0 54.0 61.0 55.0 0.44 0.39 3.0 7.0 3.0 3.0 260 133 0.17 0.44 0.34 24.7 29.8 0.85 0.84 0.8 0.5 21.7 25.6 C C 83.8 F	BBL BBR BBR	BBL BBT BBR WBL	BBL BBT BBR WBL WBT	BBL BBR BBR WBL WBR WBR	BBL BBR WBL WBR WBR NBL	BBL BBT BBR WBL WBT WBR NBL NBT	BBL BBT BBR WBL WBT WBR NBL NBR	BBL BBT BBR WBL WBT WBR NBL NBT NBR SBL	BBL BBT BBR WBL WBT WBR NBL NBT NBR SBL SBT NBT NBT

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

Future Total (10 Year) AM Peak Hour

۶	→	\rightarrow	•	—	*	1	†	1	-	ļ	1
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
7	† }		7	† î>		7	ĵ.		7	ĵ.	
40	665	65	155	875	30	140	0	535	125	0	35
40	665	65	155	875	30	140	0	535	125	0	35
1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
5.3	5.3		2.0	5.3		5.7	5.7		5.7	5.7	
1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
1.00	0.99		1.00	1.00		1.00	0.85		1.00	0.85	
0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
1673	3399		1631	3477		1454	1557		1694	1521	
0.20	1.00		0.16	1.00		0.73	1.00		0.19	1.00	
360	3399		269	3477		1118	1557		332	1521	
0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
47	782	76	182	1029	35	165	0	629	147	0	41
0	5	0	0	2	0	0	166	0	0	22	0
47	853	0	182	1062	0	165	463	0	147	19	0
5					5			10	10		
4%	4%	0%	7%	2%	3%	20%	0%	0%	3%	0%	5%
0	0	0	0	0	13	0	0	0	0	0	0
Perm	NA		pm+pt	NA		Perm	NA		Perm	NA	
	2		1	6			8			4	
2			6			8			4		
48.5	48.5		64.8	64.8		62.2	62.2		62.2	62.2	
49.5	49.5		65.8	65.8		63.2	63.2		63.2	63.2	
0.35	0.35		0.47	0.47		0.45	0.45		0.45	0.45	
6.3	6.3		3.0	6.3		6.7	6.7		6.7	6.7	
3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
127	1201		265	1634		504	702		149	686	
	c0.25		c0.07	0.31			0.30			0.01	
0.13			0.25			0.15			c0.44		
0.37	0.71		0.69	0.65		0.33	0.66		0.99	0.03	
33.7	39.1		26.0	28.3		24.7	30.0		38.0	21.3	
1.00	1.00		1.81	0.72		1.00	1.00		1.00	1.00	
8.1	3.6		6.3	1.8		0.4	2.2		69.1	0.0	
41.8	42.6		53.4	22.2		25.1	32.2		107.1	21.3	
D	D		D	С		С	С		F	С	
	42.6			26.8			30.8			88.4	
	D			С			С			F	
		36.0	Н	CM 2000	Level of S	Service		D			
ity ratio			- 11								
,			Si	ım of lost	time (s)			13.0			
ion		101.2%			of Service			G			
ION		15	ic	O LOVEI C	or octaice						
	EBL 40 40 40 1900 3.3 5.3 1.00 1.00 0.95 1673 0.20 360 0.85 47 0 47 5 4% 0 Perm 2 48.5 49.5 0.35 6.3 3.0 127 0.13 0.37 33.7 1.00 8.1 41.8 D	EBL EBT 40 665 40 665 1900 1900 3.3 3.5 5.3 5.3 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 5.0 1.00 1.00 1.00 0.99 0.85 0.85 47 782 0 5 47 853 5 47 8853 5 47 8853 5 48.5 48.5 49.5 0 0 0 Perm NA 2 2 48.5 48.5 49.5 0.35 0.35 6.3 6.3 3.0 3.0 127 1201 c0.25 0.13 0.37 0.71 33.7 39.1 1.00 1.00 8.1 3.6 41.8 42.6 D D Eity ratio	EBL EBT EBR 1	EBL EBT EBR WBL 40 665 65 155 40 665 65 155 1900 1900 1900 1900 1900 3.3 3.5 3.3 3.3 5.3 5.3 2.0 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.01 0.05 1.02 1.00 0.16 360 3399 269 0.85 0.85 0.85 0.85 47 782 76 182 0 5 0 0 47 853 0 182 5 47 782 76 182 0 5 0 0 47 853 0 182 5 48 49 4% 0% 7% 0 0 0 0 0 Perm NA pm+pt 2 1 2 6 48.5 48.5 64.8 49.5 49.5 65.8 0.35 0.35 0.47 6.3 6.3 3.0 3.0 3.0 3.0 127 1201 265 0.25 0.07 0.13 0.25 0.37 0.71 0.69 33.7 39.1 260 1.00 1.00 1.81 8.1 3.6 6.3 41.8 42.6 53.4 D D L 1tly ratio 0.84 itly ratio 0.84	EBL EBT EBR WBL WBT 40 665 65 155 875 40 665 65 155 875 1900 1900 1900 1900 1900 3.3 3.5 3.3 3.3 3.5 5.3 5.3 2.0 5.3 1.00 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	EBL EBT EBR WBL WBT WBR 40 665 65 155 875 30 40 665 65 155 875 30 1900 1900 1900 1900 1900 1900 3.3 3.5 3.5 3.3 3.3 3.5 3.5 5.3 5.3 2.0 5.3 1.00 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	EBL EBR EBR WBL WBT WBR NBL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EBL EBR WBL WBT WBR NBL NBT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EBL EBT EBR WBL WBT WBR NBL NBT NBR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EBL EBR WBL WBT WBR NBL NBT NBR SBL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BBL BBT BBR WBL WBT WBR NBL NBR SBL SBT

Whites / Kingston SW BA Group - TCS

TOW Signalized intersection Capacity	Allalysi
6: Whites Road & Bayly Street	

	•	_	T		-	¥		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
ane Configurations	ሻ	7	44	7	*	414		
raffic Volume (vph)	95	315	630	80	495	535		
uture Volume (vph)	95	315	630	80	495	535		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
ane Width	3.3	3.3	3.5	3.3	3.3	3.5		
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	0.95	1.00	0.91	0.91		
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.99		
Satd. Flow (prot)	1662	1516	3500	1476	1542	3307		
Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.99		
Satd. Flow (perm)	1662	1516	3500	1476	1542	3307		
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91		
Adj. Flow (vph)	104	346	692	88	544	588		
RTOR Reduction (vph)	0	36	0	49	0	0		
Lane Group Flow (vph)	104	310	692	39	370	762		
Confl. Peds. (#/hr)				5	5			
Heavy Vehicles (%)	5%	3%	2%	4%	3%	2%		
Turn Type	Perm	pm+ov	NA	Perm	Split	NA		
Protected Phases		2	5		2	2		
Permitted Phases	8	8		5				
Actuated Green, G (s)	12.4	61.7	27.9	27.9	49.3	49.3		
Effective Green, g (s)	13.4	63.7	28.9	28.9	50.3	50.3		
Actuated g/C Ratio	0.12	0.58	0.26	0.26	0.46	0.46		
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	202	960	919	387	705	1512		
v/s Ratio Prot		0.15	c0.20		c0.24	0.23		
v/s Ratio Perm	c0.06	0.06		0.03				
v/c Ratio	0.51	0.32	0.75	0.10	0.52	0.50		
Uniform Delay, d1	45.3	12.0	37.3	30.7	21.3	21.1		
Progression Factor	1.00	1.00	1.00	1.00	0.93	0.92		
Incremental Delay, d2	2.2	0.2	3.5	0.1	2.7	1.2		
Delay (s)	47.5	12.2	40.8	30.8	22.5	20.6		
Level of Service	D	В	D	С	С	С		
Approach Delay (s)	20.3		39.7			21.2		
Approach LOS	С		D			С		
Intersection Summary								
HCM 2000 Control Delay			27.1	Н	ICM 2000	Level of Service	9	С
HCM 2000 Volume to Capa	acity ratio		0.60					
Actuated Cycle Length (s)	,		110.0	S	um of lost	t time (s)	1	8.4
Intersection Capacity Utiliza	ation		59.5%			of Service		В
Analysis Period (min)			15					
c Critical Lane Group								

Future Total (10 Year) AM Peak Hour

Whites / Kingston SW	Synchro 10 Repo
BA Group - TCS	FTAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).sy

orriginia, ror ir	D 0						,	,
	→	*	•	—	1	7		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	† 19		7	^	77	7		
Traffic Volume (vph)	930	10	360	645	615	90		
Future Volume (vph)	930	10	360	645	615	90		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.5	3.5	3.3	3.5	3.3	3.3		
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4		
Lane Util. Factor	0.95		1.00	0.95	0.97	1.00		
Frt	1.00		1.00	1.00	1.00	0.85		
Flt Protected	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3420		1711	3500	3286	1531		
Flt Permitted	1.00		0.11	1.00	0.95	1.00		
Satd. Flow (perm)	3420		199	3500	3286	1531		
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87		
Adj. Flow (vph)	1069	11	414	741	707	103		
RTOR Reduction (vph)	1	0	0	0	0	26		
Lane Group Flow (vph)	1079	0	414	741	707	77		
Heavy Vehicles (%)	4%	25%	2%	2%	3%	2%		
Turn Type	NA		pm+pt	NA	Prot	Perm		
Protected Phases	2		1	6	8			
Permitted Phases			6			8		
Actuated Green, G (s)	46.9		76.3	76.3	31.1	31.1		
Effective Green, q (s)	47.9		77.3	77.3	32.1	32.1		
Actuated g/C Ratio	0.40		0.64	0.64	0.27	0.27		
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4		
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	1365		473	2254	879	409		
v/s Ratio Prot	c0.32		c0.20	0.21	c0.22	403		
v/s Ratio Perm	00.02		0.36	0.21	00.22	0.05		
v/c Ratio	0.79		0.88	0.33	0.80	0.19		
Uniform Delay, d1	31.7		31.4	9.6	41.0	33.9		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
Incremental Delay, d2	4.7		16.4	0.4	5.4	0.2		
Delay (s)	36.4		47.8	10.0	46.4	34.1		
Level of Service	D		T1.0	В	D	C		
Approach Delay (s)	36.4			23.6	44.8	· ·		
Approach LOS	D			C	D			
Intersection Summary								
HCM 2000 Control Delay			33.8	Н	CM 2000	Level of Service	С	
HCM 2000 Volume to Capa	acity ratio		0.81					
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)	12.6	
Intersection Capacity Utiliz	ation		75.7%			of Service	D	
Analysis Period (min)			15					
c Critical Lane Group								

	•	*	1	†	Į.	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	77	77		^	^			
Traffic Volume (vph)	715	380	0	945	650	0		
Future Volume (vph)	715	380	0	945	650	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.3	3.3	3.5	3.5	3.5	3.5		
Total Lost time (s)	4.5	4.5		5.7	5.7			
Lane Util. Factor	0.97	0.88		0.95	0.95			
Frpb, ped/bikes	1.00	1.00		1.00	1.00			
Flpb, ped/bikes	1.00	1.00		1.00	1.00			
Frt	1.00	0.85		1.00	1.00			
Flt Protected	0.95	1.00		1.00	1.00			
Satd. Flow (prot)	3319	2668		3570	3570			
Flt Permitted	0.95	1.00		1.00	1.00			
Satd. Flow (perm)	3319	2668		3570	3570			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	753	400	0.50	995	684	0.50		
RTOR Reduction (vph)	0	241	0	0	0	0		
Lane Group Flow (vph)	753	159	0	995	684	0		
Confl. Peds. (#/hr)	700	100	5	000	004	5		
Heavy Vehicles (%)	2%	3%	0%	0%	0%	0%		
Turn Type	Prot	Perm	070	NA	NA	070		
Protected Phases	4	reiiii		2	6			
Permitted Phases	4	4		2	U			
Actuated Green, G (s)	31.8	31.8		66.0	66.0			
Effective Green, q (s)	32.8	32.8		67.0	67.0			
Actuated g/C Ratio	0.30	0.30		0.61	0.61			
	5.5	5.5		6.7	6.7			
Clearance Time (s) Vehicle Extension (s)	3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)	989	795		2174	2174			
v/s Ratio Prot	c0.23	0.00		c0.28	0.19			
v/s Ratio Perm	0.70	0.06		0.40	0.24			
v/c Ratio	0.76	0.20		0.46	0.31			
Uniform Delay, d1	35.0	28.8		11.7	10.4			
Progression Factor	1.00	1.00		0.34	1.00			
Incremental Delay, d2	3.5	0.1		0.6	0.4			
Delay (s)	38.6	28.9		4.6	10.8			
Level of Service	D	С		A	В			
Approach Delay (s)	35.2			4.6	10.8			
Approach LOS	D			Α	В			
Intersection Summary								
HCM 2000 Control Delay			18.5	Н	CM 2000	Level of Service	В	
HCM 2000 Volume to Capa	city ratio		0.56					
Actuated Cycle Length (s)			110.0	S	um of lost	time (s)	10.2	
Intersection Capacity Utiliza	ation		61.7%	IC	U Level o	of Service	В	
Analysis Period (min)			15					
c Critical Lane Group								

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 9: Car Dealer Site Access/Delta Boulevard & Kingston Road

Future Total (10 Year) AM Peak Hour

	۶	-	•	•	←	*	4	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	7	^	7	ሻ	1>		7	1>	
Traffic Volume (vph)	130	870	10	20	1130	110	25	0	15	55	5	200
Future Volume (vph)	130	870	10	20	1130	110	25	0	15	55	5	200
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.9	5.9	5.6	5.6		5.3	5.3	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.97	1.00	0.98		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1733	3433	1548	1622	3466	1533	1785	1467		1758	1558	
Flt Permitted	0.14	1.00	1.00	0.26	1.00	1.00	0.30	1.00		0.75	1.00	
Satd. Flow (perm)	264	3433	1548	452	3466	1533	565	1467		1380	1558	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	157	1048	12	24	1361	133	30	0	18	66	6	241
RTOR Reduction (vph)	0	0	3	0	0	32	0	16	0	0	154	0
Lane Group Flow (vph)	157	1048	9	24	1361	101	30	2	0	66	93	0
Confl. Peds. (#/hr)	5		5	5		5			5	5		
Heavy Vehicles (%)	3%	4%	0%	10%	3%	1%	0%	0%	7%	1%	0%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2		2	6		6	8			4		
Actuated Green, G (s)	84.2	77.6	77.6	75.5	71.9	71.9	12.3	12.3		12.6	12.6	
Effective Green, g (s)	85.2	78.6	78.6	77.5	72.9	72.9	13.3	13.3		13.6	13.6	
Actuated g/C Ratio	0.77	0.71	0.71	0.70	0.66	0.66	0.12	0.12		0.12	0.12	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.6	6.6		6.3	6.3	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	342	2453	1106	367	2297	1015	68	177		170	192	
v/s Ratio Prot	c0.04	0.31		0.00	c0.39			0.00			c0.06	
v/s Ratio Perm	0.31		0.01	0.04		0.07	0.05			0.05		
v/c Ratio	0.46	0.43	0.01	0.07	0.59	0.10	0.44	0.01		0.39	0.48	
Uniform Delay, d1	6.5	6.5	4.5	4.9	10.3	6.7	44.9	42.6		44.4	44.9	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.0	0.5	0.0	0.1	1.1	0.2	4.5	0.0		1.5	1.9	
Delay (s)	7.5	7.0	4.5	5.0	11.4	6.9	49.4	42.6		45.8	46.8	
Level of Service	Α	Α	Α	Α	В	Α	D	D		D	D	
Approach Delay (s)		7.0			10.9			46.9			46.6	
Approach LOS		Α			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			13.6	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Cap	acity ratio		0.56									
Actuated Cycle Length (s)			110.0		um of lost				13.5			
Intersection Capacity Utiliz	ation		72.9%	IC	U Level	of Service	•		С			
Analysis Period (min)			15									

Analysis Period (min) c Critical Lane Group

Whites / Kingston SW BA Group - TCS

TION Onsignalized intersection	i Capacity Atlalysis
2: Site Access (West) & Kingst	on Road

	\rightarrow	*	1	•	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	^	7	*	^	W				
Traffic Volume (veh/h)	795	0	0	1090	0	0			
Future Volume (Veh/h)	795	0	0	1090	0	0			
Sign Control	Free			Free	Stop				
Grade	0%			0%	0%				
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87			
Hourly flow rate (vph)	914	0	0	1253	0	0			
Pedestrians					5				
Lane Width (m)					3.3				
Walking Speed (m/s)					1.2				
Percent Blockage					0				
Right turn flare (veh)									
Median type	None			None					
Median storage veh)									
Upstream signal (m)				153					
pX, platoon unblocked					0.75				
vC, conflicting volume			919		1546	462			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol			919		1068	462			
tC, single (s)			4.1		7.1	6.9			
tC, 2 stage (s)									
tF (s)			2.2		3.6	3.3			
p0 queue free %			100		100	100			
cM capacity (veh/h)			748		148	550			
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1		
Volume Total	457	457	0	0	626	626	0		
Volume Left	0	0	0	0	020	020	0		
Volume Right	0	0	0	0	0	0	0		
cSH	1700	1700	1700	1700	1700	1700	1700		
Volume to Capacity	0.27	0.27	0.00	0.00	0.37	0.37	0.00		
Queue Length 95th (m)	0.27	0.27	0.00	0.00	0.0	0.0	0.00		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Lane LOS	0.0	0.0	0.0	0.0	0.0	0.0	Α.0		
Approach Delay (s)	0.0			0.0			0.0		
Approach LOS	0.0			0.0			A		
Intersection Summary									
Average Delay			0.0						
Intersection Capacity Utiliza	ation		33.5%	IC	U Level	of Service		Α	
Analysis Period (min)			15						

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

Future Total (15 Year) AM Peak Hour

	•	→	*	1	←	4	1	†	1	-	Į.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	∱ }		ሻ	∱ }		ሻ	1>		7	f)	
Traffic Volume (vph)	30	695	10	15	1010	65	0	0	5	95	5	120
Future Volume (vph)	30	695	10	15	1010	65	0	0	5	95	5	120
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.6	5.6		5.6	5.6			5.6		5.6	5.6	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99			0.85		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)	1691	3427		1745	3431			1597		1694	1609	
Flt Permitted	0.20	1.00		0.34	1.00			1.00		0.75	1.00	
Satd. Flow (perm)	361	3427		622	3431			1597		1344	1609	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adi, Flow (vph)	34	790	11	17	1148	74	0	0	6	108	6	136
RTOR Reduction (vph)	0	1	0	0	3	0	0	5	0	0	86	0
Lane Group Flow (vph)	34	800	0	17	1219	0	0	1	0	108	56	0
Confl. Peds. (#/hr)	5	000	·		1210	5	·		·	100	00	·
Heavy Vehicles (%)	3%	4%	0%	0%	3%	1%	0%	0%	0%	3%	0%	0%
Bus Blockages (#/hr)	0	0	11	0	0	11	0	0	0	0	0	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 01111	2		1 01111	6		1 01111	8		1 01111	4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	73.4	73.4		73.4	73.4		U	13.4		13.4	13.4	
Effective Green, g (s)	74.4	74.4		74.4	74.4			14.4		14.4	14.4	
Actuated g/C Ratio	0.74	0.74		0.74	0.74			0.14		0.14	0.14	
Clearance Time (s)	6.6	6.6		6.6	6.6			6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)	268	2549		462	2552			229		193	231	
v/s Ratio Prot	200	0.23		402	c0.36			0.00		133	0.03	
v/s Ratio Perm	0.09	0.23		0.03	00.00			0.00		c0.08	0.03	
v/c Ratio	0.03	0.31		0.03	0.48			0.00		0.56	0.24	
Uniform Delay, d1	3.6	4.3		3.4	5.1			36.7		39.8	38.0	
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Incremental Delay, d2	1.00	0.3		0.1	0.6			0.0		3.5	0.5	
Delay (s)	4.6	4.6		3.5	5.7			36.7		43.3	38.5	
Level of Service	4.0 A	4.0 A		Α.5	3.7 A			30.7 D		43.3 D	J0.J	
Approach Delay (s)	A	4.6		А	5.7			36.7		D	40.6	
		4.0 A			3.7 A			30.7 D			40.0 D	
Approach LOS		А			А			U			U	
Intersection Summary												
HCM 2000 Control Delay			9.1	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	acity ratio		0.49									
Actuated Cycle Length (s)			100.0		um of los				11.2			
Intersection Capacity Utiliza	ation		51.3%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

Lane Configurations Traffic Volume (yph) 105 430 815 295 730 360 245 495 495 450 150 1390 176 180 1900 1900 1900 1900 1900 1900 1900		•	\rightarrow	*	•	•	•	1	Ī		-	¥	4
Traffic Volume (vph)	Movement				WBL	WBT	WBR	NBL		NBR	SBL		SBR
Future (vph)													7
Ideal Flow (prohp)		105	430	815	295	730	360	245	495	450	150	1390	125
Lane Width 3.3 3.5 3.3 3.5 3.3 3.3 3.5 3.3 3.3 3.5 3.3 3.3	Future Volume (vph)		430	815			360	245	495	450	150	1390	125
Total Lost time (s)													1900
Lane Util. Factor 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.91 1.00 1.00 1.00 0.91 1.00 0.91 1.00 1.00	Lane Width	3.3	3.5	3.3	3.3	3.5		3.3	3.5	3.3	3.3	3.5	3.3
Frpb, ped/bikes	Total Lost time (s)	2.0	6.0	6.0	2.0	6.0	6.0	2.0	6.1		2.0	6.1	6.1
Fipb, ped/bikes													1.00
Fit Protected 0.95 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 1.00 0.85 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.00 0.95 1.00 1.00 0.00 0.95 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.0													0.98
Fit Protected 0.95 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1. Satid. Flow (prot) 1676 3400 1503 1692 3466 1486 1818 5079 1454 1722 5079 14 Fit Permitted 0.25 1.00 1.00 0.40 1.00 1.00 0.03 1.00 1.00 0.42 1.00 1.00 Satid. Flow (perm) 449 3400 1503 712 3466 1486 238 5079 1454 759 5079 14 Peak-hour factor, PHF 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91													1.00
Satd. Flow (prot)													0.85
Fit Permitted													1.00
Satd. Flow (perm)	Satd. Flow (prot)	1676	3400	1503	1692	3466	1486	1818	5079	1454	1722	5079	1486
Peak-hour factor, PHF	Flt Permitted												1.00
Adj. Flow (vph)	Satd. Flow (perm)					3466	1486					5079	1486
RTOR Reduction (vph) 0 0 186 0 0 130 0 0 169 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Peak-hour factor, PHF												0.91
Lane Group Flow (vph) 115 473 710 324 802 266 269 544 326 165 1527 Confl. Peds. (#/hr) 15 5 5 15 10 15 10 15 15 15 15 10 15 15 15 15 15 10 15 15 15 15 15 15 15 15 15 15 15 15 15	Adj. Flow (vph)	115	473	896	324	802	396	269	544	495	165	1527	137
Confi. Peds. (#/hr)	RTOR Reduction (vph)	0	0	186	0	0	130	0	0	169	0	0	71
Heavy Vehicles (%)	Lane Group Flow (vph)	115	473	710	324	802	266	269	544	326	165	1527	66
Bus Blockages (#/hr)	Confl. Peds. (#/hr)												10
Turn Type	Heavy Vehicles (%)	4%	5%	2%	3%	3%	2%	1%	1%	4%	1%	1%	1%
Protected Phases 5 2 1 6 6 3 8 1 7 4 Permitted Phases 2 2 6 6 8 8 4 Actuated Green, G (s) 59.0 54.0 54.0 66.0 58.0 58.0 59.0 60.9 44.8 54.8 55.0 40.9 46 Actuated g/C Reafio 0.44 0.39 0.39 0.48 0.42 0.42 0.43 0.32 0.39 0.39 0.29 0. Clearance Time (s) 3.0 7.0 7.0 3.0 7.0 7.0 3.0 7.1 3.0 3.0 7.1 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	2	0	0	4
Permitted Phases 2 2 2 6 6 6 8 8 8 8 4 Actuated Green, G (s) 59.0 54.0 54.0 66.0 58.0 59.0 59.0 43.8 52.8 53.0 39.9 35 Effective Green, g (s) 61.0 55.0 55.0 67.0 59.0 59.0 60.9 44.8 54.8 55.0 40.9 44 Actuated g/C Ratio 0.44 0.39 0.39 0.48 0.42 0.42 0.43 0.32 0.39 0.39 0.29 0. Clearance Time (s) 3.0 7.0 7.0 3.0 7.0 7.0 3.0 7.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA	Perm
Actuated Green, G (s) 59.0 54.0 54.0 66.0 58.0 58.0 59.9 43.8 52.8 53.0 39.9 38.2 Effective Green, g (s) 61.0 55.0 55.0 67.0 59.0 59.0 60.9 44.8 54.8 55.0 40.9 44.2 40.43 0.32 0.39 0.39 0.39 0.48 0.42 0.42 0.43 0.32 0.39 0.39 0.39 0.29 0.2 0.2 0.2 0.3 0.39 0.39 0.39 0.39 0.39 0.39 0.39	Protected Phases		2			6			8			4	
Effective Green, g (s) 61.0 55.0 55.0 67.0 59.0 59.0 60.9 44.8 54.8 55.0 40.9 40.6 Actuated g/C Ratio 0.44 0.39 0.39 0.48 0.42 0.42 0.42 0.43 0.32 0.39 0.39 0.29 0.29 0.20 (Clearance Time (s) 3.0 7.0 7.0 3.0 7.0 7.0 3.0 7.1 3.0 3.0 3.0 7.1 7.0 7.0 7.0 3.0 7.0 7.0 3.0 7.1 3.0 3.0 3.0 7.1 7.0 7.0 7.0 7.0 3.0 7.0 7.0 3.0 7.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	Permitted Phases	2		2	6		6	8		8	4		4
Actuated g/C Ratio 0.44 0.39 0.39 0.48 0.42 0.42 0.43 0.32 0.39 0.39 0.29 0. Clearance Time (s) 3.0 7.0 7.0 3.0 7.0 7.0 3.0 7.1 3.0 3.0 7.1 7.0 7.0 3.0 7.0 7.0 3.0 7.1 3.0 3.0 7.1 7.1 7.0 7.0 7.0 3.0 7.0 7.0 3.0 7.1 3.0 3.0 7.1 7.1 7.0 7.0 7.0 3.0 7.1 7.1 7.0 7.0 3.0 7.1 7.1 7.0 7.0 3.0 7.1 7.1 7.0 7.0 7.0 3.0 7.1 7.1 7.0 7.0 3.0 7.1 7.1 7.0 7.0 7.0 7.0 3.0 7.1 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	Actuated Green, G (s)	59.0	54.0	54.0	66.0	58.0	58.0	59.9	43.8	52.8	53.0	39.9	39.9
Clearance Time (s) 3.0 7.0 7.0 3.0 7.0 7.0 3.0 7.1 3.0 3.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	Effective Green, g (s)	61.0	55.0	55.0	67.0	59.0	59.0	60.9	44.8	54.8	55.0	40.9	40.9
Vehicle Extension (s) 3.0	Actuated g/C Ratio	0.44	0.39	0.39	0.48	0.42	0.42	0.43	0.32	0.39	0.39	0.29	0.29
Lane Grp Cap (vph)	Clearance Time (s)	3.0		7.0	3.0	7.0	7.0	3.0	7.1	3.0	3.0	7.1	7.1
v/s Ratio Prof 0.02 0.14 c0.06 0.23 c0.11 0.11 0.04 0.04 c0.30 v/s Ratio Perm 0.18 c0.47 0.32 0.18 0.27 0.18 0.12 0.00 v/c Ratio 0.46 0.35 1.20 0.79 0.55 0.43 0.88 0.33 0.57 0.42 1.03 0.0 Uniform Delay, d1 24.9 30.0 42.5 28.7 30.5 28.6 30.3 36.3 33.4 28.6 49.5 36 Progression Factor 0.88 0.88 0.75 1.00 1.	Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
v/s Ratio Perm 0.18 c0.47 0.32 0.18 0.27 0.18 0.12 0.1 v/c Ratio 0.46 0.35 1.20 0.79 0.55 0.43 0.88 0.33 0.57 0.42 1.03 0.1 Uniform Delay, d1 24.9 30.0 42.5 28.7 30.5 28.6 30.3 36.3 33.4 28.6 49.5 36 Progression Factor 0.88 0.88 0.75 1.00	Lane Grp Cap (vph)	248	1335	590	410	1460	626	306	1625	569	395	1483	434
v/c Ratio 0.46 0.35 1.20 0.79 0.55 0.43 0.88 0.33 0.57 0.42 1.03 0. Uniform Delay, d1 24,9 30.0 42.5 28.7 30.5 28.6 30.3 36.3 33.4 28.6 49.5 38 Progression Factor 0.88 0.88 0.75 1.00 <td< td=""><td>v/s Ratio Prot</td><td>0.02</td><td>0.14</td><td></td><td>c0.06</td><td>0.23</td><td></td><td>c0.11</td><td>0.11</td><td>0.04</td><td>0.04</td><td>c0.30</td><td></td></td<>	v/s Ratio Prot	0.02	0.14		c0.06	0.23		c0.11	0.11	0.04	0.04	c0.30	
Uniform Delay, d1	v/s Ratio Perm	0.18		c0.47	0.32		0.18	0.27		0.18	0.12		0.04
Progression Factor 0.88 0.88 0.75 1.00 <td>v/c Ratio</td> <td>0.46</td> <td>0.35</td> <td>1.20</td> <td>0.79</td> <td>0.55</td> <td>0.43</td> <td>0.88</td> <td>0.33</td> <td>0.57</td> <td>0.42</td> <td>1.03</td> <td>0.15</td>	v/c Ratio	0.46	0.35	1.20	0.79	0.55	0.43	0.88	0.33	0.57	0.42	1.03	0.15
Incremental Delay, d2	Uniform Delay, d1	24.9	30.0	42.5	28.7	30.5	28.6	30.3	36.3	33.4	28.6	49.5	36.7
Delay (s) 22.8 27.0 133.3 38.7 32.0 30.7 53.9 36.8 34.8 29.3 80.9 37.0 Level of Service C C F D C C D D C C F Approach Delay (s) 90.8 33.1 39.6 73.0 Approach LOS E Intersection Summary Intersection Summary E Intersection Summary Intersection Summary <td>Progression Factor</td> <td>0.88</td> <td>0.88</td> <td>0.75</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td>	Progression Factor	0.88	0.88	0.75	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Level of Service C C F D C C D C C F Approach Delay (s) 90.8 33.1 39.6 73.0 Reserved 73.0 Reserved E Intersection Summary Intersection Summary Intersection Control Delay 60.3 HCM 2000 Level of Service E Intersection Capacity ratio 1.06 Intersection Capacity Utilization 1.06 Intersection Capacity Utilization 111.6% ICU Level of Service Intersection Capacity Utilization Intersection Capacity Utilization </td <td>Incremental Delay, d2</td> <td>0.9</td> <td>0.5</td> <td>101.6</td> <td>10.0</td> <td>1.5</td> <td>2.1</td> <td>23.6</td> <td>0.6</td> <td>1.4</td> <td>0.7</td> <td>31.3</td> <td>0.7</td>	Incremental Delay, d2	0.9	0.5	101.6	10.0	1.5	2.1	23.6	0.6	1.4	0.7	31.3	0.7
Approach Delay (s) 90.8 33.1 39.6 73.0 Approach LOS F C D E Intersection Summary HCM 2000 Control Delay 60.3 HCM 2000 Level of Service E HCM 2000 Volume to Capacity ratio 1.06	Delay (s)	22.8	27.0	133.3	38.7	32.0	30.7	53.9	36.8	34.8	29.3	80.9	37.4
Approach LOS F C D E Intersection Summary Intersection Summary B Intersection Summary Intersection Summ	Level of Service	С	С	F	D	С	С	D	D	С	С	F	D
Intersection Summary	Approach Delay (s)		90.8			33.1			39.6			73.0	
HCM 2000 Control Delay 60.3 HCM 2000 Level of Service E HCM 2000 Volume to Capacity ratio 1.06 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 16.1 Intersection Capacity Utilization 111.6% ICU Level of Service H Analysis Period (min) 15	Approach LOS		F			С			D			Е	
HCM 2000 Volume to Capacity ratio 1.06 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 16.1 Intersection Capacity Utilization 111.6% ICU Level of Service H Analysis Period (min) 15	Intersection Summary												
HCM 2000 Volume to Capacity ratio 1.06 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 16.1 Intersection Capacity Utilization 111.6% ICU Level of Service H Analysis Period (min) 15	HCM 2000 Control Delay			60.3	Н	CM 2000	Level of	Service		Е			
Actuated Cycle Length (s) 140.0 Sum of lost time (s) 16.1 Intersection Capacity Utilization 111.6% ICU Level of Service H Analysis Period (min) 15		acity ratio											
Intersection Capacity Utilization 111.6% ICU Level of Service H Analysis Period (min) 15		,			S	um of lost	t time (s)			16.1			
Analysis Period (min) 15		ation						Э					
								_					

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

Future Total (15 Year) AM Peak Hour

	•	-	*	•	←	*	4	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		ሻ	∱ }		ሻ	1>		ሻ	1>	
Traffic Volume (vph)	40	690	65	155	915	30	140	0	535	125	0	35
Future Volume (vph)	40	690	65	155	915	30	140	0	535	125	0	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.3	5.3		2.0	5.3		5.7	5.7		5.7	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.99		1.00	1.00		1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1674	3400		1631	3478		1454	1557		1694	1521	
Flt Permitted	0.18	1.00		0.14	1.00		0.73	1.00		0.19	1.00	
Satd. Flow (perm)	323	3400		246	3478		1118	1557		332	1521	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adi, Flow (vph)	47	812	76	182	1076	35	165	0.00	629	147	0.00	41
RTOR Reduction (vph)	0	5	0	0	2	0	0	164	0	0	22	0
Lane Group Flow (vph)	47	883	0	182	1109	0	165	465	0	147	19	0
Confl. Peds. (#/hr)	5	000	U	102	1100	5	100	100	10	10	10	U
Heavy Vehicles (%)	4%	4%	0%	7%	2%	3%	20%	0%	0%	3%	0%	5%
Bus Blockages (#/hr)	0	0	0	0	0	13	0	0	0	0	0	0
Turn Type	Perm	NA		pm+pt	NA	- 10	Perm	NA		Perm	NA	
Protected Phases	I CIIII	2		рин - рг	6		I CIIII	8		I CIIII	4	
Permitted Phases	2			6	U		8	0		4	4	
Actuated Green, G (s)	48.5	48.5		64.8	64.8		62.2	62.2		62.2	62.2	
Effective Green, g (s)	49.5	49.5		65.8	65.8		63.2	63.2		63.2	63.2	
Actuated g/C Ratio	0.35	0.35		0.47	0.47		0.45	0.45		0.45	0.45	
Clearance Time (s)	6.3	6.3		3.0	6.3		6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	114	1202		257	1634		504	702		149	686	
v/s Ratio Prot	0.45	c0.26		c0.07	0.32		0.45	0.30		-0.44	0.01	
v/s Ratio Perm	0.15	0.70		0.26	0.00		0.15	0.00		c0.44	0.00	
v/c Ratio	0.41	0.73		0.71	0.68		0.33	0.66		0.99	0.03	
Uniform Delay, d1	34.2	39.5		26.5	28.9		24.7	30.1		38.0	21.3	
Progression Factor	1.00	1.00		1.83	0.70		1.00	1.00		1.00	1.00	
Incremental Delay, d2	10.6	4.0		7.4	2.0		0.4	2.4		69.1	0.0	
Delay (s)	44.9	43.5		55.7	22.2		25.1	32.4		107.1	21.3	
Level of Service	D	D		Е	C		С	С		F	C	
Approach Delay (s)		43.6			26.9			30.9			88.4	
Approach LOS		D			С			С			F	
Intersection Summary												
HCM 2000 Control Delay			36.4	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.85									
Actuated Cycle Length (s)			140.0	S	um of lost	t time (s)			13.0			
Intersection Capacity Utiliza	ation		102.4%	IC	U Level	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

	Future Total (15 Year) AM Peak Hour

	•	*	†	~	-	+			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ሻ	7	44	7	ች	44			
Traffic Volume (vph)	95	315	660	80	495	560			
Future Volume (vph)	95	315	660	80	495	560			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.3	3.3	3.5	3.3	3.3	3.5			
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0			
Lane Util. Factor	1.00	1.00	0.95	1.00	0.91	0.91			
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00			
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.99			
Satd. Flow (prot)	1662	1516	3500	1476	1542	3310			
Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.99			
Satd. Flow (perm)	1662	1516	3500	1476	1542	3310			
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91			
Adj. Flow (vph)	104	346	725	88	544	615			
RTOR Reduction (vph)	0	32	0	47	0	0			
Lane Group Flow (vph)	104	314	725	41	375	784			
Confl. Peds. (#/hr)	101	011	. 20	5	5				
Heavy Vehicles (%)	5%	3%	2%	4%	3%	2%			
Turn Type	Perm	pm+ov	NA	Perm	Split	NA			
Protected Phases	r cilli	2	5	r ciiii	2	2			
Permitted Phases	8	8	J	5	2	2			
Actuated Green, G (s)	12.4	60.6	29.0	29.0	48.2	48.2			
Effective Green, g (s)	13.4	62.6	30.0	30.0	49.2	49.2			
Actuated g/C Ratio	0.12	0.57	0.27	0.27	0.45	0.45			
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	202	945	954	402	689	1480			
v/s Ratio Prot	-0.00	0.15	c0.21	0.02	c0.24	0.24			
v/s Ratio Perm	c0.06	0.06	0.70	0.03	0.54	0.50			
v/c Ratio	0.51	0.33	0.76	0.10	0.54	0.53			
Uniform Delay, d1	45.3	12.6	36.7	29.9	22.2	22.0			
Progression Factor	1.00	1.00	1.00	1.00	0.95	0.94			
Incremental Delay, d2	2.2	0.2	3.5	0.1	3.0	1.3			
Delay (s)	47.5	12.8	40.2	30.0	24.0	22.0			
Level of Service	D	В	D	С	С	C			
Approach Delay (s)	20.8		39.1			22.7			
Approach LOS	С		D			С			
Intersection Summary									
HCM 2000 Control Delay			27.8	Н	ICM 2000	Level of Service	e	С	
HCM 2000 Volume to Capa	city ratio		0.62						
Actuated Cycle Length (s)			110.0		um of lost			18.4	
Intersection Capacity Utiliza	ation		60.6%	IC	CU Level	of Service		В	
Analysis Period (min)			15						
c Critical Lane Group									

Approach Loo	0	, 0		
Intersection Summary				
HCM 2000 Control Delay	27.	8 HCM 2000 Level or	f Service C	
HCM 2000 Volume to Capacity ra	atio 0.6	2		
Actuated Cycle Length (s)	110.	0 Sum of lost time (s) 18.4	
Intersection Capacity Utilization	60.69	6 ICU Level of Service	ce B	
Analysis Period (min)	1	5		
c Critical Lane Group				

FTAM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

	-	\searrow	•	←	4	-			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	↑ ₽		ች	^	ሻሻ	7			
Traffic Volume (vph)	950	10	375	645	645	95			
Future Volume (vph)	950	10	375	645	645	95			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.5	3.5	3.3	3.5	3.3	3.3			
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4			
Lane Util. Factor	0.95		1.00	0.95	0.97	1.00			
Frt	1.00		1.00	1.00	1.00	0.85			
Flt Protected	1.00		0.95	1.00	0.95	1.00			
Satd. Flow (prot)	3421		1711	3500	3286	1531			
FIt Permitted	1.00		0.10	1.00	0.95	1.00			
Satd. Flow (perm)	3421		171	3500	3286	1531			
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87			
Adj. Flow (vph)	1092	11	431	741	741	109			
RTOR Reduction (vph)	1	0	0	0	0	26			
Lane Group Flow (vph)	1102	0	431	741	741	83			
Heavy Vehicles (%)	4%	25%	2%	2%	3%	2%			
Turn Type	NA		pm+pt	NA	Prot	Perm			
Protected Phases	2		1	6	8				
Permitted Phases			6			8			
Actuated Green, G (s)	45.6		75.4	75.4	32.0	32.0			
Effective Green, g (s)	46.6		76.4	76.4	33.0	33.0			
Actuated g/C Ratio	0.39		0.64	0.64	0.28	0.28			
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4			
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	1328		465	2228	903	421			
v/s Ratio Prot	c0.32		c0.21	0.21	c0.23				
v/s Ratio Perm			0.37			0.05			
v/c Ratio	0.83		0.93	0.33	0.82	0.20			
Uniform Delay, d1	33.1		34.4	10.0	40.7	33.3			
Progression Factor	1.00		1.00	1.00	1.00	1.00			
Incremental Delay, d2	6.1		24.5	0.4	6.0	0.2			
Delay (s)	39.3		59.0	10.5	46.8	33.6			
Level of Service	D		Е	В	D	С			
Approach Delay (s)	39.3			28.3	45.1				
Approach LOS	D			С	D				
Intersection Summary									
HCM 2000 Control Delay			36.7	Н	CM 2000	Level of Servi	се	D	
HCM 2000 Volume to Capa	city ratio		0.85						
Actuated Cycle Length (s)	,		120.0	Sı	um of los	t time (s)		12.6	
Intersection Capacity Utiliza	ition		77.9%			of Service		D	
Analysis Period (min)			15						

c Critical Lane Group

Whites / Kingston SW BA Group - TCS

	•	*	1	1	↓	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	ሻሻ	77		^	^				
Traffic Volume (vph)	745	400	0	975	655	0			
Future Volume (vph)	745	400	0	975	655	0			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.3	3.3	3.5	3.5	3.5	3.5			
Total Lost time (s)	4.5	4.5		5.7	5.7				
Lane Util. Factor	0.97	0.88		0.95	0.95				
Frpb, ped/bikes	1.00	1.00		1.00	1.00				
Flpb, ped/bikes	1.00	1.00		1.00	1.00				
Frt	1.00	0.85		1.00	1.00				
Flt Protected	0.95	1.00		1.00	1.00				
Satd. Flow (prot)	3319	2668		3570	3570				
Flt Permitted	0.95	1.00		1.00	1.00				
Satd. Flow (perm)	3319	2668		3570	3570				
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95			
Adj. Flow (vph)	784	421	0.00	1026	689	0			
RTOR Reduction (vph)	0	235	0	0	0	0			
Lane Group Flow (vph)	784	186	0	1026	689	0			
Confl. Peds. (#/hr)			5			5			
Heavy Vehicles (%)	2%	3%	0%	0%	0%	0%			
Turn Type	Prot	Perm		NA	NA				
Protected Phases	4			2	6				
Permitted Phases		4		_					
Actuated Green, G (s)	32.8	32.8		65.0	65.0				
Effective Green, q (s)	33.8	33.8		66.0	66.0				
Actuated g/C Ratio	0.31	0.31		0.60	0.60				
Clearance Time (s)	5.5	5.5		6.7	6.7				
Vehicle Extension (s)	3.0	3.0		3.0	3.0				
Lane Grp Cap (vph)	1019	819		2142	2142				
v/s Ratio Prot	c0.24			c0.29	0.19				
v/s Ratio Perm	00.21	0.07		00.20	0.10				
v/c Ratio	0.77	0.23		0.48	0.32				
Uniform Delay, d1	34.6	28.4		12.3	10.9				
Progression Factor	1.00	1.00		0.33	1.00				
Incremental Delay, d2	3.6	0.1		0.7	0.4				
Delay (s)	38.1	28.5		4.8	11.3				
Level of Service	D	C		A	В				
Approach Delay (s)	34.8			4.8	11.3				
Approach LOS	C			A	В				
Intersection Summary									
HCM 2000 Control Delay			18.7	H	CM 2000	Level of Service	9	В	
HCM 2000 Volume to Capaci	itv ratio		0.58						
Actuated Cycle Length (s)	,		110.0	Sı	um of lost	time (s)		10.2	
Intersection Capacity Utilization	on		63.4%			of Service		В	
Analysis Period (min)			15						
c Critical Lane Group									

HCM Signalized Intersection Capacity Analysis

9: Car Dealer Site Access/Delta Boulevard & Kingston Road	
---	--

Future Total (15 Year) AM Peak Hour

	۶	-	•	•	←	*	4	†	1	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	^	7	ሻ	1>		ሻ	f)	
Traffic Volume (vph)	130	890	10	20	1160	110	25	0	15	55	5	200
Future Volume (vph)	130	890	10	20	1160	110	25	0	15	55	5	200
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.9	5.9	5.6	5.6		5.3	5.3	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.97	1.00	0.98		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1733	3433	1548	1622	3466	1533	1785	1467		1758	1558	
Flt Permitted	0.14	1.00	1.00	0.26	1.00	1.00	0.30	1.00		0.75	1.00	
Satd. Flow (perm)	249	3433	1548	438	3466	1533	565	1467		1380	1558	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	157	1072	12	24	1398	133	30	0	18	66	6	241
RTOR Reduction (vph)	0	0	3	0	0	32	0	16	0	0	153	0
Lane Group Flow (vph)	157	1072	9	24	1398	101	30	2	0	66	94	0
Confl. Peds. (#/hr)	5		5	5		5			5	5		
Heavy Vehicles (%)	3%	4%	0%	10%	3%	1%	0%	0%	7%	1%	0%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2		2	6		6	8			4		
Actuated Green, G (s)	84.2	77.6	77.6	75.5	71.9	71.9	12.3	12.3		12.6	12.6	
Effective Green, g (s)	85.2	78.6	78.6	77.5	72.9	72.9	13.3	13.3		13.6	13.6	
Actuated g/C Ratio	0.77	0.71	0.71	0.70	0.66	0.66	0.12	0.12		0.12	0.12	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.6	6.6		6.3	6.3	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	331	2453	1106	358	2297	1015	68	177		170	192	
v/s Ratio Prot	c0.04	0.31		0.00	c0.40			0.00			c0.06	
v/s Ratio Perm	0.32		0.01	0.04		0.07	0.05			0.05		
v/c Ratio	0.47	0.44	0.01	0.07	0.61	0.10	0.44	0.01		0.39	0.49	
Uniform Delay, d1	7.0	6.5	4.5	4.9	10.5	6.7	44.9	42.6		44.4	45.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.1	0.6	0.0	0.1	1.2	0.2	4.5	0.0		1.5	1.9	
Delay (s)	8.0	7.1	4.5	5.0	11.7	6.9	49.4	42.6		45.8	46.9	
Level of Service	Α	Α	Α	Α	В	Α	D	D		D	D	
Approach Delay (s)		7.2			11.2			46.9			46.7	
Approach LOS		Α			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			13.7	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.58									
Actuated Cycle Length (s)	·		110.0	S	um of lost	t time (s)			13.5			
Intersection Capacity Utiliz	ation		73.7%	IC	U Level	of Service)		D			
i												

Analysis Period (min) c Critical Lane Group

	\rightarrow	*	1	-	1	1			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	^	7	ሻ	^	W				
Traffic Volume (veh/h)	1570	200	0	1105	0	0			
Future Volume (Veh/h)	1570	200	0	1105	0	0			
Sign Control	Free			Free	Stop				
Grade	0%			0%	0%				
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96			
Hourly flow rate (vph)	1635	208	0	1151	0	0			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None			None					
Median storage veh)									
Upstream signal (m)				153					
pX, platoon unblocked					0.85				
vC, conflicting volume			1843		2210	818			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol			1843		2076	818			
tC, single (s)			4.1		6.8	7.0			
tC, 2 stage (s)									
tF (s)			2.2		3.5	3.3			
p0 queue free %			100		100	100			
cM capacity (veh/h)			334		41	313			
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1		
Volume Total	818	818	208	0	576	576	0		
Volume Left	0	0	0	0	0	0	0		
Volume Right	0	0	208	0	0	0	0		
cSH	1700	1700	1700	1700	1700	1700	1700		
Volume to Capacity	0.48	0.48	0.12	0.00	0.34	0.34	0.00		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Lane LOS							Α		
Approach Delay (s)	0.0			0.0			0.0		
Approach LOS							Α		
Intersection Summary									
intersection Summary									
Average Delay			0.0						
	tion		0.0 46.7%	IC	CU Level	of Service		A	

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

Future Total (5 Year) PM Peak Hour

	*	-	*	•	←	*	1	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† }		ሻ	↑ ↑		ሻ	1>		ሻ	1>	
Traffic Volume (vph)	130	1695	5	5	1030	70	5	5	15	60	0	70
Future Volume (vph)	130	1695	5	5	1030	70	5	5	15	60	0	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.4	5.4		5.4	5.4		5.2	5.2		5.2	5.2	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	0.98	
Flpb, ped/bikes	0.99	1.00		1.00	1.00		0.99	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99		1.00	0.89		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1736	3533		1745	3492		1732	1664		1745	1549	
FIt Permitted	0.23	1.00		0.10	1.00		0.71	1.00		0.74	1.00	
Satd. Flow (perm)	413	3533		181	3492		1292	1664		1366	1549	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	138	1803	5	5	1096	74	5	5	16	64	0	74
RTOR Reduction (vph)	0	0	0	0	3	0	0	14	0	0	67	C
Lane Group Flow (vph)	138	1808	0	5	1167	0	5	7	0	64	7	0
Confl. Peds. (#/hr)	10					10	5					5
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	1%
Bus Blockages (#/hr)	0	0	11	0	0	11	0	0	0	0	0	C
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	78.5	78.5		78.5	78.5		8.9	8.9		8.9	8.9	
Effective Green, g (s)	79.5	79.5		79.5	79.5		9.9	9.9		9.9	9.9	
Actuated g/C Ratio	0.80	0.80		0.80	0.80		0.10	0.10		0.10	0.10	
Clearance Time (s)	6.4	6.4		6.4	6.4		6.2	6.2		6.2	6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	328	2808		143	2776		127	164		135	153	
v/s Ratio Prot		c0.51			0.33			0.00			0.00	
v/s Ratio Perm	0.33			0.03			0.00			c0.05		
v/c Ratio	0.42	0.64		0.03	0.42		0.04	0.04		0.47	0.05	
Uniform Delay, d1	3.2	4.3		2.2	3.2		40.7	40.8		42.6	40.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.9	1.2		0.5	0.5		0.1	0.1		2.6	0.1	
Delay (s)	7.1	5.5		2.6	3.6		40.9	40.9		45.2	40.9	
Level of Service	Α	Α		Α	Α		D	D		D	D	
Approach Delay (s)		5.6			3.6			40.9			42.9	
Approach LOS		Α			Α			D			D	
Intersection Summary												
HCM 2000 Control Delay			6.7	H	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.62									
Actuated Cycle Length (s)			100.0		um of lost				10.6			
Intersection Capacity Utiliza	ition		87.8%	IC	U Level o	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

c Critical Lane Group

		\rightarrow	*	•	_	_	1	T		-	¥	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	^	7	ሻ	^	7	7	^	7	ሻ	ተተተ	7
Traffic Volume (vph)	210	1050	615	255	895	565	360	1015	750	190	780	155
Future Volume (vph)	210	1050	615	255	895	565	360	1015	750	190	780	155
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3
Total Lost time (s)	2.0	6.0	6.0	2.0	6.0	6.0	2.0	6.1	2.0	2.0	6.1	6.1
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1744	3535	1525	1728	3535	1507	1744	5079	1512	1744	5129	1457
Flt Permitted	0.17	1.00	1.00	0.09	1.00	1.00	0.21	1.00	1.00	0.17	1.00	1.00
Satd. Flow (perm)	317	3535	1525	161	3535	1507	380	5079	1512	318	5129	1457
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	216	1082	634	263	923	582	371	1046	773	196	804	160
RTOR Reduction (vph)	0	0	219	0	0	165	0	0	110	0	0	73
Lane Group Flow (vph)	216	1082	415	263	923	417	371	1046	663	196	804	87
Confl. Peds. (#/hr)	20		10	10		20	10		20	20		10
Heavy Vehicles (%)	0%	1%	0%	1%	1%	0%	0%	1%	0%	0%	0%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	2	0	0	4
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases	2		2	6		6	8		8	4		4
Actuated Green, G (s)	53.2	42.2	42.2	64.0	50.0	50.0	61.9	44.3	63.1	52.5	37.9	37.9
Effective Green, g (s)	55.2	43.2	43.2	65.0	51.0	51.0	62.9	45.3	65.1	54.5	38.9	38.9
Actuated g/C Ratio	0.39	0.31	0.31	0.46	0.36	0.36	0.45	0.32	0.46	0.39	0.28	0.28
Clearance Time (s)	3.0	7.0	7.0	3.0	7.0	7.0	3.0	7.1	3.0	3.0	7.1	7.1
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	247	1090	470	296	1287	548	385	1643	703	282	1425	404
v/s Ratio Prot	0.07	c0.31		0.13	0.26		c0.15	0.21	c0.13	0.08	0.16	
v/s Ratio Perm	0.27		0.27	0.29		0.28	0.28		0.31	0.19		0.06
v/c Ratio	0.87	0.99	0.88	0.89	0.72	0.76	0.96	0.64	0.94	0.70	0.56	0.22
Uniform Delay, d1	31.4	48.2	46.0	41.8	38.3	39.1	29.2	40.3	35.7	30.5	43.3	38.8
Progression Factor	1.70	1.22	1.51	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	13.1	15.6	9.7	25.8	3.5	9.6	36.1	1.9	21.1	7.2	1.6	1.2
Delay (s)	66.4	74.5	79.0	67.7	41.7	48.7	65.3	42.2	56.8	37.7	44.9	40.0
Level of Service	Е	Е	Е	Е	D	D	Е	D	Е	D	D	D
Approach Delay (s)		75.1			47.9			51.3			43.0	
Approach LOS		Е			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			55.6	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	acitv ratio		0.98									
Actuated Cycle Length (s)	,		140.0	S	um of los	t time (s)			16.1			
Intersection Capacity Utiliza	ation		111.7%		U Level		9		Н			
Analysis Period (min)			15									
, , . ,												

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

Future Total (5 Year) PM Peak Hour

	•	→	\rightarrow	•	—	*	1	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	∱ }		ሻ	∱ }		ሻ	1>		ሻ	ĵ»	
Traffic Volume (vph)	90	1400	80	340	975	95	80	10	280	195	0	50
Future Volume (vph)	90	1400	80	340	975	95	80	10	280	195	0	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.3	5.3		2.0	5.3		5.7	5.7		3.5	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	0.99	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.99		1.00	0.99		1.00	0.86		1.00	0.85	
Flt Protected	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Satd. Flow (prot)	1823	3508		1837	3474		1837	1558		1834	1597	
Flt Permitted	0.25	1.00		0.06	1.00		0.72	1.00		0.18	1.00	
Satd. Flow (perm)	461	3508		110	3474		1327	1558		335	1597	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	95	1474	84	358	1026	100	84	11	295	205	0	53
RTOR Reduction (vph)	0	3	0	0	4	0	0	174	0	0	40	0
Lane Group Flow (vph)	95	1555	0	358	1122	0	84	132	0	205	13	0
Confl. Peds. (#/hr)	10					10			15	15		
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	13	0	0	0	0	0	0
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Protected Phases		2		1	6			8		7	4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	63.7	63.7		94.6	94.6		17.4	17.4		32.4	32.4	
Effective Green, g (s)	64.7	64.7		95.6	95.6		18.4	18.4		33.4	33.4	
Actuated g/C Ratio	0.46	0.46		0.68	0.68		0.13	0.13		0.24	0.24	
Clearance Time (s)	6.3	6.3		3.0	6.3		6.7	6.7		4.5	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	213	1621		431	2372		174	204		203	380	
v/s Ratio Prot	210	c0.44		c0.17	0.32			0.08		c0.08	0.01	
v/s Ratio Perm	0.21	00.11		0.39	0.02		0.06	0.00		c0.16	0.01	
v/c Ratio	0.45	0.96		0.83	0.47		0.48	0.65		1.01	0.03	
Uniform Delay, d1	25.5	36.4		44.2	10.4		56.4	57.7		49.0	40.9	
Progression Factor	1.00	1.00		1.47	0.72		1.00	1.00		1.00	1.00	
Incremental Delay, d2	6.6	14.6		9.1	0.5		2.1	6.9		65.7	0.0	
Delay (s)	32.1	51.0		73.9	8.0		58.5	64.7		114.7	40.9	
Level of Service	C	D		E	A		E	E		F	D	
Approach Delay (s)	·	49.9		_	23.9		_	63.3			99.5	
Approach LOS		D			C			E			F	
Intersection Summary												
HCM 2000 Control Delay			44.5	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.96									
Actuated Cycle Length (s)	,		140.0	S	um of los	t time (s)			16.5			
Intersection Capacity Utiliza	ition		108.6%			of Service)		G			
Analysis Period (min)			15						J			
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

1	ivi Siyi	ializeu i	IIICISC	CliOII	Capacity	Allalys	13
3:	Whites	Road &	Bayly	Stree	et		

	•	*	†	<i>></i>	-				
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ሻ	7	^	7	ሻ	414			
Traffic Volume (vph)	195	640	480	205	950	400			
uture Volume (vph)	195	640	480	205	950	400			
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
ane Width	3.3	3.3	3.5	3.3	3.3	3.5			
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0			
ane Util. Factor	1.00	1.00	0.95	1.00	0.91	0.91			
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00			
Tpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.97			
Satd. Flow (prot)	1745	1546	3535	1527	1572	3296			
Fit Permitted	0.95	1.00	1.00	1.00	0.95	0.97			
Satd. Flow (perm)	1745	1546	3535	1527	1572	3296			
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90			
Adj. Flow (vph)	217	711	533	228	1056	444			
RTOR Reduction (vph)	0	51	0	168	0	0			
ane Group Flow (vph)	217	660	533	60	528	972			
Confl. Peds. (#/hr)				10	10				
leavy Vehicles (%)	0%	1%	1%	0%	1%	1%			
Turn Type	Perm	pm+ov	NA	Perm	Split	NA			
Protected Phases		2	5		2	2			
Permitted Phases	8	8		5					
Actuated Green, G (s)	18.9	65.6	24.0	24.0	46.7	46.7			
Effective Green, g (s)	19.9	67.6	25.0	25.0	47.7	47.7			
Actuated g/C Ratio	0.18	0.61	0.23	0.23	0.43	0.43			
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0			
/ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
ane Grp Cap (vph)	315	1034	803	347	681	1429			
//s Ratio Prot	315	c0.28	c0.15	341	c0.34	0.29			
//s Ratio Prot //s Ratio Perm	0.12	0.15	CU. 13	0.04	00.54	0.29			
			0.60		0.70	0.60			
//c Ratio	0.69	0.64	0.66	0.17	0.78	0.68			
Jniform Delay, d1	42.2	13.4	38.7	34.2	26.6	25.0			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
ncremental Delay, d2	6.2	1.3	2.1	0.2	8.4	2.6			
Delay (s)	48.3	14.8	40.8	34.4	35.0	27.7			
evel of Service	D	В	D	С	С	С			
Approach Delay (s)	22.6		38.9			30.2			
Approach LOS	С		D			C			
ntersection Summary									
HCM 2000 Control Delay			30.1	Н	CM 2000	Level of Servi	ce	С	
HCM 2000 Volume to Capa	city ratio		0.74	- ''	J.VI 2000	20701 01 001 11		,	
Actuated Cycle Length (s)	iony rutto		110.0	S	um of lost	time (s)	1	8.4	
Intersection Capacity Utiliza	ation		71.1%		CU Level		'	C.4	
Analysis Period (min)	auon		15	10	O LEVEL	DI OCIVICE		0	
c Critical Lane Group			13						
Onucai Lane Group									

	-	*	1	—	1	1			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	∱ ∱		*	44	ኝኝ	7			
Traffic Volume (vph)	1735	25	275	985	580	80			
Future Volume (vph)	1735	25	275	985	580	80			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.5	3.5	3.3	3.5	3.3	3.3			
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4			
Lane Util. Factor	0.95		1.00	0.95	0.97	1.00			
Frt	1.00		1.00	1.00	1.00	0.85			
Flt Protected	1.00		0.95	1.00	0.95	1.00			
Satd. Flow (prot)	3528		1694	3535	3351	1531			
Flt Permitted	1.00		0.05	1.00	0.95	1.00			
Satd. Flow (perm)	3528		90	3535	3351	1531			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95			
Adj. Flow (vph)	1826	26	289	1037	611	84			
RTOR Reduction (vph)	1	0	0	0	0	20			
Lane Group Flow (vph)	1851	0	289	1037	611	64			
Heavy Vehicles (%)	1%	0%	3%	1%	1%	2%			
Turn Type	NA		pm+pt	NA	Prot	Perm			
Protected Phases	2		1	6	8				
Permitted Phases			6			8			
Actuated Green, G (s)	76.2		101.0	101.0	26.4	26.4			
Effective Green, q (s)	77.2		102.0	102.0	27.4	27.4			
Actuated g/C Ratio	0.55		0.73	0.73	0.20	0.20			
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4			
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	1945		326	2575	655	299			
v/s Ratio Prot	c0.52		c0.14	0.29	c0.18	200			
v/s Ratio Perm	00.02		0.50	0.20	00.10	0.04			
v/c Ratio	0.95		0.89	0.40	0.93	0.21			
Uniform Delay, d1	29.6		47.8	7.3	55.4	47.3			
Progression Factor	1.00		1.00	1.00	1.00	1.00			
Incremental Delay, d2	11.8		23.8	0.5	20.3	0.4			
Delay (s)	41.5		71.6	7.8	75.7	47.6			
Level of Service	D		Ε	A	E	D			
Approach Delay (s)	41.5		=	21.7	72.3	_			
Approach LOS	D			С	E				
Intersection Summary									
HCM 2000 Control Delay			40.2	Н	CM 2000	Level of Servi	ce	D	
HCM 2000 Volume to Capacity ratio			0.93						
Actuated Cycle Length (s)			140.0	S	um of los	t time (s)		12.6	
Intersection Capacity Utilization			92.7%			of Service		F	
Analysis Period (min)			15						
c Critical Lane Group									

c Critical Lane Group

Future Total (5 Year) PM Peak Hour

	•	*	1	Ť	¥	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻሻ	77		^	^			
Traffic Volume (vph)	1480	700	0	1120	650	0		
Future Volume (vph)	1480	700	0	1120	650	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.3	3.3	3.5	3.5	3.5	3.5		
Total Lost time (s)	4.5	4.5		5.7	5.7			
Lane Util. Factor	0.97	0.88		0.95	0.95			
Frpb, ped/bikes	1.00	1.00		1.00	1.00			
Flpb, ped/bikes	1.00	1.00		1.00	1.00			
Frt	1.00	0.85		1.00	1.00			
Flt Protected	0.95	1.00		1.00	1.00			
Satd. Flow (prot)	3385	2720		3570	3570			
Flt Permitted	0.95	1.00		1.00	1.00			
Satd. Flow (perm)	3385	2720		3570	3570			
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91		
Adj. Flow (vph)	1626	769	0	1231	714	0		
RTOR Reduction (vph)	0	73	0	0	0	0		
Lane Group Flow (vph)	1626	696	0	1231	714	0		
Confl. Peds. (#/hr)			10			10		
Heavy Vehicles (%)	0%	1%	0%	0%	0%	0%		
Turn Type	Prot	Perm		NA	NA			
Protected Phases	4			2	6			
Permitted Phases		4						
Actuated Green, G (s)	50.2	50.2		37.6	37.6			
Effective Green, q (s)	51.2	51.2		38.6	38.6			
Actuated g/C Ratio	0.51	0.51		0.39	0.39			
Clearance Time (s)	5.5	5.5		6.7	6.7			
Vehicle Extension (s)	3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)	1733	1392		1378	1378			
v/s Ratio Prot	c0.48			c0.34	0.20			
v/s Ratio Perm		0.26						
v/c Ratio	0.94	0.50		0.89	0.52			
Uniform Delay, d1	22.9	16.0		28.8	23.6			
Progression Factor	1.00	1.00		1.00	1.00			
Incremental Delay, d2	10.2	0.3		9.2	1.4			
Delay (s)	33.2	16.3		38.0	25.0			
Level of Service	С	В		D	С			
Approach Delay (s)	27.7			38.0	25.0			
Approach LOS	С			D	С			
Intersection Summary								
HCM 2000 Control Delay			30.2	Н	CM 2000	Level of Service	С	
			0.92					
			100.0	Sı	um of lost	time (s)	10.2	
Intersection Capacity Utilization 88.3%					U Level o		E	
Analysis Period (min) 15								
c Critical Lane Group								

HCM Signalized Intersection Capacity Analysis 9: Car Dealer Site Access/Delta Boulevard & Kingston Road

Future Total (5 Year) PM Peak Hour

	•	-	•	•	—	•	4	†	-	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	ሻ	^	7	ሻ	1>		ሻ	1>	
Traffic Volume (vph)	145	1520	45	70	1400	95	165	20	130	100	10	150
Future Volume (vph)	145	1520	45	70	1400	95	165	20	130	100	10	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.7	5.7	5.6	5.6		5.6	5.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.98		1.00	0.97	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3535	1541	1785	3535	1517	1761	1604		1773	1569	
Flt Permitted	0.10	1.00	1.00	0.10	1.00	1.00	0.56	1.00		0.59	1.00	
Satd. Flow (perm)	193	3535	1541	184	3535	1517	1043	1604		1092	1569	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	148	1551	46	71	1429	97	168	20	133	102	10	153
RTOR Reduction (vph)	0	0	18	0	0	27	0	106	0	0	122	0
Lane Group Flow (vph)	148	1551	28	71	1429	70	168	47	0	102	41	0
Confl. Peds. (#/hr)	10		5	5		10	10		5	5		10
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2		2	6		6	8			4		
Actuated Green, G (s)	75.1	66.3	66.3	68.6	62.8	62.8	21.4	21.4		21.4	21.4	
Effective Green, g (s)	76.1	67.3	67.3	70.6	63.8	63.8	22.4	22.4		22.4	22.4	
Actuated g/C Ratio	0.69	0.61	0.61	0.64	0.58	0.58	0.20	0.20		0.20	0.20	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.7	6.7	6.6	6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	285	2162	942	217	2050	879	212	326		222	319	
v/s Ratio Prot	c0.05	c0.44		0.02	0.40			0.03			0.03	
v/s Ratio Perm	0.31		0.02	0.19		0.05	c0.16			0.09		
v/c Ratio	0.52	0.72	0.03	0.33	0.70	0.08	0.79	0.14		0.46	0.13	
Uniform Delay, d1	12.5	14.8	8.4	11.3	16.3	10.2	41.6	35.9		38.5	35.8	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.6	2.1	0.1	0.9	2.0	0.2	18.1	0.2		1.5	0.2	
Delay (s)	14.1	16.9	8.5	12.2	18.3	10.3	59.7	36.1		40.0	36.0	
Level of Service	В	В	Α	В	В	В	Е	D		D	D	
Approach Delay (s)		16.4			17.5			48.5			37.5	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			20.9	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacity ratio 0.73												
Actuated Cycle Length (s)			110.0		um of lost				13.5			
Intersection Capacity Utiliz	ation		85.3%	IC	U Level	of Service	•		Е			
Analysis Period (min)			15									

c Critical Lane Group

TICIVI OTISIGI	ialized littersection Capacity F	\iiai
2: Site Acce	ss (West) & Kingston Road	

	-	*	1	-	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
ane Configurations	^	7	*	^	W				
Traffic Volume (veh/h)	1715	0	0	1130	0	0			
Future Volume (Veh/h)	1715	0	0	1130	0	0			
Sign Control	Free			Free	Stop				
Grade	0%			0%	0%				
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96			
Hourly flow rate (vph)	1786	0	0	1177	0	0			
edestrians									
ane Width (m)									
Valking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None			None					
Median storage veh)									
Jpstream signal (m)				153					
X, platoon unblocked					0.84				
C, conflicting volume			1786		2374	893			
C1, stage 1 conf vol									
C2, stage 2 conf vol									
Cu, unblocked vol			1786		2255	893			
C, single (s)			4.1		6.8	7.0			
C, 2 stage (s)									
= (s)			2.2		3.5	3.3			
0 queue free %			100		100	100			
M capacity (veh/h)			352		30	279			
irection, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1		
olume Total	893	893	0	0	588	588	0		
olume Left	0	0	0	0	0	0	0		
/olume Right	0	0	0	0	0	0	0		
SH	1700	1700	1700	1700	1700	1700	1700		
/olume to Capacity	0.53	0.53	0.12	0.00	0.35	0.35	0.00		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
ane LOS							Α		
Approach Delay (s)	0.0			0.0			0.0		
Approach LOS							Α		
ntersection Summary									
verage Delay			0.0						
ntersection Capacity Utiliza	ation		50.7%	IC	CU Level	of Service		Α	
Analysis Period (min)			15						

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

Future Total (10 Year) PM Peak Hour

	•		$\overline{}$		←	4	4	†	<i>▶</i>	_	T	7
Movement	EBL	EBT	€BR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	EDL	↑ 1>	EDIX	WDL 1	↑ ↑	WDK	NDL T	1 Tab 1	INDIX	SDL T	1 ₃	ODN
Traffic Volume (vph)	130	1640	5	5	1055	70	5	5	15	60	0	70
Future Volume (vph)	130	1640	5	5	1055	70	5	5	15	60	0	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.4	5.4	0.0	5.4	5.4	0.0	5.2	5.2	0.0	5.2	5.2	0.0
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.99	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99		1.00	0.89		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1736	3533		1745	3493		1732	1664		1745	1549	
Flt Permitted	0.22	1.00		0.11	1.00		0.71	1.00		0.74	1.00	
Satd. Flow (perm)	400	3533		197	3493		1292	1664		1366	1549	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	138	1745	5	5	1122	74	5	5	16	64	0.94	74
RTOR Reduction (vph)	0	1745	0	0	3	0	0	14	0	04	67	0
	138	1750	0	5	1193	0	5	7	0	64	7	0
Lane Group Flow (vph) Confl. Peds. (#/hr)	10	1750	U	5	1193	10	5	- 1	U	04	1	5
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	1%
Bus Blockages (#/hr)	0 %	0	11	0 /0	0	11	0 /0	0 /0	0 %	0 /0	0 %	0
	Perm	NA	- ''	Perm	NA	- 11	Perm	NA	U		NA	- 0
Turn Type Protected Phases	Perm	NA 2		Perm	NA 6		Perm	NA 8		Perm	NA 4	
Permitted Phases	2	2		6	0		8	0		4	4	
		70.5		78.5	78.5		8.9	8.9		8.9	8.9	
Actuated Green, G (s)	78.5 79.5	78.5 79.5		79.5	79.5		9.9	9.9		9.9	9.9	
Effective Green, g (s)	0.80	0.80		0.80	0.80		0.10	0.10		0.10	0.10	
Actuated g/C Ratio	6.4	6.4		6.4	6.4		6.2	6.2		6.2	6.2	
Clearance Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Vehicle Extension (s)												
Lane Grp Cap (vph)	318	2808		156	2776		127	164		135	153	
v/s Ratio Prot	0.04	c0.50		0.00	0.34		0.00	0.00		0.05	0.00	
v/s Ratio Perm	0.34			0.03	0.40		0.00			c0.05		
v/c Ratio	0.43	0.62		0.03	0.43		0.04	0.04		0.47	0.05	
Uniform Delay, d1	3.2	4.2		2.2	3.2		40.7	40.8		42.6	40.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	4.3	1.1 5.2		0.1	0.1		0.1	0.1		2.6	0.1	
Delay (s)	7.5			2.2	3.3		40.9	40.9		45.2	40.9	
Level of Service	Α	A		Α	A		D	D		D	D	
Approach Delay (s)		5.4 A			3.3 A			40.9			42.9 D	
Approach LOS		А			А			D			U	
Intersection Summary												
HCM 2000 Control Delay			6.5	Н	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.61									
Actuated Cycle Length (s)			100.0	Si	um of lost	t time (s)			10.6			
Intersection Capacity Utiliza	ition		86.3%			of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

c Critical Lane Group

	_	\rightarrow	*	•	_	_	1	T		-	¥	*
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	^	7	ሻ	^	7	7	^	7	ሻ	ተተተ	7
Traffic Volume (vph)	210	1075	620	255	915	565	450	1040	745	190	800	155
Future Volume (vph)	210	1075	620	255	915	565	450	1040	745	190	800	155
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3
Total Lost time (s)	2.0	6.0	6.0	2.0	6.0	6.0	2.0	6.1	2.0	2.0	6.1	6.1
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.97	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1744	3535	1525	1728	3535	1507	1744	5079	1512	1744	5129	1457
Flt Permitted	0.16	1.00	1.00	0.09	1.00	1.00	0.20	1.00	1.00	0.16	1.00	1.00
Satd. Flow (perm)	298	3535	1525	161	3535	1507	363	5079	1512	294	5129	1457
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	216	1108	639	263	943	582	464	1072	768	196	825	160
RTOR Reduction (vph)	0	0	226	0	0	162	0	0	110	0	0	73
Lane Group Flow (vph)	216	1108	413	263	943	420	464	1072	658	196	825	87
Confl. Peds. (#/hr)	20		10	10		20	10		20	20		10
Heavy Vehicles (%)	0%	1%	0%	1%	1%	0%	0%	1%	0%	0%	0%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	2	0	0	4
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases	2		2	6		6	8		8	4		4
Actuated Green, G (s)	53.2	42.2	42.2	64.0	50.0	50.0	61.9	43.9	62.7	52.9	37.9	37.9
Effective Green, g (s)	55.2	43.2	43.2	65.0	51.0	51.0	62.9	44.9	64.7	54.9	38.9	38.9
Actuated g/C Ratio	0.39	0.31	0.31	0.46	0.36	0.36	0.45	0.32	0.46	0.39	0.28	0.28
Clearance Time (s)	3.0	7.0	7.0	3.0	7.0	7.0	3.0	7.1	3.0	3.0	7.1	7.1
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	241	1090	470	296	1287	548	380	1628	698	281	1425	404
v/s Ratio Prot	0.08	c0.31		0.13	0.27		c0.19	0.21	c0.13	0.08	0.16	
v/s Ratio Perm	0.28		0.27	0.29		0.28	0.36		0.30	0.19		0.06
v/c Ratio	0.90	1.02	0.88	0.89	0.73	0.77	1.22	0.66	0.94	0.70	0.58	0.22
Uniform Delay, d1	31.7	48.4	45.9	41.9	38.6	39.2	31.0	40.9	35.9	30.4	43.5	38.8
Progression Factor	1.55	1.12	1.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	11.7	18.6	6.8	25.8	3.7	9.8	121.0	2.1	21.0	7.3	1.7	1.2
Delay (s)	60.8	72.8	66.6	67.7	42.3	49.1	152.0	43.1	56.9	37.8	45.2	40.0
Level of Service	E	Е	Е	Е	D	D	F	D	Е	D	D	D
Approach Delay (s)		69.5			48.3			69.6			43.3	
Approach LOS		Е			D			Е			D	
Intersection Summary												
HCM 2000 Control Delay			60.0	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capacity ratio 1.03												
Actuated Cycle Length (s) 140.0		Sum of lost time (s)				16.1						
ntersection Capacity Utilization 116.6%		ICU Level of Service				Н						
Analysis Period (min)			15									
,												

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

Future Total (10 Year) PM Peak Hour

	•	\rightarrow	\rightarrow	•	←	•	1	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		Ť	↑ î>		ሻ	- 1}		7	- 1}	
Traffic Volume (vph)	90	1430	195	425	1000	95	80	10	280	195	0	50
Future Volume (vph)	90	1430	195	425	1000	95	80	10	280	195	0	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.3	5.3		5.0	5.3		5.7	5.7		3.0	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	0.99	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.98		1.00	0.99		1.00	0.86		1.00	0.85	
Flt Protected	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Satd. Flow (prot)	1824	3475		1837	3475		1837	1558		1835	1597	
Flt Permitted	0.25	1.00		0.06	1.00		0.72	1.00		0.17	1.00	
Satd. Flow (perm)	449	3475		104	3475		1327	1558		310	1597	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	95	1505	205	447	1053	100	84	11	295	205	0	53
RTOR Reduction (vph)	0	7	0	0	4	0	0	132	0	0	39	0
Lane Group Flow (vph)	95	1703	0	447	1149	0	84	174	0	205	14	0
Confl. Peds. (#/hr)	10					10			15	15		
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	13	0	0	0	0	0	0
Turn Type	Perm	NA		pm+pt	NA		Perm	NA		pm+pt	NA	
Protected Phases	1 01111	2		1	6			8		7	4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	64.7	64.7		92.3	92.3		19.7	19.7		34.7	34.7	
Effective Green, q (s)	65.7	65.7		93.3	93.3		20.7	20.7		35.7	35.7	
Actuated g/C Ratio	0.47	0.47		0.67	0.67		0.15	0.15		0.26	0.26	
Clearance Time (s)	6.3	6.3		6.0	6.3		6.7	6.7		4.0	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	210	1630		349	2315		196	230		209	407	
v/s Ratio Prot	210	0.49		c0.21	0.33		100	0.11		c0.08	0.01	
v/s Ratio Perm	0.21	0.10		c0.65	0.00		0.06	0.11		c0.17	0.01	
v/c Ratio	0.45	1.04		1.28	0.50		0.43	0.76		0.98	0.03	
Uniform Delay, d1	25.0	37.1		49.7	11.6		54.3	57.2		46.7	39.2	
Progression Factor	1.00	1.00		1.22	0.79		1.00	1.00		1.00	1.00	
Incremental Delay, d2	6.9	34.9		138.4	0.73		1.5	13.2		56.5	0.0	
Delay (s)	31.9	72.1		198.9	9.6		55.8	70.4		103.2	39.2	
Level of Service	C	E		F	Α.		E	E		F	D	
Approach Delay (s)	U	69.9			62.5			67.3			90.1	
Approach LOS		05.5 E			02.5			67.5			50.1	
Intersection Summary												
HCM 2000 Control Delay			68.0	- 11	CM 2000	Level of S	Convino		Е			
	oity ratio		1.25	н	CIVI ZUUU	Level of S	Sel VICE					
HCM 2000 Volume to Capa	icity ratio		140.0		use of last	time (s)			19.0			
Actuated Cycle Length (s)	tion				um of los				19.0 H			
Intersection Capacity Utilization 118.6% Analysis Period (min) 15			IC	U Level	of Service			Н				
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

ПСІ	vı Siyi	lalized	merse	ection (Japacii	y Analysis
6: V	Vhites	Road	& Bayl	y Stree	t	

	•	•	†	1	-	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	7	7	44	7	7	414		
Traffic Volume (vph)	195	640	490	205	950	410		
Future Volume (vph)	195	640	490	205	950	410		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.3	3.3	3.5	3.3	3.3	3.5		
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	0.95	1.00	0.91	0.91		
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.97		
Satd. Flow (prot)	1745	1546	3535	1527	1572	3297		
Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.97		
Satd. Flow (perm)	1745	1546	3535	1527	1572	3297		
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
Adj. Flow (vph)	217	711	544	228	1056	456		
RTOR Reduction (vph)	0	49	0	165	0	0		
Lane Group Flow (vph)	217	662	544	63	528	984		
Confl. Peds. (#/hr)	217	002	011	10	10	004		
Heavy Vehicles (%)	0%	1%	1%	0%	1%	1%		
Turn Type	Perm	pm+ov	NA	Perm	Split	NA NA		
Protected Phases	T GIIII	2	5	1 Cilli	2	2		
Permitted Phases	8	8	5	5	2	2		
Actuated Green, G (s)	18.9	65.5	24.1	24.1	46.6	46.6		
Effective Green, g (s)	19.9	67.5	25.1	25.1	47.6	47.6		
Actuated g/C Ratio	0.18	0.61	0.23	0.23	0.43	0.43		
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	315	1033	806	348	680	1426		
v/s Ratio Prot	010	c0.28	c0.15	040	c0.34	0.30		
v/s Ratio Perm	0.12	0.15	60.15	0.04	60.54	0.50		
v/c Ratio	0.69	0.64	0.67	0.18	0.78	0.69		
Uniform Delay, d1	42.2	13.5	38.7	34.2	26.7	25.2		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	6.2	1.4	2.2	0.3	8.5	2.8		
Delay (s)	48.3	14.9	41.0	34.4	35.1	28.0		
Level of Service	40.5 D	14.3 B	41.0 D	C	55.1 D	20.0 C		
Approach Delay (s)	22.7		39.0			30.5		
Approach LOS	C		D			C		
Intersection Summary								
HCM 2000 Control Delay			30.3	Н	CM 2000	Level of Serv	ice C	
HCM 2000 Volume to Capa	city ratio		0.74		2.00			
actuated Cycle Length (s) 110.0		S	um of lost	time (s)	18.4			
ntersection Capacity Utilization 71.1%				CU Level		10.4 C		
Analysis Period (min)			15	- 10	LOVOIT	J. COI 1100	U	
c Critical Lane Group			.5					

Future Total (10 Year) PM Peak Hour

Whites / Kingston SW	Synchro 10 Report
BA Group - TCS	FTPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp),syr

J. Highway +01 W	D OII-I (c	ипр с	Kingsi	OHIO	au		Tatare Total (10 To	ar) i wi i cak i loa
	-	\rightarrow	•	←	4	<i>></i>		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	† 19		ሻ	^	77	7		
Traffic Volume (vph)	1755	25	280	990	595	80		
Future Volume (vph)	1755	25	280	990	595	80		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.5	3.5	3.3	3.5	3.3	3.3		
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4		
Lane Util. Factor	0.95		1.00	0.95	0.97	1.00		
Frt	1.00		1.00	1.00	1.00	0.85		
Flt Protected	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3528		1694	3535	3351	1531		
Flt Permitted	1.00		0.05	1.00	0.95	1.00		
Satd. Flow (perm)	3528		91	3535	3351	1531		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	1847	26	295	1042	626	84		
RTOR Reduction (vph)	0	0	0	0	0	19		
Lane Group Flow (vph)	1873	0	295	1042	626	65		
Heavy Vehicles (%)	1%	0%	3%	1%	1%	2%		
Turn Type	NA		pm+pt	NA	Prot	Perm		
Protected Phases	2		1	6	8	1 01111		
Permitted Phases			6		· ·	8		
Actuated Green, G (s)	75.8		100.8	100.8	26.6	26.6		
Effective Green, g (s)	76.8		101.8	101.8	27.6	27.6		
Actuated g/C Ratio	0.55		0.73	0.73	0.20	0.20		
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4		
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	1935		329	2570	660	301		
v/s Ratio Prot	c0.53		c0.15	0.29	c0.19	301		
v/s Ratio Perm	00.55		0.51	0.29	00.19	0.04		
v/c Ratio	0.97		0.90	0.41	0.95	0.04		
Uniform Delay, d1	30.4		48.2	7.4	55.5	47.1		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
Incremental Delay, d2	14.1		25.3	0.5	22.9	0.4		
**	44.5		73.5	7.9	78.4	47.5		
Delay (s) Level of Service	44.5 D		73.5 E	7.9 A	70.4 E	47.5 D		
	44.5			22.4	74.7	D		
Approach Delay (s)	44.5 D			22.4 C	74.7 E			
Approach LOS	U			C	E			
Intersection Summary								
HCM 2000 Control Delay			42.4	Н	CM 2000	Level of Service	D	
HCM 2000 Volume to Capa	acity ratio		0.95					
Actuated Cycle Length (s)			140.0	S	um of los	t time (s)	12.6	
Intersection Capacity Utiliz	ation		94.0%			of Service	F	
Analysis Period (min)			15					
c Critical Lane Group								

	•	*	1	1	Į.	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻሻ	77		^	^			
Traffic Volume (vph)	1595	700	0	1130	660	0		
Future Volume (vph)	1595	700	0	1130	660	0		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
ane Width	3.3	3.3	3.5	3.5	3.5	3.5		
Total Lost time (s)	4.5	4.5		5.7	5.7			
ane Util. Factor	0.97	0.88		0.95	0.95			
Frpb, ped/bikes	1.00	1.00		1.00	1.00			
lpb, ped/bikes	1.00	1.00		1.00	1.00			
Frt	1.00	0.85		1.00	1.00			
It Protected	0.95	1.00		1.00	1.00			
Satd. Flow (prot)	3385	2720		3570	3570			
It Permitted	0.95	1.00		1.00	1.00			
Satd. Flow (perm)	3385	2720		3570	3570			
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91		
Adj. Flow (vph)	1753	769	0.01	1242	725	0		
RTOR Reduction (vph)	0	70	0	0	0	0		
Lane Group Flow (vph)	1753	699	0	1242	725	0		
Confl. Peds. (#/hr)			10			10		
Heavy Vehicles (%)	0%	1%	0%	0%	0%	0%		
Turn Type	Prot	Perm		NA	NA			
Protected Phases	4			2	6			
Permitted Phases	•	4		_	_			
Actuated Green, G (s)	50.5	50.5		37.3	37.3			
Effective Green, q (s)	51.5	51.5		38.3	38.3			
Actuated g/C Ratio	0.52	0.52		0.38	0.38			
Clearance Time (s)	5.5	5.5		6.7	6.7			
Vehicle Extension (s)	3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)	1743	1400		1367	1367			
v/s Ratio Prot	c0.52			c0.35	0.20			
v/s Ratio Perm	10.02	0.26		22.00	5.20			
v/c Ratio	1.01	0.50		0.91	0.53			
Uniform Delay, d1	24.2	15.8		29.2	23.9			
Progression Factor	1.00	1.00		1.00	1.00			
Incremental Delay, d2	22.9	0.3		10.4	1.5			
Delay (s)	47.2	16.1		39.6	25.4			
Level of Service	D	В		D	С			
Approach Delay (s)	37.7			39.6	25.4			
Approach LOS	D			D	С			
ntersection Summary								
HCM 2000 Control Delay			36.3	Н	CM 2000	Level of Service	<u> </u>	D
HCM 2000 Volume to Capa	acity ratio		0.96	- ''	J.M 2000	20.0101010110	•	
Actuated Cycle Length (s)	acity ratio		100.0	S	um of lost	time (s)		10.2
ntersection Capacity Utiliza	ation		91.9%		U Level o			F
Analysis Period (min)	4.011		15	10	C LOVOI O	0314100		
c Critical Lane Group			.0					
230ai 2ai.io 3.5up								

Whites / Kingston SW	Synchro 10 Repo
BA Group - TCS	FTPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp) sy

HCM Signalized Intersection Capacity Analysis

9: Car Dealer Site Access/Delta Boulevard & Kingston Roa
--

Future Total (10 Year) PM Peak Hour

	*	→	•	•	←	*	4	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	^	7	ሻ	1>		ሻ	ĵ.	
Traffic Volume (vph)	145	1540	45	70	1420	95	165	20	130	100	10	150
Future Volume (vph)	145	1540	45	70	1420	95	165	20	130	100	10	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.7	5.7	5.6	5.6		5.6	5.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.98		1.00	0.97	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3535	1541	1785	3535	1517	1761	1604		1773	1569	
Flt Permitted	0.10	1.00	1.00	0.09	1.00	1.00	0.56	1.00		0.59	1.00	
Satd. Flow (perm)	185	3535	1541	176	3535	1517	1043	1604		1092	1569	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	148	1571	46	71	1449	97	168	20	133	102	10	153
RTOR Reduction (vph)	0	0	18	0	0	27	0	106	0	0	122	0
Lane Group Flow (vph)	148	1571	28	71	1449	70	168	47	0	102	41	0
Confl. Peds. (#/hr)	10		5	5		10	10		5	5		10
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2		2	6		6	8			4		
Actuated Green, G (s)	75.1	66.3	66.3	68.6	62.8	62.8	21.4	21.4		21.4	21.4	
Effective Green, g (s)	76.1	67.3	67.3	70.6	63.8	63.8	22.4	22.4		22.4	22.4	
Actuated q/C Ratio	0.69	0.61	0.61	0.64	0.58	0.58	0.20	0.20		0.20	0.20	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.7	6.7	6.6	6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	280	2162	942	212	2050	879	212	326		222	319	
v/s Ratio Prot	c0.05	c0.44		0.02	0.41			0.03			0.03	
v/s Ratio Perm	0.31		0.02	0.19		0.05	c0.16			0.09		
v/c Ratio	0.53	0.73	0.03	0.33	0.71	0.08	0.79	0.14		0.46	0.13	
Uniform Delay, d1	13.0	14.9	8.4	11.6	16.4	10.2	41.6	35.9		38.5	35.8	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	1.8	2.2	0.1	0.9	2.1	0.2	18.1	0.2		1.5	0.2	
Delay (s)	14.8	17.1	8.5	12.5	18.5	10.3	59.7	36.1		40.0	36.0	
Level of Service	В	В	Α	В	В	В	Е	D		D	D	
Approach Delay (s)		16.7			17.8			48.5			37.5	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			21.1	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.74									
Actuated Cycle Length (s)			110.0	S	um of los	t time (s)			13.5			
Intersection Capacity Utiliz	ation		85.8%	IC	U Level	of Service			Е			

Ar	nalysis Per	iod (ı	min)
С	Critical L	ane (Group

2: Site Access (West) & Kingston Road	 .,

	\rightarrow	*	1	•	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	^	7	ሻ	^	W				
Traffic Volume (veh/h)	1795	0	0	1175	0	0			
Future Volume (Veh/h)	1795	0	0	1175	0	0			
Sign Control	Free			Free	Stop				
Grade	0%			0%	0%				
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96			
Hourly flow rate (vph)	1870	0	0	1224	0	0			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None			None					
Median storage veh)									
Upstream signal (m)				153					
pX, platoon unblocked					0.83				
vC, conflicting volume			1870		2482	935			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol			1870		2374	935			
tC, single (s)			4.1		6.8	7.0			
tC, 2 stage (s)									
tF(s)			2.2		3.5	3.3			
p0 queue free %			100		100	100			
cM capacity (veh/h)			326		25	261			
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1		
Volume Total	935	935	0	0	612	612	0		
Volume Left	0	0	0	0	0	0	0		
Volume Right	0	0	0	0	0	0	0		
cSH	1700	1700	1700	1700	1700	1700	1700		
Volume to Capacity	0.55	0.55	0.12	0.00	0.36	0.36	0.00		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Lane LOS							Α		
Approach Delay (s)	0.0			0.0			0.0		
Approach LOS							Α		
Intersection Summary									
Average Delay			0.0						
Intersection Capacity Utilizat	tion		53.0%	IC	U Level	of Service		Α	
Analysis Period (min)			15						

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

Future Total (15 Year) PM Peak Hour

	•	→	*	1	←	4	4	†	1	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ħβ		ሻ	† }		ሻ	1>		ሻ	1>	
Traffic Volume (vph)	130	1720	5	5	1100	70	5	5	15	60	0	70
Future Volume (vph)	130	1720	5	5	1100	70	5	5	15	60	0	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.4	5.4		5.4	5.4		5.2	5.2		5.2	5.2	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.99	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99		1.00	0.89		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1737	3533		1745	3495		1732	1664		1745	1549	
Flt Permitted	0.21	1.00		0.09	1.00		0.71	1.00		0.74	1.00	
Satd. Flow (perm)	378	3533		174	3495		1292	1664		1366	1549	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adi, Flow (vph)	138	1830	5	5	1170	74	5	5	16	64	0	74
RTOR Reduction (vph)	0	0	0	0	3	0	0	14	0	0	67	0
Lane Group Flow (vph)	138	1835	0	5	1241	0	5	7	0	64	7	0
Confl. Peds. (#/hr)	10		-	-	.=	10	5		-	• •		5
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	1%
Bus Blockages (#/hr)	0	0	11	0	0	11	0	0	0	0	0	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases	1 01111	2		. 0	6			8		. 0	4	
Permitted Phases	2			6			8			4		
Actuated Green, G (s)	78.5	78.5		78.5	78.5		8.9	8.9		8.9	8.9	
Effective Green, g (s)	79.5	79.5		79.5	79.5		9.9	9.9		9.9	9.9	
Actuated g/C Ratio	0.80	0.80		0.80	0.80		0.10	0.10		0.10	0.10	
Clearance Time (s)	6.4	6.4		6.4	6.4		6.2	6.2		6.2	6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	300	2808		138	2778		127	164		135	153	
v/s Ratio Prot	300	c0.52		100	0.36		121	0.00		100	0.00	
v/s Ratio Perm	0.37	00.02		0.03	0.00		0.00	0.00		c0.05	0.00	
v/c Ratio	0.46	0.65		0.04	0.45		0.04	0.04		0.47	0.05	
Uniform Delay, d1	3.3	4.4		2.2	3.3		40.7	40.8		42.6	40.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	5.0	1.2		0.5	0.5		0.1	0.1		2.6	0.1	
Delay (s)	8.3	5.6		2.7	3.8		40.9	40.9		45.2	40.9	
Level of Service	Α	Α		Α.	Α.		D	D		D	D	
Approach Delay (s)	7.	5.8		/ (3.8			40.9			42.9	
Approach LOS		Α.			Α.			T0.5			72.3 D	
		,,			,,							
Intersection Summary			0.0		014 0000	11 - * *						
HCM 2000 Control Delay			6.8	Н	CM 2000	Level of S	service		Α			
HCM 2000 Volume to Capa	acity ratio		0.63	_					40.0			
Actuated Cycle Length (s)			100.0		um of los				10.6			
Intersection Capacity Utiliza	ation		88.5%	IC	U Level	of Service			Е			
Analysis Period (min) c Critical Lane Group			15									

Whites / Kingston SW BA Group - TCS

•	\rightarrow	*	•	•	•	1	Ī		-	¥	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ሻ	^	7	ሻ	^	7	7	^	7	ሻ	ተተተ	7
											155
											155
											1900
											3.3
											6.1
											1.00
											0.98
											1.00
											0.85
											1.00
											1457
											1.00
	3535	1525	162	3535	1507	335		1512	253	5129	1457
0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
											160
0	0	225		-	156	-	0	110	-	0	73
216	1160	445	263	979	426		1124	668	196	861	87
20		10	10		20	10		20	20		10
0%	1%	0%	1%	1%	0%	0%	1%	0%	0%	0%	3%
0	0	0	0	0	0	0	0	2	0	0	4
pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA	pm+ov	pm+pt	NA	Perm
5	2		1	6		3	8	1	7	4	
2		2	6		6	8		8	4		4
52.9	41.9	41.9	64.0	50.0	50.0	61.9	43.5	62.6	53.3	37.9	37.9
				51.0	51.0						38.9
0.39	0.31	0.31	0.46	0.36	0.36	0.45	0.32	0.46	0.39	0.28	0.28
3.0	7.0	7.0	3.0	7.0	7.0	3.0	7.1	3.0	3.0	7.1	7.1
3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
231	1083	467	300	1287	548	371	1614	697	274	1425	404
0.08	c0.33		0.13	0.28		c0.20	0.22	c0.14	0.08	0.17	
0.29		0.29	0.28		0.28	0.37		0.30	0.20		0.06
0.94	1.07	0.95	0.88	0.76	0.78	1.28	0.70	0.96	0.72	0.60	0.22
32.4	48.5	47.5	41.6	39.1	39.5	32.7	41.8	36.4	30.6	43.9	38.8
1.64	0.66	0.36	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
7.2	34.1	5.5	23.7	4.3	10.4	144.3	2.5	23.9	8.6	1.9	1.2
60.3	66.0	22.4	65.3	43.4	49.8	176.9	44.3	60.3	39.2	45.8	40.0
Е	Е	С	Е	D	D	F	D	Е	D	D	D
	51.1			48.6			76.0			44.0	
	D			D			Е			D	
		57.3	Н	CM 2000	Level of	Service		Е			
ity ratio		1.06									
		140.0	S	um of lost	time (s)			16.1			
ion					(-)	9		Н			
	EBL 210 210 210 1900 3.3 3.2 0.1.00 1.00 1.00 1.00 0.95 1744 0.15 267 0.97 216 20 0.39 3.0 3.0 3.0 231 0.08 0.29 0.94 32.4 1.64 7.2 60.3 E	EBL EBT 210 1125 210 1125 210 1125 1900 1900 3.3 3.5 2.0 6.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 267 3535 0.97 0.97 216 1160 0 0 0 216 1160 20 0 0 1 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EBL EBR EBR	EBL EBT EBR WBL 210 1125 650 255 210 1125 650 255 210 1125 650 255 1900 1900 1900 1900 3.3 3.5 3.3 3.3 2.0 6.0 6.0 2.0 1.00 0.95 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.98 1.00 0.95 1.00 1.00 1.00 1.00 1.00 0.85 1.00 0.95 1.00 1.00 0.95 1744 3535 1525 1728 0.15 1.00 1.00 0.09 267 3535 1525 162 0.97 0.97 0.97 0.97 216 1160 670 263 0 0 0 225 0 216 1160 445 263 0 0 0 225 0 216 1160 445 263 20 10 10 0% 1% 0% 1% 0	EBL EBT EBR WBL WBT 210 1125 650 255 950 210 1125 650 255 950 1900 1900 1900 1900 1900 1900 3.3 3.5 3.3 3.3 3.5 2.0 6.0 6.0 2.0 6.0 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.98 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 0.85 1.00 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 1.00 0.9 1.00 0.96 1.00 1.00 0.9 1.00 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.0 0 225 0 0 0 216 1160 670 263 979 0 0 0 225 0 0 0 216 1160 445 263 979 0 0 0 225 0 0 0 216 1160 445 263 979 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BBL BBR BBR WBL WBR WBR WBR WBR C10 1125 650 255 950 565 1900	BBL BBR BBR WBL WBR WBR NBL	BBL BBT BBR WBL WBT WBR NBL NBT	BBL BBT BBR WBL WBT WBR NBL NBT NBR	BBL BBR BBR WBL WBR WBR NBL NBT NBR SBL	BBL BBT BBR WBL WBT WBR NBL NBT NBR SBL SBT

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

Future Total (15 Year) PM Peak Hour

	*	-	*	•	-	*	4	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		*	ħβ		7	1>		1	1>	
Traffic Volume (vph)	90	1510	195	425	1045	95	80	10	280	195	0	50
Future Volume (vph)	90	1510	195	425	1045	95	80	10	280	195	0	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.3	5.3		5.0	5.3		5.7	5.7		3.5	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	0.99	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.98		1.00	0.99		1.00	0.86		1.00	0.85	
Flt Protected	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Satd. Flow (prot)	1825	3478		1837	3477		1837	1558		1835	1597	
Flt Permitted	0.23	1.00		0.06	1.00		0.72	1.00		0.16	1.00	
Satd. Flow (perm)	428	3478		104	3477		1327	1558		301	1597	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adi. Flow (vph)	95	1589	205	447	1100	100	84	11	295	205	0.55	53
RTOR Reduction (vph)	0	7	203	0	4	0	0	129	293	0	39	0
Lane Group Flow (vph)	95	1787	0	447	1196	0	84	177	0	205	14	0
Confl. Peds. (#/hr)	10	1707	U	441	1130	10	04	177	15	15	14	U
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0.70	0	0 /0	0 /8	0	13	0.78	0.70	0 /8	0 /8	0.70	0 /8
Turn Type	Perm	NA NA	- 0	pm+pt	NA	10	Perm	NA		pm+pt	NA NA	
Protected Phases	Pellii	NA 2		pm+pt 1	NA 6		Perm	NA 8		ртт+рt 7	INA 4	
Permitted Phases	2			6	U		8	0		4	4	
Actuated Green, G (s)	64.7	64.7		92.1	92.1		19.9	19.9		34.9	34.9	
Effective Green, g (s)	65.7	65.7		93.1	93.1		20.9	20.9		35.9	35.9	
	0.47	0.47		0.66	0.66		0.15	0.15		0.26	0.26	
Actuated g/C Ratio Clearance Time (s)	6.3	6.3		6.0	6.3		6.7	6.7		4.5	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	200	1632		346	2312		198	232		203	409	
v/s Ratio Prot	0.00	0.51		c0.21	0.34		0.00	0.11		c0.08	0.01	
v/s Ratio Perm	0.22			c0.65			0.06			c0.18		
v/c Ratio	0.47	1.10		1.29	0.52		0.42	0.76		1.01	0.03	
Uniform Delay, d1	25.4	37.1		49.7	12.0		54.1	57.2		47.1	39.0	
Progression Factor	1.00	1.00		0.75	1.85		1.00	1.00		1.00	1.00	
Incremental Delay, d2	7.9	53.0		142.2	0.4		1.5	13.7		65.7	0.0	
Delay (s)	33.3	90.2		179.4	22.6		55.6	70.9		112.8	39.1	
Level of Service	С	F		F	C		Е	Е		F	D	
Approach Delay (s)		87.3			65.1			67.6			97.7	
Approach LOS		F			Е			Е			F	
Intersection Summary												
HCM 2000 Control Delay			77.4	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		1.27									
Actuated Cycle Length (s)			140.0		um of lost				19.5			
Intersection Capacity Utiliza	ation		120.8%	IC	U Level	of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

	- 3					,	
3:	Whites	Road	&	Bayly	Street		

	1	•	†	1	-	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	*	7	^	7	*	414		
Traffic Volume (vph)	195	640	520	205	950	435		
Future Volume (vph)	195	640	520	205	950	435		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.3	3.3	3.5	3.3	3.3	3.5		
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0		
Lane Util, Factor	1.00	1.00	0.95	1.00	0.91	0.91		
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.97		
Satd. Flow (prot)	1745	1546	3535	1527	1572	3300		
Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.97		
Satd. Flow (perm)	1745	1546	3535	1527	1572	3300		
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
Adj. Flow (vph)	217	711	578	228	1056	483		
RTOR Reduction (vph)	0	43	0	154	0	0		
Lane Group Flow (vph)	217	668	578	74	528	1011		
Confl. Peds. (#/hr)	-11	- 000	0.0	10	10			
Heavy Vehicles (%)	0%	1%	1%	0%	1%	1%		
Turn Type	Perm	pm+ov	NA	Perm	Split	NA		
Protected Phases	1 01111	2	5	1 01111	2	2		
Permitted Phases	8	8	- 3	5		_		
Actuated Green, G (s)	18.9	64.7	24.9	24.9	45.8	45.8		
Effective Green, q (s)	19.9	66.7	25.9	25.9	46.8	46.8		
Actuated g/C Ratio	0.18	0.61	0.24	0.24	0.43	0.43		
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	315	1021	832	359	668	1404		
v/s Ratio Prot	010	c0.28	c0.16	000	c0.34	0.31		
v/s Ratio Perm	0.12	0.15	00.10	0.05	00.04	0.01		
v/c Ratio	0.69	0.65	0.69	0.20	0.79	0.72		
Uniform Delay, d1	42.2	14.1	38.4	33.8	27.4	26.2		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	6.2	1.5	2.5	0.3	9.3	3.2		
Delay (s)	48.3	15.6	41.0	34.1	36.6	29.4		
Level of Service	D	В	D	C	D	C		
Approach Delay (s)	23.3		39.0	3		31.9		
Approach LOS	C		D			C		
Intersection Summary								
HCM 2000 Control Delay			31.2	Ц	CM 2000	Level of Service	۵	С
HCM 2000 Control Delay	city ratio		0.76	П	OIVI 2000	Level of Selvic		U
Actuated Cycle Length (s)	iony rano		110.0	Q	um of lost	time (s)		18.4
Intersection Capacity Utiliza	ation		71.2%			of Service		10.4 C
Analysis Period (min)	auon		15	IC	JO LGVEI (JI OGIVICE		U
c Critical Lane Group			13					
o ontiour Larie Group								

Future Total (15 Year) PM Peak Hour

Whites / Kingston SW	Synchro 10 Repo
BA Group - TCS	FTPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp) sy

	\rightarrow	*	1	-	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	† 19		7	^	77	7			
Traffic Volume (vph)	1815	25	295	1000	620	85			
Future Volume (vph)	1815	25	295	1000	620	85			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.5	3.5	3.3	3.5	3.3	3.3			
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4			
Lane Util. Factor	0.95		1.00	0.95	0.97	1.00			
Frt	1.00		1.00	1.00	1.00	0.85			
Flt Protected	1.00		0.95	1.00	0.95	1.00			
Satd. Flow (prot)	3528		1694	3535	3351	1531			
Flt Permitted	1.00		0.05	1.00	0.95	1.00			
Satd. Flow (perm)	3528		92	3535	3351	1531			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95			
Adj. Flow (vph)	1911	26	311	1053	653	89			
RTOR Reduction (vph)	0	0	0	0	0	19			
Lane Group Flow (vph)	1937	0	311	1053	653	70			
Heavy Vehicles (%)	1%	0%	3%	1%	1%	2%			
Turn Type	NA		pm+pt	NA	Prot	Perm			
Protected Phases	2		1	6	8				
Permitted Phases			6			8			
Actuated Green, G (s)	74.9		100.8	100.8	26.6	26.6			
Effective Green, g (s)	75.9		101.8	101.8	27.6	27.6			
Actuated g/C Ratio	0.54		0.73	0.73	0.20	0.20			
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4			
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	1912		340	2570	660	301			
v/s Ratio Prot	c0.55		c0.16	0.30	c0.19				
v/s Ratio Perm			0.51			0.05			
v/c Ratio	1.01		0.91	0.41	0.99	0.23			
Uniform Delay, d1	32.0		48.5	7.4	56.1	47.3			
Progression Factor	1.00		1.00	1.00	1.00	1.00			
Incremental Delay, d2	23.8		28.1	0.5	32.0	0.4			
Delay (s)	55.9		76.6	7.9	88.0	47.7			
Level of Service	Е		Е	Α	F	D			
Approach Delay (s)	55.9			23.6	83.2				
Approach LOS	Е			С	F				
Intersection Summary									
HCM 2000 Control Delay			50.0	H	CM 2000	Level of Service	е	D	
HCM 2000 Volume to Capa	acity ratio		0.99						
Actuated Cycle Length (s)			140.0	Si	um of lost	t time (s)		12.6	
Intersection Capacity Utiliza	ation		97.2%	IC	U Level	of Service		F	
Analysis Period (min)			15						
c Critical Lane Group									

c Critical Lane Group

Whites / Kingston SW BA Group - TCS

	•	*	1	†	↓	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻሻ	77		^	^		
Traffic Volume (vph)	1660	700	0	1160	685	0	
Future Volume (vph)	1660	700	0	1160	685	0	
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
ane Width	3.3	3.3	3.5	3.5	3.5	3.5	
Total Lost time (s)	4.5	4.5	0.0	5.7	5.7	0.0	
ane Util. Factor	0.97	0.88		0.95	0.95		
Frpb, ped/bikes	1.00	1.00		1.00	1.00		
Flpb, ped/bikes	1.00	1.00		1.00	1.00		
Frt	1.00	0.85		1.00	1.00		
Flt Protected	0.95	1.00		1.00	1.00		
Satd. Flow (prot)	3385	2720		3570	3570		
Flt Permitted	0.95	1.00		1.00	1.00		
Satd. Flow (perm)	3385	2720		3570	3570		
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	
Adj. Flow (vph)	1824	769	0.91	1275	753	0.91	
RTOR Reduction (vph)	1024	63	0	0	755	0	
Lane Group Flow (vph)	1824	706	0	1275	753	0	
Confl. Peds. (#/hr)	1024	700	10	1213	100	10	
Heavy Vehicles (%)	0%	1%	0%	0%	0%	0%	
	Prot	Perm	U /0	NA	NA	U /0	
Turn Type	Prot 4	Perm		NA 2	NA 6		
Protected Phases Permitted Phases	4	4		2	б		
	F0 F	50.5		27.2	37.3		
Actuated Green, G (s)	50.5 51.5	51.5		37.3			
Effective Green, g (s)				38.3	38.3		
Actuated g/C Ratio	0.52	0.52		0.38	0.38		
Clearance Time (s)	5.5	5.5		6.7	6.7		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)	1743	1400		1367	1367		
v/s Ratio Prot	c0.54	0.00		c0.36	0.21		
v/s Ratio Perm		0.26		0.00			
v/c Ratio	1.05	0.50		0.93	0.55		
Uniform Delay, d1	24.2	15.9		29.6	24.1		
Progression Factor	1.00	1.00		1.00	1.00		
Incremental Delay, d2	34.9	0.3		12.8	1.6		
Delay (s)	59.1	16.2		42.4	25.7		
Level of Service	E	В		D	С		
Approach Delay (s)	46.4			42.4	25.7		
Approach LOS	D			D	С		
ntersection Summary							
HCM 2000 Control Delay			41.9	Н	CM 2000	Level of Service	D
HCM 2000 Volume to Capa	acity ratio		1.00				
Actuated Cycle Length (s)	,		100.0	S	um of lost	time (s)	10.2
Intersection Capacity Utiliza	ation		94.6%				F
Analysis Period (min)			15				
c Critical Lane Group							

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTPM (Without BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 9: Car Dealer Site Access/Delta Boulevard & Kingston Road

Future Total (15 Year) PM Peak Hour

	•	→	*	•	—	1	4	1	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	^	7	ሻ	1>		ሻ	ĵ.	
Traffic Volume (vph)	145	1600	45	70	1455	95	165	20	130	100	10	150
Future Volume (vph)	145	1600	45	70	1455	95	165	20	130	100	10	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.7	5.7	5.6	5.6		5.6	5.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.98		1.00	0.97	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3535	1541	1785	3535	1517	1761	1604		1773	1569	
Flt Permitted	0.09	1.00	1.00	0.08	1.00	1.00	0.56	1.00		0.59	1.00	
Satd. Flow (perm)	171	3535	1541	153	3535	1517	1043	1604		1092	1569	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	148	1633	46	71	1485	97	168	20	133	102	10	153
RTOR Reduction (vph)	0	0	18	0	0	27	0	106	0	0	122	0
Lane Group Flow (vph)	148	1633	28	71	1485	70	168	47	0	102	41	0
Confl. Peds. (#/hr)	10		5	5		10	10		5	5		10
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases	2		2	6		6	8			4		
Actuated Green, G (s)	75.1	66.3	66.3	68.6	62.8	62.8	21.4	21.4		21.4	21.4	
Effective Green, g (s)	76.1	67.3	67.3	70.6	63.8	63.8	22.4	22.4		22.4	22.4	
Actuated g/C Ratio	0.69	0.61	0.61	0.64	0.58	0.58	0.20	0.20		0.20	0.20	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.7	6.7	6.6	6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	272	2162	942	199	2050	879	212	326		222	319	
v/s Ratio Prot	c0.05	c0.46		0.02	0.42			0.03			0.03	
v/s Ratio Perm	0.32		0.02	0.21		0.05	c0.16			0.09		
v/c Ratio	0.54	0.76	0.03	0.36	0.72	0.08	0.79	0.14		0.46	0.13	
Uniform Delay, d1	14.0	15.4	8.4	12.6	16.7	10.2	41.6	35.9		38.5	35.8	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.2	2.5	0.1	1.1	2.3	0.2	18.1	0.2		1.5	0.2	
Delay (s)	16.2	17.9	8.5	13.7	19.0	10.3	59.7	36.1		40.0	36.0	
Level of Service	В	В	Α	В	В	В	Е	D		D	D	
Approach Delay (s)		17.5			18.3			48.5			37.5	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			21.6	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.76									
Actuated Cycle Length (s)			110.0	Sum of lost time (s)				13.5				
Intersection Capacity Utilizat	tion		87.1%	ICU Level of Service				Е				
Analysis Period (min)			15									

Intersection Summary				
HCM 2000 Control Delay	21.6	HCM 2000 Level of Service	С	
HCM 2000 Volume to Capacity ratio	0.76			
Actuated Cycle Length (s)	110.0	Sum of lost time (s)	13.5	
Intersection Capacity Utilization	87.1%	ICU Level of Service	E	
Analysis Period (min)	15			
a Critical Lana Craus				

c Critical Lane Group

Future	Total	(5	Year)	AM	Peak	Hour

	-	*	1	—	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	^	7	ሻ	^	W				
Traffic Volume (veh/h)	755	0	0	990	0	0			
Future Volume (Veh/h)	755	0	0	990	0	0			
Sign Control	Free			Free	Stop				
Grade	0%			0%	0%				
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87			
Hourly flow rate (vph)	868	0	0	1138	0	0			
Pedestrians					5				
Lane Width (m)					3.3				
Walking Speed (m/s)					1.2				
Percent Blockage					0				
Right turn flare (veh)									
Median type	None			None					
Median storage veh)									
Upstream signal (m)				153					
pX, platoon unblocked					0.79				
vC, conflicting volume			873		1442	439			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol			873		1033	439			
tC, single (s)			4.1		7.1	6.9			
tC, 2 stage (s)									
tF (s)			2.2		3.6	3.3			
p0 queue free %			100		100	100			
cM capacity (veh/h)			778		165	569			
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1		
Volume Total	434	434	0	0	569	569	0		
Volume Left	0	0	0	0	0	0	0		
Volume Right	0	0	0	0	0	0	0		
cSH	1700	1700	1700	1700	1700	1700	1700		
Volume to Capacity	0.26	0.26	0.00	0.00	0.33	0.33	0.00		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Lane LOS							Α		
Approach Delay (s)	0.0			0.0			0.0		
Approach LOS							Α		
Intersection Summary									
Average Delay			0.0						
Intersection Capacity Utiliz	ation		30.7%	IC	CU Level	of Service		Α	
Analysis Period (min)			15						

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

Future Total (5 Year) AM Peak Hour

	۶	→	7	1	←	4	1	†	1	-	 	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		ሻ	† 1>		ሻ	1>		*	1>	
Traffic Volume (vph)	30	655	10	15	910	65	0	0	5	95	5	120
Future Volume (vph)	30	655	10	15	910	65	0	0	5	95	5	120
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.0	5.6		5.0	5.6			5.6		5.6	5.6	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99			0.85		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)	1694	3427		1745	3428			1597		1694	1609	
Flt Permitted	0.95	1.00		0.95	1.00			1.00		0.75	1.00	
Satd. Flow (perm)	1694	3427		1745	3428			1597		1344	1609	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adi. Flow (vph)	34	744	11	17	1034	74	0.00	0.00	6	108	6	136
RTOR Reduction (vph)	0	1	0	0	4	0	0	5	0	0	116	0
Lane Group Flow (vph)	34	754	0	17	1104	0	0	1	0	108	26	0
Confl. Peds. (#/hr)	5	104	U	17	1104	5	U		U	100	20	U
Heavy Vehicles (%)	3%	4%	0%	0%	3%	1%	0%	0%	0%	3%	0%	0%
Bus Blockages (#/hr)	0	0	11	0	0	11	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6		r ciiii	8		I CIIII	4	
Permitted Phases	<u> </u>				0		8	U		4		
Actuated Green, G (s)	5.2	64.5		2.9	62.2		U	13.4		13.4	13.4	
Effective Green, g (s)	6.2	65.5		3.9	63.2			14.4		14.4	14.4	
Actuated g/C Ratio	0.06	0.66		0.04	0.63			0.14		0.14	0.14	
Clearance Time (s)	6.0	6.6		6.0	6.6			6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)	105	2244		68	2166			229		193	231	
v/s Ratio Prot	c0.02	0.22		0.01	c0.32			0.00		193	0.02	
v/s Ratio Perm	CU.UZ	0.22		0.01	00.32			0.00		c0.08	0.02	
v/c Ratio	0.32	0.34		0.25	0.51			0.00		0.56	0.11	
Uniform Delay, d1	44.9	7.6		46.6	10.0			36.7		39.8	37.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
	1.00	0.4		1.00	0.9			0.0		3.5	0.2	
Incremental Delay, d2	46.7	8.0		48.6	10.9			36.7		43.3	37.4	
Delay (s) Level of Service	40.7 D	Α.0		40.0 D	10.9			30.7 D		43.3 D	37.4 D	
	U	9.7		D				36.7		U	40.0	
Approach Delay (s)		9.7 A			11.4 B			30.7 D			40.0 D	
Approach LOS		А			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			14.2	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.50									
Actuated Cycle Length (s)			100.0		um of lost				16.2			
Intersection Capacity Utiliz	ation		48.5%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

c Critical Lane Group

Traffic Volume (vph) 95 395 660 295 685 360 230 465 440 150 1300 125 volume (vph) 95 395 660 295 685 360 230 465 440 150 1300 125 deal Flow (vph) 1900 1900 1900 1900 1900 1900 1900 190			-	*	1	_	_	1	T		-	¥	*
Traffic Volume (vph) 95 395 660 295 885 360 230 465 440 150 1300 125 deal Flow (vphp) 95 395 660 295 685 360 230 465 440 150 1300 125 deal Flow (vphp) 1900 1900 1900 1900 1900 1900 1900 190	Movement				WBL			NBL					
Future Volume (vph) 95 395 660 295 685 360 230 465 440 150 1300 125 deal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	Lane Configurations												7
	Traffic Volume (vph)												
.ane Width													
Total Lost time (s) 2.0 6.0 3.0 2.0 6.0 3.0 2.0 6.1 2.0 2.0 6.1 6.1 ane Ulii. Factor 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.91 1.00 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.91 1.00 0.93 1.00 1.00 0.95 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Ideal Flow (vphpl)												
Came Util Factor													
Friph, pedfbikes 1.00 1.00 0.99 1.00 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.98 1.00 1.00 0.85 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Tiph, ped/bikes													
Fit Protected	1 1												
Tit Protected 0.95 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.05 1.00 1.00 0.01 1.00 0.45 1.00 1.00 0.05 1.00 1.00 0.05 1.00 1.00													
Said. Flow (prot) 1678 3400 1510 1694 3466 1505 1818 5079 1463 1721 5079 1486 Filt Permitted 0.95 1.00 1.00 0.95 1.00 1.00 0.13 1.00 1.00 0.45 1.00 1.00 1.03 Said. Flow (perm) 1678 3400 1510 1694 3466 1505 238 5079 1463 822 5079 1486 Peak-hour factor, PHF 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91	Frt												
Tell Permittled													
Satd. Flow (perm)													
Peak-hour factor, PHF													
Adj. Flow (vph)													
RTOR Reduction (vph) 0 0 0 0 0 0 0 0 0 88 0 0 88 and Group Flow (vph) 104 434 725 324 753 396 253 511 396 165 1429 49 49 10 10 15 15 15 10 15 15 15 10 16 15 15 10 16 15 15 10 16 15 15 10 16 16 20 16 16 20 16 16 20 16 16 20 16 16 20 16 16 20 16 16 20 16 20 16 16 20	Peak-hour factor, PHF	0.91	0.91	0.91			0.91		0.91	0.91	0.91		
Anne Group Flow (vph) 104 434 725 324 753 396 253 511 396 165 1429 49 20nfl. Peds. (#/hr) 15 5 5 5 15 10 15 10 15 15 10 20nfl. Peds. (#/hr) 15 5 5 5 15 10 10 15 15 15 10 20nfl. Peds. (#/hr) 15 5 5 5 15 10 10 15 15 15 10 20nfl. Peds. (#/hr) 15 5 5 5 15 10 10 15 15 15 10 20nfl. Peds. (#/hr) 10 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 4 20nfl. Peds. (#/hr) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Adj. Flow (vph)												
Confi. Peds. (#/hr)	RTOR Reduction (vph)												
Heavy Vehicles (%)	Lane Group Flow (vph)	104	434	725	324	753	396	253	511	396	165	1429	
Sus Blockages (#/hr)	Confl. Peds. (#/hr)												
Turn Type													
Protected Phases 5 2 1 6 7 8 8 1 7 7 4 Permitted Phases Free Free 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Bus Blockages (#/hr)			0						2			
Permitted Phases	Turn Type			Free	Prot		Free				pm+pt		Perm
Actuated Green, G (s) 13.3 38.4 140.0 27.6 52.7 140.0 56.9 44.9 72.5 48.9 39.9 39.9 39.9 fffective Green, g (s) 14.3 39.4 140.0 28.6 53.7 140.0 57.9 45.9 77.5 50.9 40.9 40.9 40.9 Actuated g/C Ratio 0.10 0.28 1.00 0.20 0.38 1.00 0.41 0.33 0.53 0.36 0.29 0.29 Actuated g/C Ratio 0.10 0.28 1.00 0.20 0.38 1.00 0.41 0.33 0.53 0.36 0.29 0.29 Actuated g/C Ratio 0.10 0.28 1.00 0.20 0.38 1.00 0.41 0.33 0.53 0.36 0.29 0.29 Actuated g/C Ratio 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	Protected Phases	5	2		1	6			8			4	
Effective Green, g (s)	Permitted Phases												
Actuated g/C Ratio 0.10 0.28 1.00 0.20 0.38 1.00 0.41 0.33 0.53 0.36 0.29 0.29 Clearance Time (s) 3.0 7.0 3.0 7.0 3.0 7.0 3.0 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	Actuated Green, G (s)												
Clearance Time (s) 3.0 7.0 3.0 7.0 3.0 7.1 3.0 3.0 7.1 7.1													
Vehicle Extension (s) 3.0 2.0 2.0				1.00			1.00						
Lane Grp Cap (vph) 171 956 1510 346 1329 1505 267 1665 778 363 1483 434 434 438 Ratio Prot 0.06 0.13 c0.19 c0.22 c0.10 0.10 0.10 0.03 c0.28 138 Ratio Prot 0.06 0.13 c0.19 c0.22 c0.10 0.10 0.10 0.03 c0.28 138 Ratio Prot 0.06 0.11 0.45 0.48 0.48 0.94 0.57 0.26 0.29 0.17 0.13 0.03 c0.28 136 Ratio Prot 0.06 0.11 0.06 0.06 0.11 0.06 0.06 0.11 0.06 0.06													
\(\text{Vis Ratio Prot} \) 0.06 \) 0.13 \\ 0.19 \\ 0.022 \\ \text{C0.10} \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.03 \\ \text{c0.28} \\ \text{Vis Ratio Perm} \\ 0.48 \\ 0.26 \\ 0.29 \\ 0.17 \\ 0.13 \\ 0.03 \\ \text{Vis Ratio} \\ 0.61 \\ 0.45 \\ 0.48 \\ 0.94 \\ 0.57 \\ 0.26 \\ 0.95 \\ 0.31 \\ 0.51 \\ 0.45 \\ 0.96 \\ 0.11 \\ \text{Difform Delay, d1} \\ 60.2 \\ 41.4 \\ 0.0 \\ 54.8 \\ 34.0 \\ 0.0 \\ 30.1 \\ 35.2 \\ 21.0 \\ 31.4 \\ 48.8 \\ 36.3 \\ \text{Progression Factor} \\ 1.13 \\ 0.85 \\ 1.00	Vehicle Extension (s)		3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
No.	Lane Grp Cap (vph)			1510			1505						434
//c Ratio 0.61 0.45 0.48 0.94 0.57 0.26 0.95 0.31 0.51 0.45 0.96 0.11 //c Ratio 0.61 0.45 0.48 0.94 0.57 0.26 0.95 0.31 0.51 0.45 0.96 0.11 //c Progression Factor 1.13 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	v/s Ratio Prot	0.06	0.13		c0.19	c0.22		c0.10	0.10	0.10	0.03	c0.28	
Jinform Delay, d1	v/s Ratio Perm			0.48			0.26	0.29		0.17	0.13		0.03
Progression Factor 1.13 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	v/c Ratio												
National Delay, d2	Uniform Delay, d1												
Delay (s) 72.4 36.6 0.8 86.9 35.7 0.4 70.6 35.6 21.5 32.3 65.0 36.8 Level of Service													
Level of Service	Incremental Delay, d2												
Approach Delay (s)	Delay (s)												
Approach LOS	Level of Service	Е		Α	F		Α	Е		С	С		D
HCM 2000 Control Delay	Approach Delay (s)												
HCM 2000 Control Delay	Approach LOS		В			D			D			Е	
HCM 2000 Volume to Capacity ratio 0.83 Actuated Cycle Length (s) 140.0 Sum of lost time (s) 16.1 ntersection Capacity Utilization 106.7% ICU Level of Service G	Intersection Summary												
Actuated Cycle Length (s) 140.0 Sum of lost time (s) 16.1 ntersection Capacity Utilization 106.7% ICU Level of Service G	HCM 2000 Control Delay			40.1	HCM 2000 Level of Service					D			
ntersection Capacity Utilization 106.7% ICU Level of Service G		city ratio			3								
ntersection Capacity Utilization 106.7% ICU Level of Service G	Actuated Cycle Length (s)			140.0	0 Sum of lost time (s)					16.1			
Analysis Period (min) 15		ition		106.7%						G			
	Analysis Period (min)			15									

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

Future Total (5 Year) AM Peak Hour

	*	-	•	•	—	4	1	†	1	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ት Ъ		ሻ	↑ 1>		*	1₃		ሻ	1	
Traffic Volume (vph)	40	650	65	155	855	30	100	0	375	125	0	35
Future Volume (vph)	40	650	65	155	855	30	100	0	375	125	0	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.0	5.3		5.0	5.3		5.7	5.7		5.7	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.99		1.00	0.99		1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1678	3398		1631	3477		1454	1557		1686	1521	
Flt Permitted	0.95	1.00		0.95	1.00		0.73	1.00		0.25	1.00	
Satd. Flow (perm)	1678	3398		1631	3477		1118	1557		436	1521	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	47	765	76	182	1006	35	118	0.00	441	147	0.00	41
RTOR Reduction (vph)	0	5	0	0	1	0	0	292	0	0	27	0
Lane Group Flow (vph)	47	836	0	182	1040	0	118	149	0	147	14	0
Confl. Peds. (#/hr)	5	000	v	102	10-10	5	110	140	10	10	1.1	U
Heavy Vehicles (%)	4%	4%	0%	7%	2%	3%	20%	0%	0%	3%	0%	5%
Bus Blockages (#/hr)	0	0	0	0	0	13	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA	- 10	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6		1 GIIII	8		I GIIII	4	
Permitted Phases	,				U		8			4		
Actuated Green, G (s)	4.8	53.8		20.9	69.9		46.3	46.3		46.3	46.3	
Effective Green, g (s)	5.8	54.8		21.9	70.9		47.3	47.3		47.3	47.3	
Actuated g/C Ratio	0.04	0.39		0.16	0.51		0.34	0.34		0.34	0.34	
Clearance Time (s)	6.0	6.3		6.0	6.3		6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	69	1330		255	1760		377	526		147	513	
v/s Ratio Prot	0.03	c0.25		c0.11	0.30		311	0.10		147	0.01	
v/s Ratio Perm	0.03	00.25		CU.11	0.30		0.11	0.10		c0.34	0.01	
v/c Ratio	0.68	0.63		0.71	0.59		0.11	0.28		1.00	0.03	
Uniform Delay, d1	66.2	34.4		0.71 56.1	24.3		34.3	33.9		46.4	31.0	
	1.00	1.00		1.20	0.70		1.00	1.00		1.00	1.00	
Progression Factor												
Incremental Delay, d2	24.2 90.4	2.3 36.6		7.6	1.2 18.3		0.5	0.3		74.2	0.0 31.0	
Delay (s)	90.4 F	36.6 D		75.1 E	18.3 B		34.8 C	34.2 C		120.6 F	31.0 C	
Level of Service	r	39.5		E	26.8		C			F	101.0	
Approach Delay (s)					20.8 C			34.4 C			101.0 F	
Approach LOS		D			C			C			F	
Intersection Summary												
HCM 2000 Control Delay			37.1	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capa	city ratio		0.78									
Actuated Cycle Length (s)			140.0		um of lost				16.0			
Intersection Capacity Utiliza	tion		78.5%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

П	CIVI	Sigi	lalizeu	merse	CHOIL	Capacity	Analysis)
6.	Wh	ites	Road	& Ravly	Stre	et		

Carne Configurations		1	•	†	1	-	↓		
Traffic Volume (vph) 95 315 615 80 485 520 **uture Volume (vph) 95 315 615 80 485 520 **deal Flow (vphpl) 1900 1900 1900 1900 1900 1900 **ane Width 3.3 3.3 3.5 3.3 3.3 3.5 520 **Cotal Lost time (s) 5.4 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	Movement	WBL	WBR	NBT	NBR	SBL	SBT		
raffic Volume (vph) 95 315 615 80 485 520 uture Volume (vph) 95 315 615 80 485 520 leal Flow (vphpl) 1900 1900 1900 1900 1900 1900 ane Width 3.3 3.3 3.5 3.3 3.3 3.5 3.3 3.3 3.5 lotal Lost time (s) 5.4 6.0 6.0 6.0 6.0 6.0 6.0 6.0 ane Utili Factor 1.00 1.00 0.95 1.00 0.91 0.91 prb, ped/bikes 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 ph, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		*	7	44	#	*	414		
	raffic Volume (vph)				80				
ane Width 3.3 3.3 3.5 3.3 3.5 3.3 3.5 cotal Lost time (s) 5.4 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 and Util. Factor 1.00 1.00 1.00 0.95 1.00 0.91 0.91 cotal cota fine, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	uture Volume (vph)	95	315	615	80	485	520		
Total Lost time (s)	deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
ane Util. Factor 1.00 1.00 0.95 1.00 0.91 0.91 ripb, ped/bikes 1.00 1.00 1.00 0.98 1.00 1.00 1.00 lipb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	ane Width	3.3	3.3	3.5	3.3	3.3	3.5		
Fipb, ped/bikes	Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0		
Tipb, ped/bikes	Lane Util. Factor	1.00	1.00	0.95	1.00	0.91	0.91		
Continue	Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00		
Fit Protected	Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Satd. Flow (prot) 1662 1516 3500 1476 1542 3306 Fit Permitted 0.95 1.00 1.00 1.00 0.95 0.99 Satd. Flow (perm) 1662 1516 3500 1476 1542 3306 Peak-hour factor, PHF 0.91 0.91 0.91 0.91 0.91 0.91 0.91 Adj. Flow (vph) 104 346 676 88 533 571 ATTOR Reduction (vph) 0 37 0 51 0 0 Lane Group Flow (vph) 104 309 676 37 357 747 Confl. Peds. (#/hr) 5 5 5 Heavy Vehicles (%) 5% 3% 2% 4% 3% 2% Permitted Phases 2 5 2 2 Permitted Phases 8 8 5 Actuated Green, G (s) 12.4 62.3 27.3 27.3 49.9 49.9 Effective Green, g (s) 13.4 64.3 28.3 50.9 50.9 Actuated g/C Ratio 0.12 0.58 0.26 0.26 0.46 0.46 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 7.0 Jehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grop Flow (ph) 202 968 900 379 713 1529 Jifk Ratio Prot 0.15 0.19 0.22 Jifk Ratio Port 0.50 0.50 0.49 Jifform Delay, d1 45.3 11.7 37.6 31.1 20.7 20.5 Pergression Factor 1.00 1.00 1.00 0.91 0.91 Level of Service D B D C C B Approach LOS C D Service B Lettlested Green (s) 26.7 HCM 2000 Level of Service C C Hand 2000 Volume to Capacity ratio Charlest Cerevice B Lane Refrescation Capacity Utilization 58.6% ICU Level of Service B Lane Lettlestoric C C C B Lane Capacity Utilization 58.6% ICU Level of Service B Lane Lettlestoric C C C C C C C C C C C C C C C C C C C	Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Continue	Flt Protected	0.95	1.00	1.00	1.00	0.95	0.99		
Satd. Flow (perm) 1662 1516 3500 1476 1542 3306	Satd. Flow (prot)	1662	1516	3500	1476	1542	3306		
Deak-hour factor, PHF	Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.99		
Adj. Flow (vph)	Satd. Flow (perm)	1662	1516	3500	1476	1542	3306		
ATOR Reduction (vph) 0 37 0 51 0 0 Lane Group Flow (vph) 104 309 676 37 357 747 Coordi. Peds. (#/hr) 5 5 5 Heavy Vehicles (%) 5% 3% 2% 4% 3% 2% Turn Type Perm pm+ov NA Perm Split NA Permitted Phases 2 5 2 2 Permitted Phases 8 8 8 5 Actuated Green, G (s) 12.4 62.3 27.3 27.3 49.9 49.9 Effective Green, g (s) 13.4 64.3 28.3 28.3 50.9 50.9 Actuated g/C Ratio 0.12 0.58 0.26 0.26 0.46 0.46 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 7.0 Arabicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 202 968 900 379 713 1529 Als Ratio Prot 0.15 c0.19 c0.23 0.23 Als Ratio Prot 0.15 c0.19 c0.23 0.23 Als Ratio Prot 0.51 0.32 0.75 0.10 0.50 0.49 Andrough Juricom Delay, d1 45.3 11.7 37.6 31.1 20.7 20.5 Progression Factor 1.00 1.00 1.00 0.91 0.91 Arabicle Street D B D C C B Approach LoS C D C D C Approach LoS C D D C Approach LoS C D D C Approach LoS C D D C Analysis Period (min) 15 Analysis Period (min) 15	Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91		
Anne Group Flow (vph) 104 309 676 37 357 747	Adj. Flow (vph)	104	346	676	88	533	571		
Confi. Peds. (#/hr)	RTOR Reduction (vph)	0	37	0	51	0	0		
Heavy Vehicles (%)	Lane Group Flow (vph)	104	309	676	37	357	747		
Turn Type	Confl. Peds. (#/hr)				5	5			
Protected Phases	Heavy Vehicles (%)	5%	3%	2%	4%	3%	2%		
Permitted Phases 8 8 5 Actuated Green, G (s) 12.4 62.3 27.3 27.3 49.9 49.9 Effective Green, g (s) 13.4 64.3 28.3 50.9 50.9 Actuated g/C Ratio 0.12 0.58 0.26 0.26 0.46 0.46 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 7.0 Perhicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 Alendare Transport Control Contr	Turn Type	Perm	pm+ov	NA	Perm	Split	NA		
Actuated Green, G (s) 12.4 62.3 27.3 27.3 49.9 49.9 Effective Green, g (s) 13.4 64.3 28.3 28.3 50.9 50.9 Actuated g/C Ratio 0.12 0.58 0.26 0.26 0.46 0.46 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 7.0 /ehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 .ane Grp Cap (vph) 202 968 900 379 713 1529 //s Ratio Prot 0.15 c.0.19 c.0.23 0.23 //s Ratio Perm 0.0.66 0.06 0.02 //c Ratio 0.51 0.32 0.75 0.10 0.50 0.49 //norm Delay, d1 45.3 11.7 37.6 31.1 20.7 20.5 Progression Factor 1.00 1.00 1.00 1.00 0.91 0.91 Collay (s) 47.5 11.9 41.2 31.2 21.3 19.7 Level of Service D B B D C C B Approach Delay (s) 20.1 40.0 20.2 Approach Delay (s) 20.1 40.0 20.2 Approach LOS C D C Intersection Summary Intersection Capacity Italization 58.6% ICU Level of Service B Analysis Period (min) 15	Protected Phases		2	5		2	2		
Effective Green, g (s) 13.4 64.3 28.3 28.3 50.9 50.9 Actuated g/C Ratio 0.12 0.58 0.26 0.26 0.46 0.46 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	Permitted Phases	8	8		5				
Actuated g/C Ratio 0.12 0.58 0.26 0.26 0.46 0.46 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 6.4 7.0 3.0 3.0 3.0 3.0 3.0 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 6.4 7.0 7.0 7.0 7.0 7.0 Clearance Time (s) 6.4 7.0 1.0 7.0 7.0 7.0 7.0 Clearance Grp Cap (vph) 202 968 900 379 713 1529 Clearance Grp Cap (vph) 202 968 900 379 713 1529 Clearance Grp Cap (vph) 202 968 900 379 713 1529 Clearance Grp Cap (vph) 202 968 900 379 713 1529 Clearance Grp Cap (vph) 202 968 900 379 713 1529 Clearance Grp Cap (vph) 202 0.23 0.23 Clearance Grp Cap (vph) 202 0.2	Actuated Green, G (s)	12.4	62.3	27.3	27.3	49.9	49.9		
Clearance Time (s) 6.4 7.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 1.1 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Effective Green, g (s)	13.4	64.3	28.3	28.3	50.9	50.9		
//ehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 .ane Grp Cap (vph) 202 968 900 379 713 1529	Actuated g/C Ratio	0.12	0.58	0.26	0.26	0.46	0.46		
Anne Grp Cap (vph) 202 968 900 379 713 1529 v/s Ratio Prot 0.15 c0.19 c0.23 0.23 v/s Ratio Perm c0.06 0.06 v/s Ratio Perm c0.06 0.06 v/s Ratio Perm c0.06 0.06 Jniform Delay, d1 45.3 11.7 37.6 31.1 20.7 20.5 regression Factor 1.00 1.00 1.00 1.00 0.91 0.91 ncremental Delay, d2 2.2 0.2 3.6 0.1 2.4 1.1 Delay (s) 47.5 11.9 41.2 31.2 21.3 19.7 evel of Service D B D C C B Approach Delay (s) 20.1 40.0 20.2 Approach LOS C D C ntersection Summary 1-CM 2000 Control Delay 26.7 HCM 2000 Level of Service C Actuated Cycle Length (s) 110.0 58.6% ICU Level of Service B Analysis Period (min) 15	Clearance Time (s)								
//s Ratio Prot 0.15 c0.19 c0.23 0.23 //s Ratio Perm c0.06 0.06 0.02 //s Ratio Perm c0.06 0.06 0.02 //c Ratio 0.51 0.32 0.75 0.10 0.50 0.49 //inform Delay, d1 45.3 11.7 37.6 31.1 20.7 20.5 //cregression Factor 1.00 1.00 1.00 1.00 0.91 0.91 //creatio 0.51 0.32 0.75 0.10 0.50 0.49 //creatio 0.51 0.32 0.75 0.10 0.50 0.49 //creatio 0.51 0.52 0.10 0.50 0.50 0.49 //creatio 0.51 0.52 0.10 0.50 0.50 0.50 0.50 //creatio 0.52 0.50 0.50 0.50 0.50 0.50 0.50 0.50	Vehicle Extension (s)	3.0	3.0	3.0					
\(\text{\text{v/s}} \) Ratio \(\text{\text{Perm}} \) \(\text{\text{c0.06}} \) \(0.06 \) \(0.05 \) \(0.02 \) \(\text{\text{v/s}} \) Ratio \(0.51 \) \(0.32 \) \(0.75 \) \(0.10 \) \(0.50 \) \(0.49 \) \(\text{\text{Jifform Delay, d1}} \) \(45.3 \) \(11.7 \) \(37.6 \) \(31.1 \) \(20.7 \) \(20.5 \) \(\text{\text{Progression Factor}} \) \(1.00 \) \(1.00 \) \(1.00 \) \(0.91 \)	Lane Grp Cap (vph)	202	968	900	379	713	1529		
Inform Delay, d1	v/s Ratio Prot		0.15	c0.19		c0.23	0.23		
Uniform Delay, d1	v/s Ratio Perm		0.06						
Progression Factor 1.00 1.00 1.00 1.00 0.91 0.91 Incremental Delay, d2 2.2 0.2 3.6 0.1 2.4 1.1 Delay (s) 47.5 11.9 41.2 31.2 21.3 19.7 Level of Service D B D C C B Approach Delay (s) 20.1 40.0 20.2 Approach LOS C D C Intersection Summary I-CM 2000 Control Delay 26.7 HCM 2000 Level of Service C I-CM 2000 Volume to Capacity ratio 0.59 Actuated Cycle Length (s) 110.0 Sum of lost time (s) 18.4 Intersection Capacity Utilization 58.6% ICU Level of Service B Analysis Period (min) 15	v/c Ratio	0.51	0.32	0.75	0.10	0.50	0.49		
Analysis Period (min) 15 11.9 12.4 1.1	Uniform Delay, d1	45.3	11.7	37.6		20.7	20.5		
Delay (s)	Progression Factor								
Level of Service	Incremental Delay, d2								
Approach Delay (s) 20.1 40.0 20.2 Approach LOS C D C	Delay (s)								
Approach LOS	Level of Service		В		С	С			
Intersection Summary 1-CM 2000 Control Delay 26.7 HCM 2000 Level of Service C HCM 2000 Volume to Capacity ratio 0.59 Cutaled Cycle Length (s) 110.0 Sum of lost time (s) 18.4 Intersection Capacity Utilization 58.6% ICU Level of Service B Analysis Period (min) 15	Approach Delay (s)								
HCM 2000 Control Delay 26.7 HCM 2000 Level of Service C 4CM 2000 Volume to Capacity ratio 0.59	Approach LOS	С		D			С		
HCM 2000 Control Delay 26.7 HCM 2000 Level of Service C 4CM 2000 Volume to Capacity ratio 0.59	ntersection Summary								
HCM 2000 Volume to Capacity ratio 0.59 Actuated Cycle Length (s) 110.0 Sum of lost time (s) 18.4 Intersection Capacity Utilization 58.6% ICU Level of Service B Analysis Period (min) 15	HCM 2000 Control Delay			26.7	Н	CM 2000	Level of Service	e	С
Actuated Cycle Length (s) 110.0 Sum of lost time (s) 18.4 Intersection Capacity Utilization 58.6% ICU Level of Service B Analysis Period (min) 15		acity ratio							
ntersection Capacity Utilization 58.6% ICU Level of Service B Analysis Period (min) 15	Actuated Cycle Length (s)	.,			S	um of lost	time (s)		18.4
		ation							
Critical Lane Group	Analysis Period (min)			15					
	c Critical Lane Group								

Future Total (5 Year) AM Peak Hour

Whites / Kingston SW	Synchro 10 Report
RA Group - TCS	FTAM (With RRT, With Improvements, Local RKDEV, 4-I and Ramp) syn

	-	•	•	—	1	<i>></i>			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	↑ 13-		ሻ	^	1/1	7			
Traffic Volume (vph)	905	10	350	645	600	90			
Future Volume (vph)	905	10	350	645	600	90			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.5	3.5	3.3	3.5	3.3	3.3			
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4			
Lane Util. Factor	0.95		1.00	0.95	0.97	1.00			
Frt	1.00		1.00	1.00	1.00	0.85			
Flt Protected	1.00		0.95	1.00	0.95	1.00			
Satd. Flow (prot)	3420		1711	3500	3286	1531			
Flt Permitted	1.00		0.95	1.00	0.95	1.00			
Satd. Flow (perm)	3420		1711	3500	3286	1531			
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87			
Adj. Flow (vph)	1040	11	402	741	690	103			
RTOR Reduction (vph)	1	0	0	0	0	27			
Lane Group Flow (vph)	1050	0	402	741	690	76			
Heavy Vehicles (%)	4%	25%	2%	2%	3%	2%			
Turn Type	NA		Prot	NA	Prot	Perm			
Protected Phases	2		1	6	8				
Permitted Phases						8			
Actuated Green, G (s)	45.6		28.3	76.9	30.5	30.5			
Effective Green, g (s)	46.6		29.3	77.9	31.5	31.5			
Actuated g/C Ratio	0.39		0.24	0.65	0.26	0.26			
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4			
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	1328		417	2272	862	401			
v/s Ratio Prot	c0.31		c0.24	0.21	c0.21				
v/s Ratio Perm						0.05			
v/c Ratio	0.79		0.96	0.33	0.80	0.19			
Uniform Delay, d1	32.4		44.8	9.4	41.3	34.4			
Progression Factor	1.00		1.00	1.00	1.00	1.00			
Incremental Delay, d2	4.9		34.5	0.4	5.4	0.2			
Delay (s)	37.3		79.4	9.8	46.7	34.6			
Level of Service	D		Е	A	D	С			
Approach Delay (s)	37.3			34.2	45.1				
Approach LOS	D			С	D				
Intersection Summary									
HCM 2000 Control Delay			38.2	HCM 2000 Level of Service			ce	D	
HCM 2000 Volume to Capacity ratio			0.84					-	
Actuated Cycle Length (s)			120.0	Sum of lost time (s)				12.6	
Intersection Capacity Utilization			74.0%			of Service		D	
Analysis Period (min)			15						
a Critical Lana Craus									

Configurations T		•	*	1	1	↓	4		
Tick Volume (vph) 700 370 0 930 635 0	Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Tick Volume (vph)	ane Configurations	77	77		**	44			
Flow (vphpl)	affic Volume (vph)			0			0		
Width	ture Volume (vph)	700	370	0	930	635	0		
With 3.3 3.3 3.5 3.5 3.5 3.5 3.5 1	eal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Substitute	e Width	3.3	3.3	3.5	3.5	3.5	3.5		
ped/bikes	al Lost time (s)	4.5	4.5		5.7	5.7			
ped/bikes	e Util. Factor	0.97	0.88		0.95	0.95			
1.00	b, ped/bikes	1.00	1.00		1.00	1.00			
Protected 0.95	ped/bikes	1.00	1.00		1.00	1.00			
Flow (prot) 3319 2668 3570 3570	.,	1.00	0.85		1.00	1.00			
Permitted 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Protected	0.95	1.00		1.00	1.00			
Permitted 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.Flow (perm) 3319 2668 3570 3570 3570 3570 3570 3570 3570 3570	d. Flow (prot)	3319	2668		3570	3570			
Flow (perm) 3319 2668 3570	Permitted	0.95	1.00		1.00	1.00			
k-hour factor, PHF 0.95 0.98 <td>d. Flow (perm)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	d. Flow (perm)								
Flow (vph) 737 389 0 979 668 0 GR Reduction (vph) 0 253 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				0.95			0.95		
R Reduction (vph) 0 253 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
e Group Flow (vph) 737 136 0 979 668 0 fl. Peds. (#hr) 5 5 5 very Vehicles (%) 2% 3% 0% 0% 0% 0% very Vehicles (%) 2% 3% 0% 0% 0% 0% very Vehicles (%) 2% 3% 0% 0% 0% 0% very Vehicles (%) 2% 3% 0% 0% 0% 0% very Vehicles (%) 2% 3% 0% 0% 0% 0% very Vehicles (%) 2% 3% 0% 0% 0% 0% very Vehicles (%) 2% 3% 0% 0% 0% 0% very Vehicles (%) 2% 3% 0% 0% 0% 0% very Vehicles (%) 2% 0% 0% 0% very Vehicles (%) 2% 0% 0% 0% very Vehicles (%) 3% 0% 0% 0% 0% very Vehicles (%) 0% 0% 0% very Vehicles (%) 0% 0% 0% very Vehicles (%) 0% very Vehicles (%) 0% 0% 0% very Vehicles (%) 0% very Very Very Very Very Very Very Very V									
fil. Peds. (#/hrr)									
Type		101	100	-	010	000	-		
Type		2%	3%	-	0%	0%	-		
Acted Phases 4	•			070			0,0		
A A A A A A A A A A			I CIIII						
ated Green, G (s) 31.1 31.1 66.7 66.7 c1.7 c1.7 c1.7 c1.7 c1.7 c1.7 c1.7 c1		7	1			U			
titive Green, g (s) 32.1 32.1 67.7 67.7 tated g/C Ratio 0.29 0.29 0.62 0.62 rarrance Time (s) 5.5 5.5 6.7 6.7 rarrance Time (s) 5.5 5.5 6.7 6.7 rarrance Time (s) 3.0 3.0 3.0 3.0 3.0 3.0 refr Cap (vph) 968 778 2197 2197 2197 attio Prot cl. 22 co. 27 0.19 ratio Perm 0.05 ratio Perm 0.08 ratio Perm 0.08 ression Factor 1.00 1.00 0.34 1.00 remental Delay, d1 35.5 29.1 11.2 10.0 ression Factor 1.00 1.00 0.34 1.00 remental Delay, d2 3.6 0.1 0.6 0.4 y (s) 39.0 29.2 4.4 10.4 ratio Pervice D C A B coach Delay (s) 35.6 4.4 10.4 ratio Delay (s) 35.6 4.4 10.4 ratio Delay (s) 35.6 4.4 10.4 ratio Delay (s) 35.6 at 1.00 ratio Delay 18.5 ratio Delay (s) 35.6 at 1.00 ratio Delay 18.5 ratio Delay (s) 35.6 at 1.00 ratio Delay 18.5 ratio Delay (s) 35.6 at 1.00 ratio Delay 18.5 ratio Delay (s) 35.6 ratio Delay 18.5 ratio Delay 1		31.1			66.7	66.7			
sted g/C Ratio 0.29 0.29 0.62 0.62 rance Time (s) 5.5 5.5 5.5 6.7 6.7 cle Extension (s) 3.0 3.0 3.0 3.0 Grp Cap (vph) 968 778 2197 2197 atio Prot c0.22 c0.27 0.19 atio Port c0.22 c0.27 0.19 atio Port c0.22 c0.27 0.19 atio Port c0.25 c0.27 0.19 atio 0.05 c0.27 0.19 atio 0.06 0.18 0.45 0.30 rm Delay, d1 35.5 29.1 11.2 10.0 ression Factor 1.00 1.00 0.34 1.00 mental Delay, d2 3.6 0.1 0.6 0.4 y (s) 39.0 29.2 4.4 10.4 l of Service D C A B aach LOS D A B section Summary 2000 Control Delay 18.5 HCM 2000 Level of Service B 2000 Volume to Capacity ratio 210.0 sysis Period (min) 15									
rance Time (s) 5.5 5.5 6.7 6.7 cle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 2 cr Cap (vph) 968 778 2197 2197 2197 2197 2197 2197 2197 2197									
cle Extension (s) 3.0 3.0 3.0 3.0 2 Grp Cap (vph) 968 778 2197 2197 Ratio Prot c0.22 c0.27 0.19 Ratio Cerm 0.05 Ratio 0.76 0.18 0.45 0.30 orm Delay, d1 35.5 29.1 11.2 10.0 ression Factor 1.00 1.00 0.34 1.00 smental Delay, d2 3.6 0.1 0.6 0.4 y (s) 39.0 29.2 4.4 10.4 el of Service D C A B oach Delay (s) 35.6 4.4 10.4 oach Dolay (s) 35.6 4.4 10.4 oach Dolay (s) 35.6 4.8 B section Summary 1 2000 Control Delay 18.5 HCM 2000 Level of Service B 1 2000 Control Delay (s) 18.5 HCM 2000 Level of Service B section Capacity Utilization 0.55 ated Cycle Length (s) 110.0 Sum of lost time (s) 10.2 section Capacity Utilization 60.8% ICU Level of Service B									
e Grp Cap (vph) 968 778 2197 2197 Ratio Prot c0.22 c0.27 0.19 Ratio Perm 0.05 Ratio Delay, d1 35.5 29.1 11.2 10.0 pression Factor 1.00 1.00 0.34 1.00 pression Factor 0.05 Ry (s) 39.0 29.2 4.4 10.4 Ry (s) 35.6 4.4 10.4 Roach LOS D A B Section Summary 12000 Control Delay 18.5 HCM 2000 Level of Service B M 2000 Volume to Capacity ratio ated Cycle Length (s) 110.0 Sum of lost time (s) 10.2 Section Capacity Utilization 60.8% ICU Level of Service B Nose Colleging 16.5 ICU Level of Service B									
Ratio Prot c0.22 c0.27 0.19 Ratio Prot c0.22 c0.27 0.19 Ratio Perm 0.05 Ratio 0.76 0.18 0.45 0.30 Dom Delay, d1 35.5 29.1 11.2 10.0 Pression Factor 1.00 1.00 0.34 1.00 Pression Sanctic Inc. Inc. Inc. Inc. Inc. Inc. Inc. Inc									
Ratio Perm 0.05 Ratio 0.76 0.18 0.45 0.30 Dempelay, d1 35.5 29.1 11.2 10.0 Demental Delay, d2 3.6 0.1 0.6 0.4 Demental Delay 0.5 0.5 0.5 Demental Delay 0.5			118						
Ratio 0.76 0.18 0.45 0.30 orm Delay, d1 35.5 29.1 11.2 10.0 pression Factor 1.00 1.00 0.34 1.00 pression Factor 1.00 0.6 0.4 pression Factor 1.00 0.6 0.4 pression Factor 1.00 0.4 p		CU.22	0.05		CU.27	0.19			
borm Delay, d1 35.5 29.1 11.2 10.0 pression Factor 1.00 1.00 0.34 1.00 amental Delay, d2 3.6 0.1 0.6 0.4 by (s) 39.0 29.2 4.4 10.4 el of Service D C A B coach Delay (s) 35.6 4.4 10.4 reach LOS D A B section Summary 1 2000 Control Delay 18.5 HCM 2000 Level of Service B 4 2000 Volume to Capacity ratio ated Cycle Length (s) 110.0 Sum of lost time (s) 10.2 section Capacity Utilization 60.8% ICU Level of Service B ysis Period (min) 15		0.76			0.45	0.20			
ression Factor 1.00 1.00 0.34 1.00 mental Delay, d2 3.6 0.1 0.6 0.4 y (s) 39.0 29.2 4.4 10.4 el of Service D C A B roach Delay (s) 35.6 4.4 10.4 roach LOS D A B section Summary 1 2000 Control Delay 18.5 HCM 2000 Level of Service B 1 2000 Volume to Capacity ratio ated Cycle Length (s) 110.0 Sum of lost time (s) 10.2 section Capacity Utilization 60.8% ICU Level of Service B ysis Period (min) 15									
Minental Delay, d2 3.6 0.1 0.6 0.4									
y (s) 39.0 29.2 4.4 10.4									
Of Service									
roach Delay (s) 35.6 4.4 10.4 roach LOS D A B section Summary 1 2000 Control Delay 18.5 HCM 2000 Level of Service B 1 2000 Volume to Capacity ratio 0.55 ated Cycle Length (s) 110.0 Sum of lost time (s) 10.2 section Capacity Utilization 60.8% ICU Level of Service B ysis Period (min) 15									
roach LOS D A B section Summary 1 2000 Control Delay 18.5 HCM 2000 Level of Service B 1 2000 Volume to Capacity ratio 0.55 ataded Cycle Length (s) 110.0 Sum of lost time (s) 10.2 section Capacity Utilization 60.8% ICU Level of Service B ysis Period (min) 15			U						
section Summary 1 2000 Control Delay 18.5 HCM 2000 Level of Service B 1 2000 Volume to Capacity ratio 0.55 ated Cycle Length (s) 110.0 Sum of lost time (s) 10.2 section Capacity Utilization 60.8% ICU Level of Service B ysis Period (min) 15									
1 2000 Control Delay 18.5 HCM 2000 Level of Service B 1 2000 Volume to Capacity ratio 0.55 ated Cycle Length (s) 110.0 Sum of lost time (s) 10.2 section Capacity Utilization 60.8% ICU Level of Service B ysis Period (min) 15	TOACH LUS	D			А	В			
1 2000 Volume to Capacity ratio 0.55 ated Cycle Length (s) 110.0 Sum of lost time (s) 10.2 section Capacity Utilization 60.8% ICU Level of Service B ysis Period (min) 15	rsection Summary								
ated Cycle Length (s) 110.0 Sum of lost time (s) 10.2 section Capacity Utilization 60.8% ICU Level of Service B ysis Period (min) 15	/ 2000 Control Delay				Н	CM 2000	Level of Service	9	В
section Capacity Utilization 60.8% ICU Level of Service B ysis Period (min) 15	A 2000 Volume to Capa	acity ratio		0.55					
ysis Period (min) 15	ated Cycle Length (s)								
	rsection Capacity Utiliza	ation		60.8%	IC	U Level o	of Service		В
Critical Lane Group	lysis Period (min)			15					
	Critical Lane Group								

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 9: Car Dealer Site Access/Delta Boulevard & Kingston Road

Future Total (5 Year) AM Peak Hour

	•	-	•	1	-	4	4	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	^	7	ሻ	1>		ሻ	1>	
Traffic Volume (vph)	130	845	10	20	1115	110	25	0	15	55	5	200
Future Volume (vph)	130	845	10	20	1115	110	25	0	15	55	5	200
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.9	5.9	5.6	5.6		5.3	5.3	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.97	1.00	0.98		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1733	3433	1548	1623	3466	1533	1785	1467		1758	1558	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.30	1.00		0.75	1.00	
Satd. Flow (perm)	1733	3433	1548	1623	3466	1533	569	1467		1380	1558	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	157	1018	12	24	1343	133	30	0	18	66	6	241
RTOR Reduction (vph)	0	0	3	0	0	38	0	16	0	0	155	0
Lane Group Flow (vph)	157	1018	9	24	1343	95	30	2	0	66	92	0
Confl. Peds. (#/hr)	5		5	5		5			5	5		
Heavy Vehicles (%)	3%	4%	0%	10%	3%	1%	0%	0%	7%	1%	0%	3%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases			2			6	8			4		
Actuated Green, G (s)	16.0	77.8	77.8	3.5	65.3	65.3	12.2	12.2		12.5	12.5	
Effective Green, g (s)	17.0	78.8	78.8	4.5	66.3	66.3	13.2	13.2		13.5	13.5	
Actuated g/C Ratio	0.15	0.72	0.72	0.04	0.60	0.60	0.12	0.12		0.12	0.12	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.6	6.6		6.3	6.3	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	267	2459	1108	66	2089	923	68	176		169	191	
v/s Ratio Prot	c0.09	0.30		0.01	c0.39			0.00			c0.06	
v/s Ratio Perm			0.01			0.06	0.05			0.05		
v/c Ratio	0.59	0.41	0.01	0.36	0.64	0.10	0.44	0.01		0.39	0.48	
Uniform Delay, d1	43.2	6.3	4.4	51.4	14.2	9.3	45.0	42.7		44.5	45.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.3	0.5	0.0	3.4	1.5	0.2	4.5	0.0		1.5	1.9	
Delay (s)	46.5	6.8	4.5	54.7	15.7	9.5	49.5	42.7		46.0	46.9	
Level of Service	D	A	A	D	В	A	D	D		D	D	
Approach Delay (s)		12.0	,,		15.8	,,		46.9			46.7	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			18.0	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.61									
Actuated Cycle Length (s)	,		110.0	S	um of los	t time (s)			13.5			
Intersection Capacity Utiliza	ation		72.5%			of Service)		С			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

Whites / Kingston SW BA Group - TCS

Whites / Kingston SW Synchro 10 Report BA Group - TCS

HCM Signalized Intersection Capacity Analysis

1: Kingston Road & Rosebank Road

Future Total (10 Year) AM Peak Hour

	•	-	•	1	-	*	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		ሻ	ħβ		ሻ	1>		ሻ	1>	
Traffic Volume (vph)	30	670	10	15	930	65	0	0	5	95	5	120
Future Volume (vph)	30	670	10	15	930	65	0	0	5	95	5	120
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.0	5.6		5.0	5.6			5.6		5.6	5.6	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99			0.85		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)	1694	3427		1745	3429			1597		1694	1609	
Flt Permitted	0.95	1.00		0.95	1.00			1.00		0.75	1.00	
Satd. Flow (perm)	1694	3427		1745	3429			1597		1344	1609	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adi. Flow (vph)	34	761	11	17	1057	74	0.00	0.00	6	108	6	136
RTOR Reduction (vph)	0	1	0	0	4	0	0	5	0	0	116	0
	34	771	0	17	1127	0	0	1	0	108	26	0
Lane Group Flow (vph)	5	771	U	17	1127	5	U	- 1	U	100	20	U
Confl. Peds. (#/hr)	3%	4%	0%	0%	3%	5 1%	0%	0%	0%	3%	0%	0%
Heavy Vehicles (%)												
Bus Blockages (#/hr)	0	0	11	0	0	11	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		
Actuated Green, G (s)	5.2	64.5		2.9	62.2			13.4		13.4	13.4	
Effective Green, g (s)	6.2	65.5		3.9	63.2			14.4		14.4	14.4	
Actuated g/C Ratio	0.06	0.66		0.04	0.63			0.14		0.14	0.14	
Clearance Time (s)	6.0	6.6		6.0	6.6			6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)	105	2244		68	2167			229		193	231	
v/s Ratio Prot	c0.02	0.23		0.01	c0.33			0.00			0.02	
v/s Ratio Perm										c0.08		
v/c Ratio	0.32	0.34		0.25	0.52			0.00		0.56	0.11	
Uniform Delay, d1	44.9	7.7		46.6	10.1			36.7		39.8	37.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Incremental Delay, d2	1.8	0.4		1.9	0.9			0.0		3.5	0.2	
Delay (s)	46.7	8.1		48.6	11.0			36.7		43.3	37.4	
Level of Service	D	Α		D	В			D		D	D	
Approach Delay (s)		9.7			11.5			36.7		=	40.0	
Approach LOS		A			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			14.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.51									
Actuated Cycle Length (s)			100.0	S	um of los	t time (s)			16.2			
Intersection Capacity Utiliza	ation		49.1%		CU Level)		Α			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

Synchro 10 Report FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

	•	-	*	1	-	•	1	T		-	¥	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	Ĭ	^	7	7	^	7	Ĭ	ተተተ	7
Traffic Volume (vph)	95	405	665	295	700	360	235	475	445	150	1330	125
Future Volume (vph)	95	405	665	295	700	360	235	475	445	150	1330	125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3
Total Lost time (s)	2.0	6.0	3.0	2.0	6.0	3.0	2.0	6.1	2.0	2.0	6.1	6.1
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1678	3400	1510	1694	3466	1505	1818	5079	1463	1722	5079	1486
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.13	1.00	1.00	0.45	1.00	1.00
Satd. Flow (perm)	1678	3400	1510	1694	3466	1505	238	5079	1463	811	5079	1486
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	104	445	731	324	769	396	258	522	489	165	1462	137
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	85	0	0	88
Lane Group Flow (vph)	104	445	731	324	769	396	258	522	404	165	1462	49
Confl. Peds. (#/hr)	15		5	5		15	10		15	15		10
Heavy Vehicles (%)	4%	5%	2%	3%	3%	2%	1%	1%	4%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	2	0	0	4
Turn Type	Prot	NA	Free	Prot	NA	Free	pm+pt	NA	pm+ov	pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases			Free			Free	8		8	4		4
Actuated Green, G (s)	13.3	38.4	140.0	27.6	52.7	140.0	56.9	44.9	72.5	48.9	39.9	39.9
Effective Green, g (s)	14.3	39.4	140.0	28.6	53.7	140.0	57.9	45.9	74.5	50.9	40.9	40.9
Actuated g/C Ratio	0.10	0.28	1.00	0.20	0.38	1.00	0.41	0.33	0.53	0.36	0.29	0.29
Clearance Time (s)	3.0	7.0		3.0	7.0		3.0	7.1	3.0	3.0	7.1	7.1
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	171	956	1510	346	1329	1505	267	1665	778	359	1483	434
v/s Ratio Prot	0.06	0.13		c0.19	c0.22		c0.10	0.10	0.11	0.03	c0.29	
v/s Ratio Perm			0.48			0.26	0.30		0.17	0.13		0.03
v/c Ratio	0.61	0.47	0.48	0.94	0.58	0.26	0.97	0.31	0.52	0.46	0.99	0.11
Uniform Delay, d1	60.2	41.6	0.0	54.8	34.2	0.0	30.8	35.2	21.2	31.4	49.3	36.3
Progression Factor	1.14	0.84	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	4.6	1.2	0.8	32.1	1.8	0.4	45.3	0.5	0.6	0.9	20.2	0.5
Delay (s)	73.1	36.1	0.8	86.9	36.0	0.4	76.2	35.7	21.8	32.3	69.5	36.8
Level of Service	Е	D	Α	F	D	Α	Е	D	С	С	Е	D
Approach Delay (s)		19.0			37.6			38.6			63.5	
Approach LOS		В			D			D			Е	
Intersection Summary												
HCM 2000 Control Delay			41.6	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	ity ratio		0.85									
Actuated Cycle Length (s)			140.0	S	um of los	t time (s)			16.1			
	ersection Capacity Utilization 106.9%				U Level		Э		G			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

Future Total (10 Year) AM Peak Hour

	•	→	\rightarrow	•	—	*	1	†	1	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		ች	∱ î>		*	1 >		ች	1>	
Traffic Volume (vph)	40	665	65	155	875	30	100	0	375	125	0	35
Future Volume (vph)	40	665	65	155	875	30	100	0	375	125	0	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.0	5.3		5.0	5.3		5.7	5.7		5.7	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.99		1.00	1.00		1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1678	3399		1631	3477		1454	1557		1686	1521	
Flt Permitted	0.95	1.00		0.95	1.00		0.73	1.00		0.25	1.00	
Satd. Flow (perm)	1678	3399		1631	3477		1118	1557		436	1521	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	47	782	76	182	1029	35	118	0	441	147	0	41
RTOR Reduction (vph)	0	4	0	0	1	0	0	292	0	0	27	0
Lane Group Flow (vph)	47	854	0	182	1063	0	118	149	0	147	14	0
Confl. Peds. (#/hr)	5					5			10	10		
Heavy Vehicles (%)	4%	4%	0%	7%	2%	3%	20%	0%	0%	3%	0%	5%
Bus Blockages (#/hr)	0	0	0	0	0	13	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		
Actuated Green, G (s)	4.8	53.8		20.9	69.9		46.3	46.3		46.3	46.3	
Effective Green, g (s)	5.8	54.8		21.9	70.9		47.3	47.3		47.3	47.3	
Actuated g/C Ratio	0.04	0.39		0.16	0.51		0.34	0.34		0.34	0.34	
Clearance Time (s)	6.0	6.3		6.0	6.3		6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	69	1330		255	1760		377	526		147	513	
v/s Ratio Prot	0.03	c0.25		c0.11	0.31			0.10			0.01	
v/s Ratio Perm							0.11			c0.34		
v/c Ratio	0.68	0.64		0.71	0.60		0.31	0.28		1.00	0.03	
Uniform Delay, d1	66.2	34.6		56.1	24.6		34.3	33.9		46.4	31.0	
Progression Factor	1.00	1.00		1.19	0.72		1.00	1.00		1.00	1.00	
Incremental Delay, d2	24.2	2.4		7.5	1.3		0.5	0.3		74.2	0.0	
Delay (s)	90.4	37.0		74.1	19.0		34.8	34.2		120.6	31.0	
Level of Service	F	D		Е	В		С	С		F	С	
Approach Delay (s)		39.8			27.1			34.4			101.0	
Approach LOS		D			С			С			F	
Intersection Summary												
HCM 2000 Control Delay			37.2	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.79									
Actuated Cycle Length (s)			140.0	S	um of los	t time (s)			16.0			
Intersection Capacity Utiliza	ation		79.0%	IC	U Level	of Service)		D			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

Synchro 10 Report FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

6: Whites	Road &	Bavlv	Street	t	

	•	*	†	1	-	ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
ane Configurations	ሻ	7	44	7	*	414		
Fraffic Volume (vph)	95	315	630	80	485	535		
Future Volume (vph)	95	315	630	80	485	535		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
ane Width	3.3	3.3	3.5	3.3	3.3	3.5		
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0		
ane Util. Factor	1.00	1.00	0.95	1.00	0.91	0.91		
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.99		
Satd. Flow (prot)	1662	1516	3500	1476	1542	3308		
Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.99		
Satd. Flow (perm)	1662	1516	3500	1476	1542	3308		
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91		
Adj. Flow (vph)	104	346	692	0.91	533	588		
RTOR Reduction (vph)	0	346	092	49	533	0		
Lane Group Flow (vph)	104	310	692	39	362	759		
Confl. Peds. (#/hr)	104	310	092	39 5	36Z 5	109		
Confl. Peds. (#/nr) Heavy Vehicles (%)	5%	3%	2%	5 4%	3%	2%		
Turn Type	Perm	pm+ov	NA	Perm	Split	NA		
Protected Phases	_	2	5	-	2	2		
Permitted Phases	8	8	07.0	5	40.0	40.0		
Actuated Green, G (s)	12.4	61.7	27.9	27.9	49.3	49.3		
Effective Green, g (s)	13.4	63.7	28.9	28.9	50.3	50.3		
Actuated g/C Ratio	0.12	0.58	0.26	0.26	0.46	0.46		
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	202	960	919	387	705	1512		
v/s Ratio Prot		0.15	c0.20		c0.23	0.23		
v/s Ratio Perm	c0.06	0.06		0.03				
v/c Ratio	0.51	0.32	0.75	0.10	0.51	0.50		
Uniform Delay, d1	45.3	12.0	37.3	30.7	21.2	21.0		
Progression Factor	1.00	1.00	1.00	1.00	0.92	0.92		
Incremental Delay, d2	2.2	0.2	3.5	0.1	2.6	1.2		
Delay (s)	47.5	12.2	40.8	30.8	22.1	20.4		
Level of Service	D	В	D	С	С	С		
Approach Delay (s)	20.3		39.7			21.0		
Approach LOS	С		D			С		
ntersection Summary								
HCM 2000 Control Delay			27.1	Н	CM 2000	Level of Service	9	С
HCM 2000 Volume to Capa	acity ratio		0.59		2 2000	20.0.0100110		
Actuated Cycle Length (s)	20.29 1000		110.0	S	um of lost	time (s)		18.4
Intersection Capacity Utiliza	ation		59.3%			of Service		10.4 B
Analysis Period (min)			15	- 10	LOVOIC	3. 331 1100		5
c Critical Lane Group			10					
oloui Luiio Oloup								

Future Total (10 Year) AM Peak Hour

ites / Kingston SW	Synchro 10 Report
Group - TCS	FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

	→	<u></u>	6	←	•	<i>></i>			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	† ‡		*	^	ሻሻ	7			
Traffic Volume (vph)	920	10	360	645	615	90			
Future Volume (vph)	920	10	360	645	615	90			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.5	3.5	3.3	3.5	3.3	3.3			
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4			
Lane Util. Factor	0.95		1.00	0.95	0.97	1.00			
Frt	1.00		1.00	1.00	1.00	0.85			
Flt Protected	1.00		0.95	1.00	0.95	1.00			
Satd. Flow (prot)	3420		1711	3500	3286	1531			
Flt Permitted	1.00		0.95	1.00	0.95	1.00			
Satd. Flow (perm)	3420		1711	3500	3286	1531			
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87			
Adj. Flow (vph)	1057	11	414	741	707	103			
RTOR Reduction (vph)	1	0	0	0	0	26			
Lane Group Flow (vph)	1067	0	414	741	707	77			
Heavy Vehicles (%)	4%	25%	2%	2%	3%	2%			
Turn Type	NA		Prot	NA	Prot	Perm			
Protected Phases	2		1	6	8				
Permitted Phases						8			
Actuated Green, G (s)	45.6		27.7	76.3	31.1	31.1			
Effective Green, g (s)	46.6		28.7	77.3	32.1	32.1			
Actuated g/C Ratio	0.39		0.24	0.64	0.27	0.27			
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4			
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	1328		409	2254	879	409			
v/s Ratio Prot	c0.31		c0.24	0.21	c0.22				
v/s Ratio Perm						0.05			
v/c Ratio	0.80		1.01	0.33	0.80	0.19			
Uniform Delay, d1	32.6		45.6	9.6	41.0	33.9			
Progression Factor	1.00		1.00	1.00	1.00	1.00			
Incremental Delay, d2	5.2		47.6	0.4	5.4	0.2			
Delay (s)	37.9		93.3	10.0	46.4	34.1			
Level of Service	D		F	В	D	С			
Approach Delay (s)	37.9			39.9	44.8				
Approach LOS	D			D	D				
Intersection Summary									
HCM 2000 Control Delay			40.5	H	CM 2000	Level of Service	e	D	
HCM 2000 Volume to Capa	acity ratio		0.85						
Actuated Cycle Length (s)			120.0	Si	um of lost	t time (s)		12.6	
Intersection Capacity Utiliza	ation		75.4%	IC	U Level	of Service		D	
Analysis Period (min)			15						
0.111 0									

	•	•	1	†	ļ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻሻ	77		^	^			
Traffic Volume (vph)	715	380	0	945	640	0		
Future Volume (vph)	715	380	0	945	640	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.3	3.3	3.5	3.5	3.5	3.5		
Total Lost time (s)	4.5	4.5		5.7	5.7			
Lane Util. Factor	0.97	0.88		0.95	0.95			
Frpb, ped/bikes	1.00	1.00		1.00	1.00			
Flpb, ped/bikes	1.00	1.00		1.00	1.00			
Frt	1.00	0.85		1.00	1.00			
Flt Protected	0.95	1.00		1.00	1.00			
Satd. Flow (prot)	3319	2668		3570	3570			
Flt Permitted	0.95	1.00		1.00	1.00			
Satd. Flow (perm)	3319	2668		3570	3570			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	753	400	0.00	995	674	0		
RTOR Reduction (vph)	0	247	0	0	0	0		
Lane Group Flow (vph)	753	153	0	995	674	0		
Confl. Peds. (#/hr)			5			5		
Heavy Vehicles (%)	2%	3%	0%	0%	0%	0%		
Turn Type	Prot	Perm		NA	NA			
Protected Phases	4			2	6			
Permitted Phases		4		_				
Actuated Green, G (s)	31.8	31.8		66.0	66.0			
Effective Green, g (s)	32.8	32.8		67.0	67.0			
Actuated g/C Ratio	0.30	0.30		0.61	0.61			
Clearance Time (s)	5.5	5.5		6.7	6.7			
Vehicle Extension (s)	3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)	989	795		2174	2174			
v/s Ratio Prot	c0.23			c0.28	0.19			
v/s Ratio Perm	30.23	0.06		30.20	00			
v/c Ratio	0.76	0.19		0.46	0.31			
Uniform Delay, d1	35.0	28.7		11.7	10.4			
Progression Factor	1.00	1.00		0.34	1.00			
Incremental Delay, d2	3.5	0.1		0.6	0.4			
Delay (s)	38.6	28.9		4.6	10.7			
Level of Service	D	C		A	В			
Approach Delay (s)	35.2			4.6	10.7			
Approach LOS	D			A	В			
Intersection Summary								
HCM 2000 Control Delay			18.5	H	CM 2000	Level of Service)	В
HCM 2000 Volume to Capacit	y ratio		0.56					
Actuated Cycle Length (s)			110.0	Sum of lost time (s)			10.2	
Intersection Capacity Utilization	n		61.7%	IC	U Level o	of Service		В
Analysis Period (min)			15					
c Critical Lane Group								

Synchro 10 Report FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 9: Car Dealer Site Access/Delta Boulevard & Kingston Road

Future Total (10 Year) AM Peak Hour

	•	→	*	1	+	1	4	1	1	-	Ų.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	^	7	ሻ	f		ሻ	f)	
Traffic Volume (vph)	130	860	10	20	1130	110	25	0	15	55	5	200
Future Volume (vph)	130	860	10	20	1130	110	25	0	15	55	5	200
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.9	5.9	5.6	5.6		5.3	5.3	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.97	1.00	0.98		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1733	3433	1548	1623	3466	1533	1785	1467		1758	1558	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.30	1.00		0.75	1.00	
Satd. Flow (perm)	1733	3433	1548	1623	3466	1533	565	1467		1380	1558	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	157	1036	12	24	1361	133	30	0	18	66	6	241
RTOR Reduction (vph)	0	0	3	0	0	38	0	16	0	0	154	0
Lane Group Flow (vph)	157	1036	9	24	1361	95	30	2	0	66	93	0
Confl. Peds. (#/hr)	5		5	5		5			5	5		
Heavy Vehicles (%)	3%	4%	0%	10%	3%	1%	0%	0%	7%	1%	0%	3%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases			2			6	8			4		
Actuated Green, G (s)	16.0	77.7	77.7	3.5	65.2	65.2	12.3	12.3		12.6	12.6	
Effective Green, g (s)	17.0	78.7	78.7	4.5	66.2	66.2	13.3	13.3		13.6	13.6	
Actuated g/C Ratio	0.15	0.72	0.72	0.04	0.60	0.60	0.12	0.12		0.12	0.12	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.6	6.6		6.3	6.3	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	267	2456	1107	66	2085	922	68	177		170	192	
v/s Ratio Prot	c0.09	0.30		0.01	c0.39			0.00			c0.06	
v/s Ratio Perm			0.01			0.06	0.05			0.05		
v/c Ratio	0.59	0.42	0.01	0.36	0.65	0.10	0.44	0.01		0.39	0.48	
Uniform Delay, d1	43.2	6.4	4.5	51.4	14.4	9.3	44.9	42.6		44.4	44.9	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.3	0.5	0.0	3.4	1.6	0.2	4.5	0.0		1.5	1.9	
Delay (s)	46.5	6.9	4.5	54.7	16.0	9.5	49.4	42.6		45.8	46.8	
Level of Service	D	Α	Α	D	В	Α	D	D		D	D	
Approach Delay (s)		12.0			16.0			46.9			46.6	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			18.1	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.62									
Actuated Cycle Length (s)			110.0	S	um of lost	t time (s)			13.5			
Intersection Capacity Utiliza	ation		72.9%	IC	U Level	of Service	9		С			
Analysis Period (min)			15									

c Critical Lane Group

	\rightarrow	*	1	-	1	1				
Movement	EBT	EBR	WBL	WBT	NBL	NBR				
Lane Configurations	^	7	ሻ	^	W					
Traffic Volume (veh/h)	795	0	0	1050	0	0				
Future Volume (Veh/h)	795	0	0	1050	0	0				
Sign Control	Free			Free	Stop					
Grade	0%			0%	0%					
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87				
Hourly flow rate (vph)	914	0	0	1207	0	0				
Pedestrians					5					
Lane Width (m)					3.3					
Walking Speed (m/s)					1.2					
Percent Blockage					0					
Right turn flare (veh)										
Median type	None			None						
Median storage veh)										
Upstream signal (m)				153						
pX, platoon unblocked					0.77					
vC, conflicting volume			919		1522	462				
vC1, stage 1 conf vol										
vC2, stage 2 conf vol										
vCu, unblocked vol			919		1081	462				
tC, single (s)			4.1		7.1	6.9				
tC, 2 stage (s)										
tF (s)			2.2		3.6	3.3				
p0 queue free %			100		100	100				
cM capacity (veh/h)			748		149	550				
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1			
Volume Total	457	457	0	0	604	604	0			
Volume Left	0	0	0	0	0	0	0			
Volume Right	0	0	0	0	0	0	0			
cSH	1700	1700	1700	1700	1700	1700	1700			
Volume to Capacity	0.27	0.27	0.00	0.00	0.35	0.35	0.00			
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
Lane LOS							Α			
Approach Delay (s)	0.0			0.0			0.0			
Approach LOS							Α			
Intersection Summary										
Average Delay			0.0							
Intersection Capacity Utiliza	tion		32.4%	IC	U Level	of Service		-	A	
Analysis Period (min)			15							

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

Future Total (15 Year) AM Peak Hour

	•	→	*	1	←	4	4	†	1	1	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	† 1>		ሻ	∱ }		ሻ	1>		ሻ	1>	
Traffic Volume (vph)	30	695	10	15	970	65	0	0	5	95	5	120
Future Volume (vph)	30	695	10	15	970	65	0	0	5	95	5	120
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.0	5.6		5.0	5.6			5.6		5.6	5.6	
Lane Util. Factor	1.00	0.95		1.00	0.95			1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99			0.85		1.00	0.86	
Flt Protected	0.95	1.00		0.95	1.00			1.00		0.95	1.00	
Satd. Flow (prot)	1694	3427		1745	3430			1597		1694	1609	
Flt Permitted	0.95	1.00		0.95	1.00			1.00		0.75	1.00	
Satd. Flow (perm)	1694	3427		1745	3430			1597		1344	1609	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	34	790	11	17	1102	74	0.00	0.00	6	108	6	136
RTOR Reduction (vph)	0	1	0	0	3	0	0	5	0	0	116	0
Lane Group Flow (vph)	34	800	0	17	1173	0	0	1	0	108	26	0
Confl. Peds. (#/hr)	5	000	•			5	·	•	·	100		·
Heavy Vehicles (%)	3%	4%	0%	0%	3%	1%	0%	0%	0%	3%	0%	0%
Bus Blockages (#/hr)	0	0	11	0	0	11	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6		1 Gilli	8		I GIIII	4	
Permitted Phases							8			4		
Actuated Green, G (s)	5.2	64.5		2.9	62.2		U	13.4		13.4	13.4	
Effective Green, g (s)	6.2	65.5		3.9	63.2			14.4		14.4	14.4	
Actuated g/C Ratio	0.06	0.66		0.04	0.63			0.14		0.14	0.14	
Clearance Time (s)	6.0	6.6		6.0	6.6			6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0		3.0	3.0			3.0		3.0	3.0	
Lane Grp Cap (vph)	105	2244		68	2167			229		193	231	
v/s Ratio Prot	c0.02	0.23		0.01	c0.34			0.00		133	0.02	
v/s Ratio Perm	00.02	0.20		0.01	60.04			0.00		c0.08	0.02	
v/c Ratio	0.32	0.36		0.25	0.54			0.00		0.56	0.11	
Uniform Delay, d1	44.9	7.8		46.6	10.3			36.7		39.8	37.2	
Progression Factor	1.00	1.00		1.00	1.00			1.00		1.00	1.00	
Incremental Delay, d2	1.8	0.4		1.00	1.00			0.0		3.5	0.2	
Delay (s)	46.7	8.2		48.6	11.3			36.7		43.3	37.4	
Level of Service	40.7 D	Α.2		40.0 D	В			30.7 D		43.3 D	D D	
Approach Delay (s)	D	9.8		D	11.8			36.7		D	40.0	
Approach LOS		9.0 A			11.0 B			30.7 D			40.0 D	
••		А			Ь			U			U	
Intersection Summary												
HCM 2000 Control Delay			14.2	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.53									
Actuated Cycle Length (s)			100.0		um of los				16.2			
Intersection Capacity Utiliz	ation		50.2%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

Synchro 10 Report FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

	•	\rightarrow	*	1	-	•	1	Ť		-	¥	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	^	7	ሻ	^	7	7	ተተተ	7	ሻ	ተተተ	7
Traffic Volume (vph)	95	420	675	295	730	360	245	495	450	150	1390	125
Future Volume (vph)	95	420	675	295	730	360	245	495	450	150	1390	125
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3
Total Lost time (s)	2.0	6.0	3.0	2.0	6.0	3.0	2.0	6.1	2.0	2.0	6.1	6.1
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1678	3400	1510	1694	3466	1505	1818	5079	1463	1722	5079	1486
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.13	1.00	1.00	0.43	1.00	1.00
Satd. Flow (perm)	1678	3400	1510	1694	3466	1505	238	5079	1463	783	5079	1486
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	104	462	742	324	802	396	269	544	495	165	1527	137
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	80	0	0	88
Lane Group Flow (vph)	104	462	742	324	802	396	269	544	415	165	1527	49
Confl. Peds. (#/hr)	15		5	5		15	10		15	15		10
Heavy Vehicles (%)	4%	5%	2%	3%	3%	2%	1%	1%	4%	1%	1%	1%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	2	0	0	4
Turn Type	Prot	NA	Free	Prot	NA	Free	pm+pt	NA	pm+ov	pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases			Free			Free	8		8	4		4
Actuated Green, G (s)	13.3	38.4	140.0	27.6	52.7	140.0	56.9	44.9	72.5	48.9	39.9	39.9
Effective Green, g (s)	14.3	39.4	140.0	28.6	53.7	140.0	57.9	45.9	74.5	50.9	40.9	40.9
Actuated g/C Ratio	0.10	0.28	1.00	0.20	0.38	1.00	0.41	0.33	0.53	0.36	0.29	0.29
Clearance Time (s)	3.0	7.0		3.0	7.0		3.0	7.1	3.0	3.0	7.1	7.1
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	171	956	1510	346	1329	1505	267	1665	778	351	1483	434
v/s Ratio Prot	0.06	0.14		c0.19	c0.23		c0.11	0.11	0.11	0.03	c0.30	
v/s Ratio Perm			0.49			0.26	0.31		0.17	0.14		0.03
v/c Ratio	0.61	0.48	0.49	0.94	0.60	0.26	1.01	0.33	0.53	0.47	1.03	0.11
Uniform Delay, d1	60.2	41.8	0.0	54.8	34.6	0.0	32.1	35.4	21.4	31.4	49.5	36.3
Progression Factor	1.11	0.90	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	4.5	1.3	0.9	32.1	2.0	0.4	57.0	0.5	0.7	1.0	31.3	0.5
Delay (s)	71.4	38.8	0.9	86.9	36.6	0.4	89.1	35.9	22.1	32.4	80.9	36.8
Level of Service	Е	D	Α	F	D	Α	F	D	С	С	F	D
Approach Delay (s)		19.9			37.9			41.6			73.2	
Approach LOS		В			D			D			Е	
Intersection Summary												
HCM 2000 Control Delay			45.6	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.87		000	_5.0.01	23,1,03					
Actuated Cycle Length (s)	,		140.0	S	um of los	t time (s)			16.1			
Intersection Capacity Utiliza	tion		107.5%		U Level	(-)	9		G			
Analysis Period (min)			15			2. 00. 110	-		J			
c Critical Lane Group												
5 Saoui Luiio Oroup												

Whites / Kingston SW BA Group - TCS Synchro 10 Report FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

Future Total (15 Year) AM Peak Hour

	•	→	\rightarrow	•	—	•	4	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ħβ		ሻ	ħβ		ሻ	1>		ሻ	1>	
Traffic Volume (vph)	40	690	65	155	915	30	100	0	375	125	0	35
Future Volume (vph)	40	690	65	155	915	30	100	0	375	125	0	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.0	5.3		5.0	5.3		5.7	5.7		5.7	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.99		1.00	1.00		1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1678	3400		1631	3478		1454	1557		1686	1521	
Flt Permitted	0.95	1.00		0.95	1.00		0.73	1.00		0.25	1.00	
Satd. Flow (perm)	1678	3400		1631	3478		1118	1557		436	1521	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	47	812	76	182	1076	35	118	0	441	147	0	41
RTOR Reduction (vph)	0	4	0	0	1	0	0	292	0	0	27	0
Lane Group Flow (vph)	47	884	0	182	1110	0	118	149	0	147	14	0
Confl. Peds. (#/hr)	5					5			10	10		
Heavy Vehicles (%)	4%	4%	0%	7%	2%	3%	20%	0%	0%	3%	0%	5%
Bus Blockages (#/hr)	0	0	0	0	0	13	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		
Actuated Green, G (s)	4.8	53.8		20.9	69.9		46.3	46.3		46.3	46.3	
Effective Green, q (s)	5.8	54.8		21.9	70.9		47.3	47.3		47.3	47.3	
Actuated g/C Ratio	0.04	0.39		0.16	0.51		0.34	0.34		0.34	0.34	
Clearance Time (s)	6.0	6.3		6.0	6.3		6.7	6.7		6.7	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	69	1330		255	1761		377	526		147	513	
v/s Ratio Prot	0.03	c0.26		c0.11	0.32		011	0.10		1-11	0.01	
v/s Ratio Perm	0.00	00.20		00	0.02		0.11	0.10		c0.34	0.01	
v/c Ratio	0.68	0.66		0.71	0.63		0.31	0.28		1.00	0.03	
Uniform Delay, d1	66.2	35.0		56.1	25.0		34.3	33.9		46.4	31.0	
Progression Factor	1.00	1.00		1.21	0.70		1.00	1.00		1.00	1.00	
Incremental Delay, d2	24.2	2.6		7.4	1.4		0.5	0.3		74.2	0.0	
Delay (s)	90.4	37.7		75.4	18.9		34.8	34.2		120.6	31.0	
Level of Service	F	D		E	В		C	C		F	C	
Approach Delay (s)	'	40.3			26.8		0	34.4			101.0	
Approach LOS		40.5 D			20.0 C			04.4 C			F	
••												
Intersection Summary			07.0		014 0000							
HCM 2000 Control Delay	-14 41 -		37.2	Н	CM 2000	Level of S	service		D			
HCM 2000 Volume to Capa	icity ratio		0.80	•					40.0			
Actuated Cycle Length (s)			140.0		um of los				16.0			
Intersection Capacity Utiliza	ation		80.1%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Whites / Kingston SW BA Group - TCS

Synchro 10 Report FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

i icivi sigi	ializeu	IIICI SCI	Cuon	Capacity	aiyəi
6: Whites	Road 8	Bavlv	Stree	et	

	€	*	†	~	-	↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ሻ	7	^	7	ሻ	41			
Traffic Volume (vph)	95	315	660	80	485	560			
Future Volume (vph)	95	315	660	80	485	560			
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
ane Width	3.3	3.3	3.5	3.3	3.3	3.5			
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0			
Lane Util. Factor	1.00	1.00	0.95	1.00	0.91	0.91			
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00			
Tlpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.99			
Satd. Flow (prot)	1662	1516	3500	1476	1542	3312			
Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.99			
Satd. Flow (perm)	1662	1516	3500	1476	1542	3312			
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91			
Adj. Flow (vph)	104	346	725	0.91	533	615			
RTOR Reduction (vph)	104	346	125	47	533	0			
	104	314	725	41	373	775			
Lane Group Flow (vph) Confl. Peds. (#/hr)	104	314	125	5	5	110			
	5%	3%	2%	5 4%	3%	2%			
Heavy Vehicles (%)									
Turn Type	Perm	pm+ov	NA	Perm	Split	NA			
Protected Phases		2	5	_	2	2			
Permitted Phases	8	8		5					
Actuated Green, G (s)	12.4	60.6	29.0	29.0	48.2	48.2			
Effective Green, g (s)	13.4	62.6	30.0	30.0	49.2	49.2			
Actuated g/C Ratio	0.12	0.57	0.27	0.27	0.45	0.45			
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0			
/ehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	202	945	954	402	689	1481			
//s Ratio Prot		0.15	c0.21		c0.24	0.23			
v/s Ratio Perm	c0.06	0.06		0.03					
//c Ratio	0.51	0.33	0.76	0.10	0.54	0.52			
Jniform Delay, d1	45.3	12.6	36.7	29.9	22.2	21.9			
Progression Factor	1.00	1.00	1.00	1.00	0.94	0.94			
ncremental Delay, d2	2.2	0.2	3.5	0.1	2.9	1.3			
Delay (s)	47.5	12.8	40.2	30.0	23.8	21.8			
Level of Service	D	В	D	С	С	С			
Approach Delay (s)	20.8		39.1			22.5			
Approach LOS	С		D			С			
ntersection Summary									
HCM 2000 Control Delay			27.8	Н	CM 2000	Level of Service	e	С	
HCM 2000 Volume to Capa	acity ratio		0.61		2 2000				
Actuated Cycle Length (s)	20.29 1000		110.0	S	um of lost	time (s)	18	.4	
Intersection Capacity Utiliza	ation		60.4%		CU Level	(-)	10	В	
Analysis Period (min)			15	- 10	C LUVUI (J. COI 1100			
c Critical Lane Group			13						
5 Childra Edilo Oroup									

Whites / Kingston SW	Synchro 10 Repo
BA Group - TCS	FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).s

orriginia) for tra				011 1 10			(,
	-	*	1	+	1	*		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	† 13		7	^	77	7		
Traffic Volume (vph)	940	10	375	645	645	95		
Future Volume (vph)	940	10	375	645	645	95		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.5	3.5	3.3	3.5	3.3	3.3		
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4		
Lane Util. Factor	0.95		1.00	0.95	0.97	1.00		
Frt	1.00		1.00	1.00	1.00	0.85		
Flt Protected	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3420		1711	3500	3286	1531		
Flt Permitted	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3420		1711	3500	3286	1531		
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.87	0.87		
Adj. Flow (vph)	1080	11	431	741	741	109		
RTOR Reduction (vph)	1	0	0	0	0	26		
Lane Group Flow (vph)	1090	0	431	741	741	83		
Heavy Vehicles (%)	4%	25%	2%	2%	3%	2%		
Turn Type	NA		Prot	NA	Prot	Perm		
Protected Phases	2		1	6	8			
Permitted Phases						8		
Actuated Green, G (s)	45.6		26.8	75.4	32.0	32.0		
Effective Green, g (s)	46.6		27.8	76.4	33.0	33.0		
Actuated g/C Ratio	0.39		0.23	0.64	0.28	0.28		
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4		
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	1328		396	2228	903	421		
v/s Ratio Prot	c0.32		c0.25	0.21	c0.23			
v/s Ratio Perm						0.05		
v/c Ratio	0.82		1.09	0.33	0.82	0.20		
Uniform Delay, d1	33.0		46.1	10.0	40.7	33.3		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
Incremental Delay, d2	5.8		71.1	0.4	6.0	0.2		
Delay (s)	38.8		117.2	10.5	46.8	33.6		
Level of Service	D		F	В	D	С		
Approach Delay (s)	38.8			49.7	45.1			
Approach LOS	D			D	D			
Intersection Summary								
HCM 2000 Control Delay			44.6	Н	CM 2000	Level of Service	ce D	
HCM 2000 Volume to Capac	city ratio		0.88					
Actuated Cycle Length (s)			120.0		um of los		12.6	
Intersection Capacity Utilizat	ion		77.6%	IC	CU Level	of Service	D	
Analysis Period (min)			15					

Future Total (15 Year) AM Peak Hour

	•	*	1	†	ţ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻሻ	11		^	^		
Traffic Volume (vph)	745	400	0	975	645	0	
Future Volume (vph)	745	400	0	975	645	0	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Width	3.3	3.3	3.5	3.5	3.5	3.5	
Total Lost time (s)	4.5	4.5	0.0	5.7	5.7	0.0	
Lane Util, Factor	0.97	0.88		0.95	0.95		
Frpb, ped/bikes	1.00	1.00		1.00	1.00		
Flpb, ped/bikes	1.00	1.00		1.00	1.00		
Frt	1.00	0.85		1.00	1.00		
Flt Protected	0.95	1.00		1.00	1.00		
Satd. Flow (prot)	3319	2668		3570	3570		
Flt Permitted	0.95	1.00		1.00	1.00		
Satd. Flow (perm)	3319	2668		3570	3570		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	784	421	0.93	1026	679	0.33	
RTOR Reduction (vph)	0	240	0	0	0/9	0	
Lane Group Flow (vph)	784	181	0	1026	679	0	
Confl. Peds. (#/hr)	704	101	5	1020	013	5	
Heavy Vehicles (%)	2%	3%	0%	0%	0%	0%	
Turn Type	Prot	Perm	0,0	NA	NA	070	
Protected Phases	4	r Cilil		2	6		
Permitted Phases	4	4		2	U		
Actuated Green, G (s)	32.8	32.8		65.0	65.0		
Effective Green, q (s)	33.8	33.8		66.0	66.0		
Actuated g/C Ratio	0.31	0.31		0.60	0.60		
Clearance Time (s)	5.5	5.5		6.7	6.7		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)	1019	819		2142	2142		
v/s Ratio Prot	c0.24	019		c0.29	0.19		
v/s Ratio Prot v/s Ratio Perm	CU.24	0.07		CU.29	0.19		
v/s Ratio Perm v/c Ratio	0.77	0.07		0.48	0.32		
Uniform Delay, d1	34.6	28.3		12.3	10.9		
Progression Factor	1.00	1.00		0.33	1.00		
	3.6	0.1		0.33	0.4		
Incremental Delay, d2 Delay (s)	38.1	28.4		4.8	11.3		
Level of Service	38.1 D	28.4 C		4.8 A	11.3 B		
Approach Delay (s)	34.7	U		4.8	11.3		
Approach LOS	34.7 C			4.8 A	11.3 B		
	U			А	В		
Intersection Summary							
HCM 2000 Control Delay			18.7	Н	CM 2000	Level of Service	В
HCM 2000 Volume to Capa	acity ratio		0.58				40.0
Actuated Cycle Length (s)			110.0		um of lost	- (-)	10.2
Intersection Capacity Utiliza	ation		63.4%	IC	CU Level o	of Service	В
Analysis Period (min)			15				
c Critical Lane Group							

FTAM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 9: Car Dealer Site Access/Delta Boulevard & Kingston Road

Future Total (15 Year) AM Peak Hour

0. 0a. D0a.0. 0.to	, 100000,	D 0.110.	500.01	u. u o.	901	011 1 101				(,	
	۶	-	*	1	←	*	4	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	Ţ	^	7	Ť	î»		7	î,	
Traffic Volume (vph)	130	880	10	20	1160	110	25	0	15	55	5	200
Future Volume (vph)	130	880	10	20	1160	110	25	0	15	55	5	200
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.9	5.9	5.6	5.6		5.3	5.3	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.97	1.00	0.98		1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.85		1.00	0.85	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1733	3433	1548	1623	3466	1533	1785	1467		1758	1558	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.30	1.00		0.75	1.00	
Satd. Flow (perm)	1733	3433	1548	1623	3466	1533	565	1467		1380	1558	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Adj. Flow (vph)	157	1060	12	24	1398	133	30	0	18	66	6	241
RTOR Reduction (vph)	0	0	3	0	0	38	0	16	0	0	153	C
Lane Group Flow (vph)	157	1060	9	24	1398	95	30	2	0	66	94	C
Confl. Peds. (#/hr)	5		5	5		5			5	5		
Heavy Vehicles (%)	3%	4%	0%	10%	3%	1%	0%	0%	7%	1%	0%	3%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases			2			6	8			4		
Actuated Green, G (s)	16.0	77.7	77.7	3.5	65.2	65.2	12.3	12.3		12.6	12.6	
Effective Green, g (s)	17.0	78.7	78.7	4.5	66.2	66.2	13.3	13.3		13.6	13.6	
Actuated g/C Ratio	0.15	0.72	0.72	0.04	0.60	0.60	0.12	0.12		0.12	0.12	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.9	6.9	6.6	6.6		6.3	6.3	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	267	2456	1107	66	2085	922	68	177		170	192	
v/s Ratio Prot	c0.09	0.31		0.01	c0.40			0.00			c0.06	
v/s Ratio Perm			0.01			0.06	0.05			0.05		
v/c Ratio	0.59	0.43	0.01	0.36	0.67	0.10	0.44	0.01		0.39	0.49	
Uniform Delay, d1	43.2	6.4	4.5	51.4	14.6	9.3	44.9	42.6		44.4	45.0	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.3	0.6	0.0	3.4	1.7	0.2	4.5	0.0		1.5	1.9	
Delay (s)	46.5	7.0	4.5	54.7	16.4	9.5	49.4	42.6		45.8	46.9	
Level of Service	D	Α	Α	D	В	Α	D	D		D	D	
Approach Delay (s)		12.0			16.4			46.9			46.7	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			18.1	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.63									
Actuated Cycle Length (s)			110.0		um of lost				13.5			
Intersection Capacity Utiliza	ation		73.7%	IC	CU Level	of Service	•		D			
Analysis Period (min)			15									

Analysis Period (min) c Critical Lane Group

Whites / Kingston SW BA Group - TCS

HCM Unsignalized Intersection Capacity Analysis 2: Site Access (West) & Kingston Road

	-	\rightarrow	•	•	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	^	7	ች	^	W			_
Traffic Volume (veh/h)	1560	170	0	1090	0	0		
Future Volume (Veh/h)	1560	170	0	1090	0	0		
Sign Control	Free			Free	Stop			
Grade	0%			0%	0%			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96		
Hourly flow rate (vph)	1625	177	0	1135	0	0		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	None			None				
Median storage veh)								
Upstream signal (m)				153				
pX, platoon unblocked					0.80			
vC, conflicting volume			1802		2192	812		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol			1802		1991	812		
tC, single (s)			4.1		6.8	7.0		
tC, 2 stage (s)								
tF (s)			2.2		3.5	3.3		
p0 queue free %			100		100	100		
cM capacity (veh/h)			347		43	316		
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1	
Volume Total	812	812	177	0	568	568	0	
Volume Left	0	0	0	0	0	0	0	
Volume Right	0	0	177	0	0	0	0	
cSH	1700	1700	1700	1700	1700	1700	1700	
Volume to Capacity	0.48	0.48	0.10	0.00	0.33	0.33	0.00	
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Lane LOS							Α	
Approach Delay (s)	0.0			0.0			0.0	
Approach LOS							Α	
Intersection Summary								
Average Delay			0.0					
Intersection Capacity Utiliza	ition		46.5%	IC	U Level	of Service		
Analysis Period (min)			15					
. , , . ()								

Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

	۶	-	•	•	←	*	1	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	ħβ		7	↑ ↑			1>		ነ	1•	
Traffic Volume (vph)	130	1655	5	5	1015	70	5	5	15	60	0	70
Future Volume (vph)	130	1655	5	5	1015	70	5	5	15	60	0	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.0	5.4		5.0	5.4		5.2	5.2		5.2	5.2	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.99	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99		1.00	0.89		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1745	3533		1745	3491		1732	1664		1745	1549	
Flt Permitted	0.95	1.00		0.95	1.00		0.71	1.00		0.74	1.00	
Satd. Flow (perm)	1745	3533		1745	3491		1292	1664		1366	1549	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	138	1761	5	5	1080	74	5	5	16	64	0	74
RTOR Reduction (vph)	0	0	0	0	4	0	0	14	0	0	67	0
Lane Group Flow (vph)	138	1766	0	5	1150	0	5	7	0	64	7	0
Confl. Peds. (#/hr)	10					10	5					5
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	1%
Bus Blockages (#/hr)	0	0	11	0	0	11	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		
Actuated Green, G (s)	13.1	71.2		1.3	59.4		8.9	8.9		8.9	8.9	
Effective Green, g (s)	14.1	72.2		2.3	60.4		9.9	9.9		9.9	9.9	
Actuated g/C Ratio	0.14	0.72		0.02	0.60		0.10	0.10		0.10	0.10	
Clearance Time (s)	6.0	6.4		6.0	6.4		6.2	6.2		6.2	6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	246	2550		40	2108		127	164		135	153	
v/s Ratio Prot	c0.08	c0.50		0.00	0.33			0.00		100	0.00	
v/s Ratio Perm							0.00			c0.05		
v/c Ratio	0.56	0.69		0.12	0.55		0.04	0.04		0.47	0.05	
Uniform Delay, d1	40.1	7.7		47.9	11.7		40.7	40.8		42.6	40.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.9	1.6		1.4	1.0		0.1	0.1		2.6	0.1	
Delay (s)	43.0	9.3		49.3	12.7		40.9	40.9		45.2	40.9	
Level of Service	D	A		D	В		D	D		D	D	
Approach Delay (s)		11.7			12.9			40.9			42.9	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			13.7	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	/ ratio		0.68	- 11	OM 2000	20 VOI 01 V	JOI VICO		D			
Actuated Cycle Length (s)	,		100.0	Si	um of lost	time (s)			15.6			
Intersection Capacity Utilizatio	n		73.8%			of Service			D			
Analysis Period (min)			15	IC	C LOVEI (J. 361 VICE			U			
c Critical Lane Group			10									

Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 4: Whites Road & Kingston Road

	•	-	*	1	-	*	1	1	1	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	1	^	7	7	ተተተ	7	ች	ተ ተተ	7
Traffic Volume (vph)	205	1050	575	255	875	565	340	1015	750	190	780	150
Future Volume (vph)	205	1050	575	255	875	565	340	1015	750	190	780	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3
Total Lost time (s)	2.0	6.0	3.0	2.0	6.0	3.0	2.0	6.1	2.0	2.0	6.1	6.1
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1745	3535	1538	1728	3535	1533	1744	5079	1514	1744	5129	1457
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.21	1.00	1.00	0.16	1.00	1.00
Satd. Flow (perm)	1745	3535	1538	1728	3535	1533	380	5079	1514	285	5129	1457
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	211	1082	593	263	902	582	351	1046	773	196	804	155
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	110	0	0	56
Lane Group Flow (vph)	211	1082	593	263	902	582	351	1046	663	196	804	99
Confl. Peds. (#/hr)	20		10	10		20	10		20	20		10
Heavy Vehicles (%)	0%	1%	0%	1%	1%	0%	0%	1%	0%	0%	0%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	2	0	0	4
Turn Type	Prot	NA	Free	Prot	NA	Free	pm+pt	NA	pm+ov	pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases			Free			Free	8		8	4		4
Actuated Green, G (s)	19.1	43.0	140.0	21.0	44.9	140.0	58.9	42.2	63.2	51.6	37.9	37.9
Effective Green, g (s)	20.1	44.0	140.0	22.0	45.9	140.0	59.9	43.2	65.2	53.6	38.9	38.9
Actuated g/C Ratio	0.14	0.31	1.00	0.16	0.33	1.00	0.43	0.31	0.47	0.38	0.28	0.28
Clearance Time (s)	3.0	7.0		3.0	7.0		3.0	7.1	3.0	3.0	7.1	7.1
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	250	1111	1538	271	1158	1533	347	1567	705	262	1425	404
v/s Ratio Prot	0.12	c0.31		c0.15	0.26		c0.14	0.21	c0.15	0.08	0.16	
v/s Ratio Perm			c0.39			0.38	0.29		0.29	0.21		0.07
v/c Ratio	0.84	0.97	0.39	0.97	0.78	0.38	1.01	0.67	0.94	0.75	0.56	0.24
Uniform Delay, d1	58.4	47.4	0.0	58.7	42.5	0.0	31.6	42.1	35.6	31.5	43.3	39.2
Progression Factor	1.29	0.55	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	9.7	11.6	0.3	46.3	5.2	0.7	51.3	2.3	20.7	11.1	1.6	1.4
Delay (s)	84.9	37.8	0.3	105.0	47.7	0.7	82.8	44.4	56.3	42.6	44.9	40.6
Level of Service	F	D	Α	F	D	Α	F	D	Е	D	D	D
Approach Delay (s)		31.3			40.7			54.9			43.9	
Approach LOS		С			D			D			D	
Intersection Summary												
HCM 2000 Control Delay			43.1	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capaci	ty ratio		0.97									
Actuated Cycle Length (s)			140.0	S	um of lost	time (s)			16.1			
Intersection Capacity Utilization	on		110.5%	IC	U Level	of Service	9		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

	•	→	\rightarrow	1	←	*	1	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† }		ň	† 1>		7	- ↑		7	ĵ.	
Traffic Volume (vph)	90	1400	70	295	975	95	65	10	235	195	0	50
Future Volume (vph)	90	1400	70	295	975	95	65	10	235	195	0	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.0	5.3		5.0	5.3		5.7	5.7		3.0	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.99		1.00	0.99		1.00	0.86		1.00	0.85	
Flt Protected	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Satd. Flow (prot)	1837	3511		1837	3474		1837	1560		1834	1597	
Flt Permitted	1.00	1.00		1.00	1.00		0.72	1.00		0.21	1.00	
Satd. Flow (perm)	1837	3511		1837	3474		1327	1560		378	1597	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	95	1474	74	311	1026	100	68	11	247	205	0	53
RTOR Reduction (vph)	0	3	0	0	4	0	0	172	0	0	41	0
Lane Group Flow (vph)	95	1545	0	311	1122	0	68	86	0	205	12	0
Confl. Peds. (#/hr)	10		-	•		10			15	15		-
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	13	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		pm+pt	NA	
Protected Phases	5	2		1	6		. 0	8		7	4	
Permitted Phases							8			4		
Actuated Green, G (s)	11.7	61.7		28.9	78.9		15.4	15.4		30.4	30.4	
Effective Green, g (s)	12.7	62.7		29.9	79.9		16.4	16.4		31.4	31.4	
Actuated g/C Ratio	0.09	0.45		0.21	0.57		0.12	0.12		0.22	0.22	
Clearance Time (s)	6.0	6.3		6.0	6.3		6.7	6.7		4.0	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	166	1572		392	1982		155	182		209	358	
v/s Ratio Prot	0.05	c0.44		c0.17	0.32		100	0.06		c0.08	0.01	
v/s Ratio Perm	0.00	00.11		00.11	0.02		0.05	0.00		c0.14	0.01	
v/c Ratio	0.57	0.98		0.79	0.57		0.44	0.47		0.98	0.03	
Uniform Delay, d1	61.0	38.1		52.1	19.1		57.5	57.8		50.0	42.4	
Progression Factor	1.00	1.00		0.74	2.15		1.00	1.00		1.00	1.00	
Incremental Delay, d2	4.7	19.0		6.8	0.7		2.0	1.9		56.5	0.0	
Delay (s)	65.7	57.1		45.5	41.7		59.5	59.7		106.5	42.5	
Level of Service	65.7 E	57.1		TJ.5	D		55.5 E	55.7 E		F	72.5 D	
Approach Delay (s)		57.6		D	42.5			59.6			93.4	
Approach LOS		57.0			D			E			F	
Intersection Summary												
HCM 2000 Control Delay			54.4	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	rity ratio		0.96	- 11	OM 2000	L0701011	OOI VIOO		U			
Actuated Cycle Length (s)	nty rado		140.0	9	um of lost	time (c)			19.0			
Intersection Capacity Utilizat	ion		104.9%		U Level				13.0 G			
Analysis Period (min)	1011		15	ic	C LOVEI (,, OGI 4100			3			
c Critical Lane Group			10									

Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

	•	*	†	-	-	ļ		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	*	7	^	7	*	414		
Traffic Volume (vph)	195	640	480	205	945	400		
Future Volume (vph)	195	640	480	205	945	400		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.3	3.3	3.5	3.3	3.3	3.5		
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00	0.95	1.00	0.91	0.91		
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.97		
Satd. Flow (prot)	1745	1546	3535	1527	1572	3296		
Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.97		
Satd. Flow (perm)	1745	1546	3535	1527	1572	3296		
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
Adj. Flow (vph)	217	711	533	228	1050	444		
RTOR Reduction (vph)	0	51	0	168	0	0		
Lane Group Flow (vph)	217	660	533	60	525	969		
Confl. Peds. (#/hr)				10	10			
Heavy Vehicles (%)	0%	1%	1%	0%	1%	1%		
Turn Type	Perm	pm+ov	NA	Perm	Split	NA		
Protected Phases		2	5		2	2		
Permitted Phases	8	8		5				
Actuated Green, G (s)	18.9	65.6	24.0	24.0	46.7	46.7		
Effective Green, g (s)	19.9	67.6	25.0	25.0	47.7	47.7		
Actuated g/C Ratio	0.18	0.61	0.23	0.23	0.43	0.43		
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	315	1034	803	347	681	1429		
v/s Ratio Prot		c0.28	c0.15		c0.33	0.29		
v/s Ratio Perm	0.12	0.15		0.04				
v/c Ratio	0.69	0.64	0.66	0.17	0.77	0.68		
Uniform Delay, d1	42.2	13.4	38.7	34.2	26.5	25.0		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	6.2	1.3	2.1	0.2	8.2	2.6		
Delay (s)	48.3	14.8	40.8	34.4	34.7	27.6		
Level of Service	D	В	D	С	С	С		
Approach Delay (s)	22.6		38.9			30.1		
Approach LOS	С		D			С		
Intersection Summary								
HCM 2000 Control Delay			30.0	Н	CM 2000	Level of Service	<u> </u>	С
HCM 2000 Volume to Capa	city ratio		0.74		J.71 2000	20.010100100	•	_
Actuated Cycle Length (s)	ony rano		110.0	S	um of lost	time (s)	18	3.4
Intersection Capacity Utiliza	ation		71.0%		CU Level o	(-)		C
Analysis Period (min)			15	10	2 20.010			
c Critical Lane Group			.5					

Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 5: Highway 401 WB Off-Ramp & Kingston Road

	-	*	1	+	1	*		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
ane Configurations	↑ î»		*	^	77	7		
Fraffic Volume (vph)	1735	25	275	965	580	80		
Future Volume (vph)	1735	25	275	965	580	80		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.5	3.5	3.3	3.5	3.3	3.3		
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4		
Lane Util. Factor	0.95		1.00	0.95	0.97	1.00		
Frt	1.00		1.00	1.00	1.00	0.85		
Flt Protected	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3528		1694	3535	3351	1531		
FIt Permitted	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3528		1694	3535	3351	1531		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	1826	26	289	1016	611	84		
RTOR Reduction (vph)	1	0	0	0	0	20		
Lane Group Flow (vph)	1851	0	289	1016	611	64		
Heavy Vehicles (%)	1%	0%	3%	1%	1%	2%		
Turn Type	NA		Prot	NA	Prot	Perm		
Protected Phases	2		1	6	8			
Permitted Phases						8		
Actuated Green, G (s)	73.9		24.1	101.0	26.4	26.4		
Effective Green, q (s)	74.9		25.1	102.0	27.4	27.4		
Actuated g/C Ratio	0.54		0.18	0.73	0.20	0.20		
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4		
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	1887		303	2575	655	299		
v/s Ratio Prot	c0.52		c0.17	0.29	c0.18			
v/s Ratio Perm	00.02			0.20	555	0.04		
v/c Ratio	0.98		0.95	0.39	0.93	0.21		
Uniform Delay, d1	31.9		56.9	7.2	55.4	47.3		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
Incremental Delay, d2	16.7		39.1	0.5	20.3	0.4		
Delay (s)	48.5		96.0	7.7	75.7	47.6		
Level of Service	D		F	Α	E	D		
Approach Delay (s)	48.5			27.3	72.3			
Approach LOS	D			С	Е			
ntersection Summary								
HCM 2000 Control Delay			45.6	Н	CM 2000	Level of Service	ce	D
HCM 2000 Volume to Capa	city ratio		0.96					
Actuated Cycle Length (s)	,		140.0	S	um of lost	t time (s)		12.6
Intersection Capacity Utiliza	ition		92.7%	IC	U Level	of Service		F
Analysis Period (min)			15					

c Critical Lane Group

	•	*	1	†	ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	ሻሻ	77		^	^		
Traffic Volume (vph)	1460	700	0	1120	645	0	
Future Volume (vph)	1460	700	0	1120	645	0	
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
ane Width	3.3	3.3	3.5	3.5	3.5	3.5	
Total Lost time (s)	4.5	4.5	0.0	5.7	5.7	0.0	
ane Util. Factor	0.97	0.88		0.95	0.95		
Frpb, ped/bikes	1.00	1.00		1.00	1.00		
Flpb, ped/bikes	1.00	1.00		1.00	1.00		
Frt	1.00	0.85		1.00	1.00		
Flt Protected	0.95	1.00		1.00	1.00		
Satd. Flow (prot)	3385	2720		3570	3570		
Flt Permitted	0.95	1.00		1.00	1.00		
Satd. Flow (perm)	3385	2720		3570	3570		
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	
	1604	769	0.91	1231	709	0.91	
Adj. Flow (vph) RTOR Reduction (vph)	1604	769	0	1231	709	0	
Lane Group Flow (vph)	1604	695	0	1231	709	0	
Confl. Peds. (#/hr)	1004	090	10	1231	709	10	
Heavy Vehicles (%)	0%	1%	0%	0%	0%	0%	
, ,			0 /0			U /0	
Turn Type	Prot 4	Perm		NA 2	NA 6		
Protected Phases Permitted Phases	4	4		2	Ь		
	FO 4			27.7	27.7		
Actuated Green, G (s)	50.1	50.1		37.7	37.7		
Effective Green, g (s)	51.1	51.1		38.7	38.7		
Actuated g/C Ratio	0.51	0.51		0.39	0.39		
Clearance Time (s)	5.5	5.5		6.7	6.7		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		
Lane Grp Cap (vph)	1729	1389		1381	1381		
v/s Ratio Prot	c0.47			c0.34	0.20		
v/s Ratio Perm		0.26					
v/c Ratio	0.93	0.50		0.89	0.51		
Uniform Delay, d1	22.7	16.1		28.7	23.4		
Progression Factor	1.00	1.00		1.00	1.00		
Incremental Delay, d2	9.1	0.3		9.0	1.4		
Delay (s)	31.8	16.3		37.7	24.8		
Level of Service	С	В		D	С		
Approach Delay (s)	26.8			37.7	24.8		
Approach LOS	С			D	С		
ntersection Summary							
HCM 2000 Control Delay			29.6	Н	CM 2000	Level of Service	С
HCM 2000 Volume to Capa	acity ratio		0.91		2000		ŭ
Actuated Cycle Length (s)	aony rado		100.0	S	um of lost	time (s)	10.2
Intersection Capacity Utiliza	ation		87.8%		CU Level o	- (-)	E
Analysis Period (min)			15	- 10	LOTOIC	. 5511100	_
c Critical Lane Group							

Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 9: Car Dealer Site Access/Delta Boulevard & Kingston Road

	*	-	*	•	←	*	4	†	1	-	.↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	^	7	ሻ	1>		ሻ	î,	
Traffic Volume (vph)	145	1520	45	70	1380	95	165	20	130	100	10	150
Future Volume (vph)	145	1520	45	70	1380	95	165	20	130	100	10	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.7	5.7	5.6	5.6		5.6	5.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.98		1.00	0.97	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3535	1541	1785	3535	1517	1761	1604		1773	1569	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.56	1.00		0.59	1.00	
Satd. Flow (perm)	1785	3535	1541	1785	3535	1517	1043	1604		1092	1569	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	148	1551	46	71	1408	97	168	20	133	102	10	153
RTOR Reduction (vph)	0	0	19	0	0	31	0	106	0	0	122	0
Lane Group Flow (vph)	148	1551	27	71	1408	66	168	47	0	102	41	0
Confl. Peds. (#/hr)	10		5	5		10	10		5	5		10
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases			2			6	8			4		
Actuated Green, G (s)	14.3	63.7	63.7	8.4	58.0	58.0	21.4	21.4		21.4	21.4	
Effective Green, g (s)	15.3	64.7	64.7	9.4	59.0	59.0	22.4	22.4		22.4	22.4	
Actuated g/C Ratio	0.14	0.59	0.59	0.09	0.54	0.54	0.20	0.20		0.20	0.20	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.7	6.7	6.6	6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	248	2079	906	152	1896	813	212	326		222	319	
v/s Ratio Prot	c0.08	c0.44		0.04	0.40			0.03			0.03	
v/s Ratio Perm			0.02			0.04	c0.16			0.09		
v/c Ratio	0.60	0.75	0.03	0.47	0.74	0.08	0.79	0.14		0.46	0.13	
Uniform Delay, d1	44.5	16.6	9.5	47.9	19.6	12.4	41.6	35.9		38.5	35.8	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.8	2.5	0.1	2.3	2.7	0.2	18.1	0.2		1.5	0.2	
Delay (s)	48.3	19.1	9.6	50.2	22.3	12.6	59.7	36.1		40.0	36.0	
Level of Service	D	В	A	D	C	В	Е	D		D	D	
Approach Delay (s)		21.3			23.0			48.5			37.5	
Approach LOS		С			С			D			D	
Intersection Summary												
HCM 2000 Control Delay			25.3	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.75									
Actuated Cycle Length (s)			110.0		um of los				13.5			
Intersection Capacity Utiliza	ation		84.9%	IC	U Level	of Service)		Е			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis 2: Site Access (West) & Kingston Road

	\rightarrow	*	1	-	1	1			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	^	7		^	W				
Traffic Volume (veh/h)	1590	170	0	1115	0	0			
Future Volume (Veh/h)	1590	170	0	1115	0	0			
Sign Control	Free			Free	Stop				
Grade	0%			0%	0%				
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96			
Hourly flow rate (vph)	1656	177	0	1161	0	0			
Pedestrians									
Lane Width (m)									
Walking Speed (m/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None			None					
Median storage veh)									
Upstream signal (m)				153					
pX. platoon unblocked					0.79				
vC, conflicting volume			1833		2236	828			
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol			1833		2036	828			
tC, single (s)			4.1		6.8	7.0			
tC, 2 stage (s)									
tF (s)			2.2		3.5	3.3			
p0 queue free %			100		100	100			
cM capacity (veh/h)			337		40	308			
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	WB 3	NB 1		
Volume Total	828	828	177	0	580	580	0		_
Volume Left	0	0	0	0	0	0	0		
Volume Right	0	0	177	0	0	0	0		
cSH	1700	1700	1700	1700	1700	1700	1700		
Volume to Capacity	0.49	0.49	0.10	0.00	0.34	0.34	0.00		
Queue Length 95th (m)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Lane LOS							A		
Approach Delay (s)	0.0			0.0			0.0		
Approach LOS							А		
Intersection Summary									
Average Delay			0.0						
Intersection Capacity Utilizat	ion		47.3%	IC	U Level	of Service		Α	
Analysis Period (min)			15						

Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn Whites / Kingston SW

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

	•	-	•	•	←	*	4	†	1	-	Į.	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ħβ		Ţ	↑ î>		7	ĵ»		7	î,	
Traffic Volume (vph)	130	1685	5	5	1040	70	5	5	15	60	0	70
Future Volume (vph)	130	1685	5	5	1040	70	5	5	15	60	0	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.0	5.4		5.0	5.4		5.2	5.2		5.2	5.2	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.99	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99		1.00	0.89		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1745	3533		1745	3492		1732	1664		1745	1549	
Flt Permitted	0.95	1.00		0.95	1.00		0.71	1.00		0.74	1.00	
Satd. Flow (perm)	1745	3533	_	1745	3492	_	1292	1664		1366	1549	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	138	1793	5	5	1106	74	5	5	16	64	0	74
RTOR Reduction (vph)	0	0	0	0	4	0	0	14	0	0	67	0
Lane Group Flow (vph)	138	1798	0	5	1176	0	5	7	0	64	7	0
Confl. Peds. (#/hr)	10					10	5					5
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	1%
Bus Blockages (#/hr)	0	0	11	0	0	11	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6		•	8			4	
Permitted Phases							8			4		
Actuated Green, G (s)	13.1	71.2		1.3	59.4		8.9	8.9		8.9	8.9	
Effective Green, g (s)	14.1	72.2		2.3	60.4		9.9	9.9		9.9	9.9	
Actuated g/C Ratio	0.14	0.72		0.02	0.60		0.10	0.10		0.10	0.10	
Clearance Time (s)	6.0	6.4		6.0	6.4		6.2	6.2		6.2	6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	246	2550		40	2109		127	164		135	153	
v/s Ratio Prot	c0.08	c0.51		0.00	0.34			0.00		100	0.00	
v/s Ratio Perm	00.00	00.01		0.00	0.01		0.00	0.00		c0.05	0.00	
v/c Ratio	0.56	0.71		0.12	0.56		0.04	0.04		0.47	0.05	
Uniform Delay, d1	40.1	7.9		47.9	11.8		40.7	40.8		42.6	40.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.9	1.7		1.4	1.1		0.1	0.1		2.6	0.1	
Delay (s)	43.0	9.5		49.3	12.9		40.9	40.9		45.2	40.9	
Level of Service	D	A		D	В		D	D		D	D	
Approach Delay (s)		11.9			13.0			40.9			42.9	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			13.9	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.69		OM 2000	LOVOI OI V	JOI 1100		_			
Actuated Cycle Length (s)			100.0		um of lost				15.6			
Intersection Capacity Utiliza	ition		74.7%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 4: Whites Road & Kingston Road

	*	\rightarrow	*	1	-	*	1	†	1	-	Ų.	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	*	^	7	*	^ ^	7	*	ተተተ	7
Traffic Volume (vph)	205	1075	580	255	895	565	345	1040	745	190	800	150
Future Volume (vph)	205	1075	580	255	895	565	345	1040	745	190	800	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3
Total Lost time (s)	2.0	6.0	3.0	2.0	6.0	3.0	2.0	6.1	2.0	2.0	6.1	6.1
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1745	3535	1538	1728	3535	1533	1744	5079	1514	1744	5129	1457
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.20	1.00	1.00	0.15	1.00	1.00
Satd. Flow (perm)	1745	3535	1538	1728	3535	1533	363	5079	1514	266	5129	1457
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	211	1108	598	263	923	582	356	1072	768	196	825	155
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	110	0	0	56
Lane Group Flow (vph)	211	1108	598	263	923	582	356	1072	658	196	825	99
Confl. Peds. (#/hr)	20		10	10		20	10		20	20		10
Heavy Vehicles (%)	0%	1%	0%	1%	1%	0%	0%	1%	0%	0%	0%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	2	0	0	4
Turn Type	Prot	NA	Free	Prot	NA	Free	pm+pt	NA	pm+ov	pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases			Free			Free	8		8	4		4
Actuated Green, G (s)	19.1	43.0	140.0	21.0	44.9	140.0	58.9	42.1	63.1	51.7	37.9	37.9
Effective Green, g (s)	20.1	44.0	140.0	22.0	45.9	140.0	59.9	43.1	65.1	53.7	38.9	38.9
Actuated g/C Ratio	0.14	0.31	1.00	0.16	0.33	1.00	0.43	0.31	0.46	0.38	0.28	0.28
Clearance Time (s)	3.0	7.0		3.0	7.0		3.0	7.1	3.0	3.0	7.1	7.1
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	250	1111	1538	271	1158	1533	342	1563	704	258	1425	404
v/s Ratio Prot	0.12	c0.31		c0.15	0.26		c0.14	0.21	c0.15	0.08	0.16	
v/s Ratio Perm			c0.39			0.38	0.30		0.29	0.21		0.07
v/c Ratio	0.84	1.00	0.39	0.97	0.80	0.38	1.04	0.69	0.94	0.76	0.58	0.24
Uniform Delay, d1	58.4	47.9	0.0	58.7	42.8	0.0	31.3	42.5	35.5	31.7	43.5	39.2
Progression Factor	1.22	1.06	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	9.1	15.4	0.3	46.3	5.7	0.7	59.7	2.5	19.6	12.1	1.7	1.4
Delay (s)	80.2	66.2	0.3	105.0	48.6	0.7	91.0	45.0	55.0	43.8	45.2	40.6
Level of Service	F	Е	Α	F	D	Α	F	D	Е	D	D	D
Approach Delay (s)		47.2			41.2			56.0			44.4	
Approach LOS		D			D			Е			D	
Intersection Summary												
HCM 2000 Control Delay			48.0	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	ity ratio		0.98									
Actuated Cycle Length (s)			140.0	S	um of lost	time (s)			16.1			
Intersection Capacity Utilizat	ion		110.8%		U Level		9		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn Whites / Kingston SW

HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

	•	-	*	1	←	*	1	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	† }		ň	† }		, N	ĵ.,		Ţ	ĵ.,	
Traffic Volume (vph)	90	1430	70	295	1000	95	65	10	235	195	0	50
Future Volume (vph)	90	1430	70	295	1000	95	65	10	235	195	0	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.0	5.3		5.0	5.3		5.7	5.7		3.0	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.99		1.00	0.99		1.00	0.86		1.00	0.85	
Flt Protected	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Satd. Flow (prot)	1837	3511		1837	3475		1837	1560		1834	1597	
Flt Permitted	1.00	1.00		1.00	1.00		0.72	1.00		0.21	1.00	
Satd. Flow (perm)	1837	3511		1837	3475		1327	1560		378	1597	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	95	1505	74	311	1053	100	68	11	247	205	0	53
RTOR Reduction (vph)	0	3	0	0	4	0	0	171	0	0	41	0
Lane Group Flow (vph)	95	1576	0	311	1149	0	68	87	0	205	12	0
Confl. Peds. (#/hr)	10					10			15	15		
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	13	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		pm+pt	NA	
Protected Phases	5	2		1	6			8		7	4	
Permitted Phases							8			4		
Actuated Green, G (s)	11.7	61.7		28.9	78.9		15.4	15.4		30.4	30.4	
Effective Green, g (s)	12.7	62.7		29.9	79.9		16.4	16.4		31.4	31.4	
Actuated g/C Ratio	0.09	0.45		0.21	0.57		0.12	0.12		0.22	0.22	
Clearance Time (s)	6.0	6.3		6.0	6.3		6.7	6.7		4.0	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	166	1572		392	1983		155	182		209	358	
v/s Ratio Prot	0.05	c0.45		c0.17	0.33		100	0.06		c0.08	0.01	
v/s Ratio Perm	0.00	00.10		00.11	0.00		0.05	0.00		c0.14	0.01	
v/c Ratio	0.57	1.00		0.79	0.58		0.44	0.48		0.98	0.03	
Uniform Delay, d1	61.0	38.6		52.1	19.3		57.5	57.8		50.0	42.4	
Progression Factor	1.00	1.00		1.05	0.84		1.00	1.00		1.00	1.00	
Incremental Delay, d2	4.7	23.3		6.6	0.04		2.0	2.0		56.5	0.0	
Delay (s)	65.7	62.0		61.1	17.0		59.5	59.8		106.5	42.5	
Level of Service	65.7 E	02.0 E		E	В		55.5 E	55.6 E		F	72.0 D	
Approach Delay (s)		62.2			26.3			59.7			93.4	
Approach LOS		02.2 E			20.5 C			55.1 E			55.4 F	
Intersection Summary												
HCM 2000 Control Delay			50.0	ш	CM 2000	Lovel of	Sorvice		D			
HCM 2000 Control Delay HCM 2000 Volume to Capac	ity ratio		0.97	Н	CIVI ZUUU	revei of	SELVICE		U			
	ity ratio		140.0	0.	um of lost	time (c)			19.0			
Actuated Cycle Length (s) Intersection Capacity Utilizati	on		105.7%		U Level				19.0 G			
Analysis Period (min)	UII		105.7%	IC	o Level (o service	;		G			
Analysis Pellou (IIIIII)			10									

	€	•	†	1	-	↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ች	7	44	7	7	414			
Traffic Volume (vph)	195	640	490	205	945	410			
Future Volume (vph)	195	640	490	205	945	410			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Lane Width	3.3	3.3	3.5	3.3	3.3	3.5			
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0			
Lane Util, Factor	1.00	1.00	0.95	1.00	0.91	0.91			
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00			
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.97			
Satd, Flow (prot)	1745	1546	3535	1527	1572	3297			
Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.97			
Satd. Flow (perm)	1745	1546	3535	1527	1572	3297			
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90			
Adj. Flow (vph)	217	711	544	228	1050	456			
RTOR Reduction (vph)	0	49	0	165	0	0			
Lane Group Flow (vph)	217	662	544	63	525	981			
Confl. Peds. (#/hr)	217	002	344	10	10	301			
	0%	1%	1%	0%	1%	1%			
Heavy Vehicles (%)									
Turn Type	Perm	pm+ov	NA	Perm	Split	NA			
Protected Phases		2	5	_	2	2			
Permitted Phases	8	8	04.4	5	40.0	10.0			
Actuated Green, G (s)	18.9	65.5	24.1	24.1	46.6	46.6			
Effective Green, g (s)	19.9	67.5	25.1	25.1	47.6	47.6			
Actuated g/C Ratio	0.18	0.61	0.23	0.23	0.43	0.43			
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0			
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0			
Lane Grp Cap (vph)	315	1033	806	348	680	1426			
v/s Ratio Prot		c0.28	c0.15		c0.33	0.30			
v/s Ratio Perm	0.12	0.15		0.04					
v/c Ratio	0.69	0.64	0.67	0.18	0.77	0.69			
Uniform Delay, d1	42.2	13.5	38.7	34.2	26.6	25.2			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	6.2	1.4	2.2	0.3	8.3	2.7			
Delay (s)	48.3	14.9	41.0	34.4	34.9	27.9			
Level of Service	D	В	D	С	С	С			
Approach Delay (s)	22.7		39.0			30.4			
Approach LOS	С		D			С			
Intersection Summary									
HCM 2000 Control Delay			30.2	П	CM 2000	Level of Service	0	С	
HCM 2000 Control Delay	oity rotic		0.74	П	OIVI 2000	reveror servic	<u>-</u>	U	
	city ratio		110.0	c	um of lost	time (e)		18.4	
Actuated Cycle Length (s)	ation					of Service		10.4 C	
Intersection Capacity Utiliza	IUOII		71.0%	IC	o Level (of service		C	
Analysis Period (min)			15						
c Critical Lane Group									

Whites / Kingston SW Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 5: Highway 401 WB Off-Ramp & Kingston Road

	-	•	•	←	4	<i>></i>		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
ane Configurations	† 13		ሻ	^	77	7		
raffic Volume (vph)	1755	25	280	970	595	80		
uture Volume (vph)	1755	25	280	970	595	80		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
ane Width	3.5	3.5	3.3	3.5	3.3	3.3		
Total Lost time (s)	6.2		2.0	6.2	4.4	4.4		
Lane Util. Factor	0.95		1.00	0.95	0.97	1.00		
Frt	1.00		1.00	1.00	1.00	0.85		
Flt Protected	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3528		1694	3535	3351	1531		
Flt Permitted	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3528		1694	3535	3351	1531		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	1847	26	295	1021	626	84		
RTOR Reduction (vph)	0	0	0	0	0	19		
Lane Group Flow (vph)	1873	0	295	1021	626	65		
Heavy Vehicles (%)	1%	0%	3%	1%	1%	2%		
Turn Type	NA		Prot	NA	Prot	Perm		
Protected Phases	2		1	6	8			
Permitted Phases						8		
Actuated Green, G (s)	73.8		24.0	100.8	26.6	26.6		
Effective Green, g (s)	74.8		25.0	101.8	27.6	27.6		
Actuated g/C Ratio	0.53		0.18	0.73	0.20	0.20		
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4		
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	1884		302	2570	660	301		
v/s Ratio Prot	c0.53		c0.17	0.29	c0.19			
v/s Ratio Perm						0.04		
v/c Ratio	0.99		0.98	0.40	0.95	0.22		
Uniform Delay, d1	32.4		57.2	7.3	55.5	47.1		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
Incremental Delay, d2	19.3		45.0	0.5	22.9	0.4		
Delay (s)	51.7		102.2	7.8	78.4	47.5		
Level of Service	D		F	Α	Е	D		
Approach Delay (s)	51.7			29.0	74.7			
Approach LOS	D			С	Е			
ntersection Summary								
HCM 2000 Control Delay			48.2	H	CM 2000	Level of Servi	ce	D
HCM 2000 Volume to Capac	city ratio		0.98					
Actuated Cycle Length (s)			140.0	Sı	um of lost	t time (s)	1	2.6
Intersection Capacity Utilizat	tion		94.0%	IC	U Level	of Service		F
Analysis Period (min)			15					

c Critical Lane Group

Whites / Kingston SW

Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 10: Whites Road & Highway 401 EB Off-Ramp

	<i>></i>	*	1	†	↓	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻሻ	77		^	^			
Traffic Volume (vph)	1490	700	0	1130	655	0		
Future Volume (vph)	1490	700	0	1130	655	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.3	3.3	3.5	3.5	3.5	3.5		
Total Lost time (s)	4.5	4.5		5.7	5.7			
Lane Util. Factor	0.97	0.88		0.95	0.95			
Frpb, ped/bikes	1.00	1.00		1.00	1.00			
Flpb, ped/bikes	1.00	1.00		1.00	1.00			
Frt	1.00	0.85		1.00	1.00			
Flt Protected	0.95	1.00		1.00	1.00			
Satd. Flow (prot)	3385	2720		3570	3570			
Flt Permitted	0.95	1.00		1.00	1.00			
Satd. Flow (perm)	3385	2720		3570	3570			
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91		
Adj. Flow (vph)	1637	769	0.91	1242	720	0.31		
RTOR Reduction (vph)	0	72	0	0	0	0		
Lane Group Flow (vph)	1637	697	0	1242	720	0		
Confl. Peds. (#/hr)	1007	001	10	1272	120	10		
Heavy Vehicles (%)	0%	1%	0%	0%	0%	0%		
Turn Type	Prot	Perm	070	NA	NA	070		
Protected Phases	4	Perm		NA 2	1NA 6			
Permitted Phases	4	4			0			
	E0 2	50.3		37.5	37.5			
Actuated Green, G (s)	50.3				38.5			
Effective Green, g (s)	51.3 0.51	51.3		38.5	0.38			
Actuated g/C Ratio		0.51		0.38				
Clearance Time (s)	5.5	5.5		6.7	6.7			
Vehicle Extension (s)	3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)	1736	1395		1374	1374			
v/s Ratio Prot	c0.48			c0.35	0.20			
v/s Ratio Perm		0.26						
v/c Ratio	0.94	0.50		0.90	0.52			
Uniform Delay, d1	23.0	15.9		29.0	23.7			
Progression Factor	1.00	1.00		1.00	1.00			
Incremental Delay, d2	10.9	0.3		10.0	1.4			
Delay (s)	33.9	16.2		39.0	25.1			
Level of Service	С	В		D	С			
Approach Delay (s)	28.2			39.0	25.1			
Approach LOS	С			D	С			
Intersection Summary								
HCM 2000 Control Delay			30.8	Н	CM 2000	Level of Service	С	
HCM 2000 Volume to Capa	city ratio		0.93					
Actuated Cycle Length (s)	,		100.0	S	um of lost	time (s)	10.2	
Intersection Capacity Utiliza	tion		88.9%	IC	U Level o	of Service	Е	
Analysis Period (min)			15					
c Critical Lane Group								

Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn Whites / Kingston SW

HCM Signalized Intersection Capacity Analysis 9: Car Dealer Site Access/Delta Boulevard & Kingston Road

	•	→	*	1	←	*	4	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	ሻ	^	7	ሻ	1>		ሻ	1>	
Traffic Volume (vph)	145	1540	45	70	1400	95	165	20	130	100	10	150
Future Volume (vph)	145	1540	45	70	1400	95	165	20	130	100	10	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.7	5.7	5.6	5.6		5.6	5.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.98		1.00	0.97	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3535	1541	1785	3535	1517	1761	1604		1773	1569	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.56	1.00		0.59	1.00	
Satd. Flow (perm)	1785	3535	1541	1785	3535	1517	1043	1604		1092	1569	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	148	1571	46	71	1429	97	168	20	133	102	10	153
RTOR Reduction (vph)	0	0	19	0	0	30	0	106	0	0	122	0
Lane Group Flow (vph)	148	1571	27	71	1429	67	168	47	0	102	41	0
Confl. Peds. (#/hr)	10		5	5		10	10		5	5		10
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Prot	NA	Perm	Prot	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases			2			6	8			4		
Actuated Green, G (s)	14.3	63.7	63.7	8.4	58.0	58.0	21.4	21.4		21.4	21.4	
Effective Green, g (s)	15.3	64.7	64.7	9.4	59.0	59.0	22.4	22.4		22.4	22.4	
Actuated g/C Ratio	0.14	0.59	0.59	0.09	0.54	0.54	0.20	0.20		0.20	0.20	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.7	6.7	6.6	6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	248	2079	906	152	1896	813	212	326		222	319	
v/s Ratio Prot	c0.08	c0.44	000	0.04	0.40	0.0		0.03			0.03	
v/s Ratio Perm	55.56	001	0.02	0.07	00	0.04	c0.16	0.00		0.09	0.00	
v/c Ratio	0.60	0.76	0.02	0.47	0.75	0.04	0.79	0.14		0.46	0.13	
Uniform Delay, d1	44.5	16.8	9.5	47.9	19.8	12.4	41.6	35.9		38.5	35.8	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.8	2.6	0.1	2.3	2.8	0.2	18.1	0.2		1.5	0.2	
Delay (s)	48.3	19.4	9.6	50.2	22.7	12.6	59.7	36.1		40.0	36.0	
Level of Service	-10.0 D	В	Α.	D	C	В.	E	D		TO.0	D	
Approach Delay (s)		21.6	.,		23.3		_	48.5			37.5	
Approach LOS		С			С			D			D	
Intersection Summary												
HCM 2000 Control Delay			25.5	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.75									
Actuated Cycle Length (s)	,		110.0	Si	um of los	t time (s)			13.5			
Intersection Capacity Utiliza	ation		85.4%			of Service)		E			
Analysis Period (min)			15									
c. Critical Lane Group												

c Critical Lane Group

HCM Unsignalized Intersection Capacity Analysis 2: Site Access (West) & Kingston Road

→ `	• •	—	4	1		
Movement EBT EB	BR WBL	WBT	NBL	NBR		
Lane Configurations ↑↑	7 5	^	¥#			
	70 0	1160	0	0		
	70 0	1160	0	0		
Sign Control Free		Free	Stop			
Grade 0%		0%	0%			
Peak Hour Factor 0.96 0.	96 0.96	0.96	0.96	0.96		
Hourly flow rate (vph) 1740 1	77 0	1208	0	0		
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type None		None				
Median storage veh)						
Upstream signal (m)		153				
pX, platoon unblocked			0.78			
vC, conflicting volume	1917		2344	870		
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1917		2157	870		
tC, single (s)	4.1		6.8	7.0		
tC, 2 stage (s)						
tF (s)	2.2		3.5	3.3		
p0 queue free %	100		100	100		
cM capacity (veh/h)	313		33	289		
Direction, Lane # EB 1 EB	32 EB3	WB 1	WB 2	WB 3	NB 1	
	70 177	0	604	604	0	
Volume Left 0	0 0	0	0	0	0	
Volume Right 0	0 177	0	0	0	0	
	00 1700	1700	1700	1700	1700	
	51 0.10	0.00	0.36	0.36	0.00	
	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	
Lane LOS					Α	
Approach Delay (s) 0.0		0.0			0.0	
Approach LOS					Α	
Intersection Summary						
Average Delay	0.0					
Intersection Capacity Utilization	49.5%	IC	CU Level	of Service		Α
Analysis Period (min)	15					

Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn Whites / Kingston SW

HCM Signalized Intersection Capacity Analysis 1: Kingston Road & Rosebank Road

	•	-	•	•	←	•	1	†	1	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	ħβ		Ţ	↑ î>		ň	ĵ»		7	î,	
Traffic Volume (vph)	130	1765	5	5	1085	70	5	5	15	60	0	70
Future Volume (vph)	130	1765	5	5	1085	70	5	5	15	60	0	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.0	5.4		5.0	5.4		5.2	5.2		5.2	5.2	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	0.98	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		0.99	1.00		1.00	1.00	
Frt	1.00	1.00		1.00	0.99		1.00	0.89		1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1745	3533		1745	3494		1732	1664		1745	1549	
Flt Permitted	0.95	1.00		0.95	1.00		0.71	1.00		0.74	1.00	
Satd. Flow (perm)	1745	3533		1745	3494		1292	1664		1366	1549	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	138	1878	5	5	1154	74	5	5	16	64	0	74
RTOR Reduction (vph)	0	0	0	0	4	0	0	14	0	0	67	0
Lane Group Flow (vph)	138	1883	0	5	1224	0	5	7	0	64	7	0
Confl. Peds. (#/hr)	10					10	5					5
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	1%
Bus Blockages (#/hr)	0	0	11	0	0	11	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		Perm	NA	
Protected Phases	5	2		1	6			8			4	
Permitted Phases							8			4		
Actuated Green, G (s)	13.1	71.2		1.3	59.4		8.9	8.9		8.9	8.9	
Effective Green, g (s)	14.1	72.2		2.3	60.4		9.9	9.9		9.9	9.9	
Actuated g/C Ratio	0.14	0.72		0.02	0.60		0.10	0.10		0.10	0.10	
Clearance Time (s)	6.0	6.4		6.0	6.4		6.2	6.2		6.2	6.2	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	246	2550		40	2110		127	164		135	153	
v/s Ratio Prot	c0.08	c0.53		0.00	0.35			0.00			0.00	
v/s Ratio Perm							0.00			c0.05		
v/c Ratio	0.56	0.74		0.12	0.58		0.04	0.04		0.47	0.05	
Uniform Delay, d1	40.1	8.3		47.9	12.1		40.7	40.8		42.6	40.8	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2	2.9	2.0		1.4	1.2		0.1	0.1		2.6	0.1	
Delay (s)	43.0	10.2		49.3	13.2		40.9	40.9		45.2	40.9	
Level of Service	D	В		D	В		D	D		D	D	
Approach Delay (s)		12.5			13.4			40.9			42.9	
Approach LOS		В			В			D			D	
Intersection Summary												
HCM 2000 Control Delay			14.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.72									
Actuated Cycle Length (s)			100.0		um of los				15.6			
Intersection Capacity Utiliza	ition		76.9%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 4: Whites Road & Kingston Road

	≯	-	*	•	-	*	1	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	^	7	ሻ	^	7	*	^ ^	7		^ ^	7
Traffic Volume (vph)	205	1125	610	255	930	565	355	1090	755	190	835	150
Future Volume (vph)	205	1125	610	255	930	565	355	1090	755	190	835	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3	3.3	3.5	3.3
Total Lost time (s)	2.0	6.0	3.0	2.0	6.0	3.0	2.0	6.1	2.0	2.0	6.1	6.1
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.91	1.00	1.00	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.99	1.00	1.00	0.98	1.00	1.00	0.98	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1745	3535	1538	1728	3535	1533	1744	5079	1514	1744	5129	1457
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.18	1.00	1.00	0.13	1.00	1.00
Satd. Flow (perm)	1745	3535	1538	1728	3535	1533	335	5079	1514	231	5129	1457
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Adj. Flow (vph)	211	1160	629	263	959	582	366	1124	778	196	861	155
RTOR Reduction (vph)	0	0	0	0	0	0	0	0	110	0	0	56
Lane Group Flow (vph)	211	1160	629	263	959	582	366	1124	668	196	861	99
Confl. Peds. (#/hr)	20		10	10		20	10		20	20		10
Heavy Vehicles (%)	0%	1%	0%	1%	1%	0%	0%	1%	0%	0%	0%	3%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	2	0	0	4
Turn Type	Prot	NA	Free	Prot	NA	Free	pm+pt	NA	pm+ov	pm+pt	NA	Perm
Protected Phases	5	2		1	6		3	8	1	7	4	
Permitted Phases			Free			Free	8		8	4		4
Actuated Green, G (s)	19.1	43.0	140.0	21.0	44.9	140.0	58.9	42.0	63.0	51.8	37.9	37.9
Effective Green, g (s)	20.1	44.0	140.0	22.0	45.9	140.0	59.9	43.0	65.0	53.8	38.9	38.9
Actuated g/C Ratio	0.14	0.31	1.00	0.16	0.33	1.00	0.43	0.31	0.46	0.38	0.28	0.28
Clearance Time (s)	3.0	7.0		3.0	7.0		3.0	7.1	3.0	3.0	7.1	7.1
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	250	1111	1538	271	1158	1533	334	1559	702	249	1425	404
v/s Ratio Prot	0.12	c0.33		c0.15	0.27		c0.15	0.22	c0.15	0.08	0.17	
v/s Ratio Perm			c0.41			0.38	0.32		0.29	0.22		0.07
v/c Ratio	0.84	1.04	0.41	0.97	0.83	0.38	1.10	0.72	0.95	0.79	0.60	0.24
Uniform Delay, d1	58.4	48.0	0.0	58.7	43.4	0.0	30.9	43.2	36.0	32.1	43.9	39.2
Progression Factor	1.30	0.53	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	6.8	27.1	0.2	46.3	6.9	0.7	77.4	2.9	22.7	15.1	1.9	1.4
Delay (s)	82.5	52.6	0.2	105.0	50.3	0.7	108.3	46.1	58.7	47.2	45.8	40.6
Level of Service	F	D	Α	F	D	Α	F	D	Е	D	D	D
Approach Delay (s)		39.3			42.3			60.5			45.3	
Approach LOS		D			D			Е			D	
Intersection Summary												
HCM 2000 Control Delay			47.6	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capaci	ity ratio		1.01									
Actuated Cycle Length (s)			140.0	S	um of los	t time (s)			16.1			
Intersection Capacity Utilizati	on		112.5%	IC	U Level	of Service	е		Н			
Analysis Period (min)			15									
c Critical Lane Group												

Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn Whites / Kingston SW

HCM Signalized Intersection Capacity Analysis 3: Site Access (East)/Steeple Hill & Kingston Road

	•	-	\rightarrow	•	←	*	1	1	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑ ₽		Ĭ	† }		ň	- ↑		7	f)	
Traffic Volume (vph)	90	1510	70	295	1045	95	65	10	235	195	0	50
Future Volume (vph)	90	1510	70	295	1045	95	65	10	235	195	0	50
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	3.3	3.5	3.3	3.3	3.5	3.5	3.3	3.5	3.5	3.3	3.5	3.5
Total Lost time (s)	5.0	5.3		5.0	5.3		5.7	5.7		3.5	5.7	
Lane Util. Factor	1.00	0.95		1.00	0.95		1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	0.97		1.00	1.00	
Flpb, ped/bikes	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Frt	1.00	0.99		1.00	0.99		1.00	0.86		1.00	0.85	
Flt Protected	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Satd. Flow (prot)	1837	3512		1837	3477		1837	1560		1834	1597	
Flt Permitted	1.00	1.00		1.00	1.00		0.72	1.00		0.20	1.00	
Satd. Flow (perm)	1837	3512		1837	3477		1327	1560		367	1597	
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	95	1589	74	311	1100	100	68	11	247	205	0	53
RTOR Reduction (vph)	0	2	0	0	4	0	0	168	0	0	41	0
Lane Group Flow (vph)	95	1661	0	311	1196	0	68	90	0	205	12	0
Confl. Peds. (#/hr)	10					10			15	15		
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Bus Blockages (#/hr)	0	0	0	0	0	13	0	0	0	0	0	0
Turn Type	Prot	NA		Prot	NA		Perm	NA		pm+pt	NA	
Protected Phases	5	2		1	6			8		7	4	
Permitted Phases							8			4		
Actuated Green, G (s)	11.7	61.7		28.8	78.8		15.5	15.5		30.5	30.5	
Effective Green, g (s)	12.7	62.7		29.8	79.8		16.5	16.5		31.5	31.5	
Actuated g/C Ratio	0.09	0.45		0.21	0.57		0.12	0.12		0.22	0.22	
Clearance Time (s)	6.0	6.3		6.0	6.3		6.7	6.7		4.5	6.7	
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	166	1572		391	1981		156	183		203	359	
v/s Ratio Prot	0.05	c0.47		c0.17	0.34			0.06		c0.08	0.01	
v/s Ratio Perm							0.05			c0.14		
v/c Ratio	0.57	1.06		0.80	0.60		0.44	0.49		1.01	0.03	
Uniform Delay, d1	61.0	38.6		52.2	19.7		57.4	57.8		50.4	42.4	
Progression Factor	1.00	1.00		0.72	2.14		1.00	1.00		1.00	1.00	
Incremental Delay, d2	4.7	39.3		6.1	0.8		1.9	2.1		65.7	0.0	
Delay (s)	65.7	77.9		43.8	43.0		59.4	59.9		116.1	42.4	
Level of Service	Е	Е		D	D		Е	Е		F	D	
Approach Delay (s)		77.3			43.1			59.8			101.0	
Approach LOS		Е			D			Е			F	
Intersection Summary												
HCM 2000 Control Delay			64.0	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		1.00									
Actuated Cycle Length (s)			140.0	S	um of los	t time (s)			19.5			
Intersection Capacity Utiliza	tion		108.0%	IC	U Level	of Service			G			
Analysis Period (min)			15									
c Critical Lane Group												

	•	*	†	1	-	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
ane Configurations	*	7	44	7	*	414		
Traffic Volume (vph)	195	640	520	205	945	435		
uture Volume (vph)	195	640	520	205	945	435		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
ane Width	3.3	3.3	3.5	3.3	3.3	3.5		
Total Lost time (s)	5.4	6.0	6.0	6.0	6.0	6.0		
ane Util, Factor	1.00	1.00	0.95	1.00	0.91	0.91		
Frpb, ped/bikes	1.00	1.00	1.00	0.98	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	0.85	1.00	1.00		
Flt Protected	0.95	1.00	1.00	1.00	0.95	0.97		
Satd. Flow (prot)	1745	1546	3535	1527	1572	3300		
Flt Permitted	0.95	1.00	1.00	1.00	0.95	0.97		
Satd. Flow (perm)	1745	1546	3535	1527	1572	3300		
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90		
Adj. Flow (vph)	217	711	578	228	1050	483		
RTOR Reduction (vph)	0	43	0	154	0	0		
ane Group Flow (vph)	217	668	578	74	525	1008		
Confl. Peds. (#/hr)				10	10			
Heavy Vehicles (%)	0%	1%	1%	0%	1%	1%		
urn Type	Perm	pm+ov	NA	Perm	Split	NA		
Protected Phases		2	5		2	2		
Permitted Phases	8	8		5				
Actuated Green, G (s)	18.9	64.7	24.9	24.9	45.8	45.8		
Effective Green, g (s)	19.9	66.7	25.9	25.9	46.8	46.8		
ctuated g/C Ratio	0.18	0.61	0.24	0.24	0.43	0.43		
Clearance Time (s)	6.4	7.0	7.0	7.0	7.0	7.0		
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	315	1021	832	359	668	1404		
v/s Ratio Prot		c0.28	c0.16		c0.33	0.31		
v/s Ratio Perm	0.12	0.15		0.05				
//c Ratio	0.69	0.65	0.69	0.20	0.79	0.72		
Jniform Delay, d1	42.2	14.1	38.4	33.8	27.3	26.1		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
ncremental Delay, d2	6.2	1.5	2.5	0.3	9.0	3.2		
Delay (s)	48.3	15.6	41.0	34.1	36.3	29.3		
_evel of Service	D	В	D	С	D	С		
Approach Delay (s)	23.3		39.0			31.7		
Approach LOS	С		D			С		
itersection Summary								
HCM 2000 Control Delay			31.1	Н	CM 2000	Level of Service	9	С
HCM 2000 Volume to Capa	city ratio		0.76		2.00		-	
Actuated Cycle Length (s)	,		110.0	S	um of lost	time (s)		18.4
Intersection Capacity Utiliza	ation		71.1%		CU Level	(-)		С
Analysis Period (min)			15					
c Critical Lane Group								

Whites / Kingston SW Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 5: Highway 401 WB Off-Ramp & Kingston Road

	-	•	•	←	4	<i>></i>		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	† 13		*	^	1/1	7		
raffic Volume (vph)	1815	25	295	980	620	85		
uture Volume (vph)	1815	25	295	980	620	85		
deal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
ane Width	3.5	3.5	3.3	3.5	3.3	3.3		
otal Lost time (s)	6.2		2.0	6.2	4.4	4.4		
ane Util. Factor	0.95		1.00	0.95	0.97	1.00		
rt	1.00		1.00	1.00	1.00	0.85		
Flt Protected	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3528		1694	3535	3351	1531		
Flt Permitted	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3528		1694	3535	3351	1531		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	1911	26	311	1032	653	89		
RTOR Reduction (vph)	0	0	0	0	0	19		
Lane Group Flow (vph)	1937	0	311	1032	653	70		
Heavy Vehicles (%)	1%	0%	3%	1%	1%	2%		
Turn Type	NA		Prot	NA	Prot	Perm		
Protected Phases	2		1	6	8			
Permitted Phases						8		
Actuated Green, G (s)	73.8		24.0	100.8	26.6	26.6		
Effective Green, g (s)	74.8		25.0	101.8	27.6	27.6		
Actuated g/C Ratio	0.53		0.18	0.73	0.20	0.20		
Clearance Time (s)	7.2		3.0	7.2	5.4	5.4		
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	1884		302	2570	660	301		
//s Ratio Prot	c0.55		c0.18	0.29	c0.19			
//s Ratio Perm						0.05		
//c Ratio	1.03		1.03	0.40	0.99	0.23		
Uniform Delay, d1	32.6		57.5	7.4	56.1	47.3		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
ncremental Delay, d2	28.2		59.7	0.5	32.0	0.4		
Delay (s)	60.8		117.2	7.8	88.0	47.7		
Level of Service	Е		F	Α	F	D		
Approach Delay (s)	60.8			33.2	83.2			
Approach LOS	Е			С	F			
ntersection Summary								
HCM 2000 Control Delay			55.7	H	CM 2000	Level of Servi	ce	Е
HCM 2000 Volume to Capac	city ratio		1.02					
Actuated Cycle Length (s)			140.0	Sı	um of lost	time (s)		12.6
ntersection Capacity Utiliza	tion		97.2%	IC	U Level o	of Service		F
nalysis Period (min)			15					

c Critical Lane Group

Whites / Kingston SW Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn

HCM Signalized Intersection Capacity Analysis 10: Whites Road & Highway 401 EB Off-Ramp

	•	*		†	↓	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻሻ	77		^	^			
Traffic Volume (vph)	1555	700	0	1160	680	0		
Future Volume (vph)	1555	700	0	1160	680	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Lane Width	3.3	3.3	3.5	3.5	3.5	3.5		
Total Lost time (s)	4.5	4.5	0.0	5.7	5.7	0.0		
Lane Util. Factor	0.97	0.88		0.95	0.95			
Frpb, ped/bikes	1.00	1.00		1.00	1.00			
Flpb, ped/bikes	1.00	1.00		1.00	1.00			
Frt	1.00	0.85		1.00	1.00			
Flt Protected	0.95	1.00		1.00	1.00			
Satd. Flow (prot)	3385	2720		3570	3570			
Flt Permitted	0.95	1.00		1.00	1.00			
Satd. Flow (perm)	3385	2720		3570	3570			
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91		
Adj. Flow (vph)	1709	769	0.91	1275	747	0.91		
RTOR Reduction (vph)	0	65	0	0	0	0		
Lane Group Flow (vph)	1709	704	0	1275	747	0		
Confl. Peds. (#/hr)	1703	704	10	1213	141	10		
Heavy Vehicles (%)	0%	1%	0%	0%	0%	0%		
	Prot	Perm	0 /0	NA	NA	0 70		
Turn Type	Prot 4	Perm		NA 2	NA 6			
Protected Phases Permitted Phases	4	4		2	р			
	EO E	50.5		37.3	37.3			
Actuated Green, G (s)	50.5				38.3			
Effective Green, g (s)	51.5	51.5		38.3	0.38			
Actuated g/C Ratio	0.52	0.52		0.38				
Clearance Time (s)	5.5	5.5		6.7	6.7			
Vehicle Extension (s)	3.0	3.0		3.0	3.0			
Lane Grp Cap (vph)	1743	1400		1367	1367			
v/s Ratio Prot	c0.50			c0.36	0.21			
v/s Ratio Perm	0.05	0.26		0.00				
v/c Ratio	0.98	0.50		0.93	0.55			
Uniform Delay, d1	23.8	15.9		29.6	24.1			
Progression Factor	1.00	1.00		1.00	1.00			
Incremental Delay, d2	17.1	0.3		12.8	1.6			
Delay (s)	40.8	16.2		42.4	25.6			
Level of Service	D	В		D	С			
Approach Delay (s)	33.2			42.4	25.6			
Approach LOS	С			D	С			
Intersection Summary								
HCM 2000 Control Delay			34.5	Н	CM 2000	Level of Service	С	
HCM 2000 Volume to Capac	ity ratio		0.96					
Actuated Cycle Length (s)	,		100.0	Sı	um of lost	time (s)	10.2	
Intersection Capacity Utilizati	ion		91.6%	IC	U Level o	f Service	F	
Analysis Period (min)			15					

Synchro 10 Report FTPM (With BRT, With Improvements, Local BKDEV, 4-Lane Ramp).syn Whites / Kingston SW

HCM Signalized Intersection Capacity Analysis 9: Car Dealer Site Access/Delta Boulevard & Kingston Road

	•	-	*	•	←	*	4	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	ň	^	7	7	- ↑		7	- ↑	
Traffic Volume (vph)	145	1600	45	70	1435	95	165	20	130	100	10	150
Future Volume (vph)	145	1600	45	70	1435	95	165	20	130	100	10	150
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	2.0	5.9	5.9	2.0	5.7	5.7	5.6	5.6		5.6	5.6	
Lane Util. Factor	1.00	0.95	1.00	1.00	0.95	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes	1.00	1.00	0.97	1.00	1.00	0.95	1.00	0.98		1.00	0.97	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	0.99	1.00		0.99	1.00	
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	0.87		1.00	0.86	
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)	1785	3535	1541	1785	3535	1517	1761	1604		1773	1569	
Flt Permitted	0.95	1.00	1.00	0.95	1.00	1.00	0.56	1.00		0.59	1.00	
Satd. Flow (perm)	1785	3535	1541	1785	3535	1517	1043	1604		1092	1569	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	148	1633	46	71	1464	97	168	20	133	102	10	153
RTOR Reduction (vph)	0	0	19	0	0	30	0	106	0	0	122	0
Lane Group Flow (vph)	148	1633	27	71	1464	67	168	47	0	102	41	0
Confl. Peds. (#/hr)	10	1000	5	5	1101	10	10		5	5		10
Heavy Vehicles (%)	0%	1%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Prot	NA.	Perm	Prot	NA.	Perm	Perm	NA	0 70	Perm	NA	0 70
Protected Phases	5	2	r ciiii	1	6	r Cilli	r eiiii	8		I CIIII	4	
Permitted Phases	J		2		U	6	8	0		4	-	
Actuated Green, G (s)	14.3	63.7	63.7	8.4	58.0	58.0	21.4	21.4		21.4	21.4	
Effective Green, g (s)	15.3	64.7	64.7	9.4	59.0	59.0	22.4	22.4		22.4	22.4	
Actuated g/C Ratio	0.14	0.59	0.59	0.09	0.54	0.54	0.20	0.20		0.20	0.20	
Clearance Time (s)	3.0	6.9	6.9	3.0	6.7	6.7	6.6	6.6		6.6	6.6	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)	248	2079	906	152	1896	813	212	326		222	319	
v/s Ratio Prot			900	0.04		013	212	0.03		222	0.03	
	c0.08	c0.46	0.00	0.04	0.41	0.04	-0.40	0.03		0.00	0.03	
v/s Ratio Perm	0.00	0.70	0.02	0.47	0.77	0.04	c0.16	0.44		0.09	0.42	
v/c Ratio	0.60	0.79	0.03	0.47	0.77	0.08	0.79	0.14		0.46	0.13	
Uniform Delay, d1	44.5	17.3	9.5	47.9	20.2	12.4	41.6	35.9		38.5	35.8	
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2	3.8	3.1	0.1	2.3	3.1	0.2	18.1	0.2		1.5	0.2	
Delay (s)	48.3	20.4	9.6	50.2	23.3	12.6	59.7	36.1		40.0	36.0	
Level of Service	D	С	Α	D	С	В	Е	D		D	D	
Approach Delay (s)		22.4			23.8			48.5			37.5	
Approach LOS		С			С			D			D	
Intersection Summary												
HCM 2000 Control Delay			26.0	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.77									
Actuated Cycle Length (s)			110.0		um of lost				13.5			
Intersection Capacity Utiliza	ation		87.1%	IC	U Level	of Service)		Е			
Analysis Period (min)			15									
c. Critical Lane Group												

c Critical Lane Group

Appendix F: Vissim Model

1.0 VISSIM MODEL DEVELOPMENT

1.1 Introduction

Given the inherent limitations of standard traffic capacity analysis methods (namely the Highway Capacity Manual methodology implemented in Synchro), it was determined that in order to best assess and mitigate the projected impact of the proposed redevelopment 603-643 & 645-699 Kingston Road, *Vissim* microsimulation model of the Kingston Road and Whites Road study area would be developed, calibrated, and utilized.

The main objective of the *Vissim* modelling and simulation exercise described in the following sections of this report is to assess whether the proposed development could be appropriately accommodated without undue impacts on the local transportation network given future proposed changes, including background traffic growth from intensification along Kingston Road, as well as new transit facilities including the future Durham-Scarborough bus rapid transit (BRT) line. Specifically, this analysis has been conducted to assess existing and future traffic conditions along Kingston Road and Whites Road.

The *Vissim* microsimulation model-based analysis is complimentary to the Synchro, Highway Capacity Manual based analysis provided in the 603-643 & 645-699 Kingston Road Mixed-Use Development, Urban Transportation Considerations Report (herein referred to as the "Urban Transportations Considerations Report"). The Synchro analysis provided in the Urban Transportation Considerations report focuses on future projected impacts at the intersection turning movement level, while the *Vissim* microsimulation analysis provides future projected impacts both network wide and on specific intersection operations (focusing on metrics that are not available with standard traffic capacity analysis methods).

1.2 Extent of the *Vissim* Model and Study Area

The Vissim traffic microsimulation model covers the Kingston Road corridor from Rosebank Road to the Highway 401 ramps, including signalized intersections at Kingston Road and Rosebank Road, Steeple Hill, Whites Road, Delta Boulevard, and the Highway 401 westbound ramps. The model also covers the Whites Road corridor from Sheppard Avenue to Oklahoma Drive/Granite Court, including signalized intersections at Whites Road and Sheppard Avenue, the Highway 401 eastbound off-ramp, Bayly Street, and Oklahoma Drive/Granite Court. Among other transportation system components, the model includes the following:

- All signalized intersections on the Kingston Road and Whites Road corridors located within the study area;
- Significant unsignalized access driveways on Kingston Road and Whites Road within the study area, notably including the west site access; and
- Existing transit facilities (bus stops) and transit vehicles operating on Kingston Road and Whites Road.

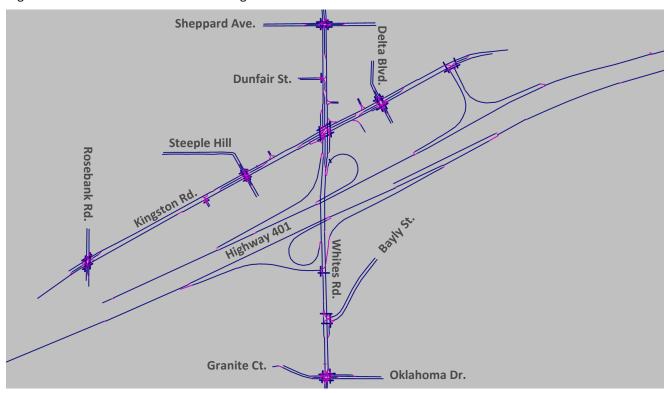

The future conditions *Vissim* traffic microsimulation model incorporates the Durham-Scarborough BRT corridor, as proposed in the *Durham-Scarborough Bus Rapid Transit Study Initial Business Case Report*, dated spring 2019 (herein referred to as the Initial Business Case). According to the service pattern proposed in the Initial Business Case, three BRT routes would operate through the study area in fully separated, dedicated bus lanes in the median of Kingston Road. Between the three routes, a combined frequency of 26 buses per hour, or about 13 buses per direction (approximately, one bus every 5 minutes) would be provided during the weekday morning peak period. There are two BRT stops proposed within the study area along Kingston Road, at Rosebank Road and Whites Road.

Figure 1 illustrates the area covered by the *Vissim* traffic microsimulation model, while **Figure 2** provides a snapshot of the model as represented in the *Vissim* development environment.

Figure 2: 603-643 & 645-699 Kingston Road Vissim Microsimulation Model

1.3 Data Collection & Information Gathering

In order to develop a representative model of existing traffic conditions of the surrounding area road network, several different pieces of information were gathered and incorporated into the *Vissim* microsimulation model.

1.3.1 Road Alignment & Intersection Lane Configurations

The alignments of existing roads located within the study area were determined primarily through aerial photographs provided by Bing Maps through the *Vissim* network development interface. The detailed intersection lane configurations were informed by a combination of the Bing Maps aerial photographs, as well as Google Earth and Street View imagery.

The future configuration of Kingston Road after the construction of the Durham-Scarborough BRT was determined from the details provided in the Initial Business Case. Detailed technical design information was not available during the creation of the model. An approximation of Kingston Road's cross section with the BRT was included in the "City of Pickering's Kingston Road Corridor and Specialty Retailing Node Study's Urban Design Guidelines" report dated November 2019 and was assumed to be the future road geometry of Kingston Road in Pickering.

1.3.2 Turning Movement Counts, Pedestrian Volumes & Signal Timing Plans

Turning movement counts, including pedestrian volumes, at all signalized and some unsignalized intersections throughout the study area were obtained from field data collection exercises conducted during the weekday morning (AM) and afternoon (PM) peak periods on behalf of BA Group.

Current signal timing plans at all signalized intersections located within the study area were provided by the Regional Municipality of Durham and incorporated into the *Vissim* traffic microsimulation model.

Detailed turning movement count data summary sheets are provided in **Appendix C of the Urban Transportation**Considerations Report while signal timing plans are included in **Appendix D of the Urban Transportation Considerations**Report.

1.3.3 Vehicle Travel Times

Vehicle travel times along the Kingston Road corridor between Rosebank Road and the Highway 401 ramps, along the Whites Road corridor between Sheppard Avenue and Oklahoma Drive/Granite Court, and along the Highway 401 eastbound off-ramp at Whites Road, were obtained with the Google Maps Distance Matrix API. Use of the Google Maps Distance Matrix API provides real-time vehicle travel times throughout the weekday morning (AM) and afternoon (PM) peak hours, allowing for a much larger sample size of individual vehicle travel times than if they were collected by typical/standard data collection methods.

The collected real-time vehicle travel times were used to define a range of measured vehicle travel times and an average vehicle travel time for each road segment within the study area.

1.4 Microsimulation Model Coding

All *Vissim* microsimulation model components and network elements were coded in accordance with engineering and modelling guidelines detailed in several documents published by various transportation agencies operating across North America. These include but are not limited to:

- VDOT Vissim User Guide, Virginia Department of Transportation (January 2020)
- VISSIM Modeling Guidance, Maryland Department of Transportation (August 2017)
- WisDOT Microsimulation Guidelines, Wisconsin Department of Transportation (November 2014)
- Protocol for Vissim Simulation, Washington State Department of Transportation (September 2014)
- Protocol for Vissim Simulation, Oregon Department of Transportation (June 2011)
- Guidelines for Applying Traffic Microsimulation Modeling Software, FHWA (June 2004)

The *Vissim* microsimulation model utilizes static vehicle inputs and routing decisions to assign turning movement volumes associated with the existing conditions, future background, and future total analysis scenarios. The intersection turning movement volumes are based on the existing counts and traffic assignment prepared as part of the Synchro analysis presented in **Section 9.2**, **Section 9.3**, and **Section 9.5** of the **Urban Transportation Considerations Report**.

The following lists detail the specific microsimulation parameters and values assigned to each in the Kingston Road and Whites Road *Vissim* traffic microsimulation model.

- Desired and Reduced Speeds
 - o Freeway: 100 km/h
 - Loop ramps: 40 to 60 km/h
 Right turns: 12 to 25 km/hr
 Left turns: 15 to 25 km/hr
- Maximum and Desired Acceleration
 - Maximum auto acceleration: 3.50 m/s²
 Desired auto acceleration: 3.50 m/s²
 Maximum auto deceleration: -7.50 m/s²
 Desired auto deceleration: -2.75 m/s²
- Wiedemann 74 Driving Behaviour Parameters
 - o Average standstill distance: 2.00 m
 - Additive safety distance parameter: 1.50 to 4.00
 Multiplicative safety distance parameter: 2.50 to 5.00
- Conflict Area Gap Acceptance Parameters
 - FrontGapDef Parameter: 0.5 to 0.75
 RearGapDef Parameter: 0.5 to 0.75
 SatDistFactDef Parameter: 1.5 to 1.75
 AddStopDist Parameter: 0.0 to 0.5
- Priority Rule Gap Acceptance Parameters
 - Min. Gap Time Parameter: 0.0 to 10.0 s
 Min. Headway Parameter: 5.0 to 30.0 m
 - o Max. Speed Parameter: 10.0 km/h or 180.0 km/h

2.0 EXISTING CONDITIONS VISSIM MODEL CALIBRATION

2.1 Objective

The general objective of calibrating the Kingston Road and Whites Road *Vissim* traffic microsimulation model was, as is the case with every calibration exercise, to ensure that the model could sensibly replicate today's existing traffic conditions as a starting point, from which predictions and forecasts regarding future traffic operations on the area road network would be obtained.

The outcome of the calibration exercise was therefore a model of existing conditions which, when used in conjunction with travel demand forecasts derived by BA Group, could credibly produce private vehicle, transit, and pedestrian-related predictions regarding future multi-modal traffic operations throughout the study area.

2.2 Model Calibration Process & Target Metrics

Data pertaining to two types of metrics describing existing traffic operations throughout the study area's transportation network were collected, summarized, and used to establish targets to be replicated by the calibrated *Vissim* model.

Simulation runs were conducted and outputs corresponding to each metric were extracted and compared to their target values. Model parameters were then adjusted, simulation sets were re-run and performance metrics re-outputted and compared to their target values. This process was repeated iteratively until model outputs were determined to match existing network metrics. The existing conditions models were calibrated with intersection turning movement count data and vehicle travel time data.

- Turning movement count data was collected via turning movement counts conducted by Spectrum on behalf of BA Group at all signalized intersections and significant unsignalized intersections located throughout the study area.
- 2) Vehicle travel time data was obtained along the Kingston Road corridor between Rosebank Road and the Highway 401 ramps east of Delta Boulevard in both eastbound and westbound directions, the Whites Road corridor between Sheppard Avenue and Oklahoma Drive/Granite Court in both northbound and southbound directions, and the Highway 401 eastbound off-ramp at Whites Road. Vehicle travel time targets were set according to the Google Maps Distance Matrix API.

The outputs (of 10 simulations) from the calibrated Kingston Road and Whites Road *Vissim* existing conditions model were summarized and compared with the collected turning movement count and vehicle travel time data, and model calibration was evaluated with the Ministry of Transportation Ontario calibration criteria ("MTO calibration criteria").

2.3 Model Calibration Results

2.3.1 Intersection Traffic Volumes

Turning movement counts were conducted at all intersections throughout the study area, and outputs from the calibrated Kingston Road and Whites Road *Vissim* existing conditions model (of 10 simulations) are summarized and compared to calibration target values (i.e. field data collected via turning movement counts) in **Table 1**.

Table 1 Existing Model Calibration Turning Movement Counts (GEH)

					1	urning I	Movemer	nt				
	NBL	NBT	NBR	SBL	SBT	SBR	EBL	EBT	EBR	WBL	WBT	WBR
				Kingsto	n Road &		ank Road					
Field Data	0 (5)	0 (5)	5 (15)	95 (60)	5 (0)	120 (70)	30 (130)	525 (1330)	10 (5)	15 (5)	740 (900)	65 (70)
Vissim Output	0 (5)	0 (6)	5 (15)	88 (58)	5 (0)	122 (74)	30 (125)	518 (1344)	12 (5)	14 (5)	734 (873)	66 (72)
GEH	0 (0)	0 (0.4)	0 (0)	0.7 (0.3)	0 (0)	0.2 (0.5)	0 (0.4)	0.3 (0.4)	0.6	0.3 (0)	0.2 (0.9)	0.1 (0.2)
	(*)	(#1.7)		Kingston					(*)	(-)	(0.0)	(4:=)
Field Data	5 (10)		0 (20)					620 (1365)	5 (40)	0 (10)	815 (965)	
Vissim Output	5 (9)		0 (20)					607 (1376)	5 (41)	0 (12)	815 (945)	
GEH	0 (0.3)		0 (0)					0.5 (0.3)	0 (0.2)	0 (0.6)	0 (0.6)	
	(0.0)	<u>I</u>		ton Road	l & Steep	ole Hill/E	ast Site		(0.2)	(0.0)	(0.0)	<u>I</u>
Field Data	5 (35)	0 (20)	20 (140)	125 (195)	0 (15)	35 (50)	40 (95)	575 (1255)	5 (35)	30 (105)	775 (890)	30 (100)
Vissim Output	4 (36)	0 (17)	22 (141)	126 (191)	0 (14)	35 (49)	36 (91)	566 (1270)	4 (32)	31 (105)	768 (870)	30 (97)
GEH	0.5	0 (0.7)	0.4	0.1 (0.3)	0 (0.3)	0 (0.1)	0.6 (0.4)	0.4 (0.4)	0.5	0.2	0.3	0
	(0.2)	(0.7)	(0.1)		• • •	& White		(0.4)	(0.5)	(0)	(0.7)	(0.3)
Field Data	155	440	435	150	1205	115	70	300	350	295	565	355
Field Data	(230) 148	(955) 445	(740) 444	(190) 142	(730) 1200	(130) 112	(195) 69	(1000) 296	(395) 351	(255) 287	(735) 567	(545) 353
Vissim Output	(222)	(944)	(735)	(181)	(734)	(121)	(169)	(1103)	(333)	(245)	(730)	(545)
GEH	0.6 (0.5)	0.2 (0.4)	0.4 (0.2)	0.7 (0.7)	0.1 (0.1)	0.3 (0.8)	0.1 (1.9)	0.2 (3.2)	0.1 (3.2)	0.5 (0.6)	0.1 (0.2)	0.1 (0)
				Kingsto	n Road &	& Delta B	oulevard	d				
Field Data	25 (165)	0 (20)	15 (130)	50 (100)	5 (10)	190 (145)	130 (135)	745 (1480)	10 (45)	20 (70)	1000 (1225)	110 (95)
Vissim Output	28	0	14	49	5	190	130	743	10	20	994	108
	(166) 0.6	(18) 0	(130)	(102) 0.1	(9)	(142)	(144)	(1604) 0.1	(48)	(69)	0.2	(91) 0.2
GEH	(0.1)	(0.5)	(0)	(0.2)	(0.3)	(0.3)	(8.0)	(3.2)	(0.4)	(0.1)	(0.4)	(0.4)
			-	ngston I	Road & F	lighway	401 Ram	-		_	_	
Field Data	540 (525)		85 (75)					805 (1685)	5 (25)	335 (260)	590 (865)	
Vissim Output	539 (521)		81 (72)					802 (1809)	4 (27)	335 (259)	582 (857)	
GEH	0 (0.2)		0.4 (0.3)					0.1 (3)	0.5 (0.4)	0 (0.1)	0.3 (0.3)	
						Sheppard	d Avenue	9				
Field Data	137 (126)	707 (1504)	21 (65)	45 (45)	1188 (755)	92 (32)	59 (125)	51 (171)	250 (218)	32 (77)	70 (97)	49 (44)
Vissim Output	137 (120)	705 (1473)	25 (65)	46 (50)	1171 (740)	90 (30)	60 (123)	48 (164)	243 (215)	33 (80)	70 (95)	47 (44)
GEH	0 (0.5)	0.1 (0.8)	0.8 (0)	0.1 (0.7)	0.5 (0.5)	0.2 (0.4)	0.1 (0.2)	0.4 (0.5)	0.4 (0.2)	0.2 (0.3)	0 (0.2)	0.3 (0)

				Whites	s Road 8	Dunfair	Street					
Field Data	0 (0)	865 (1695)			1470 (1050)		0 (0)		0 (0)			
Vissim Output	0 (0)	866 (1659)	-		1450 (1035)	-	0 (0)		0 (0)			
GEH	0 (0)	0 (0.9)			0.5 (0.5)		0 (0)		0 (0)			
	F	Highway	401 Ran	nps Nort	h of High	way 401	1 & White	es Road	Overpas	s		
Field Data		1030 (1925)	285 (350)		1265 (935)	585 (445)						
Vissim Output	-	1027 (1897)	276 (336)		1262 (892)	548 (407)			-			-
GEH		0.1 (0.6)	0.5 (0.8)		0.1 (1.4)	1.6 (1.8)						
	F	lighway	401 Ran	nps Sout	h of Higi	hway 40	1 & White	es Road	Overpas	s		
Field Data		720 (1015)	185 (100)		625 (645)	640 (290)	595 (1260)		350 (700)			
Vissim Output		710 (982)	178 (98)		609 (611)	651 (286)	604 (1252)		354 (702)			
GEH		0.4 (1)	0.5 (0.2)		0.6 (1.4)	0.4 (0.2)	0.4 (0.2)		0.2 (0.1)			
				White	s Road	& Bayly	Street					
Field Data		590 (475)	80 (205)	465 (935)	510 (410)					95 (195)		315 (640)
Vissim Output	-	584 (466)	80 (209)	460 (907)	498 (399)	1		-	-	97 (205)		313 (626)
GEH		0.2 (0.4)	0 (0.3)	0.2 (0.9)	0.5 (0.5)					0.2 (0.7)		0.1 (0.6)
			White	s Road &	. Oklaho	ma Drive	e/Granite	Court				
Field Data	11 (9)	79 (81)	15 (8)	168 (281)	2 (123)	435 (201)	213 (428)	60 (95)	7 (25)	10 (10)	60 (40)	378 (171)
Vissim Output	9 (8)	80 (80)	14 (8)	167 (279)	1 (123)	428 (200)	210 (427)	62 (94)	6 (24)	10 (11)	61 (42)	375 (165)
GEH	0.6 (0.3)	0.1 (0.1)	0.3 (0)	0.1 (0.1)	0.8 (0)	0.3 (0.1)	0.2 (0)	0.3 (0.1)	0.4 (0.2)	0 (0.3)	0.1 (0.3)	0.2 (0.5)

Note: AM (PM)

As shown in **Table 1**, all turning movements in the *Vissim* model accurately reflect data collected in the field, as demonstrated by the low (i.e. less than 3.0) GEH values corresponding to all individual turning movements throughout the study area.

2.3.2 Travel Times

Model simulation travel time outputs for the Kingston Road corridor between Rosebank Road and the Highway 401 ramps east of Delta Boulevard, the Whites Road corridor between Sheppard Avenue and Oklahoma Drive/Granite Court, and the Highway 401 eastbound off-ramp at Whites Road were compared to vehicle travel time target data obtained with the Google Maps Distance Matrix API reflect travel times on a typical weekday (Tuesday-Thursday) during the peak morning (AM) and peak afternoon (PM) hours. Calibrated existing conditions *Vissim* model outputs (of 10 simulations) are summarized in **Table 2** and illustrated in **Figure 3** through **Figure 8**.

Table 2 Existing Model Calibration Travel Time Results

Corridor Segment	Analysis Period	Direction	Google API Range¹	Google API Average¹	Vissim Simulation Output Range ^{1,2}	Vissim Simulation Average ¹	Average % Difference
Kingston Road (Rosebank Road to the Highway 401 ramps east of Delta Boulevard)	Weekday Morning (AM) Peak Hour	Eastbound	95 – 206	151	82 – 202	133	12%
		Westbound	92 – 211	153	105 – 226	167	9%
	Weekday Afternoon (PM) Peak Hour	Eastbound	108 – 290	184	109 – 265	184	0%
		Westbound	95 – 264	173	103 – 225	157	9%
Whites Road (Sheppard Avenue to Oklahoma Drive/Granite Court)	Weekday Morning (AM) Peak Hour	Northbound	99 – 250	163	86 – 222	153	6%
		Southbound	93 – 246	161	90 – 217	157	2%
	Weekday Afternoon (PM) Peak Hour	Northbound	116 – 327	203	98 – 257	182	10%
		Southbound	104 – 265	175	99 – 224	163	7%
Highway 401 eastbound off- ramp at Whites Road	Weekday Morning (AM) Peak Hour	Eastbound	32 – 66	42	21 – 87	44	5%
	Weekday Afternoon (PM) Peak Hour	Eastbound	53 – 140	82	28 – 141	79	4%

Notes:

¹Units in seconds

 $^{^2}$ 90% of the vehicle travel time distribution from 10 *Vissim* simulation runs falls within this range.

Figure 3: Kingston Road - Existing Model Calibration Travel Times (AM)

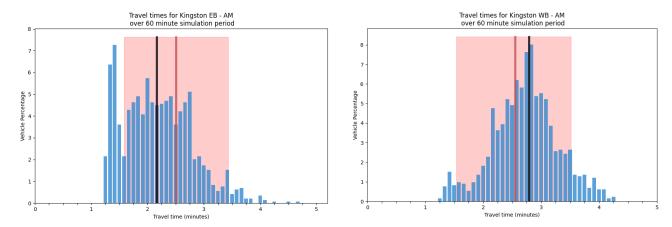


Figure 4: Whites Road - Existing Model Calibration Travel Times (AM)

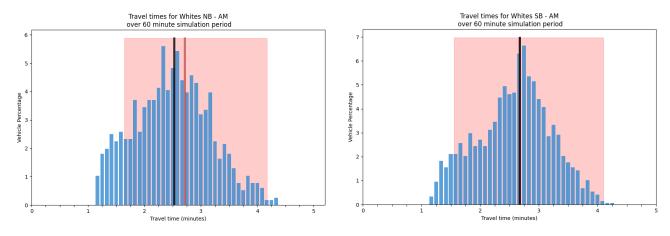


Figure 5: Hwy 401 EB Off-Ramp - Existing Model Calibration Travel Times (AM)

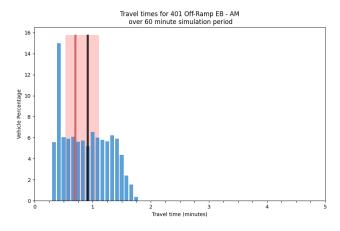


Figure 6: Kingston Road - Existing Model Calibration Travel Times (PM)

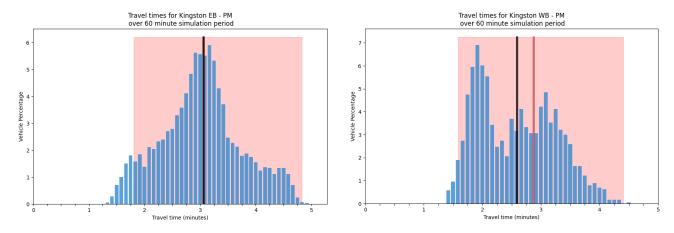


Figure 7: Whites Road - Existing Model Calibration Travel Times (PM)

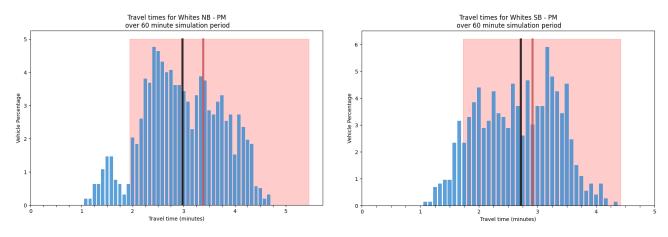
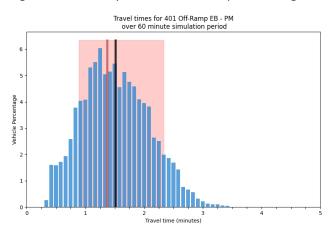



Figure 8: Hwy 401 EB Off-Ramp - Existing Model Calibration Travel Times (PM)

As shown in **Table 2** and **Figure 3** through **Figure 8**, vehicle travel times output from the *Vissim* model accurately reflect the travel time data collected with the Google Maps Distance Matrix API, as demonstrated by the low (i.e. less than 15%) percent differences between the *Vissim* model and target average vehicle travel times, and by the *Vissim* model vehicle travel time ranges falling within or closely reflecting those of the target vehicle travel time ranges.

2.3.3 MTO Calibration Criteria Evaluation

In addition to the discussion provided in **Section 2.3.1** and **Section 2.3.2**, calibration of the existing conditions *Vissim* model was also evaluated with the MTO calibration criteria. The MTO calibration criteria provides multiple metrics related to model volumes and vehicle travel times for evaluating existing conditions model calibration.

The weekday morning (AM) and afternoon (PM) existing conditions peak hour models meet the volume focused evaluation criteria thresholds, specifically those related to the model demand input, corridor screenline volumes, and turning movement volumes as illustrated in **Table 3**, **Table 4**, and **Table 5** respectively.

The weekday morning (AM) and afternoon (PM) existing conditions peak hour models also meet the model travel time evaluation criteria thresholds as illustrated in **Table 6**.

Table 3 Existing Model Demand Input Results

	Calibration	Weekday	Weekday
	Thresholds	Morning (AM)	Afternoon (PM)
% input volumes within 5% of Model / Observed	≥ 85%	100 %	100 %

Table 4 Existing Model Corridor Screenline Results

	Calibration Thresholds	Weekday Morning (AM)	Weekday Afternoon (PM)
% of links with GEH ≤ 5	≥ 85 %	100 %	100 %
% of links with GEH ≤ 10	≥ 95 %	100 %	100 %
% of links with GEH > 10	≤ 5 %	0 %	0 %
% of links with volumes between 700 and 2700 veh/h ≤ 15% Model / Observed	≥ 85%	100 %	100 %
% of links with volumes < 700 veh/h ≤ 100 vehicles of Observed	≥ 85%	100 %	99 %
Sum of all link flows	≤ 5% of sum of all link counts	0.8 %	0.6%
Sum of all link flows	GEH < 4 for sum of all link counts	GEH = 1.6	GEH = 1.3

Table 5 Existing Model Turning Movement Results

	Calibration Thresholds	Weekday Morning (AM)	Weekday Afternoon (PM)
% of turning movements with GEH ≤ 5	≥ 85 %	100 %	100 %
% of turning movements GEH ≤ 10	≥ 95 %	100 %	100 %
% of turning movements GEH > 10	≤ 5 %	0 %	0 %

Table 6 Existing Model Travel Time Results

	Calibration	Weekday	Weekday
	Thresholds	Morning (AM)	Afternoon (PM)
% of segment travel times within 15% of Model / Observed or within 60 seconds	≥ 85%	100 %	100 %

The calibration results and evaluation provided in **Section 2.3.1**, **Section 2.3.2**, and **Section 2.3.3** demonstrate that the *Vissim* simulation model of existing conditions is well calibrated and accurately reflects current traffic operations throughout the study area during the weekday morning (AM) and weekday afternoon (PM) peak hours. Therefore, the model is considered to be a suitable tool for evaluating the impact of different projected future traffic scenarios on the road network surrounding the 603-643 & 645-699 Kingston Road redevelopment.

3.0 FUTURE CONDITIONS *VISSIM* MODEL ANALYSIS

The calibrated *Vissim* microsimulation model was used to analyze and quantify the projected impacts of the 603-643 & 645-699 Kingston Road redevelopment on both the weekday morning (AM) and weekday afternoon (PM) peak hours.

Vissim microsimulation models were developed for both future background and future total scenarios. The future background model represents future conditions (i.e. accounting for future growth and local background developments) without the 603-643 & 645-699 Kingston Road redevelopment while the future total represents the future conditions with the 603-643 & 645-699 Kingston Road redevelopment. The future background and future total *Vissim* models represent a 2039 horizon year and traffic volumes are consistent with those provided in **Section 9.3** and **Section 9.5 of the Urban Transportation Considerations Report**.

As discussed previously, the future conditions *Vissim* models include planned infrastructure improvements, most notably the Durham-Scarborough BRT corridor, which operates through the study area in fully separated dedicated bus lanes in the median of Kingston Road. Snapshots of the Durham-Scarborough BRT corridor incorporated into the future conditions *Vissim* microsimulation models are provided in **Figure 9**.

As detailed in **Section 4.1.3 of the Urban Transportation Considerations Report**, network improvements have been proposed to accommodate future traffic conditions and operations associated with the Durham-Scarborough BRT. Proposed network improvements include signal timing modifications along Kingston Road and Whites Road in both the future background and future total scenario models and an additional turn lane at the Highway 401 eastbound off-ramp and Whites Road intersection resulting in an eastbound approach lane configuration of 2 dedicated left-turn lanes and 2 dedicated right-turn lanes in only the future total scenario model.

The proposed network modifications have been incorporated into the future background and future total *Vissim* microsimulation models and are consistent with the provided Highway Capacity Manual methodology-based analysis provided in **Section 10.0 of the Urban Transportation Considerations Report**.

Figure 9: Durham-Scarborough BRT at Kingston Road and Whites Road

3.1 Key performance Metrics

The projected impact of the 603-643 & 645-699 Kingston Road redevelopment have been primarily assessed through this modelling exercise with vehicle travel times along study area road segments, and vehicle queuing and delays at key study area intersections to ensure that the traffic impacts associated with the site redevelopment can be accommodated by the road network.

The analysis metrics are evaluated through a comparison of existing conditions, and projected future background and future total conditions. This provides a clear representation of the future transportation conditions throughout the area road network attributed to background growth and local background developments, as well as redevelopment of the site, allowing for the determination of whether the local road network can accommodate the projected future conditions.

Traditional Highway Capacity Manual methodology analysis outputs were provided as part of the Urban Transportation Considerations Report and taken together with the network vehicle travel time, intersection vehicle queuing and delay analysis, and a review of network average vehicle travel speed plots provided below, offer a full picture of the performance of the future road network.

3.2 Analysis Results

3.2.1 Vehicle Travel Times

The vehicle travel time analysis was conducted along the following corridor segments within the study area:

- Kingston Road between Rosebank Road and the Highway 401 ramps east of Delta Boulevard in both the eastbound and westbound direction;
- Whites Road between Sheppard Avenue and Oklahoma Drive/Granite Court in both the northbound and southbound direction; and
- Along the Highway 401 eastbound off-ramp at Whites Road.

The future conditions *Vissim* model travel time results, along with a comparison of the existing conditions, future background and future total scenario travel time outputs are provided in **Table 7**. Furthermore, travel time plots comparing the projected future background, future total, and existing conditions travel times are provided in **Figure 10** through **Figure 15**.

Table 7 Future Model Analysis Projected Travel Time Results

Corridor Segment	Analysis Period	Direction	Existing Conditions		Future Background		Future Total	
			Range ¹	Average	Range ¹	Average	Range ¹	Average
Kingston Road	Weekday Morning (AM) Peak Hour	Eastbound	82 to 202 s	133 s	84 to 263 s	170 s	130 to 330 s	213 s
(Rosebank Road to the		Westbound	105 to 226 s	167 s	131 to 215 s	173 s	138 to 223 s	184 s
Highway 401 ramps east of	Weekday Afternoon (PM) Peak Hour	Eastbound	109 to 265 s	184 s	118 to 317 s	205 s	145 to 341 s	220 s
Delta Boulevard)		Westbound	103 to 225 s	157 s	119 to 250 s	183 s	144 to 244 s	197 s
Whites Road	Weekday Morning (AM) Peak Hour	Northbound	86 to 222 s	153 s	75 to 199 s	133 s	88 to 240 s	156 s
(Sheppard		Southbound	90 to 217 s	157 s	103 to 217 s	149 s	121 to 278 s	192 s
Avenue to Oklahoma Drive/Granite	Weekday Afternoon (PM) Peak Hour	Northbound	98 to 257 s	182 s	105 to 272 s	184 s	114 to 291 s	198 s
Court)		Southbound	99 to 224 s	163 s	133 to 268 s	188 s	137 to 292 s	207 s
Highway 401 eastbound off-ramp at Whites Road	Weekday Morning (AM) Peak Hour	Eastbound	21 to 87 s	44 s	27 to 124 s	76 s	33 to 175 s	98 s
	Weekday Afternoon (PM) Peak Hour	Eastbound	28 to 141 s	79 s	26 to 125 s	74 s	22 to 104 s	59 s

Notes:

 $^190\%$ of the vehicle travel time distribution from 10 \emph{Vissim} simulations falls within this range

Figure 10: Kingston Road - Travel Time Comparison Plots (AM)

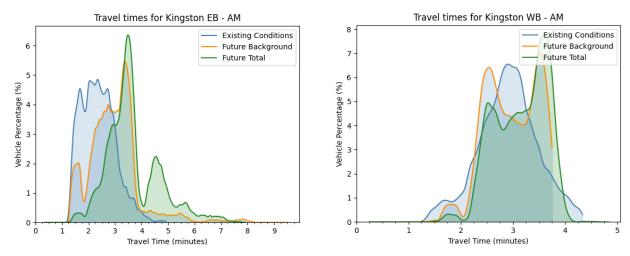


Figure 11: Whites Road - Travel Time Comparison Plots (AM)

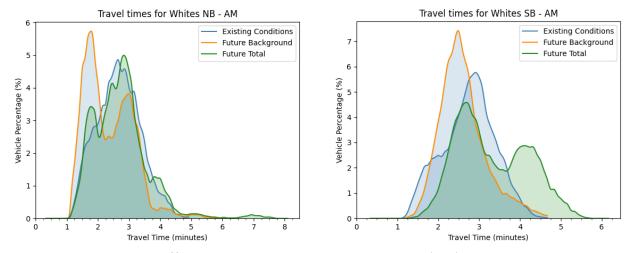


Figure 12: Hwy 401 EB Off-Ramp - Travel Time Comparison Plots (AM)

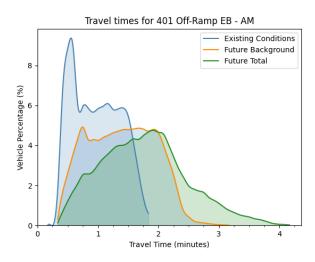


Figure 13: Kingston Road - Travel Time Comparison Plots (PM)

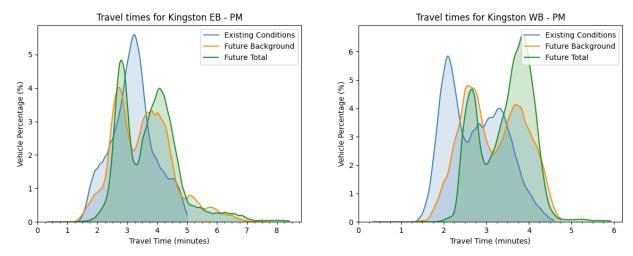


Figure 14: Whites Road - Travel Time Comparison Plots (PM)

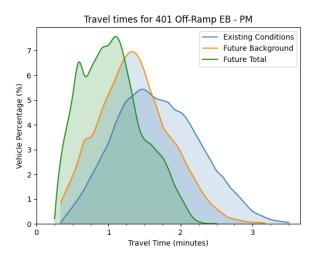



Figure 15: Hwy 401 EB Off-Ramp - Travel Time Comparison Plots (PM)

As presented in Table 7, and illustrated with the travel time comparison plots (Figure 10 through Figure 15), it is projected that vehicular travel times will not increase significantly throughout the study area in both the weekday morning (AM) and afternoon (PM) peak hours due to the proposed redevelopment.

EXISTING AND FUTURE BACKGROUND COMPARISONS

Comparisons between the existing and future background *Vissim* model scenarios, demonstrate that average travel times are projected to increase along Kingston Road in both the eastbound and westbound directions in the order of 6 to 37 seconds during the morning (AM) peak hour and 21 to 26 seconds during the afternoon (PM) peak hour.

Average travel times along Whites Road are projected to vary for both the northbound and southbound directions with a decrease in the order of 8 to 20 seconds during the morning (AM) peak hour and an increase in the order of 2 to 25 seconds during the afternoon (PM) peak hour.

Travel time increases on Kingston Road and Whites Road are the result of the future operations associated with background traffic growth and the implementation of the future Durham-Scarborough BRT line.

Finally, when comparing existing and future background travel times along the Highway 401 eastbound off-ramp, an increase in travel times is observed only during the morning (AM) peak hour of approximately 30 seconds, due to proposed signal timing adjustments to accommodate traffic increases at the intersection.

FUTURE BACKGROUND AND FUTURE TOTAL COMPARISONS

When comparing the future background and future total *Vissim* model scenarios, average travel times are projected to increase along Kingston Road in both the eastbound and westbound directions in the order of 11 to 43 seconds during the morning (AM) peak hour and 14 to 15 seconds during the afternoon (PM) peak hour.

Average travel times are also projected to increase along Whites Road in both the northbound and southbound directions in the order of 23 to 43 seconds during the morning (AM) peak hour and 14 to 19 seconds during the afternoon (PM) peak hour.

Travel time increases on Kingston Road and Whites Road in the future total scenario are due to the additional site traffic along these corridors. These travel time increases are less than 45 seconds for all segments when comparing to the existing conditions, with the exception of the eastbound direction on Kingston Rd during the morning (AM) peak hour, due to an increase in both background and site traffic travelling towards the Highway 401 westbound on-ramp at Kingston Road.

Finally, a comparison of the future background and future total travel times along the Highway 401 eastbound off-ramp illustrate a projected increase of 22 seconds during the weekday morning (AM) peak hour and a decrease of 15 seconds during the weekday afternoon (PM) peak hour, despite volumes increasing by 125 vehicles in the weekday morning (AM) peak hour and by 220 vehicles in the weekday afternoon (PM) peak hour, as a result of the proposed additional eastbound right-turn lane and signal timing adjustments at the intersection.

Overall, the future total model analysis results provided, including the travel time comparison plots, demonstrate that corridor travel times throughout the study area are not projected to increase significantly. Specifically, travel time increases are all less than 45 seconds across the study area road segments and therefore, the projected vehicle travel time impacts of the proposed 603-643 & 645-699 Kingston Road redevelopment can be appropriately accommodated by the future road network.

3.2.2 Intersection Vehicle Queuing Analysis Results

The vehicle queueing analysis was conducted at the following key study area intersections:

- Kingston Road and Steeple Hill/East Site Access;
- Kingston Road and Whites Road;
- Kingston Road and the Highway 401 westbound on/off-ramp; and
- Whites Road and the Highway 401 eastbound off-ramp.

The existing conditions, future background, and future total scenario *Vissim* model intersection vehicle queuing results, are provided in **Table 8**.

Table 8 Average Vehicle Queuing Results

Turning Movement	Storage Length	Existing Conditions		Future Background		Future Total			
		AM	PM	AM	PM	AM	PM		
Kingston Road & Steeple Hill/East Site Access									
EBL	80 m	3.9 m	9.7 m	10.7 m	26.2 m	11 m	24.4 m		
EBT/EBR	155 m	28.7 m	82.6 m	36.5 m	150 m	53.5 m	149.2 m		
NBL	85 m	0.8 m	5.1 m	1.3 m	15.5 m	40.8 m	41.3 m		
NBT/NBR	85 m	0.4 m	12 m	0.2 m	27 m	40.7 m	48.3 m		
SBL	15 m	19.1 m	37.5 m	32.9 m	60.1 m	28.4 m	109.9 m		
SBT/SBR	225 m	4.1 m	8 m	13.2 m	35.2 m	10.5 m	74.1 m		
WBL	65 m	2.9 m	19.3 m	11 m	31.1 m	47.3 m	80 m		
WBT/WBR	315 m	43.2 m	85 m	9.4 m	39.4 m	18.6 m	42.1 m		
	Kingston Road & Whites Road								
EBL	140 m	12.4 m	36.8 m	22.9 m	124.5 m	36.1 m	165.9 m		
EBT	315 m	18.7 m	85.6 m	42.4 m	138.7 m	82.2 m	193.6 m		
EBR	120 m	32.4 m	18.6 m	31.6 m	35.6 m	88.4 m	110.1 m		
NBL	70 m	22 m	33 m	28.8 m	55.8 m	54.9 m	107.2 m		
NBT	480 m	39.3 m	91.9 m	33.2 m	126 m	37.9 m	125 m		
NBR	45 m	32.3 m	85.8 m	30 m	129.2 m	33.6 m	128.4 m		
SBL	85 m	23.6 m	37.7 m	15 m	36.2 m	21.6 m	49.6 m		
SBT	360 m	93.8 m	45.7 m	97.5 m	74.8 m	176.5 m	112.6 m		
SBR	45 m	1.2 m	1.3 m	6.8 m	6.5 m	10.5 m	11.7 m		
WBL	95 m	69.5 m	57.1 m	85.4 m	91.4 m	84 m	103.4 m		
WBT	225 m	53.8 m	54.6 m	55.2 m	81.9 m	65.4 m	101.5 m		
WBR	65 m	23.5 m	38.7 m	29 m	36.2 m	38.8 m	72.4 m		
Kingston Road & Highway 401 Ramps									
EBT/EBR	280 m	46.8 m	105.4 m	48.8 m	191.2 m	53.3 m	153.9 m		
NBL	110 m	51.5 m	52.1 m	76.7 m	73.4 m	93.4 m	119.1 m		
NBR	70 m	51.5 m	52.1 m	76.4 m	73.2 m	93.2 m	118.9 m		
WBL	45 m	43.2 m	71.4 m	80.9 m	96.8 m	85.5 m	122.8 m		
WBT	340 m	31.4 m	52.2 m	29.8 m	82 m	31.5 m	103.1 m		

Highway 401 Ramps South of Highway 401 & Whites Road Overpass								
EBL	490 m	53.2 m	210.1 m	77.2 m	218.2 m	110.6 m	214.9 m	
EBR	220 m	53.3 m	210.2 m	77.2 m	218.2 m	110.6 m	214.9 m	
NBT	175 m	50 m	75 m	20.2 m	77.4 m	20.6 m	99.3 m	
SBT	480 m	30.6 m	44.1 m	52.6 m	77.1 m	48.2 m	80.1 m	

As presented in **Table 8**, vehicle queueing within the proposed study area between the existing and future background scenarios is expected to increase in both the morning (AM) peak hours and afternoon (PM) peak hours. This queueing continues to increase between the future background and future total scenarios although to a smaller degree.

EXISTING AND FUTURE BACKGROUND COMPARISONS

Most notable queueing increases between the existing and future background scenarios occur during the afternoon (PM) peak hours along the Kingston corridor in the eastbound direction for the following movements:

- EBT/EBR at Kingston Road and Steeple Hill/East Site Access of approximately 67 metres.
- EBL at Kingston Road and Whites Road of approximately 53 metres.
- EBT at Kingston Road and Whites Road of approximately 88 metres.
- NBR at Kingston Road and Whites Road of approximately 43 metres.
- EBT/EBR at Kingston Road and Highway 401 Ramps of approximately 86 metres.

Projected vehicle queuing increases in the future background scenario are due to the reduction in eastbound and westbound vehicle capacity along Kingston Road associated with the implementation of the future Durham-Scarborough BRT line. Although vehicle queues are projected to increase, **Table 8** illustrates that the projected queues are contained within available storage areas and are not expected to cause intersection spillbacks and/or congestion.

FUTURE BACKGROUND AND FUTURE TOTAL COMPARISONS

Between the future background and future total scenarios, queueing is expected to increase in response to the addition of the proposed site traffic.

During the weekday morning (AM) peak hour, vehicle queuing increases are observed at the following intersection turning movements:

- WBL at Kingston Road and Steeple Hill/East Site Access of approximately 36 metres.
- EBT at Kingston Road and Whites Road of approximately 40 metres.
- EBR at Kingston Road and Whites Road of approximately 57 meters.
- SBT at Kingston Road and Whites Road of approximately 79 metres.

The intersection turning movements where morning (AM) peak hour vehicle queuing increases are observed align with turning movements where volumes have increased due to the addition of proposed site traffic to the network. As illustrated in **Table 8**, the resulting morning (AM) peak hour queues remain contained within available storage areas and continue to not be expected to cause intersection queue spillbacks and/or congestion.

During the weekday afternoon (PM) peak hour, vehicle queuing increases are observed at the following intersection turning movements:

- WBL at Kingston Road and Steeple Hill/East Site Access of approximately 48 metres.
- EBL at Kingston Road and Whites Road of approximately 66 metres.
- EBT at Kingston Road and Whites Road of approximately 80 metres.
- NBL at Kingston Road and Whites Road of approximately 50 metres.
- NBL at Kingston Road and Highway 401 Westbound off-ramp of approximately 56 metres.
- NBR at Kingston Road and Highway 401 Westbound off-ramp of approximately 56 metres.

The intersection turning movements where afternoon (PM) peak hour vehicle queuing increases are observed once again align with turning movements where volumes have increased due to the addition of proposed site traffic to the network. As illustrated in **Table 8**, the resulting afternoon (PM) peak hour queues remain contained within available storage areas and continue to not be expected to cause intersection queue spillbacks and/or congestion.

Overall, the future conditions model analysis results provided, demonstrate that projected future vehicle queues are not expected to increase significantly and can be accommodated within available storage areas. Therefore, the projected vehicle queuing impacts of the proposed 603-643 & 645-699 Kingston Road redevelopment can be appropriately accommodated by the future road network.

3.2.3 Intersection Vehicle Turn Delay Results

The average vehicle delay analysis was conducted at the following intersections within the study area:

- Kingston Road and Steeple Hill/Site Access;
- Kingston Road and Whites Road;
- Kingston Road and the Highway 401 westbound on/off-ramp; and
- Whites Road and the Highway 401 eastbound off-ramp.

The existing, future background, and future total conditions *Vissim* model intersection average vehicle turn delay results, are provided in **Table 9**.

Table 9 Average Vehicle Turning Movement Delay Results

Turning Movement	Existing Conditions		Future Ba	ckground	Future Total			
	AM	PM	АМ	РМ	АМ	РМ		
Kingston Road & Steeple Hill/East Site Access								
EBL	28 s	33 s	67 s	58 s	77 s	51 s		
EBT/EBR	12 s	19 s	11 s	30 s	21 s	32 s		
NBL	31 s	32 s	42 s	53 s	40 s	77 s		
NBT/NBT	8 s	35 s	9 s	47 s	18 s	76 s		
SBL	29 s	36 s	48 s	62 s	39 s	145 s		
SBT/SBR	4 s	40 s	50 s	63 s	38 s	136 s		
WBL	14 s	48 s	83 s	69 s	95 s	68 s		
WBT/WBR	12 s	21 s	3 s	12 s	4 s	13 s		

Kingston Road & Whites Road								
EBL	41 s	57 s	74 s	80 s	84 s	77 s		
EBT	29 s	43 s	63 s	42 s	85 s	54 s		
EBR	21 s	15 s	16 s	10 s	33 s	17 s		
NBL	40 s	34 s	52 s	45 s	52 s	42 s		
NBT	25 s	37 s	30 s	44 s	31 s	37 s		
NBR	13 s	25 s	12 s	15 s	13 s	12 s		
SBL	46 s	56 s	32 s	61 s	44 s	86 s		
SBT	43 s	35 s	24 s	45 s	46 s	68 s		
SBR	14 s	7 s	18 s	15 s	38 s	31 s		
WBL	79 s	78 s	100 s	116 s	95 s	120 s		
WBT	32 s	27 s	41 s	41 s	47 s	47 s		
WBR	13 s	26 s	8 s	14 s	10 s	17 s		
		Kingston	Road & Highway 4	01 Ramps				
EBT/EBR	18 s	13 s	17 s	27 s	18 s	33 s		
NBL	35 s	44 s	60 s	50 s	69 s	96 s		
NBR	6 s	11 s	7 s	6 s	12 s	22 s		
WBL	28 s	75 s	50 s	84 s	47 s	109 s		
WBT	13 s	14 s	8 s	27 s	9 s	25 s		
Highway 401 Ramps South of Highway 401 & Whites Road Overpass								
EBL	32 s	42 s	51 s	35 s	68 s	23 s		
EBR	14 s	32 s	15 s	18 s	18 s	8 s		
NBT	16 s	27 s	5 s	27 s	5 s	40 s		
SBT	13 s	26 s	25 s	43 s	22 s	41 s		

As presented in **Table 9**, vehicle delays within the proposed study area are consistent with the vehicle queuing analysis. Average vehicle delays are projected to increase at a few specific movements in the future background and future total scenarios in both the weekday morning (AM) peak hour and afternoon (PM) peak hour. The following discusses these projected average vehicle delay increases.

EXISTING AND FUTURE BACKGROUND COMPARISONS

Average vehicle delay increases between the existing and future background scenarios are observed along Kingston Road due to the reduction in eastbound and westbound vehicle capacity along Kingston Road associated with the implementation of the future Durham-Scarborough BRT line.

Average vehicle delay increases are projected for the following intersection turning movements during the weekday morning (AM):

- EBL at Kingston Road and Steeple Hill/East Site Access of approximately 39 seconds.
- WBL at Kingston Road and Steeple Hill/East Site Access of approximately 69 seconds.
- EBL at Kingston Road and Whites Road of approximately 33 seconds.
- EBT at Kingston Road and Whites Road of approximately 33 seconds.

Average vehicle delay increases are projected for the following intersection turning movements during the weekday afternoon (PM):

- EBL at Kingston Road and Steeple Hill/East Site Access of approximately 26 seconds.
- EBT/EBR at Kingston Road and Steeple Hill/East Site Access of approximately 18 seconds.
- EBL at Kingston Road and Whites Road of approximately 23 seconds.

FUTURE BACKGROUND AND FUTURE TOTAL COMPARISONS

Average vehicle delays are projected to increase for a few intersections turning movements due to the addition of proposed site traffic to the network in both the weekday morning (AM) and afternoon (PM) peak hours.

Average vehicle delay increases are projected for the following intersection turning movements during the weekday morning (AM):

- EBT at Kingston Road and Whites Road of approximately 22 seconds.
- EBR at Kingston Road and Whites Road of approximately 18 seconds.
- SBT at Kingston Road and Whites Road of approximately 22 seconds.
- SBR at Kingston Road and Whites Road of approximately 20 seconds.

Average vehicle delay increases are projected for the following intersection turning movements during the weekday afternoon (PM):

NBL at Kingston Road and Highway 401 Westbound off-ramp of approximately 46 seconds.

The future conditions model analysis results provided, demonstrate that projected future average vehicle delays are not expected to increase significantly with increases typically less than 25 seconds. Where average vehicle delays are observed exceeding 25 seconds, these are due to signal timing adjustments required to accommodate traffic volume increases at intersections and are not expected to have significant impacts on intersection performance. Overall, the projected vehicle delay impacts of the proposed 603-643 & 645-699 Kingston Road redevelopment can be appropriately accommodated by the future road network.

3.2.4 Vehicle Average Travel Speed Plots

Network vehicle average travel speed plots, a valuable set of traffic operations metrics that aggregates the information associated with numerous detailed attributes (i.e. vehicle travel times, queuing, delays, etc.) into all-encompassing values (i.e. colour-coded average speeds) provide an overall snapshot of study area traffic conditions. Existing conditions, future background and future total scenario vehicle average travel speed plots for both the weekday morning (AM) and afternoon (PM) peak hours are presented in **Figure 16** and **Figure 17**, respectively.

It is important to note that the vehicle average travel speed plots are presented for illustrative purposes and are meant to visualize the findings of the impact analysis provided in **Section 3.2.1**, **Section 3.2.2** and **Section 3.2.3**. As expected, a reduction in vehicle average travel speeds is observed along Kingston Rd in the future background and future total scenarios as a result of a reduction in eastbound and westbound vehicle capacity along Kingston Road associated with the implementation of the future Durham-Scarborough BRT line. Furthermore, a comparison between future background and future total vehicle average travel speed plots illustrates the negligible impacts on overall network performance associated with the addition of the proposed site traffic.

Figure 16: Vehicle Average Travel Speed Plots (AM)

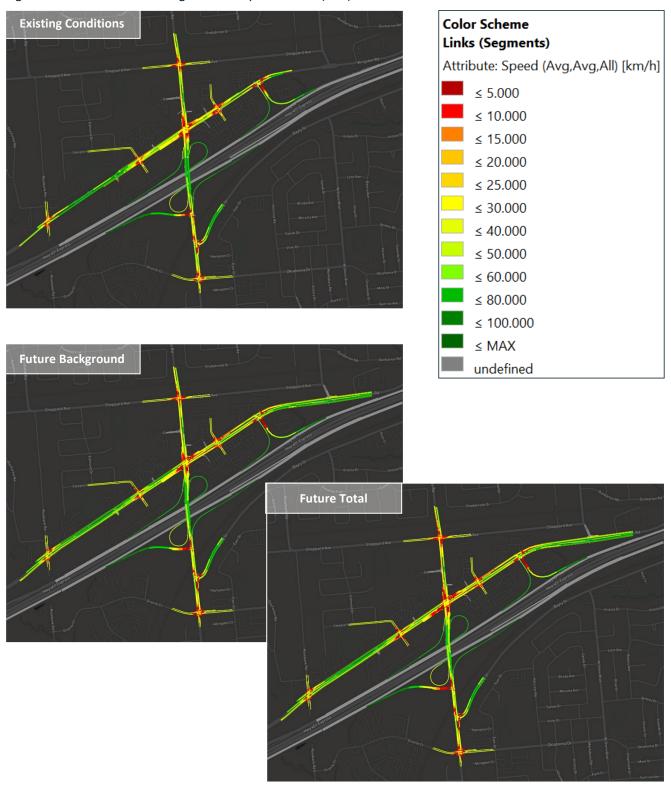
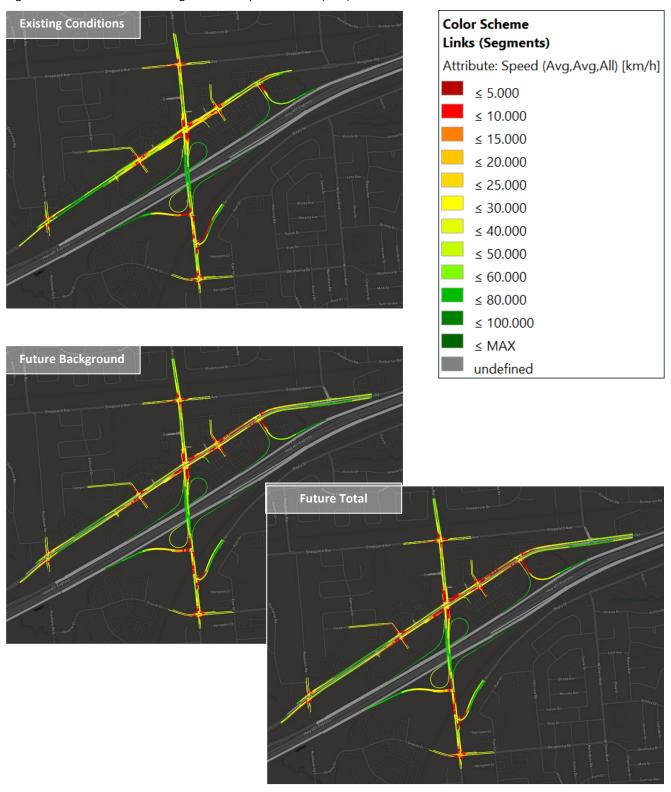



Figure 17: Vehicle Average Travel Speed Plots (PM)

4.0 **VISSIM** CONCLUSIONS & RECOMMENDATIONS

A *Vissim* microsimulation traffic model was developed, calibrated, and utilized to assess whether the area road network could appropriately accommodate the transportation-related impacts of background growth and local study area background developments, the proposed redevelopment, network improvements (i.e. signal timing adjustments along Kingston Road and Whites Road and an additional turn lane at the Highway 401 eastbound off-ramp and Whites Road intersection) and the planned Durham-Scarborough BRT line. The main conclusions and recommendations derived from this modelling exercise are presented below.

Vehicle Travel Times

KINGSTON ROAD CORRIDOR

- Future background average vehicle travel times are projected to increase along Kingston Road in both the eastbound and westbound directions in the order of 6 to 37 seconds during the morning (AM) peak hour and 21 to 26 seconds during the afternoon (PM) peak hour.
- Future total average vehicle travel times are projected to increase along Kingston Road in both the eastbound and westbound directions in the order of 11 to 43 seconds during the morning (AM) peak hour and 14 to 15 seconds during the afternoon (PM) peak hour.

WHITES ROAD CORRIDOR

- Future background average vehicle travel times along Whites Road are projected to vary for both the northbound and southbound directions with a decrease in the order of 8 to 20 seconds during the morning (AM) peak hour and an increase in the order of 2 to 25 seconds during the afternoon (PM) peak hour.
- Future total average vehicle travel times along Whites Road are projected to vary for both the northbound and southbound directions with a decrease in the order of 23 to 43 seconds during the morning (AM) peak hour and an increase in the order of 14 to 19 seconds during the afternoon (PM) peak hour.

HIGHWAY 401 EASTBOUND OFF-RAMP AT WHITES ROAD

- Future background average vehicle travel time increases along the Highway 401 eastbound off-ramp are projected to occur only during the morning (AM) peak hour of approximately 30 seconds.
- Future total average vehicle travel times along the Highway 401 eastbound off-ramp are projected to increase by 22 seconds during the weekday morning (AM) peak hour and decrease by 15 seconds during the weekday afternoon (PM) peak hour.

Projected future background average vehicle travel time increases on Kingston Road and Whites Road are the result of the future operations associated with background traffic growth and the implementation of the future Durham-Scarborough BRT line.

Projected future total average vehicle travel time increases on Kingston Road and Whites Road in the future total scenario are due to the additional site traffic along these corridors and these travel time increases are less than 45 seconds for all segments when comparing to existing conditions, with the exception of the eastbound direction on Kingston Rd during the morning (AM) peak hour, due to an increase in both background and site traffic travelling towards the Highway 401 westbound on-ramp at Kingston Road.

Finally, the increasing and decreasing average vehicle travel times along the Highway 401 eastbound off-ramp in both the future background and future total scenarios despite volume increases of 125 vehicles in the weekday morning (AM) peak hour and 220 vehicles in the weekday afternoon (PM) peak hour, are due to the addition of the proposed eastbound right-turn lane and signal timing adjustments at the intersection.

Overall, the future total model analysis results provided, including the travel time comparison plots, demonstrate that corridor travel times throughout the study area are not projected to increase significantly. Specifically, travel time increases are all less than 45 seconds across the study area road segments and therefore, the projected vehicle travel time impacts of the proposed 603-643 & 645-699 Kingston Road redevelopment can be appropriately accommodated by the future road network.

Intersection Vehicle Queuing

KINGSTON ROAD AND WHITES ROAD

- Future background average vehicle queuing is projected to increase at the intersection of Kingston Road and Whites Road in the weekday afternoon (PM) peak hour at the eastbound left, eastbound through and northbound right turning movements in the order of 43 to 88 metres.
- Future total average vehicle queuing is projected to increase at the intersection of Kingston Road and Whites Road in the weekday morning (AM) peak hour at the eastbound through, eastbound right, and southbound through turning movements in the order of 40 to 79 metres.
- Future total average vehicle queuing is projected to increase at the intersection of Kingston Road and Whites Road in the weekday afternoon (PM) peak hour at the eastbound left, eastbound through, and northbound left turning movements in the order of 50 to 80 metres.

KINGSTON ROAD AND STEEPLE HILL / EAST SITE ACCESS

- Future background average vehicle queuing is projected to increase at the intersection of Kingston Road and Steeple Hill / East Site Access in the weekday afternoon (PM) peak hour at the eastbound through-right turning movement by 67 metres.
- Future total average vehicle queuing is projected to increase at the intersection of Kingston Road and Steeple Hill / East Site Access in the weekday morning (AM) peak hour at the westbound left turning movement by 36 metres.
- Future total average vehicle queuing is projected to increase at the intersection of Kingston Road and Steeple Hill / East Site Access in the weekday afternoon (PM) peak hour at the westbound left turning movement by 48 metres.

HIGHWAY 401 OFF-RAMP AT KINGSTON ROAD

- Future background average vehicle queuing is projected to increase at the Highway 401 Off-Ramp at Kingston Road intersection in the weekday afternoon (PM) peak hour at the eastbound through-right turning movement by 86 metres.
- Future total average vehicle queuing is projected to increase at the Highway 401 Off-Ramp at Kingston Road intersection in the weekday afternoon (PM) peak hour at the northbound left and northbound right turning movements by 56 metres.

Projected average vehicle queuing increases in the future background scenario are due to the reduction in eastbound and westbound vehicle capacity along Kingston Road associated with the implementation of the future Durham-Scarborough BRT line. Whereas the additional average vehicle queues in the future total scenarios are due to the addition of proposed site traffic to the network.

Overall, the future conditions model analysis demonstrates that projected future average vehicle queues are not expected to increase significantly and can be accommodated within available storage areas. Therefore, the projected vehicle queuing impacts of the proposed 603-643 & 645-699 Kingston Road redevelopment can be appropriately accommodated by the future road network.

Intersection Vehicle Turn Delays

KINGSTON ROAD AND WHITES ROAD

- Future background vehicle delays are projected to increase at the intersection of Kingston Road and Whites Road in the weekday morning (AM) peak hour at the eastbound left, and eastbound through turning movements by 33 seconds.
- Future background vehicle delays are projected to increase at the intersection of Kingston Road and Whites Road in the weekday afternoon (PM) peak hour at the eastbound left turning movement by 23 seconds.
- Future total vehicle delays are projected to increase at the intersection of Kingston Road and Whites Road in the weekday morning (AM) peak hour at the eastbound through, eastbound right, southbound through, and southbound right turning movements in the order of 18 to 22 seconds.

KINGSTON ROAD AND STEEPLE HILL / EAST SITE ACCESS

- Future background vehicle delays are projected to increase at the intersection of Kingston Road and Steeple Hill /
 East Site Access in the weekday morning (AM) peak hour at the eastbound left and westbound left turning
 movements by 39 seconds and 69 seconds, respectively.
- Future background vehicle delays are projected to increase at the intersection of Kingston Road and Steeple Hill / East Site Access in the weekday afternoon (PM) peak hour at the eastbound left and eastbound through-right turning movements by 26 seconds and 18 seconds, respectively.

HIGHWAY 401 OFF-RAMP AT KINGSTON ROAD

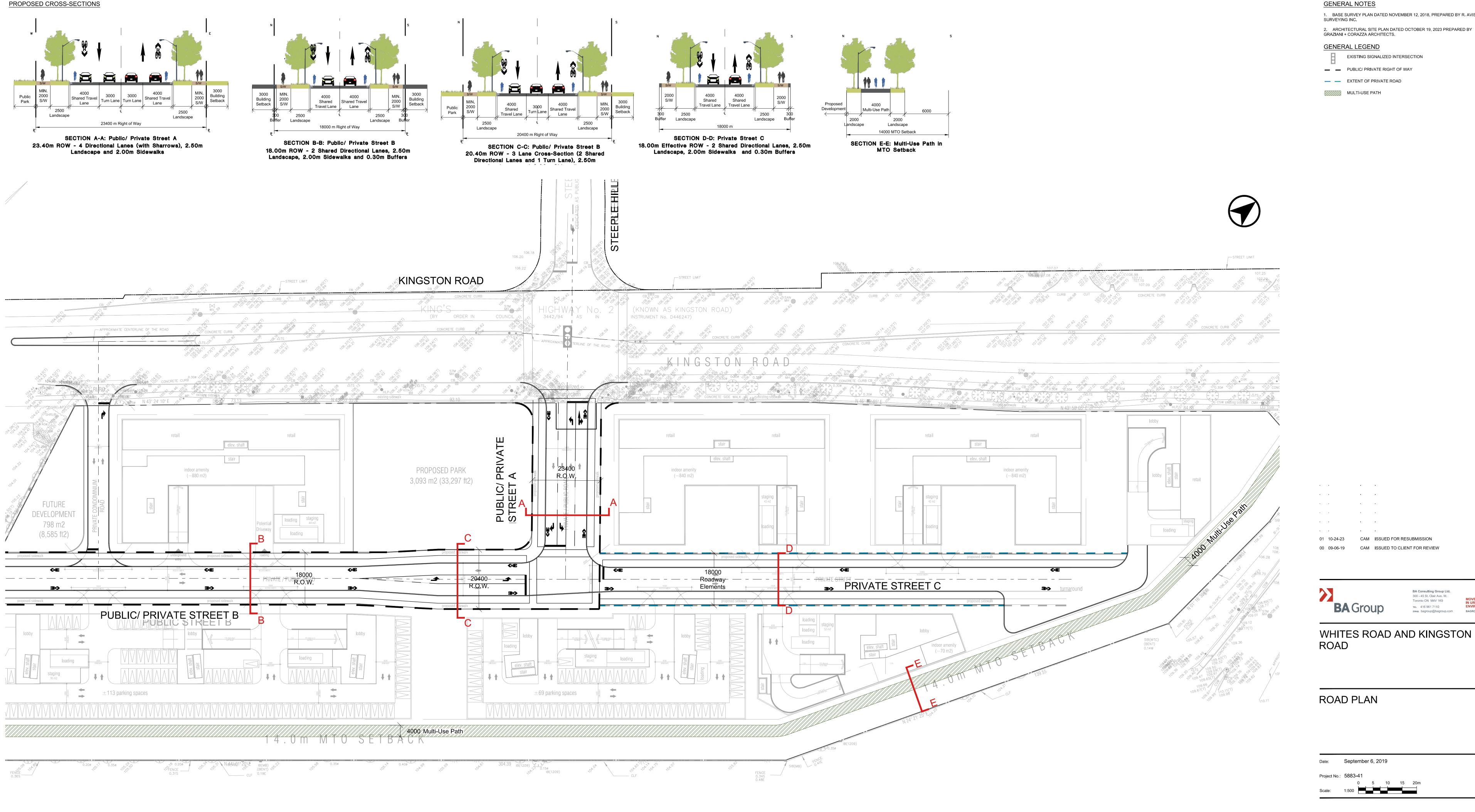
• Future total vehicle delays are projected to increase at the Highway 401 Off-Ramp at Kingston Road intersection in the weekday afternoon (PM) peak hour at the northbound left turning movement by 46 seconds.

As with the vehicle average queues, projected intersection vehicle turn delay increases in the future background scenario due to the reduction in eastbound and westbound vehicle capacity along Kingston Road associated with the implementation of the future Durham-Scarborough BRT line. Whereas the vehicle turn delay increases in the future total scenarios are due to the addition of proposed site traffic to the network.

Overall, the future conditions model analysis demonstrates that projected future intersection vehicle turn delays are not expected to increase significantly (increases typically less than 25 seconds) and where vehicle turn delays are observed exceeding 25 seconds, these are due to signal timing adjustments required to accommodate traffic volume increases at intersections and will not have significant impacts on intersection performance. Overall, the projected vehicle delay impacts of the proposed 603-643 & 645-699 Kingston Road redevelopment can be appropriately accommodated by the future road network.

Vehicle Average Travel Speed Plots

Existing conditions, future background, and future total scenario network vehicle average travel speed plots illustrate a reduction in average vehicle travel speeds along Kingston Rd in the future background and future total scenarios due to the reduction in eastbound and westbound vehicle capacity along Kingston Road associated with the implementation of the future Durham-Scarborough BRT line. Furthermore, a comparison between future background and future total vehicle average travel speed plots illustrates the negligible impacts on overall network performance associated with the addition of the proposed site traffic.



Overall, the *Vissim* microsimulation model analysis results demonstrate that study area travel times, intersection vehicle queueing and turn delays are not projected to increase significantly along Kingston Road, Whites Road, the Highway 401 eastbound off-ramp, and the Highway 401 westbound on/off-ramp during the weekday morning (AM) and afternoon (PM) peak hours due to the proposed redevelopment and that the projected impacts of the proposed 603-643 & 645-699 Kingston Road redevelopment can be appropriately accommodated by the future road network.

Appendix G: Functional Road Plan

GENERAL NOTES

1. BASE SURVEY PLAN DATED NOVEMBER 12, 2018, PREPARED BY R. AVIS

2. ARCHITECTURAL SITE PLAN DATED OCTOBER 19, 2023 PREPARED BY GRAZIANI + CORAZZA ARCHITECTS.

GENERAL LEGEND

EXISTING SIGNALIZED INTERSECTION

PUBLIC/ PRIVATE RIGHT OF WAY

— EXTENT OF PRIVATE ROAD

MULTI-USE PATH

BA Consulting Group Ltd. 300 - 45 St. Clair Ave. W. Toronto ON M4V 1K9

TEL 416 961 7110 ENVIRONMENT

EMAIL bagroup@bagroup.com BAGROUP.COM