

Proposed Residential Development

Tribute (Brookdale) Limited

Type of Document: Preliminary Geotechnical Investigation Report

Project Location: 1101A, 1105 and 1163 Kingston Road, Pickering, Ontario

Project Number: GTR-22015419-B0

Prepared By: Clement Chow, P. Eng. Project Engineer Geotechnical Division

Date Submitted: 2023-07-12 Revised 2023-11-03

i

Table of Contents

1.	Introduction	1				
2.	Site Description 2					
3.	Procedure 3					
4.	Laboratory Testing	4				
5.	Subsurface Conditions	5				
	5.1 Soil and Bedrock	5				
	5.2 Groundwater	8				
	5.3 Grain Size Analysis	9				
6.	Engineering Discussion and Recommendations	10				
	6.1 General	10				
	6.2 Building Construction	10				
	6.2.1 Foundation Considerations	10				
	6.2.1.1 Raft Slabs on Very Dense Soil	10				
	6.2.1.2 Caissons on Sound Shale Bedrock	11				
	6.2.1.3 Conventional Footings on Dense to Very Dense Soil	12				
	6.2.1.4 Foundations General	13				
	6.2.2 Shoring Requirements	14				
	6.2.3 Excavation and Groundwater Control	15				
	6.2.4 Backfill Considerations	15				
	6.2.5 Floor Slab Construction and Permanent Drainage	16				
	6.2.6 Earthquake Considerations	16				
	6.2.7 Subsurface Concrete	17				
7.	General Comments	18				

Appendices

Appendix A: Grain Size Distribution Curves Appendix B: Certificate of Analysis for pH and sulphate

Drawings

Borehole Location Plan	. 1
3 - 2 - 2	11

1. Introduction

This report presents the findings of a preliminary geotechnical investigation conducted for the proposed residential development located at 1101A, 1105 and 1163 Kingston Road in Pickering, Ontario. The preliminary geotechnical investigation was being carried out for due diligence purposes by Tribute (Brookdale) Limited in support of the Site Plan Application for the development. Preliminary plans call for the design and construction of six (6) buildings with fourteen (14) condominium towers above six (6) storey podiums and up to three (3) levels of underground parking.

The purpose of the preliminary geotechnical investigation was to determine the general subsurface soil/bedrock and groundwater conditions at the site by putting down sampled boreholes and, based on an assessment of the factual borehole data, to provide preliminary geotechnical engineering guidelines for site development planning.

2. Site Description

The site is located at 1101A, 1105 and 1163 Kingston Road in Pickering, Ontario. It is irregular in shape, covers an area of 7.74 hectares and is currently occupied by Brookdale Centre and Walnut Lane at the northeast edge of the site. Brookdale Centre is developed with five (5) commercial retail buildings and paved parking areas and access roads. The site slopes gradually from north to south. Ground surface elevations at the borehole locations ranged from about Elevations 84.9 to 86.4 m.

The site is bounded by Kingston Road to the north, Highway 401 to the south, commercial businesses and Pine Creek to the east, and commercial businesses to the west.

3. Procedure

The fieldwork for the preliminary geotechnical investigation was carried out from May 8 to 18, 2023. Seven (7) sampled boreholes (Boreholes 1, 2D, 3D, 4, 5D, 6 and 7) and three (3) unsampled boreholes (Boreholes 2S, 3S and 5S) were advanced to depths of 10.80 to 30.55 m below existing grade at the approximate locations shown on the attached Borehole Location Plan (Drawing No. 1).

The boreholes were advanced using mud rotary and tri-cone equipment owned and operated by a specialist drilling contractor. In each borehole, samples of the soil and weathered shale were recovered using conventional split spoon equipment and standard penetration test methods. Field shear vane tests were conducted on saturated clayey soils with low "N" values. To confirm bedrock and to determine its quality, Boreholes 1 and 4 were extended about 3 m into shale bedrock by coring in HQ size using diamond drilling equipment.

Groundwater levels were observed in ten (10) monitoring wells installed in the boreholes for subsequent readings and hydrogeological assessment. The monitoring wells in Boreholes 2D, 2S, 3D, 3S, 5D and 5S were installed as nested wells. The monitoring wells were installed in accordance with the Ontario Water Resources Act, R.R.O. 1990, Ontario Regulation (O.Reg.) 903 – amended to O.Reg. 128/03.

The fieldwork was supervised by EXP geotechnical personnel who monitored the drilling operations and logged the borings and rock cores. All split spoon samples and rock cores were transported to our laboratory for detailed examination.

The location and ground surface elevation of the boreholes were determined in the field by EXP Services Inc. The elevations were determined from Can-Net Elevations using a Trimble TSC3 Controller.

Drill cuttings, drilling mud and core water were stored on site in 45 gallon drums. The drums will be disposed of at a licensed facility following analytical testing.

4. Laboratory Testing

The laboratory testing program testing program comprised the following:

- Moisture content determination on all recovered soil samples, with results presented on the Log of Borehole sheets (Drawing Nos. 2 to 11).
- Grain size analysis of six (6) soil samples, with results presented in Appendix A.
- Two (2) soil samples analyzed for pH and Sulphate content, with results presented in Appendix B.

5. Subsurface Conditions

5.1 Soil and Bedrock

The detailed soil and bedrock profile encountered in each borehole and the results of laboratory moisture content determinations are indicated on the attached borehole logs (Drawing Nos. 2 to 11). It should be noted the boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones for the purpose of geotechnical design and should not be interpreted as exact planes of geological change. The "Notes on Sample Descriptions" preceding the borehole logs form an integral part of and should be read in conjunction with this report.

The stratigraphy of the site, as revealed in the boreholes, generally comprised pavement structure and fill followed by native deposits of silt, clayey silt, sandy silt till and silty sand till overlying shale bedrock. Wet coarse sand and wet sand and gravel deposits were encountered in Borehole 5D.

A brief description of the stratigraphy, in order of depth, follows:

Pavement Structure

Pavement structure, comprising 50 to 75 mm asphaltic concrete and 360 to 580 mm granular material, was encountered surficially in all of the boreholes.

Fill

Fill was encountered below the pavement structure in Boreholes 1, 4, 5D, 6 and 7. The fill varied from dark brown to brown topsoil-stained sandy silt to silty sand or silty clay with some gravel and topsoil inclusions. The compactness of the fill varied from loose to compact. Moisture contents of the moist to very moist fill ranged from 8 to 30%. The fill extended to depths of approximately 0.45 to 0.65 m below existing grade.

Silty Sand

Silty sand was encountered below the pavement structure in Borehole 2D. The silty sand deposit was brown in colour and existed in a compact state of compactness. The silty sand had a moisture content of 10%, indicating a moist condition. The silty sand deposit extended to a depth of about 1.0 m below existing grade.

Silt

Silt was encountered at depths ranging from approximately 0.65 to 1.65 m below existing grade in Boreholes 2D, 3D and 5D. The silt stratum was brown in colour and existed in a loose to compact state of compactness. Moisture contents of this material ranged from 17 to 20%,

indicating a saturated condition. The silt stratum extended to a depth of about 2.5 m below existing grade.

Clayey Silt

Clayey silt was encountered at depths ranging from approximately 1.0 to 2.5 m below existing grade in Boreholes 1, 2D, 5D, 6 and 7. The clayey silt stratum was brown and grey in colour and soft to very stiff in consistency. Field shear vane tests indicated undrained shear strengths ranging from 19 to 130 kPa. Moisture contents of this material ranged from 19 to 26%, indicating a saturated condition. The clayey silt stratum extended to depths of about 2.5 to 8.75 m below existing grade.

Sandy Silt Till

Sandy silt till was encountered at depths ranging from approximately 1.75 to 10.25 m below existing grade in all of the boreholes. The sandy silt till deposit was primarily grey in colour and contained wet sand/sand and gravel seams and scattered gravel and cobbles. Cobble and boulder layers were encountered in Boreholes 4 and 7. The compactness of the sandy silt till varied from loose to very dense. The sandy silt till was loose to depths of about 4.0 to 5.5 m in Boreholes 3D, 5D and 7. Moisture contents of the sandy silt till generally ranged from 7 to 13%, indicating a moist to saturated condition. The sandy silt till deposit extended to depths of approximately 7.0 m to 17.5 m below existing grade.

Coarse Sand

Coarse sand was encountered at a depth of about 7.0 m below existing grade in Borehole 5D. The coarse sand deposit was grey in colour, contained occasional gravel and existed in a very dense state of compactness. Moisture contents of the wet coarse sand ranged from 12 to 14%. The coarse sand deposit extended to a depth of about 11.75 m below existing grade.

Sand and Gravel

Sand and gravel was encountered below the coarse sand deposit in Borehole 5D. The sand and gravel deposit was brown in colour, wet with moisture contents ranging from 8 to 10%, and existed in a very dense state of compactness. The sand and gravel deposit extended to a depth of about 14.5 m below existing grade.

Clayey Silt (lower)

A lower clayey silt stratum was encountered at a depth of approximately 11.5 m below existing grade in Borehole 1. The clayey silt stratum was grey in colour, moist with moisture contents ranging from 16 to 18%, and hard in consistency. The lower clayey silt stratum extended to a depth of about 14.75 m below existing grade.

Silty Sand Till

Silty sand till was encountered at depths ranging from approximately 8.5 to 16.0 m below existing grade in Boreholes 1, 2D, 3D and 6. The silty sand till deposit was grey in colour, contained scattered gravel and cobbles, and existed in a very dense state of compactness. Cobble and boulder layers were encountered near the bottom of the deposit in Borehole 1. Moisture contents of the very moist to wet silty sand till ranged from 8 to 11%. The silty sand till deposit extended to depths of about 10.25 to 18.5 m below existing grade.

Bedrock

Shale bedrock was encountered at depths ranging from about 14.5 to 18.5 m below existing grade in Boreholes 1, 2D, 3D, 4, 5D, 6 and 7 (approximate Elevation 66.6 to 70.4 m), indicating variable depths to bedrock. The inferred bedrock boundaries should not be interpreted as exact planes of bedrock since the auger will frequently penetrate some distance into the weathered rock before noticeable resistance is encountered.

To confirm bedrock and to determine its quality, Boreholes 1 and 4 were extended about 3 m into the bedrock by coring in HQ size using diamond drilling equipment. The rock core logs are attached to Log of Boreholes 1 and 4. Based on the rock recovery and the Rock Quality Designation (RQD), the bedrock is poor to good quality rock with horizontal fractures and some vertical joints. Generally, the upper 1 to 2 m of the shale bedrock is weathered becoming more sound with depth. However, it should be noted that weathered shale bedrock extended to a depth of 30.55 m below existing grade in Borehole 5D based on auger resistance and recovered split spoon samples.

The bedrock encountered in the boreholes is of the Blue Mountain Formation and underlies this site to a significant depth. Based on our experience, the upper zone of the shale bedrock is typically weathered with isolated weathered zones extending to greater depth. The predominate rock type is shale, but this shale is interbedded with limestone and siltstone. Typically, EXP has found the shale component in this formation is in the order of 80 percent in Greater Toronto area excavations. The limestone and siltstone components are generally 50 to 300 mm thick; however, thicker layers of up to 1,000 mm have been encountered.

Stress relief features such as folds and faults are common in the Blue Mountain Formation. In these fractures, the rock is heavily fractured and sheared. It can also contain layers of shale rubble and clay. Due to the fracturing, these features may also contain groundwater conduits, which could result in excessive water flow into excavations. Weathering is much deeper than the surrounding sound unweathered bedrock. The stress relief features are usually in the order of 4 to 6 m wide, but in depth can vary from 4 to 5 m to in excess of 10 m.

5.2 Groundwater

Groundwater conditions were observed in monitoring wells installed in Boreholes 1, 2D, 2S, 3D, 3S, 4, 5D, 5S, 6 and 7 for subsequent readings and hydrogeological assessment. Short-term groundwater measurements are included in the attached borehole logs. End-of-hole water levels in the boreholes were not recorded as water was introduced into the boreholes to facilitate the mud rotary drilling operation.

Short-term groundwater readings in the monitoring wells are summarized in following Table 1.

Borehole/ Monitoring Well	Ground Surface Elevation (m)	Monitoring Wells May 20, 2023 (m below grade)	Monitoring Wells May 31, 2023 (m below grade)	Monitoring Wells June 6, 2023 (m below grade)	Groundwater Elevation (m) June 6, 2023
1	85.79	3.36	3.42	3.37	82.42
2S (shallow)	86.38	86.38 2.89		2.91	83.47
2D (deep)	2D (deep) 86.38 2.96		3.83	3.83 3.98	
3S (shallow) 85.08		1.38	2.10	4.04	81.04
3D (deep)	3D (deep) 85.08 3.97		4.04	4.04	81.04
4	4 85.41 3.92		3.97	4.19	81.22
5S (shallow)	5S (shallow) 84.89 2.56		2.67	2.62	82.27
5D (deep)	5D (deep) 84.89 2.60		2.54	2.61	82.28
6	6 85.30 3.03		3.11	6.79	78.51
7	85.12	3.07	3.10	3.59	81.53

Table 1 - Short-Term Groundwater Levels in Monitoring Wells

After a period of 19 to 29 days, groundwater levels in the three (3) shallow monitoring wells ranged from 2.62 to 4.04 m below existing grade (Elevation 81.04 to 83.47 m). In the seven (7) deeper monitoring wells, groundwater levels ranged from 2.61 to 6.79 m below existing grade (Elevation 78.51 to 82.42 m), after a period of 19 to 29 days. The groundwater primarily originated from pervious seams and layers in the sandy silt till deposit and the wet coarse sand, sand and gravel, and silty sand till deposits. Seasonal fluctuation of the groundwater levels at the site should be anticipated.

Reference should be made to the Hydrogeological Study for further details of the groundwater conditions at this site.

5.3 Grain Size Analysis

Grain size analysis was conducted on six (6) soil samples recovered from the boreholes. The grain size distribution curves are included in Appendix A. The following Table 2 presents the estimated soil permeabilities based on the Unified Soil Classification of the grain size distribution curves.

Location	Soil Type	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Estimated Coefficient of Permeability (cm/sec)
BH 2D (1.5 – 2.0 m)	Clayey Silt	0	2	53	45	10 ⁻⁷ or slower
BH 2D (4.6 – 5.0 m)	Clayey Silt	0	1	56	43	10 ⁻⁷ or slower
BH 3D (12.2 – 12.6 m)	Silty Sand Till	36	45	14	4	10 ⁻⁴
BH 4 (3.0 – 3.5 m)	Sandy Silt Till	13	37	35	15	10 ⁻⁵ to 10 ⁻⁶
BH 5D (9.2 – 9.6 m)	Coarse Sand	3	91	6	0	10 ⁻³
BH 6 (10.7 – 11.1 m)	Silty Sand Till	8	53	29	10	10 ⁻³ to 10 ⁻⁴

6. Engineering Discussion and Recommendations

6.1 General

A preliminary geotechnical investigation has been conducted for the proposed residential development located at 1101A, 1105 and 1163 Kingston Road in Pickering, Ontario. The preliminary geotechnical investigation was carried out for due diligence purposes in support of the Site Plan Application for the development. Preliminary plans call for the design and construction of six (6) buildings with fourteen (14) condominium towers above six (6) storey podiums and up to three (3) levels of underground parking.

Development of the proposed residential development is considered feasible. However, design and construction difficulties should be anticipated due to the presence of wet coarse sand, sand and gravel, and silty sand till deposits as well as the presence of deep weathered shale bedrock in Borehole 5D. The condominium towers could be supported on raft slabs founded on very dense soil or on deep foundations (i.e. caissons) founded in the sound shale bedrock. The building podiums and underground parking could be supported on conventional footings founded on dense to very dense soil.

The following subsections provide preliminary geotechnical engineering guidelines for site development planning. When conceptual design information is available, a more detailed investigation including additional boreholes with rock coring can be undertaken to provide geotechnical engineering guidelines for final design and construction of the proposed development.

6.2 Building Construction

6.2.1 Foundation Considerations

Preliminary plans call for the design and construction of six (6) buildings with fourteen (14) condominium towers above six (6) storey podiums and up to three (3) levels of underground parking. There will be three (3) levels of underground parking below Buildings A1 and A2, two (2) levels of underground parking below Buildings B, C1 and C2 and one (1) level of underground parking below Building D.

Three (3) foundation schemes are being considered for founding of the structures; namely raft slabs on very dense soil or caissons on sound shale bedrock for the condominium towers and conventional footings on dense to very dense soil for the building podiums and underground parking.

6.2.1.1 Raft Slabs on Very Dense Soil

Excavation for three (3) levels of underground parking below Buildings A1 and A2 may extend to about 10.0 m below proposed ground floor level. For preliminary design purposes, raft slabs

founded on very dense soil at or below depths of about 11.0 to 12.0 m below existing grade may be designed for a geotechnical reaction of 800 kPa at Serviceability Limit States (S.L.S.), subject to inspection and effective groundwater dewatering during construction. The factored geotechnical resistance at Ultimate Limit States (U.L.S.) is 1,200 kPa. Table 3 below provides a summary of the highest founding elevations where the recommended geotechnical reaction of 800 kPa (S.L.S.) can be applied at the borehole locations for raft slabs on very dense soil.

Raft Slabs on Very Dense Soil								
Borehole No. Borehole Ground Surface Elevation (m) Borehole Native Soil Interface (m)		Highest Founding Elevation (m) (Depth below ex. Grade) (m)	Founding Soil					
1 (Building A2)	85.8	84.8	73.8 (12.0)	Clayey Silt (lower)				
2D (Building A1)	86.4	85.8	75.4 (11.0)	Sandy Silt Till				

Table 3 – Summary of the Highest Founding Elevations where the Recommended Geotechnical Reaction of 800 kPa (S.L.S.) can be applied at the Borehole Locations for Raft Slabs on Very Dense Soil

For raft foundation design, a subgrade modulus of 60 MPa/m can be used for the very dense soils. Once the loading contour is available, it is recommended that a settlement analysis be carried out to determine the settlement of the raft foundation(s) to verify that the settlements are within tolerable limits.

Prior to placement of concrete, the raft foundation bases should be inspected by geotechnical personnel from EXP Services Inc. to verify the competency of the founding soil.

6.2.1.2 Caissons on Sound Shale Bedrock

It is anticipated the condominium towers will have high column loads. The proposed condominium towers could also be supported on augered straight-shafted cast-in-place concrete caissons founded on the underlying sound shale bedrock below all weathered zones and loose rock. In general, caissons founded a minimum of 2 m into the shale bedrock (i.e. 18.5 to 20.0 m below existing grade) may be designed for a factored geotechnical resistance of 7,200 kPa at U.L.S. (Ultimate Limit States), subject to inspection during construction. The geotechnical reaction at S.L.S. (Serviceability Limit States) does not govern for "unyielding soil". It should be noted that weathered shale bedrock extended to a depth of 30.55 m below existing grade in Borehole 5D located at the southwest part of the site (i.e. sound shale bedrock not encountered). Additional boreholes including rock coring should be carried out to confirm the lateral and vertical extent of sound shale bedrock at the site.

Table 4 below provides a summary of the highest founding elevations where the recommended factored geotechnical resistance of 7,200 kPa (U.L.S.) can be applied at the borehole locations for caissons on sound shale bedrock.

Table 4 - Summary of the Highest Founding Elevations where the Recommended Factored Geotechnical Resistance of 7,200 kPa (U.L.S.) can be applied at the Borehole Locations for Caissons on Sound Shale Bedrock

Borehole	Approximate Ground Surface Elevation (m)	Highest Founding Elevation (m) (Depth below ex. Grade) (m)
1	85.8	65.8 (20.0)
4	85.4	66.9 (18.5)

The caissons should be drilled from just above the P1, P2 and P3 levels. The minimum caisson diameter recommended is 760 mm. The caisson bases can be auger cleaned by mixing the loose materials at the base of the caissons with about 0.6 m of concrete. During the installation of caissons, a temporary steel liner must be installed to prevent caving of the drilled hole and to seal off seepage from the wet deposits above the founding levels. A positive head of concrete inside the liner must be maintained during withdrawal of the liner to prevent "necking" of the caisson. A 150 mm concrete slump is recommended to prevent "hang-up" of the concrete on the liner during withdrawal of the liner. If there is a significant amount of water in the caisson base which cannot be bailed out, the concrete should be placed using the tremie method.

During caisson drilling, cobbles and boulders should be anticipated in the till soils and limestone layers should be expected in the shale bedrock. An allowance should be made in the contract documents to cover any delays caused by the presence of cobbles and boulders and limestone layers.

The caisson installation operation must be inspected on a full-time basis by geotechnical personnel from EXP to confirm the bearing capacity, founding elevation, alignment and plumbness for each caisson.

6.2.1.3 Conventional Footings on Dense to Very Dense Soil

Excavation for one (1) level of underground parking may extend to about 4.0 m below proposed ground floor level. Excavation for two (2) levels of underground parking may extend to about 7.0 m below proposed ground floor level. For preliminary design purposes, footings founded on dense to very dense soil at or below depths of about 6.0 to 8.0 m below existing grade may be designed for a geotechnical reaction of 500 kPa at Serviceability Limit States (S.L.S.), subject to inspection and effective groundwater dewatering during construction. The factored geotechnical resistance at Ultimate Limit States (U.L.S.) is 750 kPa. Table 5 below provides a summary of the highest founding elevations where the recommended geotechnical reaction of 500 kPa (S.L.S.) can be applied at the borehole locations for conventional footings on dense to very dense soil for founding of the building podiums and underground parking.

Table 5 – Summary of the Highest Founding Elevations where the Recommended Geotechnical Reaction of 500 kPa (S.L.S.) can be applied at the Borehole Locations for Conventional Footings on Dense to Very Dense Soil

Borehole No.	Approximate Ground Surface Elevation (m)	Approximate Fill/ Native Soil Interface (m)	Highest Founding Elevation (m) (Depth below ex. Grade) (m)	Founding Soil
3D (Building B)	85.1	84.4	79.1 (6.0)	Sandy Silt Till
4 (Building B)	85.4 84.2		78.4 (6.0)	Sandy Silt Till
5D (Building D)	84.9	83.2	78.9 (6.0) *	Sandy Silt Till
6 (Building C1)	85.3	84.2	78.3 (7.0)	Sandy Silt Till
7 (Building D)	85.1	83.7	77.1 (8.0) *	Sandy Silt Till

* For 1 level of underground parking, the soil at P1 level is weak. Building D could be founded on short caissons within the sandy silt till deposit at the depths indicated in Table 5.

Prior to placement of concrete, the footing foundation bases should be inspected by geotechnical personnel from EXP Services Inc. to verify the competency of the founding soil.

6.2.1.4 Foundations General

Footings or caissons which are to be placed at different elevations should be located such that the higher foundation element is set below a line drawn up at 10 horizontal to 7 vertical from the near edge of the lower foundation element.

All footings, caissons and grade beams exposed to seasonal freezing conditions should be protected from frost action by at least 1.2 m of soil cover or equivalent insulation, depending on the final design requirements. However, for foundation elements below 2 or 3 unheated levels of basement, unmonitored experience in the last few years indicates shallow footing/grade beam depths of 1.0 m for interior columns and 0.6 m for walls have been successful.

Adjacent to air shafts and entrance and exit doors for underground parking, a footing depth of 1.2 m below floor surface level is required, or alternatively, insulation protection must be provided.

It should be noted the recommended geotechnical reaction and resistance values have been calculated by EXP from the borehole information for the design stage only. The investigation and comments are necessarily ongoing as new information on underground conditions becomes available. For example, it should be appreciated modification to the bearing levels may be required if unforeseen subsoil conditions are revealed after the excavation is exposed to full view or if final design decisions differ from those assumed in this report. For this reason, this office should be retained to review final foundation drawings and to provide field inspections during the construction stage.

6.2.2 Shoring Requirements

Shoring will be required along each wall of the excavation(s) to limit the horizontal and vertical movements of adjacent properties, buried utilities and roadways. In our opinion, the shoring system should consist of a continuous caisson wall supported by tiebacks due to the saturated nature of the soils and the presence of wet coarse sand, sand and gravel, and silty sand till deposits. The caisson walls should extend into the underlying shale bedrock to reduce the amount of groundwater seepage into the excavation.

The shoring system should be installed in accordance with the 'State-of-the-Art' guidelines provided in the Canadian Foundation Engineering Manual (CFEM). Based on the manual, the following earth-pressure coefficients are recommended.

- 0.25 Where minor movements can be tolerated.
- 0.35 Where utilities, roads, sidewalks must be protected from significant movement or where vibration from traffic is a factor.
- 0.45 Where movements are to be minimized such as near adjacent building footings or movement sensitive services (i.e. gas and watermains).

Approximate Soil Unit Weight = 20.5 kN/m³ (fill, silt, clayey silt) = 23 kN/m³ (sandy silt till) = 21.5 kN/m³ (silty sand till) Unit Weight of Groundwater = 9.8 kN/m³

The soldier piles will have to be installed in such a manner to prevent the caving of holes and/or base heaving conditions when drilling below the groundwater table. Consideration must be given to the dewatering system and the vertical extent of its influence. Further, slurry drilling techniques may have to be used. The concrete toe can be poured in a relatively dry condition if a temporary liner can be sealed into the dewatered soil before removing the soil/slurry from within the liner and installing the pile. If seepage cannot be sealed off, the concrete toe will have to be tremied through the slurry, pouring from the bottom upwards. The bore depth and volume of concrete used should be monitored carefully in order to determine if base heave or caving conditions have occurred during the drilling operation. The contractor should take extra precaution during drilling as a small deviation from vertical can lead to gaps between the drilled caissons resulting in loss of soil. Any gaps, openings, loss of concrete in the caisson wall observed during excavation must be grouted immediately to prevent any loss of soil from behind the shoring walls.

Forces from lateral earth pressure on the shoring system may be resisted by grouted soil anchors. All tiebacks should be anchored within the sound shale bedrock or competent sandy silt till. The tie-back holes should be temporarily cased to minimize the risk of caving and pressure grouted.

It is recommended the actual capacity of the anchors be established by sufficient full scale pullout tests ("performance test") in accordance with Post-Tensioning Institute (PTI) guidelines. Each installed anchor must be proof loaded to 1.33 times the design working load for the anchor, in accordance with PTI guidelines.

EXP should be retained to review the shoring design, to monitor installation and testing of the system, and to monitor the shoring movements during all phases of the excavation. Inclinometers should be installed at locations where buildings or sensitive services lie close to the excavation. Careful monitoring is needed in any shored excavation, especially when buildings are located in close proximity. This is necessary not only to anticipate when and if additional support is needed, but also to provide data to meet claims from adjacent property owners. In this regard, it is essential detailed precondition surveys be made on adjacent buildings.

6.2.3 Excavation and Groundwater Control

Following completion of the shoring installation, excavation for basement and foundation construction may proceed. Excavation must be carried out in accordance with the Occupational Health and Safety Act (OHSA) and local regulations. Within the meaning of OHSA, moist sandy silt till is classified as Type 2 soil. Moist sandy silt till with wet seams and saturated layers is classified as Type 3 soil. Loose fill, saturated silt and clayey silt and wet silty sand till are classified as Type 4 soils. It should be noted that boulders may be present within the till deposits. Their presence may influence the progress of excavation. Consequently, provisions should be made in the contract documents to cover any delays caused by these obstructions.

Three (3) levels of underground parking will extend to about 10.0 m below ground floor level. Two (2) levels of underground parking will extend to about 7.0 m below ground floor level. One (1) level of underground parking will extend to about 4.0 m below ground floor level. Short-term groundwater levels in the monitoring wells ranged from about 2.6 to 6.8 m below existing grade. Seepage from perched water in the fill, the saturated silt and clayey silt strata, pervious seams and layers in the sandy silt till deposit, the wet silty sand till deposit and scattered wet coarse sand/sand and gravel deposits should be anticipated during construction with the installation of continuous caisson walls extending to shale bedrock. It should be possible to control and remove this seepage water from within the excavation(s) using construction dewatering techniques, i.e. pumping from strategically located high-capacity sumps as well as localized wellpoints. The dewatering systems should be maintained until the perimeter and underfloor drainage systems are operational.

6.2.4 Backfill Considerations

Backfill used to satisfy underfloor slab requirements, in footing and service trenches, etc., should be compactible fill, i.e., inorganic soil with its moisture content close to its optimum value determined in the standard Proctor maximum dry density test. The excavated material will primarily consist of fill, silt, clayey silt, sandy silt till and silty sand till. The majority of the soils

are saturated/wet and require moisture content adjustment (i.e. partial drying) prior to reuse as backfill material.

Any organic or excessively wet or otherwise deleterious material should not be used for backfilling purposes. Any shortfall of suitable on-site excavated material can be made up with imported granular material, OPSS Granular 'B' or equivalent. The backfill should be placed in lifts not more than 300 mm thick in the loose state with each lift being compacted to 100% standard Proctor maximum dry density before subsequent lifts are placed. The degree of compaction achieved in the field should be checked by in-place density tests.

6.2.5 Floor Slab Construction and Permanent Drainage

Three (3) levels of underground parking will extend to about 10.0 m below ground floor level below Buildings A1 and A2. Two (2) levels of underground parking will extend to about 7.0 m below ground floor level below Buildings B, C1 and C2. One (1) level of underground parking will extend to about 4.0 m below ground floor level below Building D. At these levels, the soils may consist of native firm to stiff clayey silt; very dense, wet coarse sand/silty sand till and loose to very dense sandy silt till.

Subject to effective dewatering, the floor slabs can be constructed as a slab-on-grade on the native soils provided any soft spots detected are removed and replaced with compactible fill in the manner described in the "Backfill Considerations" subsection of the report. A moisture barrier consisting of 250 mm of 19 mm clear crushed stone placed directly under the floor slab should be adequate. It will be necessary to place a layer of 300 mm thick concrete sand over geotextile filter fabric on the subgrade to prevent the fine silt particles from migrating into the clear stone.

Perimeter drainage is required to remove any water adjacent to basement walls. In order to prevent the build-up of water adjacent to basement walls, it would be prudent to incorporate an exterior drainage system attached to the basement wall connected to a sump inside the building. The exterior drainage should consist of Terradrain 600 or equivalent covering the entire basement wall in order to reduce the risk of water penetration. The Terradrain panels should be outletted through the basement wall into the basement.

An underfloor drainage system is also required below all basement floor slabs at this site. For preliminary guidelines, the underfloor drains should be spaced at about 3 m apart. The underfloor drains should consist of 100 mm diameter perforated pipe surrounded by 150 mm of clear stone all wrapped in geotextile filter fabric and then surrounded by 150 mm of concrete sand placed in an approximate 0.75 m wide by 0.75 m deep trench lined with geotextile filter fabric and connected to a sump. Cleanouts should be provided at selected locations.

6.2.6 Earthquake Considerations

The Seismic Site Class for this site should be "C" for Buildings A1, A2, B, C1 and C2 and "D" for Building D based on the slab and foundation depths and the soil and bedrock conditions.

6.2.7 Subsurface Concrete

Two (2) soil samples from Boreholes 1 and 4 were analyzed for pH and sulphate content. The test results, included in Appendix B, indicated pH values of 7.84 and 7.75 and sulphate contents of 73 ppm and 700 ppm as SO₄, indicating a negligible degree of sulphate attack on subsurface concrete structures. Therefore type 10 Portland cement should be suitable for use in concrete at this site.

7. General Comments

The preliminary comments given in this report are intended only for the guidance of design engineers. The number of boreholes required to determine the localized underground conditions between boreholes affecting construction costs, techniques, sequencing, equipment, scheduling, etc. could be greater than has been carried out for design purposes. Contractors bidding on or undertaking the works should, in this light, decide on their own investigations as well as their own interpretations of the factual borehole results so that they may draw their own conclusions as to how the subsurface conditions may affect them.

Once final conceptual design details are available, a more detailed investigation can be undertaken to provide geotechnical engineering parameters for final design and construction of the proposed development.

We trust this preliminary report is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact this office.

Yours truly, EXP Services Inc.

C.Mar

Clement Chow, P.Eng. Project Engineer Geotechnical Services

Peter Chan, P.Eng. Vice President, Central Ontario Geotechnical Services

EXP Services Inc. Project Number: GTR-22015419-B0 Date: November 3, 2023

Appendix A

Grain Size Distribution Curves

Arcadio Petrola

Project Manager: Clement Chow

Approved By: Original Signed By Arcadio Petrola

Project Manager: Clement Chow Approve

Approved By: Original Signed By Arcadio Petrola

Project Manager: Clement Chow Approved

Approved By: Original Signed By Arcadio Petrola

*e	xp. ¹⁶	exp Services Inc. 95 Clark Boulevard, Brampton Ontario, Canada, L6T 4V1 Telephone: (905) 793-9800 Fax: (905) 793-0641	Grain Size Analy Test Report	SIS
Sample Test No.:	: <u>424258-1</u>	Report No.: 1	Date Reported	: 30-Jun-2023
Project No.: Project Name:	gtr-22015419-b0 0 Geotechnical	02	Sieve Size (mm)	% Passing Sample
			26.5	100.0
			22.4	100.0
Sample Information			19.0	100.0
Borehole No.:	<u>BH 5D</u>		16.0	100.0
Sample Method:	<u>SS</u>		13.2	100.0
Sample No.:			12.7	100.0
Depth:	<u>9.2 - 9.6 m</u>		9.5	100.0
Sample Description:			6.7	99.3
Sampled By:	<u>exp Markham</u>		4.75	97.0
Sampling Date:	<u>12-May-2023</u>		2.00	60.3
Date Received:	<u>27-Jun-2023</u>		0.850	16.9
Client Sample ID:			0.425	11.3
Comments:			0.250	8.8
			0.180	8.0
			0.150	7.5
			0.075	6.3
			0.053	6.1

Notes: *Out of Specification

International Society for Soil Mechanics and Foundation Engineering

Arcadio Petrola

Project Manager: Clement Chow Approv

Approved By: Original Signed By Arcadio Petrola

EXP Services Inc. Project Number: GTR-22015419-B0 Date: November 3, 2023

Appendix B

Certificate of Analysis for pH and Sulphate

Your P.O. #: MRK-GEO Your Project #: GTR-22015419-B0 Site Location: 1101A & 1105 KINGSTON RD Your C.O.C. #: 940135-33-01

Attention: Clement Chow

exp Services Inc Markham Branch 220 Commerce Valley Dr W Suite 500 Markham, ON CANADA L3T 0A8

> Report Date: 2023/07/04 Report #: R7700243 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C319022 Received: 2023/06/27, 15:40

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
pH CaCl2 EXTRACT	2	2023/06/29	2023/06/29	CAM SOP-00413	EPA 9045 D m
Sulphate (20:1 Extract)	2	2023/06/30	2023/07/04	CAM SOP-00464	MOE E3013 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: MRK-GEO Your Project #: GTR-22015419-B0 Site Location: 1101A & 1105 KINGSTON RD Your C.O.C. #: 940135-33-01

Attention: Clement Chow

exp Services Inc Markham Branch 220 Commerce Valley Dr W Suite 500 Markham, ON CANADA L3T 0A8

> Report Date: 2023/07/04 Report #: R7700243 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C319022 Received: 2023/06/27, 15:40

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Patricia Legette, Project Manager Email: Patricia.Legette@bureauveritas.com Phone# (905)817-5799

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Bureau Veritas ID		WFQ102	WFQ103		
Sampling Date		2023/06/14	2023/06/16		
COC Number		940135-33-01	940135-33-01		
	UNITS	BH1 3.0-3.5M	BH4 6.1-6.4M	RDL	QC Batch
Inorganics					
inorganics					
Available (CaCl2) pH	pН	7.84	7.75		8759974
Available (CaCl2) pH Soluble (20:1) Sulphate (SO4)	pH ug/g	7.84 73	7.75 700	20	8759974 8762503

RESULTS OF ANALYSES OF SOIL

Page 3 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

TEST SUMMARY

Bureau Veritas ID: Sample ID:	WFQ102 BH1 3.0-3.5M					Collected: Shipped:	2023/06/14
Matrix:	Soil					Received:	2023/06/27
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	8759974	2023/06/29	2023/06/29	Taslima Ak	ktar
Sulphate (20:1 Extract)		KONE/EC	8762503	2023/06/30	2023/07/04	Alina Dobr	reanu
Bureau Veritas ID: Sample ID: Matrix:	WFQ103 BH4 6.1-6.4M Soil					Collected: Shipped: Received:	2023/06/16 2023/06/27
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
pH CaCl2 EXTRACT		AT	8759974	2023/06/29	2023/06/29	Taslima Ak	ktar
Sulphate (20:1 Extract)		KONE/EC	8762503	2023/06/30	2023/07/04	Alina Dobr	reanu

Page 4 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

GENERAL COMMENTS

Page 5 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: GTR-22015419-B0 Site Location: 1101A & 1105 KINGSTON RD Your P.O. #: MRK-GEO Sampler Initials: NT

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8759974	Available (CaCl2) pH	2023/06/29			100	97 - 103			0.11	N/A
8762503	Soluble (20:1) Sulphate (SO4)	2023/07/04	91	70 - 130	105	70 - 130	<20	ug/g	NC	35

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

avisting Carriere

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

		Bureau Veritas 6740 Campobello Road, N	Aississauga, Ontari	o Canada L5N	2L8 Tel (905) 81	7-5700 Toll-free 800	563-6266 Fax (905) 817-577	77 www.t	bvna.com						СНА	Patric	27-Jun-23 15 ia Legette	40	Page	1
-	IN	IVOICE TO:				REPC	RT TO:						PROJEC	T INFORMATIO	N:	6	C			-	
Company Name.	#17485 exp Ser	vices Inc		Compar	y Name:	EXP Serri	1 Inc		s	1.15	Quotation	#	-0203	20- Stream	n 3	1	с.	919022		tle Order #	e.
Attention:	Accounts Payabl	e		Attentio	n:	Clemy	rt Charl	March 1	1. 10	2.4	P.O.#		1	DRK-GEO		(АЛН	ENU 1000			í.
Address:	220 Commerce V	T 008		Address	c				-	1	Project:		GTE	- 220154	9-80			LINV-1285	-	940135	<u>.</u>
Tak	(905) 695-3217	TUNO		-		-			-	-	Project Na	ame:	1101	A+115	Kings	to Rd.	-	COC #:		Project Manage	JIC:
Email	AP@exp.com; ka	aren.burke@exp.com	Conference of	Tet:	18	diard.	charl 2	140 000	~	-	Site #:		-	AUT	1					Patricia Legette	e
MOEREG	ULATED DRINKIN	G WATER OR WATER		RHIMAN	CONSUMPTIO	ON MUST BE	Charle an	apern		Ah	ALYSIS RF	OUESTER	PLEASE			-		C#940135-33-01	CIT Developed		
	SUBMITTED ON T	HE BUREAU VERITAS	DRINKING W	ATER CHAIN	OF CUSTO	DY		11.4	10			GOLDILL		DE SPECIFIC)	-		100 523 30	Please provide advan	ce notice for rush p	rojects	
Regulati	ion 153 (2011) Res/Park Mediur	n/Fine	ther Regulations	ylaw	Specia	al Instructions	ase circle) Cr VI	hak		1					1		Regular (Si (will be applied Standard TAT	tandard) TAT: d if Rush TAT is not specifie = 5-7 Working days for more	d): t/tests		
Table 3	Agri/Other For RS	C Reg 558.	Storm Sewer Byla Iunicipality	IW	18-1-1-		ed (plea	Sul							ų –		Please note: \$ days - contact	Handard TAT for certain tes your Project Manager for d	ts such as BOD and etails.	Dioxins/Furans a	w>5
		Other	1 mag 400 rable	5. N	Sec. 4		ritten	+									Job Specific Date Required	Rush TAT (if applies to	entire submission) Time Requi	red	-
7	Include Criteri	a on Certificate of Anal	vsis (Y/N)?		1000		Ma	H			-		-		-	_	Rush Confirm	ation Number:			-
Sampl	e Barcode Label	Sample (Location) Ide	ntification	Date Sampled	Time Sample	ed Matrix	Ē.										# of Bottles		Comments	r#)	-
1	r	BH1 3.0-3.	5m 2	2023/06/1	+ -	soil	Read		1	1			1					-			
2		BH 4 6.1-	6.4m 2	023/06/1	6 -	soil	S. H.	V		1					1		1			1	
3	1.5					K	Sarah .					-	1	1		-					
4										1		- 2			1	_				14	
5			_				R.C.								1				-		-
6		1.1							1						-					×.	
7							S		1						1						
8														1		-	y I				-
9							100		9								-		_	d	
10	1					52	-		-	1				-		12					1
	RELINQUISHED BY: (S	ignature/Print)	Date: (YY/MM	/DD) 1	ime	RECEIVED	BY: (Signature/	Print)		Date: (YY	MM/DD)	Т	īme	# jars used a	nd	-	Laborat	ory Use Only		1	-
0	. Chow	Clement Cher	2023/06	27 1	An	Kupidus	RUPIND	ÊR	1	2022/	06 27	15	:40	not submitt	ed Ti	me Sensitive	Temperatu	re (°C) on Recei	Custody Seal Present Intact	Yes	No
UNLESS OTHER ACKNOWLEDGM	WISE AGREED TO IN WE ENT AND ACCEPTANCE DNSIBILITY OF THE REL	RITING, WORK SUBMITTED OF OUR TERMS WHICH ARE INQUISHER TO ENSURE TH	ON THIS CHAIN OF AVAILABLE FOR V E ACCURACY OF T	CUSTODY IS S IEWING AT WI HE CHAIN OF C	UBJECT TO BUR W.BVNA.COM/EI USTODY RECOR	EAU VERITAS'S STAI NVIRONMENTAL-LAB RD. AN INCOMPLETE	IDARD TERMS / ORATORIES/RE CHAIN OF CUST	ND CONDITI SOURCES/CO	ONS. SIG	GNING OF	THIS CHAIN ONDITIONS. CAL TAT DEI	OF CUST	DDY DOCUN	IENT IS	LES MUS	T BE KEPT CO	DOL (< 10° C) F	ROM TIME OF SAMPLING	White: Bureau	Veritas Yello	w: Clie
" SAMPLE CONT	AINER, PRESERVATION,	HOLD TIME AND PACKAGE	INFORMATION CA	N BE VIEWED	AT WWW.BVNA.C	OM/ENVIRONMENTA	L-LABORATOR	ES/RESOUR	CESICHA	IN-CUSTO	DY-FORMS-	cocs.					1.00 10				

EXP Services Inc. Project Number: GTR-22015419-B0 Date: November 3, 2023

Drawings

Borehole Location Plan Borehole Logs

Notes on Sample Descriptions

 All sample descriptions included in this report follow the International Society for Soil Mechanics and Foundation Engineering (ISSMFE), as outlined in the Canadian Foundation Engineering Manual. Note, however, that behavioral properties (i.e. plasticity, permeability) take precedence over particle gradation when classifying soil. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually. Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems.

CLAY (PLASTIC) TO		FI	NE	MEDIUM	CRS.	FINE	COAR	SE				
SILT (NONPLASTIC) SAND GRAVEL													
0.002	0.006	0.02	0.06	0.2	0.6 	2.0 	6.0	20	60	200			
	EQUIVALENT GRAIN DIAMETER IN MILLIMETRES												

	ISSMFE SOIL CLASSIFICATION												
CLAY	SILT				SAND			GRAVEL	COBBLES	BOULDERS			
	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE				
-													

- 2. Fill: Where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc., none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.
- 3. Till: The term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (75 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

Notes On Soil Descriptions

4. The following table gives a description of the soil based on particle sizes. With the exception of those samples where grain size analyses have been performed, all samples are classified visually. The accuracy of visual examination is not sufficient to differentiate between this classification system or exact grain size.

Soil C	lassification	Terminology	Proportion
Clay and Silt	<0.060 mm	"trace" (e.g. Trace sand)	1% to 10%
Sand	0.060 to 2.0 mm	"some" (e.g. Some sand)	10% to 20%
Gravel	2.0 to 75 mm	adjective (e.g. sandy, silty)	20% to 35%
Cobbles	75 to 200 mm	"and" (e.g. and sand)	35% to 50%
Boulders	>200 mm		

The compactness of Cohesionless soils and the consistency of the cohesive soils are defined by the following:

Cohe	sionless Soil		Cohesive Soi	
Compactness	Standard Penetration Resistance "N" Blows / 0.3 m	Consistency	Undrained Shear Strength (kPa)	Standard Penetration Resistance "N" Blows / 0.3 m
Very Loose	0 to 4	Very soft	<12	<2
Loose	4 to 10	Soft	12 to 25	2 to 4
Compact	10 to 30	Firm	25 to 50	4 to 8
Dense	30 to 50	Stiff	50 to 100	8 to 15
Very Dense	Over 50	Very Stiff	100 to 200	15 to 30
		Hard	>200	>30

5. ROCK CORING

Where rock drilling was carried out, the term RQD (Rock Quality Designation) is used. The RQD is an indirect measure of the number of fractures and soundless of the rock mass. It is obtained from the rock cores by summing the length of the core covered, counting only those pieces of sound core that are 100 mm or more length. The RQD value is expressed as a percentage and is the ratio of the summed core lengths to the total length of core run. The classification based on the RQD value is given below.

RQD Classification	RQD (%)
Very Poor Quality	<25
Poor Quality	25 to 50
Fair Quality	50 to 75
Good Quality	75 to 90
Excellent Quality	90 to 100

Recovery Designation % Recovery =

Length of Core Per Run

x 100

Total Length of Run

Project	No.	GTR-22015419-BO	-								Dra	wing N	lo		2
Project:	:	Preliminary Geotechnical I	nvestig	ati	on - F	Resic	lentia	l Dev	/elopm	nent	s	Sheet N	lo	1 (of _
ocatio	n:	1101A, 1105 and 1163 Kin	gston F	۲o	ad, Pi	icker	ing, (Ontar	io		-				
Date Dr Drill Typ Datum:	rilled: pe:	May 16, 2023 Mud rotary with CME 75 Geodetic		_	Auger Si SPT (N) Dynamic Shelby T Field Val	ample Value : Cone T 'ube ne Test	est	0		Combr Natura Plastic Undrai % Stra Penetr	ustible Va I Moistum and Liqu ined Triaz in at Faiz	apour Rea e id Limit dal at ure	ading 	□ × ⊕	
1	a		T	T		1000	N Volu		s	Combu	etible Van	our Deadi	ng (nom		1
S N M		Soil Description	ELEV.		2	20	40	6 0	80	2 Nat	50 5 50 5 tural Moist	00 7 ure Conte	19 (ppn) 750 Int %	<u> </u> <u>A</u>	Natu Uni
- Ö			m 85.79	H	Shear	Strength	0.1		MPa 0.2	Atteri	oerg Limit:	s (% Dry V 20	Veight) 30	Ē	kN/r
	∣ PAVE √aspha	EMENT STRUCTURE - 50mm L altic concrete	85.7 85.2		Ö						×				
HH	over :	580mm granular material	84.8	ין	2										
	some	gravel; dark brown, moist		2	U							~			
	CLAY	'EY SILT - trace of sand and	-	3	å										
H	stiff		1	4			Ŕ								
HH	bec	coming grey	-		3							×			
	-	-	80.0	5											
K	-SAND	DY SILT TILL - wet sand/sand -		6	۲ ۲						x				
11	_and c	obbles; grey, saturated, compact	1	,											
	_to ver	y dense					50/100m	en			×				
M	bec	oming moist		ľ											
1	_	-		9			Ö	m li		×				<u>-</u>	
11		-	-	10											
	_	-	1	,,			Ö			X					
	CLAY	EY SILT - grey, moist, hard	74.3											Ē	
	-		1	12				Ö			×				
HH		-		13											
fИ			-	14				õ			×			Z	
ľИ	- - SILTY	- SAND TILL - scattered gravel.	71.0	15			60/126m								
	shale	fragments; grey, very moist to -	-				0				X			7	
	— - cob	ble and boulder layers -	1	1											
111	_	-	1	17						×				zz	
	SHAL	E BEDROCK - black and dark	67.8	18			50/25m	n							
	grey,	weathered to ~19.25m becoming	1	15										Π	
国	o		-												
	(S		1	20						王王					
	_		64.3	21											
	NOTE	END OF BOREHOLE	6-130d58												
	1. Be	drock cored from 18.57 to												11111	
	dia	mond drilling equipment.													
1	2. Gro	oundwater monitoring well	1	1			1111	177						ŧ	

Time	Water Level (m)	Depth to Cave (m)
After 4 days	3.36	Well
After 15 days	3.42	Well
After 21 days	3.37	Well
-		
		:

			ROCK CORE	EL	C)G										B	-11			
PRO. Pre LOC/	JECT Dimina	ry Geo	technical Investigation		ertic	TATIO	TED	E	85.8 05/14	LETE	N (m) ED		DA G LO	TUM ieodet GGEC	ic) BY		PRO GT DRA	JECT R-22	NUN 01541	IBER 19-B0 VBER
CLIE	NT Dute Ca	ommur	ities	DRI	LLE	R Drillir	Ng		CME	75 Ti	E ruck			RE B/	ARREL		SHE	ET 1 0	- of 1	
(m) NOI	Ê				(III) NOL	7PE 10	ATION	HAR	ACTE	RIST	ICS IL	FRING		H	JRE ENCY	MBER		ERY (%)	COLOUR	
ELEVAT	DEPTH	SYMBO	GENERAL DESCRIPTION		ELEVAI	JOINT T	ORIENT	SPACIN	ROUGH	FILLING	APERTL (mm)	WEATH		STRENG	FRACTU	RUN NU	RECOVI	Rab	WATER	WATER
67.2	2	3	4	e	5	6	7	8	9	10	11	12	2	13	14	15	16	17	18	19
	-		Dark grey to black shale with thin interbeds limestone or calcareous siltstone Slightly weathered (W2) to fresh (W1), weathered (R3), laminated to thinly bedded, dark grey black, fissile SHALE	of k to		B B B	н 1 1		SP SP SP	T T T										
	-19		Run 1: Shale (100%) Fracture Zone: 18.68 - 18.75 m (76mm) 18.91 - 19.03 m (125mm)			в	F		SP	т										~
			Run 2: Shale (100%)			в	म		รบ	т						1	100	61	100	B
			SOLID CORE RECOVERY: 100%													2	100	100	100	Grey
64.4	- 21																			
04.4			End of Borehole at 21.4 m	6																

EXP_ROCKCOREAM ROCK CORE LOGS GPJ CORE LOG GDT 6/22/23

**exp.

	Le	og of	Bor	ehole	2D				
Project No.	GTR-22015419-BO						Drawing No.		3
Project:	Preliminary Geotechnical	Investig	ation - R	esidential	Developn	nent	Sheet No.	1	of _1
Location:	1101A, 1105 and 1163 K	ingston F	Road, Pic	ckering, Or	ntario				
Date Drilled: Drill Type: Datum:	May 18, 2023 Mud rotary with CME 75 Geodetic		Auger Sar SPT (N) V Dynamic (Shelby Tu Field Vand	mple Value Cone Test be a Test		Combustik Natural Me Plastic and Undrained % Strain a Penetrome	ole Vapour Reading oisture d Liquid Limit I Triaxial at t Failure ater	□ → → → → → → → → → → → → → → → → → → →] ; Ə
SYM BO	Soil Description	ELEV.	D P 20 T Shear St	N Value 40 60 trength	80 MPa	Combustibl 250 Natural Atterberg	e Vapour Reading (pp 500 750 Moisture Content % Limits (% Dry Weight	m) SAMP-Luo	Natural Unit Weight kN/m ³
PAV aspr over SILT SULT SULT	EMENT STRUCTURE - 75mm naltic concrete 460mm granular material Y SAND - brown, moist, pact - brown, saturated, compact YEY SILT - trace of sand and el; grey, saturated, firm to very Y SAND TILL - scattered gravel cobbles; grey, wet, very dense DY SILT TILL - wet sand/sand gravel seams, scattered gravel cobbles, shale fragments; grey, st to saturated, very dense TOP SILT SILT - trace of sand dark grey END OF BOREHOLE ES: roundwater monitoring well stalled to 18.3m; sealed with stalled to 18.3m; sealed with	68.9 68.1		0.1 50/75mm 50/180mm 50/180mm 50/180mm					

Time	Water Level (m)	Depth to Cave (m)
After 2 days	2.96	Well
After 13 days	3.83	Well
After 19 days	3.98	Well

	Lo	g of	Borehole 2S	
Project No.	GTR-22015419-BO	0	Drawing No.	4
Project:	Preliminary Geotechnical I	nvestia	ation - Residential Development Sheet No. 1	of 1
Location:	1101A, 1105 and 1163 Kin	aston f	Boad, Pickering, Ontario	
Dete Driller		Igotorri	Combustible Vapour Reading Auger Sample Auger Sample	〕
Date Drilled	1: IVIAY 10, 2023		- SPT (N) Value O I Plastic and Liquid Limit	Ð
Drill Type:	Mud rotary with CME 75		Dynamic Cone Test Undrained Triaxial at Shelby Tube % Strain at Failure	
Datum:	Geodetic	-	_ Field Vane Test S Penetrometer A	
G S W B U B O	Soil Description	ELEV. m	N Value Combustible Vapour Reading (ppm) S P 250 500 750 A P 20 40 60 80 Natural Moisture Content % P H Shear Strength MPa Atterberg Limits (% Dry Welght) L L	Natural Unit Weight
	AVEMENT STRUCTURE - 75mm sphaltic concrete // ITY SAND - brown, moist, mpact // LT - brown, saturated, compact LT - brown, saturated, compact AYEY SILT - trace of sand and avel; grey, saturated, firm to very iff	63.9 85.4 83.9		
OGS.GPJ NEW.GDT 11/3/23	LTY SAND TILL - scattered gravel d cobbles; grey, wet, very dense	77.6		
HEIRINGSTONRDBHL	d cobbles, shale fragments; grey, pist to saturated, very dense END OF BOREHOLE DTES: Borehole 2S drilled adjacent to Borehole 2D. Groundwater monitoring well installed to 12.27m; sealed with bentonite from 0.3 to 8.61m.	74.1		

®exp.

Time	Water Level (m)	Depth to Cave (m)
After 2 days	2.89	Well
After 13 days	2.97	Well
After 19 days	2.91	Well

	Lo	g of]	Borehol	e	3D					
Project No.	GTR-22015419-BO	0						Drawing	No.		5
Project:	Preliminary Geotechnical	nvestig	ati	on - Residentia	al De	evelopm	ent	Sheet	No. –	1	of 1
Location:	1101A, 1105 and 1163 Kir	ngston F	Ro	ad, Pickering,	Onta	ario					
Looquon			_		0		Combu	stible Vapour Re	eading]
Date Drilled:	May 8, 2023		_	Auger Sample SPT (N) Value	O	2	Natural Plastic	Moisture and Liquid Limit	F	X	5
Drill Type:	Mud rotary with CME 75		_	Dynamic Cone Test	_	_	Undrain % Strain	ed Triaxial at		Ð	
Datum:	Geodetic		-	Field Vane Test		B	Penetro	mələr			
Ş				N Valu	ue		Combust	ible Vapour Rea	ding (ppm) <u>S</u>	Natural
	Soll Description	m		20 40 Shear Strength	60	80 MPa	Natu Atlerbe	ral Moisture Con arg Limits (% Dry	tent % Weight)		Unit Weight
	EMENT STRUCTURE - 75mm	85.08 / 85.0	0	0.1		0.2		20	30	5 E	KINZITI
line hasph	altic concrete 560mm granular material	84.4	1							P	
SILT	- trace of sand and gravel;	-		ð				X			
	DV SILT TILL wat appd/appd	82.6	2							1	
and	gravel seams, some gravel;	-	3	8				X			
	n, saturated, loose to ~4m, pact to dense below	-	4								
		-									
- be	coming grey]	5							ŧ,	
		-	6	a a a a a a a a a a a a a a a a a a a			5				
- be	coming moist	_	7							11	
		-		6							
		76.6	ľ							I	
and	cobbles, shale fragments; grey,	-	9								
very	moist to wet, very dense		10							1	
		-			757					₽,	
			11							₽́1	
en 19		-	12			2					
11/3		-	13							罰	
A GDT		-			99						
		-	14		Ĭ					M	ľ
		-	15			3	HU.				
			16							F	
		-	47			24					
			ľ								
		66.6	18	50/75m			×				
VEA	THERED SHALE BEDROCK -	66.2	\vdash								
	END OF BOREHOLE										
	oundwater monitoring well										
be	ntonite from 0.3 to 14.4m.										
ž <u> </u>			J			1111					

(m)	Cave (m)
3.97 4.04 4.04	Well Well Well
	(m) 3.97 4.04 4.04

	L	og of]	Borehol	e 3S					
Project No.	GTR-22015419-BO	U					Drawing No.		e	6
Project:	Preliminary Geotechnica	I Investig	ati	on - Residentia	al Developm	nent	Sheet No.	1	0	of 1
Location:	1101A, 1105 and 1163 K	ingston F	20	ad, Pickering, (Ontario			_		
			_	<u>,</u>		Combus	tible Vapour Readin	19	_	
Date Drilled:	May 8, 2023		_	Auger Sample SPT (N) Value		Natural M	Moisture		×	
Drill Type:	Mud rotary with CME 75		_	Dynamic Cone Test		Undraine	ed Triaxial at	÷	Ð	
Datum:	Geodetic		-	Field Vane Test	s	% Strain Penetror	at Failure neter			
SYMBO GWL	Soil Description	ELEV. m	DWP-H	N Valu 20 40 Shear Strength	60 80 MPa	Combusti 250 Natur Atterber	ble Vapour Reading 500 750 al Moisture Content rg Limits (% Dry Wel	(ppm) % jhl)	SAMPLE	Natural Unit Weight kN/m ³
Sister PAV Asph	EMENT STRUCTURE - 75mm altic concrete	85.08 / 85.0 / 84.4	0			10			s	
-SILT	- trace of sand and gravel;		1							
Drow	n, saturateo, loose	-								
		-	2							
LZU SAN	DV SILT TILL . wet sand/sand	82.6	ĺ							
and	gravel seams, some gravel;	_	3							
com	pact to dense below									
			4							
		_	5					Ħ		
bec	coming grey							轊		
		7						罰		
		7	6							
- bea	coming moist		1					韝		
		-	7					Ħ		
Ω		-								
		-	8						-	
	Y SAND TILL - scattered gravel	76.6								
ZHII And C	cobbles, shale fragments; grey, moist to wet, very dense	-	9							
	- v	-								
			10					副		
		_							1	
			11							
SUC										
	END OF BOREHOLE	/ 3.4	Η						+	
I. Bo	Eo: prehole 3S drilled adjacent						╪╪┼╡╎╞╪╪┲╪╸╽╡╪ ┥┽┲╵┲┝┝┍┿╽			
to 1. Gr	Borehole 3D. oundwater monitoring well							罰		
ស ins ២ be	talled to 11.68m; sealed with non-									
AGW										
			1			<u></u>	11111111111			

©exp.

Time	Water Level (m)	Depth to Cave (m)
After 12 days	1.38	Well
After 23 days	2.10	Well
After 29 days	4.04	Well

		Lo	og of	[]	Boreho	ole 4	1				
F	Project No.	GTR-22015419-BO	0						Drawing f	No.	7
F	Project:	Preliminary Geotechnical	Investig	jat	tion - Resider	ntial Dev	velopm	nent	Sheet I	vo. 1	of 1
L	ocation:	1101A. 1105 and 1163 Ki	naston	Ro	ad. Pickering	. Ontar	io				
					,	1					
C	Date Drilled:	May 11 and 12, 2023		_	Auger Sample	I	X	Combust Natural M	ible Vapour Re foisture	ading [⊐ ×
г)rill Type:	Mud rotary with CME 75		_	SPT (N) Value Dvnamic Cone Test	0	—	Plastic a	nd Liquid Limit	I	Ð
r)atum:	Geodetic		_	Shelby Tube	I		Undraine % Strain	d Triaxial at at Failure	Ð	
	Zettoriti.			_	Field Vane Test	(S	Penetron	neter		
e V L	S Y B O	Soil Description	ELEV.		20 40	Value 60	80 MPa	Combustil 250 Naturi Atterber	ble Vapour Read 500 al Molsture Contr g Limits (% Dry	ing (ppm) S 750 A ent % F Weight) L	Natural Unit Weight
3		EMENT STRUCTURE - 75mm	85.41				0.2	10	20	30	kN/m°
1	aspl	altic concrete	85.0					X		ľ	
	FILL	- sandy slit, some gravel, topsoil	I I I I I I I I I I I I I I I I I I I		Ő						
	SAN	Isions; grey, moist, compact	7	ľ]
	and	gravel seams, scattered gravel cobbles, shale fragments; grev.			Ö						
	mois	st to saturated, dense to very	_	4							
- I.		50	_		Ó						
- 1			-	ĺ							
- 1				6			O	5	<		
			-	7							
			_	ł				X			
- 1			_			26					
1			-			•)		X		Z	4
1				1	0						
			-	1						Z	
1			_	1:	2						
			-								
3/23			7								
		bble and boulder layers		1	4	<u>s</u>					
S in	K/A-		-	1	5	012	Smm i				
Ŵ.							社論				
S S S S S S	SHA	LE BEDROCK - black and dark	68.9								1
LOG F	grey	, weathered to ~18.25m becoming ider below	_								
IBORI			-	11							
STON	E (SEE ATTACHED ROCK CORE	_	19	,						
KING		LOG)	65.4								
01105	NOT	END OF BOREHOLE									
AAN	1. Be	edrock cored from 17.02 to									
1101	di	amond drilling equipment.									
IGL02	2. Gi	stalled to 16.4m; sealed with									
AGW	be	entonite from 0.3 to 12.74m.									
				_			111773	+ +-			

®exp.

Time	Water Level (m)	Depth to Cave (m)
After 8 days	3.92	Well
After 19 days	3.97	Well
	4.10	TYC:

			ROCK CORE	L		G							BH4						
PROJ Pre LOCA	JECT Iliminai	y Geot	echnical Investigation	ORIE Veri	NTA tical		D	ELE 85 COM	VATIO .4 IPLE1	DN (m) ED		D/ (L(ATUM Geodel	lic) BY		GTR-22015419-B0 DRAWING NUMBER 7			
CLIE	NT NC Coute Co	i US Kingi	ities	DRILI	DRILLER D Pontil Drilling				CME 75 Truck			C	DRE BA	ARREL		SHE	ET 1 c	, of 1	
(E) 7				Ĵ.	J		CH/	RAC		TICS	4	5 2			R	(%)		(%)	LOUR
LEVATIO	EPTH (m)	YMBOL	GENERAL DESCRIPTION	LEVATIO						PERTURE			TRENGTH	REQUENC		ECOVER	8	ATER	ATER CO
<u> </u>	2	い 3	4	ш 5		5 C 5 7) (/ (5 0 8 9	(표) 1(₹5 11	1	2	い 13	<u> 또 대</u> 14	<u>∩∠</u> 15	16	17	<u>≤⊮</u> 18	<u>₹</u> 19
68.4	-		BLUE MOUNTAIN FORMATION Dark grey to black shale with thin interbeds limestone or calcareous siltstone	68. of	4 - E	3 F		s	РТ										
	-		Fresh (W1), weak (R3), laminated to thinly bedded, dark grey to black, fissile SHALE		E	3 F 3 F	-	s	P T P T										
	-		Run 1: Shale (100%) Fracture Zone: 17.02 - 17.15 m (130mm)		E	3 F		S	P T				:						
	-		SOLID CORE RECOVERY: 82%		E	3 F 3 F		s	Р Т Р Т										2
	-				E	2 V 3 F	/ -	s s	Р Т Р Т						1	100	76	100	Gre
	-18				1	3 F		s	u o	1									
					E	3 F 3 F 3 F		S S	P T P T P S	1									
	_	Ē			E	3 F	:	s	P T										
	-		Run 2: Shale (100%) SOLID CORE RECOVERY: 100%		E	2 V 3 F	:	S	U T P T										
	-																		
	-19	Ē																	
	_														2	100	100	100	ey
	-														2	100	100	100	ບັ
	-	Ē																	
	-	Ē																	
	20																		
65.3	•	<u></u>	End of Borehole at 20.1 m	65.	3														
	•																		
	-				1	ļ													

EXP_ROCKCOREAM ROCK CORE LOGS.GPJ CORE_LOG.GDT 6/22/23

[™]ехр.

Project No.	GTR-22015419-BO	-						Drawin	g No		8
Project:	Preliminary Geotechnical I	Investig	ati	on - Residen	tial De	evelopm	ent	Shee	et No.	1	of
ocation:	1101A, 1105 and 1163 Kir	ngston l	Ro	ad, Pickering	, Onta	ario	•				
						52	Combu	istible Vapour	Reading	E]
ate Drilled:	May 12 and 15, 2023		-	Auger Sample SPT (N) Value	С) 2	Natura Plastic	l Moisture and Liquid Lir	nit I–	×	(Ə
rill Type:	Mud rotary with CME 75			Dynamic Cone Test Shelby Tube	_		Undrai % Stra	ned Triaxial at		Ð	<i>•</i>
)atum:	Geodetic		-	Field Vane Test			Peneto	ometer			
Ş		ELEV	p	N	Value		Combus 2	stible Vapour R	eading (ppm) S A	Natu
B	Soil Description	m	I P T H	20 40 Shear Strength	60	80 MPa	Nat Atterb	ural Moisture C erg Limits (% I	ontent % Dry Weight)	P L E	Weig
	VEMENT STRUCTURE - 75mm	84.89	0	0.1		0.2	1	0 20	30	ŝ	R.DW
	analtic concrete	84.4						×			
I I I I I I I I I I I I I I I I I I I	L - silty sand, some gravel; brown,	83.8	1	┃╺┿╌╬╾╎╾┟╍╏╺╌╦╍┿┯┿┯┥╺╌╦╸ ╏╴┼╌╋╍╎╼┾┯╎╼┟╼┠╼╄╼						ŧ	
silt,	topsoil inclusions and rootlets;	83.2			╵┍╶┥╴╽╺┽╺┞ ╽╴╏╼╏╴┨╶╅╸┆			X			
	wn, moist, loose	4	2	9							1
	AYEY SILT - trace of sand and	82.4									
gra	vel; brown, saturated, firm	-	з			┥ ┇╴┍┥╺┝╺╞╺╞╸					
HH-		-		Θ							
		80.9	4							Ē	
_and	gravel seams, some gravel; grey,	_									
sati	urated, loose	_	5	ŎŦ				×===			
ь Г	ecoming moist and dense		6								
KL				de de la companya de			×		目目		
		77.9	1								
CO	ARSE SAND - occasional gravel;		ľ							Ē	
		1			8			XIII			
188 - C			8								
		1									
			9		5						
28 -		-						介目日		4	
		-	10								
88 1 -											
		-	11		+C 1 -	┝┽╵┽┼┼┼ ╞┾╷╌╆╷╴╴╎╵		X			
33 .		73.1									
O a Orev	VD AND GRAVEL - some silt; v, wet, very dense	-	12								
0		-					<u>+++</u> ×		+ +		
00		-	13				┨╌┠╌╡╶┠╸┇ ╺┥╶╴┠╼┫╼╿	╡ <u>╪</u> ╪╧ ┿╴┍╍╸╞╴┨╞╼╄╸		-	
00-		-			50mm						
0.0		_	14				X				
0		70.4									
incl	usions of silty sand and sandy silt				+++	┝╪╸┝╺╁╴┟╸┲╼┲╴	11 +				

[©]exp.

Time	Water Level (m)	Depth to Cave (m)
After 5 days	2.60	Well
After 16 days	2.54	Well
After 22 days	2.61	Well

	Log	g of		Borehole	5D					
Project No. <u>G</u>	TR-22015419-BO						Drawing No	•		8
Project: <u>P</u>	reliminary Geotechnical II	nvestiga	ati	on - Residential D	evelopm	<u>ent</u>	Sheet No.		_ (of _
a N	Soil Description	ELEV.	DE	N Value		Combus 25	tible Vapour Reading 0 500 750	(ppm)	SAM	Natu Un
	Son Description	m 98.93	H	Shear Strength 0.1	MPa 0.2	Atterb	arg Limits (% Dry We 2030	ight)	Ē	Weig kN/r
black ar	nd dark grey	05.00	15	50/75mm-					ž.	
	-]	16							
	-	_	17	Source So					zz	
<u> </u>	-									
	-	_	18							
	-	_		0					zz	
	-	-	19							
	-	-		50/100mb						
	-	-	20	<u>OT</u>					z	
	-	-								
	-	-	21	50/75mm						
	-	-							2	
	-	-	22							
	-	-		50/75mπ						
	-	-	23							
	-									
	-	1	24	50/75mm						
	-	1							7	
	-	1	25							
	-			5075mm						
	-		26					Ħ	1	
E C	-		0.7							
E .	_		21	50/75mm				Ħ,		
	_		28						٦	
	_									
	_		29	50/75mm					77	
	-	-								
	-	-	30							
		54.3		1 1 1 1 + 50/70nyr -					4	
NOTES:		0								
1. Grour install	ed to 13.88m; sealed with									
bento	nite from 0.3 to 10.22m.									

Time	Water Level (m)	Depth to Cave (m)
After 5 days	2.60	Well
After 16 days	2.54	Well
After 22 days	2.61	Well
	Time After 5 days After 16 days After 22 days	Time Water Level (m) After 5 days 2.60 After 16 days 2.54 After 22 days 2.61

			Lo	g of]	B	ore	eh	10	le	5	5S									
Proj	ject	No.	<u>GTR-22015419-B</u> O												Dr	awin	g No			9	
Proj	ject:		Preliminary Geotechnical I	nvestigation - Residential Development								<u>t</u>		Shee	et No		1	of _	1		
Loc	atio	n:	1101A, 1105 and 1163 Kir	ngston f	Ro	ad	, Pick	ceri	ing,	Or	ntari	io									
Date	e Dr	rilled:	May 15, 2023		-12	Auç	jer Samp	ole				X	Co Na	mbus tural l	stible V Moistu	/apour Ire	Read	ing	×		
Drill	Тур	pe:	Mud rotary with CME 75			SP Dyr	T (N) Val namic Co	iue ne Ti	est			-	Pla	istic a	and Lic	uid Lin	nit	F	(Ð	
Dati	um:		Geodetic		_	She Fiel	alby Tube Id Vane T	e Fest				5	% S Per	Strain	n at Fa meler	ilure			⊕ ▲		
Ģ	S Y M		Soil Description	ELEV.	DUp		20		N V:	alue 60		80	Con	nbust 250	ible Va	pour R 500	eading 75((ppm) %) SA	Nati	ural nit
	ů l			m 84.89	Т Н	Ś	hear Stree	ngth ().1			MPa 0.2	^	Iterbe	ing Limi	ils (% C	Jry We	íght)		Wei kN/	ight m³
5 5 g		PAVI	EMENT STRUCTURE - 75mm altic concrete	/ 84.8 84.4	0	, , , , , , , , , , , , , , , , , , , ,													Ē		
	*	_FILL	- silty sand, some gravel; brown,	-83.8																	
		ר <u>very</u> _silt, to _brow	moist, compact opsoil inclusions and rootlets; n_moist_loose	83.2																	
		_SILT	- brown, saturated, loose	1	2														Ē		
	Ш	CLAY	YEY SILT - trace of sand and	82.4																	
		grave	el; brown, saturated, firm	-	3																
	И	_		-																	
ť	H	SAN	DY SILT TILL - wet sand/sand	80.9	4																
	ł	_and g _satur	gravel seams, some gravel; grey, ated, loose	-															E		
		_		-	5																
	ľ	- bec	coming moist and dense	1																	
	ł	_			6																
	X			77.9																	
		grey,	RSE SAND - occasional gravel; wet, very dense		ĺ																
		-	-		8																
		_																			
		_	2		9																
		2	1																1		
		4		-	10	ļ															
		-	-	-																	
HH -			END OF BOREHOLE	74.1																-	
		NOTE 1. Bo	ES: rehole 5S drilled adjacent																		5
		to f 2. Gro	Borehole 5D. Dundwater monitoring well																		
		ins ber	tailed to 10.79m; sealed with ntonite from 0.3 to 7.13m.																		

Time	Water Level (m)	Depth to Cave (m)
After 5 days	2.56	Well
After 16 days	2.67	Well
After 22 days	2.62	Well

			Lo	g of]	B	BO	r	eł	10	bl	e		6										
F	Projec	t No.	GTR-22015419-BO	0														Dr	rawi	ing N	lo.		1	0
F	^o rojec	t:	Preliminary Geotechnical I	nvestig	at	tio	n -	Re	esio	dei	ntia	al I	Dev	velo	opm	ien	t		She	et N	lo.	1	0	F 1
L	.ocati	on:	1101A, 1105 and 1163 Kin	igston F	Ro	ba	.d, F	Pic	kei	rin	g, (Or	ntar	rio							-		-	
[Date E	Drilled:	May 17, 2023		_	A 5	luger : SPT (N	Sam	iple alue				0			Co Na Pia	mbus Itural Istic a	itible \ Moisti Ind Lie	/apo ure quid l	ur Rea Limit	ıding -	(⊐ ×	
L	onn Ty	/pe:	Nucl rotary with CIVIE 75		_	S	Jynam Shelby	Tub	one xe	Pest						Un %	drain Strair	ed Tria at Fa	axial tilure	al		⊕		
L	Jatum	1:	Geodetic		_	F	Field V	ane	Test	t				s		Pe	netro	meter						
C V L	SYMBOL		Soil Description	ELEV.	DHa FF		Shear	20 r Stre	ength	N 40	i Valu	ue 60		.80	WPa	Cor	nbust 250 Natu Iterbe	ible Va) ral Moi rg Lim	500 500 isture iits (%	Readi 7 Conte 6 Dry V	ng (ppn '50 nt % Veight)	n) :		latural Unit Veight kN/m ³
		PAVI asph over FILL mois Grave over Fill grave over shale comp over shale over shal	EMENT STRUCTURE - 75mm altic concrete 460mm granular material - silty sand, some gravel; brown, i, compact /EY SILT - some sand and al; brown, saturated, firm coming grey DY SILT TILL - saturated sandy yers, wet sand/sand and gravel is, scattered gravel and cobbles, fragments; grey, saturated, bact to very dense oming moist coming moist	69.3	+ 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 9 9 9 10 11 11 12 13 14 15 16 16 11 11 12 12 10 10 11 11 12 12 10 10 10 11 11 11 11 11 11 11 11 11 11							בינה היה המורכים היה היה היה היה היה היה היה היה היה ה												
		WEA ⁻ black	THERED SHALE BEDROCK	67.6 67.0	18					- 50/	iên O													
		NOTE 1. Gro ins ber	END OF BOREHOLE S: bundwater monitoring well talled to 18.3m; sealed with ntonite from 0.3 to 14.64m.																					

Time	Water Level (m)	Depth to Cave (m)
After 3 days	3.03	Well
After 14 days	3.11	Well
After 20 days	6.79	Well

		Lo	og of]	B	orel	hol	е 7	7						
	Project No.	GTR-22015419-BO	0								Dra	wing N	0.	-	11
1	Project:	Preliminary Geotechnical	Investig	at	ion	ı - Resi	dentia	l Dev	/elopm	ient	s	iheet N	o. 1		of 1
I	Location:	1101A, 1105 and 1163 Ki	ngston I	Ro	ad	. Picke	ring, C	 Ontar	io						
		· · · · · · · · · · · · · · · · · · ·													_
I	Date Drilled:	: May 9 and 10, 2023		_	Au	ger Sample		_		Combu Natura	ustible Va I Moisture	pour Real a	ding		
I	Drill Type:	Mud rotary with CME 75			SP Dyr	T (N) Value	Test	0		Plastic	and Liqu	id Limit ial at	\vdash	-0)
1	Datum:	Geodetic		_	Shi	elby Tube Id Vane Tes	t			% Stra	in at Faili	ILO	9	<i>•</i>	
_		·		_	1 14				S	1 61460	omotor				
	G M W B L O L	Soil Description	ELEV.		n s	20 ihear Strengt	N Value 40	60 60	80 MPa	Combus 23 Nai Attert	stible Vap 50 5 ural Moist berg Limits	Dur Readin 00 75 ure Conter 5 (% Dry W	ig (ppm) 50 nt % /eight)	SAZP LWG	Natural Unit Weight kN/m ³
5		VEMENT STRUCTURE - 75mm	1 85.0	0	圍									ð	
1	- over	er 510mm granular material	84.4	1	þ								<u> </u>	Ź	
1	Filland	L - sandy silt, some gravel; brown d grey, moist, compact	н ^{83.7}		ð							ł			
	silt	y clay, some sand and gravel; wn. verv moist. loose	82.6												
	HCL	AYEY SILT - some sand and	Ή	3	E						x				
	SA	NDY SILT TILL - wet sand/sand	7	4										Π	
	and	d gravel seams, scattered gravel d cobbles, shale fragments; grey,	-			K								Ы	
	- mo	ist to saturated, loose to ~4m, npact to very dense below		5	Î									M	
	11-			6		2								Ц	
	(X1-		-			0					X			8	
I				ľ											
ł	1/-		_	8			Ŏ		362623		X			2	
			_												
1	1/-]	ľ			Ô			×					İ
			-	10											
I				11				Ő			X				
g			_												
11/3/2		aturated sandy silt laver	-	12					91/22500	n					
l l		atoriation outray one rayor		13											ĺ
NEW.			-				50/50m			×					
GP	- C	obble and boulder layer		14											
CGS CGS			-	15					744						
	KX-		-						P						
				16											
2 S			-	17					07/275mm	X				\mathbb{Z}	
ž i			67.1	10	-										
	blac	ATHERED SHALE BEDROCK - ck and dark grey	66.8	10					C					+	
1011		END OF BOREHOLE													
arnz		Groundwater monitoring well													
AGWI		pentonite from 0.3 to 14.62m.													
	1			1	1-+		1++++		- t- t-t-t-t-	-4-6-1-1-1	-t-t-t-t-	I the first of the last	+ + + + + +		

Time	Water Level (m)	Depth to Cave (m)
After 10 days	3.07	Well
After 21 days	3.10	Well
After 27 days	3.59	Well