Supplementary Phase Two Environmental Site Assessment

Development Phase II: 1755 & 1805 Pickering Parkway Pickering, Ontario

Prepared For:

Bayfield Realty Advisors Inc. 2300 Yonge Street, Suite 904 Toronto, Ontario M4P 1E4

DS Project No: 22-110-100

Date: 2023-03-14

DS CONSULTANTS LTD. 6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

Executive Summary

DS Consultants Ltd. (DS) was retained by Bayfield Realty Advisors Inc. to complete a Supplementary Phase Two Environmental Site Assessment (ESA) of the property located at 1755 & 1805 Pickering Parkway, herein referred to as the "Phase Two Property" or the "Site". It is DS' understanding that this Supplementary Phase Two ESA has been requested for due diligence purposes and for filing a Record of Site Condition (RSC) associated with the proposed redevelopment of the Site for residential purposes. The scope of work associated with this Supplemental Phase Two ESA was based on the results a Terraprobe Inc. Phase Two ESA completed on June 11, 2021. The proposed development will include twenty-five (25) and twenty-six (26) storey mixed use buildings with retail at grade and 526 residential units.

It is the opinion of DS that the intended future residential property use is considered to be a more sensitive property use as defined under Ontario Regulation 153/04 (as amended) that the former commercial land use; therefore the filling of a Record of Site Condition (RSC) with the Ontario Ministry of Environmental, Conservation and Parks (MECP) is mandated under O.Reg.153/04.

The Supplementary Phase Two ESA was completed to satisfy the requirements, methodology and practices for a Phase Two ESA as described in Ontario Regulation 153/04 (as amended). The objective of this Supplementary Phase Two ESA is to confirm whether contaminants are present, and at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

The Phase Two Property is approximately 9.15 hectare (22.6 acres) in area, located approximately 240m south of Pickering Parkway and bounded by Highway 401 to the east. The Property is currently developed with three (3) single storey commercial building blocks, asphalt surfaced parking lots, internal routes, sidewalks and landscaped areas.

The Phase One ESA was completed by Terraprobe Inc. in 2021. The investigation was completed on the entirety of 1755 & 1805 Pickering Parkway, and as such included the Site along with the adjacent lands to the west contained within 1755 Pickering Parkway. The Terraprobe 2021 Phase One ESA identified that the Phase Two Property was first developed for residential purposes prior to 1954, and later redeveloped for commercial use prior to 2002. A total of twelve (12) Potentially Contaminating Activities (PCAs) were identified in the Phase One ESA, which were considered to be contributing to four (4) Areas of Potential Environmental Concern (APECs) on the Phase Two Property. A summary of the APECs,

DS Consultants Ltd.

associated PCAs, and contaminants of potential concern (COPC) identified is presented in the table below:

Table	E-1:	Summary	of APECs
-------	------	---------	----------

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	Entire Site	N/S: Seasonal application of de-	On-Site	EC, SAR	Soil
		purposes.		Na, Cl-	Groundwater
APEC-2	Eastern Portion of Site	PCA-28: Gasoline and Associated Products Storage in Fixed Tanks	Off-Site PCA-7	PHCs, BTEX, VOCs, Metals	Groundwater
APEC-3	Southern Portion of Site	N/S: Seasonal application of de- icing salts for safety purposes.	Off-Site PCA-10	Na, Cl-	Groundwater
APEC-4	Northern Portion of Site	N/S: Seasonal application of de- icing salts for safety purposes.	Off-Site PCA-11	Na, Cl-	Groundwater

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

Based on the findings of the Phase One ESA it was concluded that a Phase Two ESA was warranted to assess the soil and groundwater conditions on the Phase Two Property.

This Supplementary Phase Two ESA involved the advancement of ten (10) boreholes, which were completed on August 18, 2022. The boreholes were advanced to a maximum depth of 3.1 metres below ground surface (mbgs) under the supervision of DS personnel. The boreholes completed were used to supplement the information previously obtained in the June 2021 Phase Two ESA completed by Terraprobe Inc. Based on the Terraprobe Phase Two ESA, groundwater sample results met the applicable SCS and was therefore not considered a media that required additional sampling for the Supplemental Phase Two ESA.

Soil samples were collected between 2021-2022 and submitted for chemical analysis as follows:

DS Consultants Ltd.

- Twenty-three (23) soil samples (including 1 QA/QC duplicate) for analysis of metals, hydride-forming metals and select Other Regulated Parameters (ORPs) including pH
- Six (6) soil samples for analysis of petroleum hydrocarbons (PHCs)
- Nine (9) soil samples (including 1 QA/QC duplicate) for analysis of volatile organic compounds (VOCs)
- Nine (9) soil samples (including 1 QA/QC duplicate) for analysis of polycyclic aromatic hydrocarbons (PAHs)
- Six (6) soil samples (including 1 QA/QC duplicate) for analysis of OC Pesticides (OCPs)

Groundwater samples were collected in 2021 and submitted for chemical analysis as follows:

- BH102: Metals and hydride-forming Metals, PHCs, VOCs, PAHs, OCPs
- BH103: Metals and hydride-forming Metals, PHCs, VOCs, PAHs, OCPs
- BH105: Metals and hydride-forming Metals, PHCs, VOCs, PAHs, OCPs
- BH110: Metals and hydride-forming Metals, PHCs, VOCs, PAHs, OCPs
- BH116: Metals and hydride-forming Metals, PHCs, VOCs, PAHs, OCPs

The soil and groundwater analytical results were compared to the "Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition" provided in the MECP document entitled, "*Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*" dated April 15, 2011 (Table 3 Standards) for medium and fine-textured soils and residential/parkland/institutional property use.

Based on the findings of the Supplementary Phase Two ESA, DS presents the following findings:

- A surficial layer of asphalt concrete approximately 75 to 100 mm in thickness was encountered in all boreholes advanced except BH116. Re-worked native silty sand to clayey silt with trace amounts of gravel were encountered below the asphalt. The undisturbed native soils generally consisted of clayey silt till to silty clay, and extended to depth ranging from 1.6 to 7.1 mbgs. Underlying the clayey silt till and silty clay layers, cohesionless sandy silt till to silty sand till layers were encountered and extended to depth ranging from 4.6 to 15.2 mbgs. Bedrock was encountered at depth 16.8 mbgs in BH114.
- The groundwater levels were found to range between 0.9 to 3.8 mbgs corresponding elevations of 88.2 to 82.49 metres above sea level (masl) throughout the course of the investigation (2021). The clayey silt layer was found to be the first water bearing formation encountered and is considered to be an unconfined aquifer based on the

groundwater level measurements recorded. Based on the groundwater elevations recorded on March 19, 2021, the groundwater flow direction appears to be northeast. It is possible that the groundwater levels may vary seasonally. The groundwater levels may also be impacted by other factors such as historical infilling activities, subsurface utility trenches, and similar subsurface anomalies. The groundwater flow direction can only be confirmed through long term monitoring.

The results of the soil chemical analyses met the MECP Table 3 RPI SCS with the exception of the following:

Sample ID	Sample Depth (mbgs)	Parameter	Units	Table 3 SCS	Reported Value
Previous Investigation:					
BH105 SS3	1.5-2.1	Antimony	μg/g	7.5	15
		Arsenic	μg/g	18	1600
BH110 SS3	1.5-2.1	Arsenic	μg/g	7.5	730

Table E-2: Summary of Soil Impacts Identified

The results of the groundwater chemical analyses indicated that all samples analysed met the MECP Table 3 SCS for medium-fine textured soils.

Based on a review of the findings of this Supplementary Phase Two ESA, DS presents the following conclusions and recommendations:

- Between the previous investigations and this environmental investigation conducted for the Phase Two Property, antimony and arsenic impacts in soil were identified in the vicinity of BH105 to depths ranging from 1.5-2.1 mbgs and arsenic impact was identified in the vicinity of BH110 at a depth of 1.5-2.1 mbgs. The vertical extent of the arsenic and antimony impacts were found to be no deeper than 2.3 mbgs;
- The results of the chemical analyses conducted on groundwater samples indicate that the applicable Site Condition Standards for groundwater have been met;
- The change in land use from commercial to residential use does constitute a change to a more sensitive land use, and as such a Record of Site Condition will be required in accordance with O. Reg 153/04;
- The Arsenic and Antimony impacted soils were remediated through excavation and off-Site disposal by Green Infrastructure Partners Inc. The remedial excavation works commenced on November 17, 2022. Verification soil sampling was completed upon completion of the remedial works. The results of the confirmatory sampling indicated that the remaining soils met the MECP Table 3 SCS. Upon completion of the soil

verification sampling it is the opinion of DS that a Record of Site Condition may be submitted.

All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

Table of Contents

1.0	Introduction	11
1.1	Site Description	.11
1.2	Property Ownership	.12
1.3	Current and Proposed Future Use	.12
1.4	Applicable Site Condition Standards	.12
2.0	Background Information	13
2.1	Physical Setting	.13
	2.1.1 Water Bodies and Areas of Natural Significance	. 13
	2.1.2 Topography and Surface Water Draining Features	. 13
2.2	Past Investigations	.14
	2.2.1 Previous Report Summary	. 14
	2.2.2 Use of Previous Analytical Results	. 18
3.0	Scope of the Investigation	18
3.1	Overview of Site Investigation	.18
3.2	Media Investigated	.19
	3.2.1 Rationale for Inclusion or Exclusion of Media	. 19
	3.2.2 Overview of Field Investigation of Media	. 19
3.3	Phase One Conceptual Site Model	.19
	3.3.1 Potentially Contaminating Activity Affecting the Phase One Property	. 20
	3.3.2 Contaminants of Potential Concern	. 21
	3.3.3 Underground Utilities and Contaminant Distribution and Transport	. 21
	3.3.4 Geological and Hydrogeological Information	. 22
	3.3.5 Uncertainty and Absence of Information	. 22
3.4	Deviations from Sampling and Analysis Plan	.22
3.5	Impediments	.22
4.0	Investigation Method	23
4.1	General	.23
4.2	Drilling and Excavating	.23
4.3	Soil Sampling	.24
4.4	Field Screening Measurements	.25
4.5	Groundwater Monitoring Well Installation	.26

4.6	Groundwater Field Measurement of Water Quality Parameters			
4.7	Groundwater Sampling26			
4.8	Sediment Sampling26			
4.9	Analytical Testing26			
4.10	Residue Management Procedures26			
	4.10.1 Soil Cuttings From Drilling and Excavations			
	4.10.2 Water from Well Development and Purging			
	4.10.3 Fluids from Equipment Cleaning			
4.11	Elevation Surveying27			
4.12	Quality Assurance and Quality Control Measures			
	4.12.1 Sample containers, preservation, labelling, handling and custody for samples submitted for laboratory analysis, including any deviations from the SAP 27			
	4.12.2 Description of equipment cleaning procedures followed during all			
	sampling			
	4.12.3 Description of how the field quality control measures referred to in subsection 3 (3) were carried out			
	4.12.4 Description of, and rational for, any deviations from the procedures set out			
	in the quality assurance and quality control program set out in the SAP			
5.0	Review and Evaluation28			
5.1	Geology			
5.2	Ground Water Elevations and Flow Direction			
	5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals			
	5.2.2 Results of Interface Probe Measurements			
	5.2.3 Product Thickness and Free Flowing Product			
	5.2.4 Groundwater Elevation			
	5.2.5 Groundwater Flow Direction			
	5.2.6 Assessment of Potential for Temporal Variability in Groundwater Flow			
	Direction			
	5.2.7 Evaluation of Potential Interaction Between Buried Utilities and the Water			
	1 able 30			
5.3	Ground Water Hydraulic Gradients			
	5.3.1 Horizontal Hydraulic Gradient			
5.4	Fine-Medium Soil Texture31			

	5.4.1 Rational for use of Fine-Medium Soil Texture Category	. 31
	5.4.2 Results of Grain Size Analysis	. 31
	5.4.3 Rational for the Number of Samples Collected and Analyzed	. 31
5.5	Soil Field Screening	.31
5.6	Soil Quality	.31
	5.6.1 Metals and ORPs	. 32
	5.6.2 Petroleum Hydrocarbons	. 32
	5.6.3 Volatile Organic Compounds	. 32
	5.6.4 Polycyclic Aromatic Hydrocarbons	. 32
	5.6.5 Organochlorine Pesticides	. 33
	5.6.6 Commentary on Soil Quality	. 33
5.7	Ground Water Quality	.33
	5.7.1 Metals and ORPs	. 33
	5.7.2 Petroleum Hydrocarbons	. 34
	5.7.3 Volatile Organic Compounds	. 34
	5.7.4 Polycyclic Aromatic Hydrocarbons	. 34
	5.7.5 Organochlorine Pesticides	. 34
	5.7.6 Commentary on Groundwater Quality	. 35
5.8	Sediment Quality	.35
5.9	Quality Assurance and Quality Control Results	.35
5.10	Phase Two Conceptual Site Model Error! Bookmark not defin	1ed.
6.0	Conclusions	36
6.1	Qualifications of the Assessors	.37
6.2	Signatures	.38
6.3 7 0	Limitations References	.39 40
5.8 5.9 5.10 6.0 6.1 6.2 6.3 7.0	Sediment Quality Quality Assurance and Quality Control Results Phase Two Conceptual Site Model Error! Bookmark not defir Conclusions Qualifications of the Assessors Signatures Limitations References	.3 100 30 .3 .3 .3 .3 .3 .3 .3

List of Tables

Table E-1: Summary of APECs	2
Table E-2: Summary of Soil Impacts Identified	4
Table 1-1: Phase Two Property Information	12
Table 1-2: Phase Two Property Ownership	12

Table 2.2. Field Interactions of Madia	10
Table 3-2: Field Investigation of Media	19
Table 3-3: Summary of PCAs Contributing to APECs	20
Table 4-1: Summary of Drilling Activities	23
Table 4-2: Field Screening Equipment	25
Table 4-3: Summary of Sample Bottle Preservatives	27
Table 5-1: Summary of Geologic Units Investigated	
Table 5-2: Summary of Horizontal Hydraulic Gradient Calculations	
Table 5-3: Summary of Grain Size Analyses	
Table 5-4: Summary of Metals and ORPs Exceedances in Soil	
Table 5-6: Summary of QA/QC Results	35
Enclosures	

TABLES

- Table 1 Summary of Monitoring Well Installation and Groundwater Data
- Table 2 Summary of Soil Samples Submitted for Chemical Analysis
- Table 3 Summary of Groundwater Samples Submitted for Chemical Analysis
- Table 4 Summary of APECs Investigated
- Table 5 Summary of Metals and ORPs in Soil
- Table 6 Summary of PHCs in Soil
- Table 7 Summary of VOCs in Soil
- Table 8 Summary of PAHs in Soil
- Table 9 Summary of OCPs in Soil
- Table 10 Summary of Metals and ORPs in Groundwater
- Table 11 Summary of PHCs in Groundwater
- Table 12 Summary of VOCs in Groundwater
- Table 13 Summary of PAHs in Groundwater
- Table 14 Summary of OCPs in Groundwater
- Table 15 Summary of Maximum Concentrations in Soil
- Table 16 Summary of Maximum Concentrations in Groundwater

FIGURES

- Figure 1 Site Location Plan
- Figure 2 Phase Two Property Site Plan
- Figure 3 Phase One Study Area
- Figure 4 PCA within Phase One Study Area
- Figure 5 Borehole Location Plan with APECs
- Figure 6 Groundwater Flow Direction
- Figure 7A Soil Characterization Metals and Hydride-Forming Metals
- Figure 7B Soil Characterization PHCs
- Figure 7C Soil Characterization VOCs
- Figure 7D Soil Characterization PAHs
- Figure 7E Soil Characterization OCPs
- Figure 8A Groundwater Characterization Metals and Hydride-Forming Metals
- Figure 8B Groundwater Characterization PHCs
- Figure 8C Groundwater Characterization VOCs
- Figure 8D Groundwater Characterization PAHs
- Figure 8E Groundwater Characterization OCPs

APPENDICES

- Appendix A Plan of Survey
- Appendix B Sampling and Analysis Plan
- Appendix C Borehole Logs
- Appendix D Laboratory Certificates of Analysis
- Appendix E Remediation Report
- Appendix F Non-Potable Groundwater Standards Approval

1.0 Introduction

DS Consultants Ltd. (DS) was retained by Bayfield Realty Advisors Inc. to complete a Supplementary Phase Two Environmental Site Assessment (ESA) for the portion of the parcel of land with the municipal address of 1755 & 1805 Pickering Parkway, Pickering, Ontario, herein referred to as the "Phase Two Property" or the "Site". The Site is comprised of the second Phase (Phase II) of the future residential development. It is DS' understanding that this Supplementary Phase Two ESA has been requested for due diligence purposes and for filing a Record of Site Condition (RSC) associated with the proposed redevelopment of the Site for residential purposes. The scope of work associated with this Supplemental Phase Two ESA was based on the results a Terraprobe Inc. Phase Two ESA completed in June 11, 2021. The proposed development will include twenty-five (25) and twenty-six (26) storey mixed use buildings with retail at grade and 526 residential units.

It is the opinion of DS that the intended future residential property use is considered to be a more sensitive property use as defined under Ontario Regulation 153/04 (as amended) that the former commercial land use; therefore the filling of a Record of Site Condition (RSC) with the Ontario Ministry of Environmental, Conservation and Parks (MECP) is mandated under O.Reg.153/04.

The Supplementary Phase Two ESA was completed to satisfy the requirements, methodology and practices for a Phase Two ESA as described in Ontario Regulation 153/04 (as amended). The objective of this Supplementary Phase Two ESA is to confirm whether contaminants are present, and at what concentration are they present on the Phase Two Property, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase One ESA.

1.1 Site Description

The Phase Two Property is approximately 9.15 hectare (22.6 acres) in area situated with the mixed residential and commercial neighbourhood in the Town of Pickering, Ontario. The Phase Two Property is located approximately 240m south of Pickering Parkway and bounded by Highway 401 to the east. A Site Location Plan is provided in Figure 1.

The Property is currently developed with three (3) single storey commercial building blocks, asphalt surfaced parking lots, internal routes, sidewalks and landscaped areas. A Site Plan depicting the current layout of the Site is provided in Figure 2.

For the purposes of this report, Pickering Parkway and Highway 401 are assumed to be aligned in an east-west orientation, and Brock Road in a north-south orientation. A Plan of

Survey for the Site dated May 19, 2006 and prepared by Speight, Van Nostrand & Gibson Limited, an Ontario Land Surveyor, has been provided under Appendix A.

Additional details regarding the Phase Two Property are provided in the table below.

Table 1-1: Phase Two Property Information

Criteria	Information	Source	
	1755 Pickering Parkway:		
	Part Lot 18, Con 1, Pickering as Parts 1-6, 40R-11780		
Logal Description	Part Lot 18, Con 1, Pickering as Parts 3, 7-10, 40R20443	Plan of Survey	
Legal Description	Part Lot 17 & 18, Con 1, Pickering as Parts 1, 5, 6 & 11, 40R20443		
	1805 Pickering Parkway:		
	Part Lot 17, Con 1, Pickering as Part 2, 40R20443		
Property Identification Number (PIN)	26330-0072 (LT); 26330-0073 (LT); 26330-0165 (LT); 26330-0164 (LT)	Plan of Survey	
Site Area	9.15-hectare (22.61 acres)	Plan of Survey	

1.2 Property Ownership

The ownership details for the Phase Two Property are provided in the table below.

Table 1-2: Phase Two Property Ownership

Property Owner	Contact
Pickering Ridge Lands Inc	Owner's Representative: Bayfield Realty Advisors

1.3 Current and Proposed Future Use

The Phase Two Property is currently developed with three (3) single storey commercial buildings, which is considered to be commercial Property Use under O.Reg. 153/04 (as amended). It is DS's understanding that the Client intends to redevelop the Site for residential use.

1.4 Applicable Site Condition Standards

The applicable Site Condition Standards (SCS) for the Phase Two Property are considered by the Qualified Person (QP) to be the Table 3 SCS: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Use with medium-fine textured soils as contained in the April 15, 2011 Ontario Ministry of

The selection of the Table 3 SCS is considered appropriate based on the following rationale:

- The Durham Region considers Pickering to be in a Potable ground water condition;
- The Site is not considered to be environmentally sensitive, as defined under O.Reg. 153/04 (as amended);
- The proposed future use of the Phase Two Property will be residential;
- The Site is not located within 30 m of a water body;
- The pH of the soils analyzed during this Supplementary Phase Two ESA are within the accepted range specified under O.Reg. 153/04 (as amended); and
- Bedrock was not encountered within 2 metres of the ground surface.

A notice from the municipality was obtained indicating no objection to the use of non-potable groundwater standards was received on July 5, 2021, and was re-approved on March 13, 2023. A copy of the notice is provided in Appendix F.

2.0 Background Information

2.1 Physical Setting

2.1.1 Water Bodies and Areas of Natural Significance

No water bodies were identified on the Phase One Property or in the Study Area.

The Natural Heritage Areas database published by the Ministry of Natural Resources (MNR) was reviewed to identify the presence/absence of areas of natural significance including provincial parks, conservation reserves, areas of natural and scientific interest, wetlands, environmentally significant areas, habitats of threatened or endangered species, and wilderness areas. There are no areas of natural significance identified on the property or within the Study Area.

2.1.2 Topography and Surface Water Draining Features

The Phase Two Property is relatively flat lying. The nearest water body is Duffins Creek which traverses southeasterly on lands to the east of the Property. Groundwater and surface water is expected to flow to the northeast. There are no drainage features (e.g. ditches,

swales, etc.) present on-Site. Surface water flow associated with precipitation events is anticipated to run overland and drain into the municipal storm sewer catch basins.

2.2 Past Investigations

2.2.1 Previous Report Summary

The following environmental and geotechnical reports were provided for DS to review:

- "Phase One Environmental Site Assessment, 1755 Pickering Parkway, Pickering, Ontario" dated January 8, 2021, prepared for Pickering Ridge Lands Inc., c/o Bayfield Realty Advisors Inc., prepared by Terraprobe Inc. (2021 Terraprobe Phase One ESA)
- "Phase Two Environmental Site Assessment, 1755 and 1805 Pickering Parkway, Pickering, Ontario" dated June 11, 2021, prepared for Pickering Ridge Lands Inc., c/o Bayfield Realty Advisors Inc., prepared by Terraprobe Inc. (2021 Terraprobe Phase Two ESA)

A summary of the details pertinent to this investigation is provided below.

2021 Terraprobe Phase One ESA

The 2021 Terraprobe Phase One ESA was conducted in general accordance with Ontario Regulation 153/04, dated April 15, 2011 (as amended), and included a review of readily available historical records and reasonably ascertainable regulatory information, a Site Reconnaissance, interviews, evaluation of information, and reporting. The Phase One ESA was reported to have been conducted to identify the presence or absence of PCAs within the Phase One Property and Phase One Study Area.

The following pertinent information was noted by DS:

- The Phase One Property is currently developed with three (3) single storey commercial building blocks, asphalt surface parking lots, internal routes, sidewalks and landscaped areas. The Property is currently in commercial use.
- Northeast and Northwest portion of 1755 Pickering Parkway was first developed for commercial use prior to 2002, while the south portion of 1755 Pickering Parkway was first developed for residential land use prior to 1954.
- Terraprobe summarized the "Phase II Environmental Site Assessment 1755 and 1805 Pickering Parkway and 1842-1856 Notion Road, Pickering, Ontario" report prepared for Bayfield Realty Advisors, prepared by Pinchin, dated June 21, 2011:

- A review of 1972 and 1973 Property Underwriters' Plans completed during the Phase I ESA of the Property identified a gasoline pump located at the northeast corner of the Site. The presence of both a historic gasoline pump and a possible underground storage tank had a potential to cause soil and/or groundwater impacts on the Property. This was considered to be a potentially contaminating activity.
- Five (5) boreholes to a maximum depth of 4.6 meters below ground surface.
 Three (3) of the boreholes were instrumented with monitoring wells to enable groundwater monitoring and sampling.
- Five (5) soil samples were selected for chemical analysis of petroleum hydrocarbons (PHCs, F1-F4), and benzene, toluene, ethylbenzene and xylene (BTEX) as well as pH and grain size.
- Three (3) groundwater samples were collected from installed wells and submitted for chemical analysis of PHCs and BTEX.
- All measured concentrations in soil and groundwater samples submitted for analysis satisfied their respective Table 3 and Table 2 (non-potable groundwater condition) Standards.

Terraprobe summarized the "Phase I Environmental Site Assessment Update: 1755 and 1805 Pickering Parkway and 1842-1856 Notion Road, Pickering, Ontario" report prepared for Bayfield Realty Advisors, prepared by Pinchin, dated March 7, 2016:

- The Phase I ESA Update was completed in general accordance with the Canadian Standards Association (CSA) document entitled 'Phase I Environmental Site Assessment, CSA Standard Z768-01' dated November 2001 (reaffirmed 2012) and included a review of available historical records, regulatory records, a Site reconnaissance, interviews, an evaluation of information and reporting. Based on the materials reviewed, Pinchin concluded that nothing was identified that would likely result in potential subsurface impacts to the Property.
- Terraprobe summarized the "Phase I Environmental Site Assessment: 1755 and 1805 Pickering Parkway and 1842-1856 Notion Road, Pickering, Ontario" report prepared for Bayfield Realty Advisors, prepared by Pinchin, dated February 15, 2018:
 - The Phase I ESA was completed in general accordance with the Canadian Standards Association (CSA) document entitled 'Phase I Environmental Site Assessment, CSA Standard Z768-01' dated November 2001 (reaffirmed 2012)

and included a review of available historical records, regulatory records, a Site reconnaissance, interviews, an evaluation of information and reporting. Based on the materials reviewed, Pinchin concluded that nothing was identified that would likely result in potential subsurface impacts to the Property. Based on the results of the Phase I ESA, nothing was identified that was likely to result in potential subsurface impacts at the Site. Pinchin did not recommend a subsurface investigation (Phase II ESA).

- Terraprobe summarized the "Asbestos Assessment: Site Building A 1755 Pickering Parkway, Pickering, Ontario" report prepared for Bayfield Realty Advisors, prepared by Pinchin, dated November 22, 2019:
 - The objective of the assessment was to document the location of identified asbestos building materials, evaluate their condition and develop corrective action plans as required.
 - All accessible areas of the building were assessed excluding the roof and any elevated finishes. Asbestos containing materials within unit A104 were identified. Pinchin recommended an Asbestos Management Plan (AMP).

Terraprobe summarized the "Asbestos Assessment: Site Building B 1755 Pickering Parkway, Pickering, Ontario" report prepared for Bayfield Realty Advisors, prepared by Pinchin, dated November 22, 2019:

- The objective of the assessment was to document the location of identified asbestos building materials, evaluate their condition and develop corrective action plans as required.
- All accessible areas of the building were assessed excluding the roof and any elevated finishes. No asbestos-containing materials were identified within the assessed areas. Pinchin did not recommend any further action.
- Terraprobe summarized the "Asbestos Assessment: Site Building C 1755 Pickering Parkway, Pickering, Ontario" report prepared for Bayfield Realty Advisors, prepared by Pinchin, dated November 22, 2019:
 - The objective of the assessment was to document the location of identified asbestos building materials, evaluate their condition and develop corrective action plans as required.
 - All accessible areas of the building were assessed excluding the roof and any elevated finishes. No asbestos-containing materials were identified within the assessed areas. Pinchin did not recommend any further action.

2021 Terraprobe Phase Two ESA

- The 2021 Terraprobe Phase Two ESA report was reportedly conducted in general accordance with Ontario Regulation 153/04. The Phase Two ESA was focused on assessing areas of potential contamination identified in the 2021 Terraprobe Phase One ESA. The Phase Two ESA involved the advancement of sixteen (16) boreholes (BH101 through BH116) between 7.7 and 19.9 meters below existing grade, five (5) of the boreholes were completed as monitoring wells.
- A surficial layer of asphalt concrete approximately 75 to 100 mm in thickness was encountered in all boreholes advanced except BH116. Re-worked native silty sand to clayey silt with trace amounts of gravel were encountered below the asphalt. The undisturbed native soils generally consisted of clayey silt till to silty clay, and extended to depth ranging from 1.6 to 7.1 mbgs. Underlying the clayey silt till and silty clay layers, cohesionless sandy silt till to silty sand till layers were encountered and extended to depth ranging from 4.6 to 15.2 mbgs. Bedrock was encountered at depth 16.8 mbgs in BH114.
- The groundwater levels were found to range between 0.9 to 3.8 mbgs corresponding elevations of 88.2 to 82.49 metres above sea level (masl) throughout the course of the investigation (2021). Based on the groundwater elevations recorded on March 19, 2021, the groundwater flow direction appears to be northeast.
- Select soil samples were submitted for analysis of metals, hydride-forming metals, select Other Regulated Parameters (ORPs) including pH, PHCs, BTEX, VOCs, PAHs and OCPs. The results of the chemical analyses indicated the following exceedances of the Table 3 RPI SCS:

Sample ID	Sample Depth (mbgs)	Parameter	Units	Table 3 SCS	Reported Value
Previous Investig	Previous Investigation:				
BH105 SS3	1.5-2.1	Antimony	µg/g	7.5	15
		Arsenic	µg/g	18	1600
BH110 SS3	1.5-2.1	Arsenic	µg/g	7.5	730

Table 2-1: Summary of Impacts Previously Identified in Soil

Groundwater samples were collected from five (5) of the monitoring wells and analyzed for Metals, hydride-forming metals, select Other Regulated Parameters (ORPs) including pH, PHCs, BTEX, VOCs, PAHs and OCPs. The results of the groundwater chemical analyses indicated that all samples analysed met the MECP Table 3 SCS for medium-fine textured soils.

The following conclusions were drawn based on the findings of the Phase Two ESA:

It is noted by DS that arsenic impacts were identified in soil in borehole BH105 and BH110 at depths of 1.5-2.1 mbgs. Arsenic impacts were also identified in soil in borehole BH105 at depths of 1.5-2.1 mbgs.

2.2.2 Use of Previous Analytical Results

DS has reviewed the reports provided for the purpose of identifying Areas of Potential Environmental Concern on the Phase Two Property. The analytical data referenced in the previous reports was collected in accordance with the requirements of O.Reg. 153/04 (as amended) and will be relied up for the purpose of filing a Record of Site Condition for the Site.

3.0 Scope of the Investigation

The scope of the Supplementary Phase Two ESA was designed to investigate the portions of the Site determined in the Phase One ESA to be Areas of Potential Environmental Concern. This Supplementary Phase Two ESA was conducted in accordance with O.Reg. 153/04 (as amended). The scope of the investigation including the subsurface investigation, sampling, and laboratory analysis was based on the findings of the Phase One ESA and was limited to the portions of the Site which were accessible.

3.1 Overview of Site Investigation

The following tasks were completed as part of the Supplementary Phase Two ESA:

- Preparation of a Health and Safety Plan to ensure that all work was executed safely;
- Clearance of public private underground utility services prior to commencement of subsurface investigative operations;
- Preparation of a Sampling and Analysis Plan (SAP);
- Retained a MECP licenced driller to advance a total of ten (10) boreholes on the Phase Two Property, to depths of 3.1 mbgs. The soil lithology was logged during drilling, and representative soil samples were collected at regular intervals. The soil samples were screened for organic vapours using an RKI Eagle 2 MultiGas Detector, and examined for visual and olfactory indications of soil impacts;

- Submitted "worst case" soil samples collected from the boreholes for laboratory analysis of relevant contaminants of potential concern (COPCs) as identified in the Phase One ESA;
- Compared all soil analytical data to the applicable MECP SCS; and
- Prepared a Supplementary Phase Two ESA Report in accordance with O.Reg. 153/04 (as amended).

3.2 Media Investigated

3.2.1 Rationale for Inclusion or Exclusion of Media

Media	Included or Excluded	Rationale
Soil	Included	Soil was identified as a media of potential impact in the Phase One ESA, based on the historical operations conducted on-Site.
Groundwater	Excluded	Groundwater was identified as a media of potential impact in previous investigations, based on the historical operations conducted on-Site. Representative groundwater samples were collected from select monitoring wells and submitted for analysis of all relevant COPCs in previous investigations, no additional monitoring wells were installed by DS.
Sediment	Excluded	Sediment is not present on the Phase Two Property.
Surface Water	Excluded	Surface water is not present on the Phase Two Property.

Table 3-1: Rationale of Sampling Media

3.2.2 Overview of Field Investigation of Media

Table 3-2: Field Investigation of Media

Media	Methodology of Investigation
Soil	A total of ten (10) boreholes were advanced on the Phase Two Property, to a maximum depth of 3.1 mbgs. Soil samples were collected and submitted for analysis of all relevant COPCs.
Groundwater	Five (5) active monitoring wells were present on the Phase Two Property installed during previous investigations. Representative groundwater samples were collected from select monitoring wells and submitted for analysis of all relevant COPCs in previous investigations by Terraprobe, no additional monitoring wells were installed by DS.

3.3 Phase One Conceptual Site Model

A Conceptual Site Model was developed for the Phase One Property, located at Development Phase II: 1755 & 1805 Pickering Parkway, Pickering, Ontario. The Phase One Conceptual Site Model is presented in Figures 1 to 5 and visually depict the following:

Any existing buildings and structures

- 🔷 Water bodies located in whole, or in part, on the Phase One Study Area
- Areas of natural significance located in whole, or in part, on the Phase One Study Area
- Water wells at the Phase One Property or within the Phase One Study Area
- Roads, including names, within the Phase One Study Area
- Uses of properties adjacent to the Phase One Property
- Areas where any PCAs have occurred, including location of any tanks
- Areas of Potential Environmental Concern

3.3.1 Potentially Contaminating Activity Affecting the Phase One Property

All PCAs identified within the Phase One Study Area are presented on Figure 4. PCAs which are considered to contribute to APECs on, in or under the Phase One Property are summarized in the table below:

PCA ID	PCA Description (Per. Table 2,	Description	Rational
No.	Schedule D of O.Reg. 153/04)		
PCA-1	PCA-28: Gasoline and Associated Products Storage in Fixed Tanks	Retail Fuel Storage Tank, Gasoline Service Station – two (2) historic USTs identified at this location. Current TSSA records indicate 3 USTs present.	No – based on distance from the Site.
PCA-2	PCA-46: Rail Yards, Tracks and Spurs	There is a railway line approximately 195 m south of the Site	No – based on distance from the Site.
PCA-3	PCA-27: Garages and Maintenance and Repair of Railcars, Marine Vehicles and Aviation Vehicles	A Canadian Tire auto-service garage is located on the north neighbouring property, approximately 65m northwest of the Site.	No - based on distance from Site and downgradient orientation relative to direction of groundwater flow.
PCA-4	PCA-28: Gasoline and Associated Products Storage in Fixed Tanks	The ERIS report and TSSA records identified presence of a retail fuel outlet at 1800 Brock Road, located approximately 220m northwest of the Phase One Property.	No - based on distance from Site and downgradient orientation relative to direction of groundwater flow.
PCA-5	PCA-49: Salvage Yard, including automobile wrecking	A AAA A Durham Rescue Towing was listed in ERIS Report for Automobile Wrecking and Recycling, located at 91 Notion Road.	No - based on distance from Site and downgradient orientation relative to direction of groundwater flow.

Table 3-3: Summary of PCAs Contributing to APECs

PCA ID No.	PCA Description (Per. Table 2, Schedule D of O.Reg. 153/04)	Description	Rational
PCA-6	PCA-58: Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	Monster Bins Inc., located at 1700 Squires Beach Road, is a registered Waste Management System, listed in ERIS report.	No – based on distance from the Site.
PCA-7	PCA-28: Gasoline and Associated Products Storage in Fixed Tanks	Historic Gasoline pump and suspected underground storage tank located at 1842 Notion Road.	Yes – APEC 2
PCA-8	PCA-12: Concrete, Cement and Lime Manufacturing	A Ready-Mix Concrete Manufacturing located at 87 Notion Road, approximately 250 m northeast of the Site was listed in ERIS report.	No - based on distance from Site and downgradient orientation relative to direction of groundwater flow.
PCA-9	N/S: Seasonal application of de-icing salts for safety purposes.	Inferred use of de-icing salts for safety purposes within the paved portions of the Site.	Yes – APEC 1
PCA-10	N/S: Seasonal application of de-icing salts for safety purposes.	Inferred use of de-icing salts for safety purposes along Highway 401.	Yes – APEC 3
PCA-11	N/S: Seasonal application of de-icing salts for safety purposes.	Inferred use of de-icing salts for safety purposes along Pickering Parkway.	Yes – APEC 4
PCA-12	N/S: Seasonal application of de-icing salts for safety purposes.	Inferred use of de-icing salts for safety purposes along Brock Road.	No – based on distance from Site.

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

3.3.2 Contaminants of Potential Concern

The following contaminants of potential concern were identified for the Phase One Property: VOCs, Metals, As, Sb, Se, B-HWS, CN-, Cr (VI), Hg, low or high pH, PAHs.

3.3.3 Underground Utilities and Contaminant Distribution and Transport

Underground utilities can affect contaminant distribution and transport. Trenches excavated to install utility services, and the associated granular backfill may provide preferential pathways for horizontal contaminant migration in the shallow subsurface.

The groundwater table was encountered at depths ranging from 1.40 to 4.50 meters below ground surface (mbgs) on the Phase Two Property on March 19, 2021. Buried utility services are present on the Phase Two Property associated with Site Buildings on Site and are inferred to be situated at depths ranging between 2 and 3 mbgs. Based on this there is the potential for the utility trenches to act as preferential pathways. The soil impacts were

DS Consultants Ltd.

determined to be localized within shallow soil depths, there is no indication of contaminant migration based on the results of the Phase Two and Supplemental Phase Two ESA.

3.3.4 Geological and Hydrogeological Information

The topography of the Phase One Property is generally flat, with a surface elevation ranges from 84.7 to 89.9 metres above sea level (masl). The nearest water body is Duffins Creek which traverses southeasterly on lands to the east of the Property. Based on a review of previous investigations the depth to groundwater is approximately 2.5 mbgs. The shallow groundwater flow direction within the Phase One Study Area is inferred to flow to the north to northeast, towards West Duffins Creek.

The overburden soils on-Site are described as silt and clay with minor sand and gravel derived from glaciolacustrine deposits. The bedrock underlying the Site is described as shale, limestone, dolostone and siltstone of the Blue Mountain Formation. The depth to bedrock is approximately 17 mbgs.

3.3.5 Uncertainty and Absence of Information

DS has relied upon information obtained from federal, provincial, municipal, and private databases, in addition to records and summaries provided by EcoLog ERIS. All information obtained was reviewed and assessed for consistency, however the conclusions drawn by DS are subject to the nature and accuracy of the records reviewed.

All reasonable inquiries were made to obtain reasonably accessible information, as mandated by O.Reg.153/04 (as amended).

Information used in this report was evaluated based on proximity to the Phase One Property, anticipated direction of local groundwater flow, and the potential environmental impact on the Phase One Property as a result of potentially contaminating activities.

The QP has determined that the uncertainty does not affect the validity of the Phase One ESA Conceptual Site Model or the conclusions of this report.

3.4 Deviations from Sampling and Analysis Plan

The Supplementary Phase Two ESA was completed in accordance with the SAP.

3.5 Impediments

DS was granted complete access to the Phase Two Property throughout the course of the investigation. No impediments were encountered.

4.0 Investigation Method

4.1 General

The Supplementary Phase Two ESA followed the methodology outlined in the following documents:

- Ontario Ministry of the Environment "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996);
- Ontario Ministry of the Environment "Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04" (June 2011);
- Ontario Ministry of the Environment "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (July 2011) (Analytical Protocol);

The methods used in the Supplementary Phase Two ESA investigation did not differ from the associated standard operating procedures.

4.2 Drilling and Excavating

A Site visit was conducted prior to drilling in order to identify borehole locations based on the APECs identified in the Phase One ESA. This Supplementary Phase Two ESA involved a single drilling event completed in August 2022, and incorporated the information obtained during the one (1) previous drilling events performed by Terraprobe in March 2021.

The Terraprobe drilling events consisted of the advancement of sixteen (16) boreholes, nine (9) of which were instrumented with monitoring wells and installed in 2021.

DS completed ten (10) additional boreholes on the property in August 2022. Boreholes BH22-1 and BH22-10 were used to further characterize the horizontal extent of the metals impacts in the vicinity of BH105 and BH110 on the Site.

The selected borehole locations are presented on Figure 5. The borehole locations were cleared of underground public and private utility services prior to commencement of drilling. A summary of the drilling activities is provided in the table below.

Parameter	Details		
	Previous Investigation	Current Investigation	
Drilling Contractor	London Soil	ACE Environmental Drilling	
Drilling Dates	March 3, 2021 to March 12, 2021	August 18, 2022	

Table 4-1: Summary of Drilling Activities

Parameter	De	etails
	Previous Investigation	Current Investigation
Drilling Equipment Used Measures taken to minimize the potential for cross contamination	Previous Investigation Track-mounted CME 75 ◆ Soil sampling was conducted using a 50 mm stainless steel split spoon sampler. The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination;	Geoprobe 3162GT Soil samples were collected using a macro-core sampling system. A new, disposable PVC sample liner was used for each sample interval; Soil samples were extracted from the interior of the sampler rather than from areas in contact with the sampler sidewalls; Use of dedicated and disposable nitrile gloves for the handling of soil samples. A new set of gloves was used for
Sample collection	 Soil samples were extracted from the interior of the sampler rather than from areas in contact with the sampler sidewalls; Use of dedicated and disposable nitrile gloves for the handling of soil samples. A new set of gloves was used for each sample. Samples were collected at a 	new set of gloves was used for each sample. Soil samples were collected using a
frequency	frequency of every 0.6 m per 0.8 m from the ground surface to 3.1 mbgs, followed by one sample per 1.5 m to borehole termination depth.	macro-core sampling system. A new, disposable PVC sample liner was used for each sample interval.

4.3 Soil Sampling

Soil samples were collected using a macro-core sampling system. Discrete soil samples were collected from the dedicated sample liners by DS personnel using dedicated nitrile gloves.

A portion of each sample was placed in a resealable plastic bag for field screening, and the remaining portion was placed into laboratory supplied glass sampling jars. All sample jars were stored in dedicated coolers with ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

The subsurface soil conditions were logged by DS personnel at the time of drilling and recorded on field borehole logs. The borehole logs are presented under Appendix C.

Additional detail regarding the lithology encountered in the boreholes is presented under Section 5.1.

4.4 Field Screening Measurements

All retrieved soil samples were screened in the field for visual and olfactory observations. No obvious visual or olfactory evidence of potential contamination were noted. No aesthetic impacts (e.g. cinders, slag, hydrocarbon odours etc.) were encountered during this investigation. The soil sample headspace vapour concentrations for all soil samples recovered during the investigation were screened using portable organic vapour testing equipment in accordance with the procedure outlined in the MECP's '*Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario'*.

The soil samples were inspected and examined to assess soil type, ground water conditions, and possible chemical contamination by visual and olfactory observations or by organic vapour screening. Samples submitted for chemical analysis were collected from locations judged by the assessor to be most likely to exhibit the highest concentrations of contaminants based on several factors including (i) visual or olfactory observations, (ii) sample location, depth, and soil type (iii) ground water conditions and headspace reading. A summary of the equipment used for field screening is provided below:

Parameter	Details
Make and Model of Field Screening Instrument	RKI Eagle 2, Model 5101-P2 Serial Number: E2G721
Chemicals the equipment can detect and associated detection limits	VOCs with dynamic range of 0 parts per million (ppm) to 2,000 ppm PHCs with range of 0 to 50, 000 ppm
Precision of the measurements	3 significant figures
Accuracy of the measurements	VOCs: ± 10% display reading + one digit Hydrocarbons: ± 5% display reading + one digit
Calibration reference standards	PID: Isobutylene CGD: Hexane
Procedures for checking calibration of equipment	In-field re-calibration of the CGI was conducted (using the gas standard in accordance with the operator's manual instructions) if the calibration check indicated that the calibration had drifted by more than +/- 10%.

Table 4-2: Field Screening Equipment

Soil headspace measurements are provided on the borehole logs, provided under Appendix C.

4.5 Groundwater Monitoring Well Installation

Historically nine (9) monitoring wells (BH102, BH103, BH105, BH107, BH109, BH110, BH114, BH115 and BH116) were installed between March 3-12, 2021 by Terraprobe.

The monitoring wells were constructed of 51-millimetre (2-inch) inner diameter (ID) flushthreaded schedule 40 polyvinyl chloride (PVC) risers, equipped with a 3.1 m length of No. 10 slot PVC screen. The well screens were sealed at the bottom using a threaded cap and at the top with a lockable J-plug.

Silica sand was placed around and up to 0.6m above the well screen to act as a filter pack. Bentonite was placed from the ground surface to the top of the sand pack. The wells were completed with protective flush mount casings.

Details regarding the monitoring well construction can be found in Table 1.

4.6 Groundwater Field Measurement of Water Quality Parameters

Groundwater field measurements were not collected since groundwater was excluded from the investigation.

4.7 Groundwater Sampling

Groundwater sampling was not conducted for this investigation since it was not identified as a media of potential impact.

4.8 Sediment Sampling

No sediment as defined under O.Reg. 153/04 (as amended) was present on the Phase Two Property at the time of this investigation. Sediment sampling was not conducted as a result.

4.9 Analytical Testing

The soil samples collected were submitted to Bureau Veritas (BV) under chain of custody protocols. BV is an independent laboratory accredited by the Canadian Association for Laboratory Accreditation. BV conducted the analyses in accordance with the MECP document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" dated March 9, 2004 (revised on July 1, 2011).

4.10 Residue Management Procedures

4.10.1 Soil Cuttings From Drilling and Excavations

Minimal soil cuttings were generated due to the sampling methodology employed.

4.10.2 Water from Well Development and Purging

No excess water was derived or stored on the Phase Two Property.

4.10.3 Fluids from Equipment Cleaning

No excess fluids were generated from the sampling activities.

4.11 Elevation Surveying

The ground surface elevations of the boreholes were surveyed using a Sokkia GCX-2 GNSS RTK receiver, based on global positioning system, with datum NAD83, UTM zone 17T. The ground surface elevations can be found on the borehole logs presented in Appendix C.

4.12 Quality Assurance and Quality Control Measures

4.12.1 Sample containers, preservation, labelling, handling and custody for samples submitted for laboratory analysis, including any deviations from the SAP

All soil samples were stored in laboratory-supplied sample containers in accordance with the MECP Analytical Protocol. A summary of the preservatives supplied by the laboratory is provided in the table below.

Table 4-3: Summary	of Sample	e Bottle Preservativ	es
	0.04		•••

Media	Parameter	Sample Container
	PHCs F1 VOCs	40 mL methanol preserved glass vial with septum lid.
Soil	PHCs F2-F4 metals and ORPs PAHs	120 mL or 250 mL unpreserved glass jar with Teflon [™] -lined lid.

4.12.2 Description of equipment cleaning procedures followed during all sampling

Dedicated, disposable nitrile gloves were used for each sampling event to reduce the potential for cross-contamination. Dedicated single-use PVC sample liners were used in the macro-core sampling system for each sampling event. A new, disposable PVC sample liner was used for each sample interval. Soil samples were extracted from the interior of the sampler rather than from areas in contact with the sampler sidewalls.

4.12.3 Description of how the field quality control measures referred to in subsection 3 (3) were carried out

Field duplicate samples were collected at the time of sampling. In accordance with O.Reg. 153/04, one duplicate sample was analyzed per ten samples submitted for analysis.

4.12.4 Description of, and rational for, any deviations from the procedures set out in the quality assurance and quality control program set out in the SAP

There were no deviations from the QA/QC program described in the SAP.

5.0 Review and Evaluation

5.1 Geology

A summary of the subsurface conditions is presented below. Additional details may be found in the borehole logs appended in Appendix C.

A surficial layer of asphalt concrete approximately 75 to 100 mm in thickness was encountered in all boreholes advanced except BH116. Re-worked native silty sand to clayey silt with trace amounts of gravel were encountered below the asphalt. The undisturbed native soils generally consisted of clayey silt till to silty clay, and extended to depth ranging from 1.6 to 7.1 mbgs. Underlying the clayey silt till and silty clay layers, cohesionless sandy silt till to silty sand till layers were encountered and extended to depth ranging from 4.6 to 15.2 mbgs. Bedrock was encountered at depth 16.8 mbgs in BH114.

Geologic Unit	Inferred Thickness (m)	Top Elevation (masl)	Bottom Elevation (masl)	Properties
Silty Sand to Clayey Silt	0.4-2.7	83.0	80.7	Brown, moist, stiff to hard/very dense
Clayey Silt Till to Silt and Clay	1.6-7.1	81.8	76.3	Brown, moist, very stiff to hard
Silty Sand Till to Silt and Sand Till	0.5-15.3	76.3	68.7	Grey, moist, compact to very dense
Bedrock	>3.1	68.7	Unknown	Shale

Table 5-1: Summary	of Geologic Units Investigated
rabie 5 1. Summary	of deologie onits investigated

The clayey silt layer was found to be the first water bearing formation encountered and is considered to be an unconfined aquifer based on the groundwater level measurements recorded.

5.2 Ground Water Elevations and Flow Direction

5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals

Nine (9) monitoring wells were installed upon completion of sixteen (16) boreholes in March 2021 by Terraprobe.

Two groundwater units were identified as follows:

- The upper water bearing unit and first water bearing formation, which was encountered in silt and clay/clayey silt/silty sand. Historic monitoring wells BH102, BH105 and BH107 were screened within the unit.
- The deep groundwater unit which was situated in the silty clay. Historic monitoring well BH103, BH109, BH110, BH114, BH115 and BH116 were screened within the unit.

The shallow monitoring wells were screened at depths ranging from 3.0-6.1 mbgs with sand extending up to 0.6 mbgs to intersect the groundwater table which was identified at approximate depths of 1.40-4.0 mbgs on March 13, 2021. This well screen interval was used to allow for the assessment of LNAPL and to provide information regarding the quality of the shallow groundwater within the overburden.

The deep monitoring wells were screened at depths ranging from 6.1-13.7 mbgs to support the hydrogeological investigation completed concurrently with Terraprobe Phase Two ESA. The groundwater levels associated with these deep wells extended from 1.60-4.50 mbgs on March 13, 2021.

5.2.2 Results of Interface Probe Measurements

A summary of the groundwater level measurements is provided in Table 1. The groundwater level measurements were collected using a Solinst interface probe (Model 122). The depth to groundwater was found to range between 1.40 to 4.50 mbgs on March 13, 2021. There was no indication of DNAPL or LNAPL in the monitoring wells at this time.

5.2.3 Product Thickness and Free Flowing Product

No evidence of product was observed in the monitoring wells at the time of the investigation.

5.2.4 Groundwater Elevation

The groundwater elevation was calculated by subtracting the depth to groundwater from the surface elevation determined by the surface elevation survey conducted by Terraprobe in June 2021. A summary of the groundwater elevations calculated is presented in Table 1. Generally, the groundwater elevation was found to range from 80.90 to 92.30 masl on March 13, 2021 in the aquifer investigated.

5.2.5 Groundwater Flow Direction

The groundwater flow direction was interpreted using the groundwater elevations calculated for the monitoring wells installed on the Phase Two Property by Terraprobe in June 2021. Based on the groundwater elevations calculated from March 19, 2021, the groundwater flow direction is interpreted to be north to northeast across the Property for the shallow, unconfined aquifer. The groundwater elevation contours, and flow direction are presented on Figure 6.

5.2.6 Assessment of Potential for Temporal Variability in Groundwater Flow Direction

The aquifer investigated is inferred to be an unconfined aquifer, based on the soil stratigraphy observed in the boreholes advanced on the Phase Two Property. It is possible that temporal variations in groundwater elevations may occur on the Phase Two Property in response to seasonal weather patterns.

Temporal variability in groundwater level has the ability to influence the groundwater flow direction. The degree of variation in groundwater levels on the Phase Two Property can only be confirmed with long-term monitoring.

The groundwater elevations for the Property were monitored over four (4) monitoring events conducted between March and May 2021.

5.2.7 Evaluation of Potential Interaction Between Buried Utilities and the Water Table

The groundwater table was encountered at depths ranging from 1.40 to 4.50 mbgs on the Phase Two Property. Buried utility services are present on the Phase Two Property and are inferred to be situated approximately 2 to 3 mbgs. Based on this there is the potential for the utility trenches to act as preferential contaminant pathway and/or also influence shallow groundwater flow direction.

5.3 Ground Water Hydraulic Gradients

5.3.1 Horizontal Hydraulic Gradient

The horizontal hydraulic gradient was calculated based on the groundwater levels recorded on May 5, 2021.

Table 5-2: Summary of Horizontal Hydraulic Gradient Calculations

Hydrogeological Unit	Calculated Horizontal Hydraulic Gradient
Cilt and Clay	Minimum: 0.00038
Silt and Clay	Average: 0.01232

Hydrogeological Unit	Calculated Horizontal Hydraulic Gradient
	Maximum: 003247

5.4 Fine-Medium Soil Texture

5.4.1 Rational for use of Fine-Medium Soil Texture Category

A total of four (4) grain size analyses were conducted in previous Terraprobe Phase Two ESA. The results of the grain size analyses indicate that more than two-thirds of the soils encountered are considered medium to fine textured.

5.4.2 Results of Grain Size Analysis

A summary of the soil samples analyzed, and the corresponding grain size results is presented in the table below:

Sample	% Gravel	% Sand	% Silt	% Clay	Classification
BH102 SS5	8%	24%	41%	27%	Medium-fine textured
BH107 SS8	0%	1%	27%	72%	Medium-fine textured
BH114 SS12	7%	24%	62%	7%	Medium-fine textured
BH115 SS3	0%	1%	59%	40%	Medium-fine textured

Table 5-3: Summary of Grain Size Analyses

5.4.3 Rational for the Number of Samples Collected and Analyzed

At least one sample was analyzed per stratigraphic unit encountered in order to characterize the various strata encountered.

5.5 Soil Field Screening

Soil vapour headspace readings were collected at the time of sample collection. The soil vapour headspace readings were collected using a PID and CGD in methane elimination mode. Complete field screening readings are provided on the borehole logs in Appendix C.

The soil samples were also screened for visual and olfactory indicators of impacts (e.g. staining, odours). No obvious visual or olfactory evidence of potential contamination were noted.

5.6 Soil Quality

The results of the chemical analyses conducted are presented in Tables 4 through 7. A visual summary of the location of the sample locations is provided in Figures 7A through 7D. The laboratory certificates of analysis have been provided under Appendix D.

5.6.1 Metals and ORPs

A total of sixteen (16) samples, including one (1) field duplicates for QA/QC purposes were submitted for hydride-forming metals and select Other Regulated Parameters (ORPs) including pH by Terraprobe in 2021. A total of eleven (11) additional samples, including one (1) field duplicate were collected in August 2022 and submitted for analysis of metals and hydride-forming metals by DS. The results of the analyses are tabulated in Table 5 and presented on Figure 7A. The results of the analyses indicated the following exceedances of the Table 3 RPI SCS:

Sample ID	Sample Depth (mbgs)	Parameter	Units	Table 3 SCS	Reported Value
	05 SS3 1.5-2.1	Antimony	µg/g	7.5	15
вн102 223		Arsenic	µg/g	18	1600
BH110 SS3	1.5-2.1	Arsenic	µg/g	18	730
Notes	•	•		•	•

Table 5-4: Summary of Metals and ORPs Exceedances in Soil from Terraprobe Report

0.0

Concentrations Exceeds applicable SCS

5.6.2 Petroleum Hydrocarbons

A total of nine (9) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of PHCs (incl. BTEX) by Terraprobe in March 2021. The results of the analyses are tabulated in Table 6 and presented on Figure 7B. The results of the analyses indicated that all samples analyzed met the applicable Table 3 SCS.

5.6.3 Volatile Organic Compounds

A total of nine (9) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of VOCs by Terraprobe in March 2021.

The results of the analyses are tabulated in Table 7 and presented on Figure 7C. The results of the analyses indicated that all samples analyzed met the applicable Table 3 SCS.

5.6.4 Polycyclic Aromatic Hydrocarbons

A total of nine (9) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of PAHs by Terraprobe in March 2021. The results of the analyses are tabulated in Table 8 and presented on Figure 7D. The results of the analyses indicated that all samples analyzed met the applicable Table 3 SCS.

5.6.5 Organochlorine Pesticides

A total of six (6), including one (1) field duplicate for QA/QC purposes were submitted for analysis of OCPs by Terraprobe in March 2021. The results of the analyses are tabulated in Table 9 and presented on Figure 7E. The results of the analyses indicated that all samples analyzed met the applicable Table 3 SCS.

5.6.6 Commentary on Soil Quality

<u>Metals</u>

From the previous investigations, elevated levels of arsenic and/or antimony were identified in boreholes BH105 and BH110, which were located in the central portion of the Site as depicted on Figure 7A. The arsenic and/or antimony impacts were quantified as extending to depths of less than 2.1 mbgs and are considered likely to be associated with fill materials present immediately below the asphalt parking lot. During this environmental investigation conducted for the Phase Two Property, no arsenic or antimony impacts were identified in boreholes advanced in the vicinity of BH105 and BH110.

PHCs & BTEX, VOCs, PAHs, OCPs, ORPs

All samples submitted for chemical analysis of PHCs & BTEX, VOCs, PAHs, OCPs and ORPs met the Table 3 SCS.

5.7 Ground Water Quality

The results of the chemical analyses conducted are presented in Tables 10 through 14. A visual summary of the location of the sample locations is provided in Figures 8A through 8D. The laboratory certificates of analysis have been provided under Appendix D.

5.7.1 Metals and ORPs

A total of six (6) samples were submitted for analysis of metals and hydride-forming metals and select Other Regulated Parameters (ORPs) including pH by Terraprobe in April 2021. The results of the analyses are tabulated in Table 10 and presented on Figure 8A. The groundwater samples transferred into the metals, mercury, and hexavalent chromium bottles were field filtered using a 0.45-micron in-line filter. Groundwater samples were not collected during the current investigation. Previous investigations indicated that no Metals & ORPs impacts were identified on the Property, thus additional samples were no deemed necessary at this time. The results of the analyses indicated that all samples analyzed met the applicable Table 3 SCS.

5.7.2 Petroleum Hydrocarbons

A total of six (6) samples were submitted for analysis of PHCs (incl. BTEX) by Terraprobe in April 2021. Groundwater samples for PHCs (incl. BTEX) analysis were not collected during the current investigation. Previous investigations indicated that no PHCs (incl. BTEX) impacts were identified on the Property, thus additional samples were no deemed necessary at this time. The result of the analysis is tabulated in Table 11 and presented on Figure 8B. The result of the analysis indicated that all sample analyzed met the applicable Table 3 SCS.

5.7.3 Volatile Organic Compounds

A total of seven (7) samples, including one (1) field duplicate and one (1) trip blank for QA/QC purposes were submitted for analysis of VOCs by Terraprobe in April 2021. Groundwater samples for VOCs analysis were not collected during the current investigation. Previous investigations indicated that no VOCs impacts were identified on the Property, thus additional samples were no deemed necessary at this time. The results of the analyses are tabulated in Table 12 and presented on Figure 8C.

The results of the analysis indicated that all samples analyzed met the applicable Table 3 SCS.

5.7.4 Polycyclic Aromatic Hydrocarbons

A total of six (6) samples, including one (1) field duplicate were submitted for analysis of PAHs by Terraprobe in April 2021. Groundwater samples for PAH analysis were not collected during the current investigation. Previous investigations indicated that no PAH impacts were identified on the Property, thus additional samples were no deemed necessary at this time. The results of the analyses from previous investigations are tabulated in Table 13 and presented on Figure 8D. The results of the analyses indicated that all samples analyzed met the applicable Table 3 SCS.

5.7.5 Organochlorine Pesticides

A total of six (6) samples, including one (1) field duplicate were submitted for analysis of OCPs by Terraprobe in April 2021. Groundwater samples for OCPs analysis were not collected during the current investigation. Previous investigations indicated that no OCPs impacts were identified on the Property, thus additional samples were no deemed necessary at this time. The results of the analyses from previous investigations are tabulated in Table 13 and presented on Figure 8D. The results of the analyses indicated that all samples analyzed met the applicable Table 3 SCS.

5.7.6 Commentary on Groundwater Quality

No evidence of chemical or biological transformations of the parameters analyzed was observed. The results of the sampling completed to date indicates that the applicable Site Condition Standards for groundwater have been met.

5.8 Sediment Quality

No sediment was present on the Phase Two Property at the time of the investigation.

5.9 Quality Assurance and Quality Control Results

Collection of soil and groundwater samples was conducted in accordance with the MECP *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.* As described in Section 5.12, dedicated equipment was used where possible, and all non-dedicated equipment was decontaminated before and between sampling events. All soil and groundwater samples were transferred directly into laboratory-supplied containers. The laboratory containers were prepared by the laboratory with suitable preservative, as required. All samples were stored and transported under refrigerated conditions. Chain of custody protocols were maintained from the time of sampling to delivery to the analytical laboratory.

The field QA/QC program involved the collection of field duplicate soil and groundwater samples, and the use of a trip blank for each groundwater sampling event (when suitable). In addition to the controls listed above, the analytical laboratory employed method blanks, internal laboratory duplicates, surrogate spike samples, matrix spike samples, and standard reference materials.

A summary of the field duplicate samples analyzed and an interpretation of the efficacy of the QA/QC program is provided in the table below.

Sample ID	QA/QC duplicate	Medium	Parameter Analyzed	QA/QC Result
Dup 1	BH103 SS4	Soil	Metals & ORPs	All results were within the analytical protocol criteria for RPD
Dup 2	BH105 SS2	Soil	PAHs	All results were within the analytical protocol criteria for RPD
Dup 3	BH105 SS2	Soil	PHCs, BTEX, VOCs	All results were within the analytical protocol criteria for RPD

Table 5-5:	Summary	of QA/QC Results		
------------	---------	------------------		
Dup 4	BH105 SS3	Soil	OCPs	All results were within the analytical protocol criteria for RPD
-------	-----------	-------------	--	--
DUP1	BH110	Groundwater	Metals & ORPs, PHCs, BTEX, VOCs, PAHs, OCPs	All results were within the analytical protocol criteria for RPD

Based on the interpretation of the laboratory results and the QA/QC program, it is the opinion of the QP that the laboratory analytical data can be relied upon.

All samples were handled in accordance with the MECP Analytical Protocol regarding sample holding time, preservation methods, storage requirements, and type of container.

SGS and BV routinely conducts internal QA/QC analyses in order to satisfy regulatory QA/QC requirements. The results of the SGS QA/QC analyses for the submitted soil samples are summarized in the laboratory Certificates of Analyses provided in Appendix D.

With respect to subsection 47(3) of 0.Reg 153/04 (as amended), all certificates of analysis or analytical reports pursuant to clause 47(2) (b) of the regulation comply with subsection 47(3). A certificate of analysis has been received for each sample submitted for analysis and have been provided (in full) in Appendix D.

A review of the QA/QC sample results indicated that no issues were identified with respect to both the field collection methodology and the laboratory reporting. It is the opinion of the QP that the analytical data obtained are representative of the soil and groundwater conditions at the Phase Two Property for the purpose of assessing whether the soil and groundwater at the Phase Property meets the applicable MECP SCS.

6.0 Conclusions

This Supplementary Phase Two ESA involved that advancement of ten (10) boreholes and the collection of soil samples for analysis of metals and hydride forming metals.

Based on the results of the information gathered through the course of the investigation, DS presents the following conclusions:

- Between the previous investigations and this environmental investigation conducted for the Phase Two Property, antimony and arsenic impacts in soil were identified in the vicinity of BH105 to depths ranging from 1.5-2.1 mbgs and arsenic impact was identified in the vicinity of BH110 at a depth of 1.5-2.1 mbgs. The vertical extent of the arsenic and antimony impacts were found to be no deeper than 2.3 mbgs;
- The results of the chemical analyses conducted on groundwater samples indicate that the applicable Site Condition Standards for groundwater have been met;

- The change in land use from commercial to residential use does constitute a change to a more sensitive land use, and as such a Record of Site Condition will be required in accordance with O. Reg 153/04;
- The Arsenic and Antimony impacted soils were remediated through excavation and off-Site disposal by Green Infrastructure Partners Inc. The remedial excavation works commenced on November 17, 2022. Verification soil sampling was completed upon completion of the remedial works. The results of the confirmatory sampling indicated that the remaining soils met the MECP Table 3 SCS. Upon completion of the soil verification sampling it is the opinion of DS that a Record of Site Condition may be submitted.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

6.1 Qualifications of the Assessors

Alice Gong, B.Sc

Ms. Gong is an Environmental Specialist with DS Consultants Ltd and holds a Bachelor's degree in Environmental Science from McMaster University and a Post Graduate Certificate in Environmental Management and Assessment from Niagara College. Alice has experience in conducting Phase One and Phase Two Environmental Site Assessments, data interpretation and reporting.

Mr. Patrick (Rick) Fioravanti, B.Sc., P.Geo., QPESA

Mr. Fioravanti is the Manager of Environmental Services with DS Consultants Limited. Patrick holds a Honours Bachelor of Science with distinction in Toxicology from the University of Guelph, and is a practicing member of the Association of Professional Geoscientists of Ontario (APGO). Patrick has over ten years of environmental consulting experience and has conducted and/or managed hundreds of projects in his professional experience. Patrick has extensive experience conducting Phase One and Phase Two Environmental Site Assessments in support of brownfields redevelopment in urban settings, and been involved in numerous remediation projects, supported many risk assessments, and successfully filed Records of Site Condition with the Ministry of Environment and Climate Change. He has conducted work across southern and eastern Ontario, and Quebec in his professional experience. Patrick is considered a Qualified Person to conduct Environmental Site Assessments as defined by Ontario Regulation 153/04 (as amended).

DS Consultants Ltd.

6.2 Signatures

This Supplementary Phase Two ESA was conducted under the supervision of Rick Fioravanti, B.Sc., P.Geo., QP_{ESA} in accordance with the requirements of O.Reg. 153/04 (as amended). The findings and conclusions presented have been determined based on the information obtained at the time of the investigation, and on an assessment of the conditions of the Site at this time.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

DS Consultants Ltd.

Prepared by:

Curs your

Alice Gong, B.Sc Environmental Specialist

Reviewed by:

coracante

Patrick Fioravanti, B.Sc., P.Geo., QP_{ESA} Manager – Environmental Services

6.3 Limitations

This report was prepared for the sole use of the registered owner (2591260 Ontario Inc.) and the beneficial owner (Bayfield Realty Advisors Inc.) and is intended to provide an assessment of the environmental condition on the property located at Development Phase II: 1755 & 1805 Pickering Parkway, Pickering, Ontario. The information presented in this report is based on information collected during the completion of the Supplementary Phase Two Environmental Site Assessment by DS Consultants Ltd. The material in this report reflects DS' judgment in light of the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of this documents or findings, conclusions and recommendations represented herein, is at the sole risk of said users.

The conclusions drawn from the Supplementary Phase Two ESA were based on information at selected observation and sampling locations. Conditions between and beyond these locations may become apparent during future investigations or on-Site work, which could not be detected or anticipated at the time of this investigation. The sampling locations were chosen based upon a cursory historical search, visual observations and limited information provided by persons knowledgeable about past and current activities on this Site during the Supplementary Phase Two ESA activities. As such, DS Consultants Ltd. cannot be held responsible for environmental conditions at the Site that was not apparent from the available information.

7.0 References

- Armstrong, D.K. and Dodge, J.E.P. *Paleozoic Geology Map of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 219.
- Chapman, L.J. and Putnam, D.F. 2007. *The Physiography of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 228.
- Freeze, R. Allen and Cherry, John A., 1979. *Ground water*. Page 29.
- Ontario Ministry of the Environment, December 1996. Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.
- Ontario Ministry of Environment, 15 April 2011. Soil, Ground Water and Sediment Standards for use under part XV.1of the Environmental Protection Act.
- Ontario Ministry of the Environment, June 2011. Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04.
- Ontario Ministry of the Environment, July 2011. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.
- The Ontario Geological Survey. 2003. *Surficial Geology of Southern Ontario*.
- *"Phase One Environmental Site Assessment, 1755 Pickering Parkway, Pickering, Ontario"* dated January 8, 2021, prepared for Pickering Ridge Lands Inc. c/o Bayfield Realty Advisors Inc., prepared by Terraprobe Inc.
- *"Phase Two Environmental Site Assessment, 1755 and 1805 Pickering Parkway, Pickering, Ontario"* dated June 11, 2021, prepared for Pickering Ridge Lands Inc. c/o Bayfield Realty Advisors Inc., prepared by Terraprobe Inc.

Tables

	Well ID		BH102	BH103	BH105	BH107	BH109	BH110	BH114	BH115	BH116
	Installed By:		Terraprobe								
In	stallation Date:		04-Mar-22	03-Mar-21	05-Mar-21	05-Mar-21	19-May-22	11-Mar-21	08-Mar-21	10-Mar-21	12-Mar-21
	Well Status:		Active								
	EastUTM17		655185	655263	655271	655382	655329	655375	655556	655649	655742
	NorthUTM17		4856122	4856198	4856098	4856065	4856249	4856149	4856169	4856217	4856301
Inner Diameter		mm	50	50	50	50	50	50	50	50	50
Surface Elevation	1	masl	89.30	85.40	88.00	88.70	85.70	85.70	85.10	85.60	86.30
Bottom of Concr	ete Seal/Top of	mbgs	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Bentonite Seal	ĺ	masl	89.00	85.10	87.70	88.40	85.40	85.40	84.80	85.30	86.00
Bottom of Bento	nite Seal/Top	mbgs	2.40	5.50	2.40	2.40	5.50	5.50	10.00	6.30	5.50
of Sand Pack		masl	86.90	79.90	85.60	86.30	80.20	80.20	75.10	79.30	80.80
Top of Wall Scro		mbgs	3.00	6.10	3.00	3.00	6.10	6.10	10.67	6.90	6.10
Top of Well Scree	-11	masl	86.30	79.30	85.00	85.70	79.60	79.60	74.43	78.70	80.20
Well Screen Leng	gth	m	3.00	1.50	3.00	3.00	1.50	1.50	3.00	1.50	1.50
Pottom of Wall S	anoon	mbgs	6.10	7.62	6.10	6.10	7.62	7.62	13.77	8.40	7.60
Bottoin of Weir S	creen	masl	83.20	77.78	81.90	82.60	78.08	78.08	71.33	77.20	78.70
					GW Monito	ring					
Depth to GW		mbgs	2.40	4.50	4.00	1.40	3.10	2.60	1.60	1.80	2.10
	GW Elevation	masl	86.90	80.90	84.00	87.30	82.60	83.10	83.50	83.80	84.20

Table 1: Summary of Monitoring Well Installation and Groundwater Data

Table 2: Summary of Soil Samples Submitted for Chemical Analysis

Borehole ID	Sample No.	Sample Depth (mbgs)	Soil Description	Parameter Analyzed	APEC Investigated
	SS1	0-0.6	Gravelly sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS,OCPs, PAHs	
	SS2A	0.6-0.9	Gravelly sand	PHCs & BTEX, VOCs	Soil
BH102	SS2B	0.9-1.1	Clayey Silt, trace sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	Characterization
	SS3	1.5-2.1	Clayey Silt, trace sand	PHCs & BTEX, VOCs, PAHs	characterization
	Dup 1	0-0.6	Gravelly sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	
	SS2	0.76-1.5	Reworked Native, Sand, some silt	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS,PAHs	
BH103	SS3	1.5-2.1	Reworked Native, Sand, some silt	PHCs & BTEX, VOCs, OCPs	Soil
DIII05	SS4	2.3-2.9	Silty Clay	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS,PAHs	Characterization
	SS5	3.0-3.7	Silty Clay	PHCs & BTEX, VOCs, OCPs	
	SS2	0.6-1.2	Reworked Native, silty sand	PHCs & BTEX, VOCs, PAHs	
	SS3	1.5-2.1	Clayey Silt, trace sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS,OCPs	Coil
BH105	Dup 2	0.6-1.2	Reworked Native, silty sand	PAHs	Characterization
	Dup 3	0.6-1.2	Reworked Native, silty sand	PHCs & BTEX, VOCs	characterization
	Dup 4	1.5-2.1	Clayey Silt, trace sand	OCPs	
PU110	SS2	0.76-1.4	Reworked Native, sandy silt	BTEX, OCPs	Soil
BIIIIO	SS3A	1.5-1.8	Reworked Native, clayey silt	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS,OCPs, PHCs, BTEX, VOCs	Characterization
	SS2	0.76-1.4	Reworked Native, sandy silt	PAHs	
	SS3	1.5-2.1	Reworked Native, sandy silt	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	
BH116	SS4	2.3-2.9	Reworked Native, clayey silt	PHCs & BTEX, VOCs	APEC 2
	SS5	3.0-3.7	Clayey Silt	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS, OCPs, PAHs	
	SS6	4.6-5.2	Sand and Silt	PHCs & BTEX, VOCs	
BH22-1	S2	1.5-2.2	Clayey Silt, trace sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	
BH22-2	S2A	1.5-2.2	Clayey Silt, trace sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	
BH22-3	S2	1.5-2.2	Clayey Silt, trace sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	
BH22-4	S2	1.5-2.2	Clayey Silt, trace sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	
BH22-5	S2A	1.5-2.2	Clayey Silt, trace sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	0-11
BH22-6	S2A	1.5-2.2	Clayey Silt, trace sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	Characterization
BH22-7	S2A	1.5-2.2	Clayey Silt, trace sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	Characterization
BH22-8	S2A	1.5-2.2	Clayey Silt, trace sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	
BH22-9	S2A	1.5-2.2	Clayey Silt, trace sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	
BU22 10	S2A	1.5-2.2	Clayey Silt, trace sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	
БП22-10	Dup-1	1.5-2.2	Clayey Silt, trace sand	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS	

Well ID	Well Screen Interval (masl)			Sample Date	Parameter Analyzed	APEC Investigated					
BH102	83.10	-	86.70	8-Apr-21	Metals,PHCs, BTEX, VOCs, PAHs, OCPs	APEC 1					
BH103	77.80	-	79.90	8-Apr-21	Metals,PHCs, BTEX, VOCs, PAHs, OCPs	APEC 2					
BH105	81.90	-	85.60	8-Apr-21	8-Apr-21 Metals,PHCs, BTEX, VOCs, PAHs, OCPs						
BH110	78.10	-	80.30	80 8-Apr-21 Metals,PHCs, BTEX, VOCs, PAHs, OCPs		Groundwater Characterization					
BH116	78.70	78.70 - 80.80		8-Apr-21	Metals,PHCs, BTEX, VOCs, PAHs, OCPs	APEC 3					

Table 3: Summary of Groundwater Samples Submitted for Chemical Analysis

Table 4: Summary of APECs Investigated

APEC	Description	COPCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed
					SS1	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B-HWS, OCPs, PAHs
		ECCAD	C - 11	DU102	SS2A	PHCs & BTEX, VOCs
APEC-1	Seasonal application of de-icing salts for safety purposes.	EC,SAK	5011	BH102	SS2B	Metals, As, Sb, Se, CN-, Hg, Cr(VI), B-HWS
	F · F · · · · ·				SS3	PHCs & BTEX, VOCs, PAHs
		Na, Cl-	Groundwater	BH102	BH102	Metals, PHCs, BTEX, VOCs, PAHs, OCPs
					SS2	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS,PAHs
					SS3	PHCs & BTEX, VOCs, OCPs
ADEC 2	generator located at 1735 Pickering Parkway.	PHCs, VOCs, BTEX,	Soil	BH103	SS4	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS,PAHs
AFEC-2	This AEPC includes a north section of the	Metals			SS5	PHCs & BTEX, VOCs, OCPs
	Toperty.				Dup 1	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS
			Groundwater	BH103	BH103	Metals, PHCs, BTEX, VOCs, PAHs, OCPs
					SS2	PAHs
					SS3	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS
APEC-2	Seasonal application of de-icing salts for safety	EC,SAR	Soil	BH116	SS4	PHCs & BTEX, VOCs
AI EC-5	purposes.				SS5	PAHs
					SS6	PHCs & BTEX, VOCs
		Na, Cl-	Groundwater	BH116	BH116	Metals, PHCs, BTEX, VOCs, PAHs
					SS2	PAHs
					SS3	Metals, As, Sb, Se, CN-, Hg, Cr(VI),B-HWS
ADEC A	Seasonal application of de-icing salts for safety	EC,SAR	Soil	BH116	SS4	PHCs & BTEX, VOCs
AFEC-4	purposes.				SS5	PAHs
					SS6	PHCs & BTEX, VOCs
		Na, Cl-	Groundwater	BH116	BH116	Metals, PHCs, BTEX, VOCs, PAHs

Table 5: Summary of Metals	and Hydride N	detals in Soil																										
Parameter		BH116/SS3	BH116/SS5	BH102 \$\$1	BH102 552B	BH103/SS2	BH103/SS4	BH105 SS3	BH105554	BH1065S3	BH107/SS2	BH108 552	BH110 553	BH110 SS4	BH111552	BH112 SS3	DUP 1 (BH103 SS4)	BH22-1/S2	BH22-2/S2A	BH22-3/52	BH22-4/S2	BH22-5/S2A	BH22-6/S2A	BH22-7/S2A	BH22-8/S2A	BH22-9/S2A	BH22-10/S2A	DUP-1 (BH22-10/S2A)
Date of Collection		12-Mar-21	12-Mar-21	04-Mar-21	04-Mar-21	12-Mar-21	12-Mar-21	05-Mar-21	05-Mar-21	07-Apr-21	07-Apr-21	07-Apr-21	11-Mar-21	07-Apr-21	07-Apr-21	07-Apr-21	12-Mar-21	18-Aug-22										
Date Reported	MECP	21-Mar-21	21-Mar-21	21-Mar-21	21-Mar-21	21-Mar-21	21-Mar-21	12-Mar-21	12-Mar-21	14-Apr-21	14-Apr-21	14-Apr-21	18-Mar-21	14-Apr-21	14-Apr-21	14-Apr-21	19-Mar-21	25-Aug-22										
Sampling Depth (mbgs)		1.5-2.1	3.0-3.7	0-0.6	1.1-1.4	0.76-1.5	23-2.9	15-2.1	23-2.9	1.5-2.1	0.8-1.4	0.8-1.4	15-2.1	3.0-3.6	0.8-1.4	15-2.1	2.3-2.9	1.5-2.2	1.5-2.2	15-2.2	15-2.2	15-22	15-22	1.5-2.2	15-2.2	15-22	15-22	15-2.2
lytical Report Reference No.		CA15906-MAR21	CA15906-MAR21	CA15907-MAR21	CA15907-MAR21	CA15907-MAR21	CA14846-APR21	GA15908-MAR21	CA14155-APR21	CA14155-APR21	CA14155-APR21	CA14155-APR21	CA15908-MAR21	GA14155-APR21	GA14155-APR21	CA1415S-APR21	GA15907-MAR21	C2N7163/TMR054	C2N7163/TMR055	C2N7163/TMR056	C2N7163/TMR057	C2N7163/TMR058	C2N7163/TMR059	C2N7163/TMR060	C2N7163/TMR061	C2N7163/TMR062	C2N7163/TMR063	C2N7163/TMR064
Antimony	7.5	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8		<0.8	<0.8	<0.8	<0.8	6.3	<0.8	<0.8	<0.8	<0.8	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.26	<0.20	<0.20	< 0.20
Arsenic	18	4.5	8.6	12	7.9	2.6	6.1		3.5	1.2	1.8	1.2	730	1.2	4.5	3.2	3.4	2.3	1.1	2	1.5	<1.0	2.2	1.6	2	<1.0	1.9	5.3
Barium	390	110	100	68	99	8.6	75	83					37				86	170	39	100	110	19	85	120	86	35	140	110
Beryllium	5	0.62	0.35	0.32	0.38	0.65	0.38	0.3					0.18				0.33	0.78	0.28	0.51	0.42	<0.20	0.56	0.9	0.46	<0.20	0.52	0.56
Cadmium	1.2	0.38	0.08	0.07	0.07	0.05	0.08	0.02					0.1				0.04	0.14	<0.10	<0.10	<0.10	<0.10	0.11	0.15	0.11	<0.10	<0.10	0.14
Chromium	160	21	15	12	15	4.2	15	14					6				14	29	11	21	18	6.5	21	32	18	7.8	22	20
Chromium VI	10						<0.2	+0.2					+0.2				<0.2											
Cobalt	22	7.9	5.4	5.5	8.5	1.5	6.3	5.1					1.9				5.6	11	3.8	7.7	7	2.1	8.7	12	6.7	1.8	7.8	8.3
Copper	180	16	12	11	14	3.1	16	11					45				11	23	7.3	16	14	4.2	19	21	15	9.1	20	18
Lead	120	11	5.2	5.6	7.5	2.5	7.6	3.4					3.9				3.9	9.1	3.8	6.1	4.7	2.2	8.9	14	7.2	3.7	8.4	8.7
Molybdenum	6.9	0.3	0.1	0.3	0.4	0.1	0.3	0.1					0.1				0.1	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	1.1
Mercury	1.8						<0.05	<0.05					<0.05				<0.05											
Nickel	130	15	11	12	19	3.2	14	11					4.3				11	24	7.9	16	14	4.1	18	26	15	4.2	17	18
Selenium	2.4	<0.7	+0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	<0.7	+0.7	<0.7	< 0.50	<0.50	<0.50	<0.50	+0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Silver	25	0.08	<0.05	<0.05	<0.05	<0.05	+0.05	<0.05					<0.05				<0.05	<0.20	<0.20	<0.20	< 0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	< 0.20
Thallium	1	0.16	0.13	0.13	0.19	0.03	0.16	0.09					0.04				0.1	0.25	0.071	0.13	0.13	<0.050	0.14	0.22	0.13	<0.050	0.16	0.15
Vanadium	86	30	21	18	22	9	21	23					10				25	44	19	34	32	15	33	45	29	11	31	32
Zinc	340	61	36	29	34	9.3	37	27					19				29	63	18	40	35	11	43	66	37	24	45	44
ell (ell Units)	NA	7.7	7.2	8.2	7.98	8	7.7						7.84				7.73											
Boron (Total)	120	4	6	5	6	2	6	2			-		1	-			3	11	<5.0	5.9	<5.0	<5.0	7.4	7.1	6.4	<5.0	8.6	7.4
Uranium	23	0.54	0.41	0.46	0.59	0.22	0.93	0.37					0.38				0.44	0.56	0.4	0.53	0.49	0.34	0.51	0.58	0.5	0.4	0.49	0.53

Uranium 23 0.54 0.41 0.40 For Table Notes see Notes for Soil and Groundwater Summary Tables, included at the end of this Section

Table 6: Summary of PHCs in Soil

Parameter		BH116/SS4	BH116/SS6	BH102/SS2A	BH102/SS3	BH103/SS3	BH103/SS5	BH105/SS2	DUP 3 (BH105/SS2)	BH110/SS3
Date of Collection	MFCP Table	12-Mar-21	12-Mar-21	12-Mar-21	12-Mar-21	12-Mar-21	12-Mar-21	05-Mar-21	05-Mar-21	11-Mar-21
Date Reported	3 SCS	19-Mar-21	19-Mar-21	19-Mar-21	19-Mar-21	19-Mar-21	19-Mar-21	12-Mar-21	12-Mar-21	19-Mar-21
Sampling Depth (mbgs)		2.3-2.9	4.6-5.2	0.6-0.9	1.5-2.1	1.8-2.1	3-3.6	0.8-1.4	0.8-1.4	1.5-2.1
Analytical Report Reference No.		CA15906- MAR21	CA15906- MAR21	CA15907- MAR21	CA15907- MAR21	CA15907- MAR21	CA15907- MAR21	CA15907- MAR21	CA15907- MAR21	CA15908- MAR21
F1 (C6-C10) -BTEX	65	<10	<10	<10	<10	<10	<10	<10	<10	<10
F2 (C10-C16)	150	<10	38	<10	<10	<10	<10	<10	<10	<10
F3 (C16-C34)	1300	<50	168	<50	<50	<50	<50	<50	<50	<50
F4 (C34-C50)	5600	<50	58	77	<50	<50	55	<50	64	<50

Table 7: Summary of VOCs in Soil										
Parameter		BH116/SS4	BH116/SS6	BH102/SS2A	BH102/SS3	BH103/SS3	BH103/SS5	DUP 3 (BH103/SS5)	BH105/SS2	BH110/SS3
Date of Collection	MECP	12-Mar-21	12-Mar-21	04-Mar-21	04-Mar-21	12-Mar-21	12-Mar-21	05-Mar-21	05-Mar-21	05-Mar-21
Date Reported	Table 3	19-Mar-21	19-Mar-21	19-Mar-21						
Sampling Depth (mbgs)	303	2.3-2.9	4.6-5.2	0.6-0.9	1.5-2.1	1.8-2.1	3.0-3.7	3.0-3.7	0.4-1.2	1.5-2.1
Analytical Report Reference No.		CA15906-MAR21	CA15906-MAR21	CA15907-MAR21	CA15907-MAR21	CA15907-MAR21	CA15907-MAR21	CA15908-MAR21	CA15908-MAR21	CA15908-MAR21
Benzene	0.17	<0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	<0.02
Toluene	6	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
Ethylbenzene	15	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05
Xylene	25	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Acetone	28	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Bromodichloromethane	13	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromoform	0.26	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bromomethane	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Carbon Tetrachloride	0.12	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05
Chlorobenzene	2.7	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	9.4	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Chloroform	0.18	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylene Dibromide	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
1,2-Dichlorobenzene	4.3	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
1,3-Dichlorobenzene	6	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	0.097	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibromochloromethane	9.4	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05
1,1-Dichloroethane	11	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
1,2-Dichloroethane	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethylene	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
cis-1,2-Dichloroethylene	30	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
trans-1,2-Dichloroethylene	0.75	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05
Methylene Chloride (Dichlorometha	0.96	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichloropropane	0.085	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichloropropane	0.083	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Hexane (n-Hexane)	34	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05
Methyl Ethyl Ketone (MEK)	44	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methyl Isobutyl Ketone (MIBK)	4.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Methyl tert-butyl ether (MTBE)	1.4	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05
Styrene	2.2	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1,1,2-Tetrachloroethane	0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05
1,1,2,2-Tetrachloroethane	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Tetrachloroethylene	2.3	<0.05	0.1	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05
1,1,1-Trichloroethane	3.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1,2-Trichloroethane	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05
Trichloroethylene	0.52	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	5.8	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl Chloride	0.022	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02

Table 8: Summary of PAHs in Soil

Parameter		BH116/SS2	BH116/SS5	BH102/SS1	BH102/SS3	BH103/SS2	BH103/SS4	DUP 2 (BH105/SS2)	BH105/SS2	BH110/SS2
Date of Collection	MECP Table	18-May-22	18-May-22	18-May-22	18-May-22	18-May-22	26-May-22	05-Mar-21	26-May-22	26-May-22
Date Reported	3 SCS	02-Jun-22	02-Jun-22	02-Jun-22						
Sampling Depth (mbgs)		0.8-1.4	4.6-5.2	0.0-0.6	0-0.6	0-0.6	0-0.6	0-0.6	0-0.6	0-0.6
Analytical Report Reference No.		CA15906-MAR21	CA15906-MAR21	CA15907-MAR21	CA15907-MAR21	CA15907-MAR21	CA15907-MAR21	CA15907-MAR21	CA15907-MAR21	CA15908-MAR21
Acenaphthene	58	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050
Acenaphthylene	0.17	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0050
Anthracene	0.74	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050
Benzo(a)anthracene	0.63	< 0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050
Benzo(a)pyrene	0.3	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050
Benzo(b/j)fluoranthene	0.78	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050
Benzo(g,h,i)perylene	7.8	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050
Benzo(k)fluoranthene	0.78	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050
Chrysene	7.8	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050
Dibenzo(a,h)anthracene	0.1	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050
Fluoranthene	0.69	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050
Fluorene	69	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050
Indeno(1,2,3-cd)pyrene	0.48	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050
1+2-Methylnaphthalene	3.4	< 0.0071	< 0.0071	<0.0071	< 0.0071	<0.0071	< 0.0071	< 0.0071	< 0.0071	< 0.0071
Naphthalene	0.75	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050
Phenanthrene	7.8	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Pyrene	78	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050

Table 9: Summary of OCPs in Soil

Parameter		BH102/SS1	BH103/SS3	BH103/SS5	Dup 4 (BH105/SS3)	BH105/SS3	BH110/SS2
Date of Collection	меср	04-Mar-21	12-Mar-21	12-Mar-21	05-Mar-21	05-Mar-21	11-Mar-21
Date Reported	Table 3 SCS	11-Mar-21	19-Mar-21	19-Mar-21	11-Mar-21	11-Mar-21	19-Mar-21
Screen Interval (mbgs)		0-0.6	1.5-2.1	3-3.7	3-3.7	1.5-2.1	0.76-1.4
Analytical Report Reference No.		CA15907-MAR21	CA15907-MAR21	CA15907-MAR21	CA15908-MAR21	CA15908-MAR21	CA15908-MAR21
Aldrin	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total Chlordane	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total DDD	3.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total DDE	0.33	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Total DDT	1.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
Total Endosulfan	0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Endrin	0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Heptachlor	0.15	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Heptachlor epoxide	0.05	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobenzene	0.52	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobutadiene	0.014	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01
gamma-Hexachlorocyclohexane (Lindane)	0.063	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01
Hexachloroethane	0.071	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01
Methoxychlor	0.13	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Table 10: Summary of Metals in Groundwater

Parameter		BH102	BH103	BH105	BH110	BH116	DUP1 (BH110)
Date of Collection	MECP	8-Apr-21	8-Apr-21	8-Apr-21	8-Apr-21	8-Apr-21	8-Apr-21
Date Reported	SCS	15-Jul-21	15-Jul-21	15-Jul-21	15-Jul-21	15-Jul-21	15-Jul-21
Screen Interval (mbgs)		2.5-6.1	5.5-7.6	2.4-6.1	5.4-7.6	5.5-7.6	2.5-6.1
Analytical Report Reference No.		CA14237-APR21	CA14237-APR21	CA14237-APR21	CA14237-APR21	CA14237-APR21	CA14237-APR21
Antimony	20000	<0.9	<0.9	<0.9	<0.9	<0.9	<0.50
Arsenic	1900	0.8	1.4	0.5	2.1	0.9	<1.0
Barium	29000	2200	22.1	990	6700	380	6700
Beryllium	67	<0.007	<0.007	< 0.007	< 0.007	< 0.007	<0.007
Boron	45000	38	129	33	261	68	252
Cadmium	2.7	0.037	0.007	0.03	0.015	0.007	0.005
Chromium	810	0.82	0.37	1.24	1.08	0.33	0.96
Cobalt	66	3.74	0.102	0.676	0.723	0.496	0.703
Copper	87	2.4	1.4	2	0.6	1.2	0.7
Lead	25	0.05	0.16	0.12	0.08	0.02	0.05
Molybdenum	9200	10.1	13.2	0.27	0.66	1.12	0.36
Nickel	490	9.3	0.5	3	1.1	1.5	1
Selenium	63	0.52	0.09	0.24	0.16	0.07	0.21
Silver	1.5	<0.05	<0.05	0.071	<0.05	<0.05	<0.05
Thallium	510	< 0.005	< 0.005	0.019	< 0.005	< 0.005	< 0.005
Uranium	420	5.95	0.626	1.01	0.087	0.376	0.076
Vanadium	250	0.77	0.98	0.79	0.56	0.3	0.5
Zinc	1100	5	3	4	6	3	7

Table 11: Summary of PHCs in Groundwater

Parameter		BH102	BH103	BH105	BH110	BH116	DUP1 (BH110)
Date of Collection	МЕСР	8-Apr-21	8-Apr-21	8-Apr-21	8-Apr-21	8-Apr-21	8-Apr-21
Date Reported	Table 3 SCS	15-Apr-21	15-Apr-21	15-Apr-21	15-Apr-21	15-Apr-21	15-Apr-21
Screen Interval (mbgs)		2.5-6.1	5.5-7.6	2.4-6.1	5.4-7.6	5.5-7.6	2.5-6.1
Analytical Report Reference No.		CA14237-APR21	CA14237-APR21	CA14237-APR21	CA14237-APR21	CA14237-APR21	CA14237-APR21
F1 (C6 to C10) minus BTEX	750	< 25	< 25	< 25	< 25	< 25	< 25
F2 (C10 to C16)	150	<100	<100	<100	<100	<100	<100
F3 (C16 to C34)	500	<200	<200	316.	<200	<200	<200
F4 (C34 to C50) minus PAHs	500	<200	<200	<200	<200	<200	<200

Table 12: Summary of VOCs in Groundwater

Parameter		BH102	BH103	BH105	BH110	BH116	DUP1	Trip Blank
Date of Collection	MECP	8-Apr-21						
Date Reported	Table 3	15-Apr-21						
Screen Interval (mbgs)	SCS	2.5-6.1	5.5-7.6	2.4-6.1	5.4-7.6	5.5-7.6	2.5-6.1	-
Analytical Report Reference No.		CA14237-						
	120000	APR21						
Acetone	130000	<30	<30	<30	<30	<30	<30	<30
Bromodicnioromethane	85000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromotorm	770	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bromometnane	30	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachioride	6.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chiorobenzene	030	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
	32000	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chioroform	44	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylene Dibromide	0.83	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2-Dichlorobenzene	9600	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	9600	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	67	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dichlorodiffluoromethane	4400	<2	<2	<2	<2	<2	<2	<2
1,1-Dichloroethane	3100	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
1,2-Dichloroethane	12	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
1,1-Dichloroethylene	17	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Cis-1,2-Dichloroethylene	1.6	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Trans-1,2-Dichloroethylene	1.6	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
Methylene Chloride	610	<0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5
1,2-Dichloropropane	140	<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
1,3-Dichloropropane	45	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexane(n)	51	<1	<1	<1	<1	<1	<1	<1
Methyl Ethyl Ketone	470000	<20	<20	<20	<20	<20	<20	<20
Methyl Isobutyl Ketone	140000	<20	<20	<20	<20	<20	<20	<20
Methyl-t-Butyl Ether	190	<2	<2	<2	<2	<2	<2	<2
Styrene	9100	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	28	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	15	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	17	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	6700	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1,1,2-Trichloroethane	6700	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	17	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Trichlorofluoromethane	2500	<5	<5	<5	<5	<5	<5	<5
Vinyl Chloride	1.7	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzene	430	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Toluene	18000	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Ethylbenzene	2300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene	4200	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5

Table 13: Summary of PAHs in Groundwater

Parameter		BH102	BH103	BH105	BH110	BH116	DUP1
Date of Collection	MECD	8-Apr-21	8-Apr-21	8-Apr-21	8-Apr-21	8-Apr-21	8-Apr-21
Date Reported	Table 3 SCS	15-Apr-21	15-Apr-21	15-Apr-21	15-Apr-21	15-Apr-21	15-Apr-21
Screen Interval (mbgs)	14010 0 0 000	2.5-6.1	5.5-7.6	2.4-6.1	5.4-7.6	5.5-7.6	2.5-6.1
Analytical Report Reference No.		CA14237- APR21	CA14237- APR21	CA14237- APR21	CA14237- APR21	CA14237- APR21	CA14237- APR21
Acenaphthene	1700	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	1.8	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	2.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	4.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	0.81	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b/j)fluoranthene	0.75	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(k)fluoranthene	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	0.52	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	130	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	400	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
2- and 1- Methylnaphthalene	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	6400	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	580	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	68	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Table 14: Summary of OCPs in Groundwater

Parameter		BH102	BH103	BH105	BH110	BH116	DUP1
Date of Collection	MECD	8-Apr-21	8-Apr-21	8-Apr-21	8-Apr-21	8-Apr-21	8-Apr-21
Date Reported	Table 3 SCS	15-Apr-21	15-Apr-21	15-Apr-21	15-Apr-21	15-Apr-21	15-Apr-21
Screen Interval (mbgs)	14010 0 0 000	2.5-6.1	5.5-7.6	2.4-6.1	5.4-7.6	5.5-7.6	2.5-6.1
Analytical Report Reference No.		CA14237- APR21	CA14237- APR21	CA14237- APR21	CA14237- APR21	CA14237- APR21	CA14237- APR21
Aldrin	8.5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total Chlordane	28	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Total DDD	45	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Total DDE	20	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
Total DDT	2.8	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.75	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
gamma-BHC	1.2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total Endosulfan	1.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.48	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	2.5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Heptachlor epoxide	0.048	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobenzene	3.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachlorobutadiene	4.5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Hexachloroethane	200	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01
Methoxychlor	6.5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Table 15: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location
	Antimony	7.5	15	BH105 SS3
	Arsenic	18	1600	BH105 SS3
	Barium	390	170	BH22-1/S2
	Beryllium	5	0.9	BH22-7/S2A
	Cadmium	1.2	0.38	BH116/SS3
	Chromium	160	32	BH22-7/S2A
	Chromium VI	10	-	All Samples
	Cobalt	22	12	BH22-7/S2A
Ps	Copper	180	23	BH22-1/S2
10F	Lead	120	14	BH22-7/S2A
anc	Molybdenum	6.9	1.1	DUP-1(BH22-10/S2A)
als	Mercury	1.8	-	All Samples
Met	Nickel	130	26	BH22-7/S2A
	Selenium	2.4	<0.7	All Samples
	Silver	25	0.08	BH116/SS3
	Thallium	1	0.25	BH22-1/S2
	Vanadium	86	45	BH22-7/S2A
	Zinc	340	66	BH22-7/S2A
	pH (pH Units)	NA	8.2	BH102 SS1
	Boron (Total)	120	11	BH22-1/S2
	Uranium	23	0.93	BH103/SS4
	F1 (C6-C10) -BTEX	65	<10	All Samples
S	F2 (C10-C16)	150	38	BH116/SS6
Ηd	F3 (C16-C34)	1300	168	BH116/SS6
	F4 (C34-C50)	5600	77	BH102/SS2A
	Carbon Tetrachloride	0.12	<0.05	All Samples
	Chlorobenzene	2.7	<0.05	All Samples
	Dibromochloromethane	9.4	<0.05	All Samples
	Chloroform	0.18	<0.05	All Samples
	Ethylene Dibromide	0.05	<0.05	All Samples
	1,2-Dichlorobenzene	4.3	<0.05	All Samples
	1,3-Dichlorobenzene	6	<0.05	All Samples
	1,4-Dichlorobenzene	0.097	<0.05	All Samples
	Dibromochloromethane	9.4	<0.05	All Samples
Cs	1,1-Dichloroethane	11	<0.05	All Samples
VO	1,2-Dichloroethane	0.05	<0.05	All Samples
	1,1-Dichloroethylene	0.05	<0.05	All Samples
	cis-1,2-Dichloroethylene	30	<0.05	All Samples
	trans-1,2-Dichloroethylene	0.75	<0.05	All Samples
	Methylene Chloride (Dichloromethane)	0.96	<0.05	All Samples
	1,2-Dichloropropane	0.085	<0.05	All Samples
	1,3-Dichloropropane	0.083	<0.05	All Samples
	Hexane (n-Hexane)	34	<0.05	All Samples
	Methyl Ethyl Ketone (MEK)	44	<0.5	All Samples
	Methyl Isobutyl Ketone (MIBK)	4.3	<0.5	All Samples

DS Consultants Ltd. October 2022

Table 15: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location
	Methyl tert-butyl ether (MTBE)	1.4	<0.05	All Samples
	Styrene	2.2	<0.05	All Samples
	1,1,1,2-Tetrachloroethane	0.05	<0.05	All Samples
	1,1,2,2-Tetrachloroethane	0.05	<0.05	All Samples
Cs	Tetrachloroethylene	2.3	0.1	BH116/SS6
VO	1,1,1-Trichloroethane	3.4	<0.05	All Samples
	1,1,2-Trichloroethane	0.05	<0.05	All Samples
	Trichloroethylene	0.52	<0.05	All Samples
	Trichlorofluoromethane	5.8	<0.05	All Samples
	Vinyl Chloride	0.022	<0.02	All Samples
	Acenaphthene	58	<0.0050	All Samples
	Acenaphthylene	0.17	<0.0050	All Samples
	Anthracene	0.74	<0.0050	All Samples
	Benzo(a)anthracene	0.63	<0.0050	All Samples
	Benzo(a)pyrene	0.3	<0.0050	All Samples
	Benzo(b/j)fluoranthene	0.78	<0.0050	All Samples
	Benzo(g,h,i)perylene	7.8	<0.0050	All Samples
s	Benzo(k)fluoranthene	0.78	<0.0050	All Samples
ΗH	Chrysene	7.8	<0.0050	All Samples
	Dibenzo(a,h)anthracene	0.1	<0.0050	All Samples
	Fluoranthene	0.69	<0.0050	All Samples
	Fluorene	69	<0.0050	All Samples
	Indeno(1,2,3-cd)pyrene	0.48	<0.0050	All Samples
	1+2-Methylnaphthalene	3.4	<0.0071	All Samples
	Naphthalene	0.75	<0.0050	All Samples
	Phenanthrene	7.8	<0.0050	All Samples
	Pyrene	78	<0.0050	All Samples
	Aldrin	0.05	<0.05	All Samples
	Total Chlordane	0.05	<0.05	All Samples
	Total DDD	3.3	<0.05	All Samples
	Total DDE	0.33	<0.05	All Samples
	Total DDT	1.4	<0.05	All Samples
	Dieldrin	0.05	<0.05	All Samples
s	Total Endosulfan	0.04	<0.04	All Samples
DCP	Endrin	0.04	<0.04	All Samples
	Heptachlor	0.15	<0.01	All Samples
	Heptachlor epoxide	0.05	<0.01	All Samples
	Hexachlorobenzene	0.52	<0.01	All Samples
	Hexachlorobutadiene	0.014	<0.01	All Samples
	gamma-Hexachlorocyclohexane (Lindane)	0.063	<0.01	All Samples
	Hexachloroethane	0.071	<0.01	All Samples
	Methoxychlor	0.13	<0.05	All Samples

Table 16: Summary of Maximum Concentrations in Groundwater

	Parameter	Standard	Maximum Concentration	Location
	Antimony	20000	<0.9	All Samples
	Arsenic	1900	2.1	BH110
	Barium	29000	6700	BH110
	Beryllium	67	<0.007	All Samples
	Boron	45000	261	BH110
	Cadmium	2.7	0.037	BH102
	Chromium	810	1.24	BH105
RPs	Cobalt	66	3.74	BH102
0 pu	Copper	87	2.4	BH102
als ai	Lead	25	0.16	BH103
Metä	Molybdenum	9200	13.2	BH103
	Nickel	490	9.3	BH102
	Selenium	63	0.52	BH102
	Silver	1.5	0.071	BH105
	Thallium	510	0.019	BH105
	Uranium	420	5.95	BH102
	Vanadium	250	0.98	BH103
	Zinc	1100	7	DUP1(BH110)
	F1 (C6 to C10) minus BTEX	750	< 25	All Samples
Cs	F2 (C10 to C16)	150	<100	All Samples
ΡH	F3 (C16 to C34)	500	316	All Samples
	F4 (C34 to C50) minus PAHs	500	<200	All Samples
	Acetone	130000	<30	All Samples
	Bromodichloromethane	85000	<0.5	All Samples
	Bromoform	770	<0.5	All Samples
	Bromomethane	56	<0.5	All Samples
	Carbon Tetrachloride	8.4	<0.2	All Samples
	Chlorobenzene	630	<0.5	All Samples
	Dibromochloromethane	82000	<0.5	All Samples
	Chloroform	22	<0.5	All Samples
	Ethylene Dibromide	0.83	<0.2	All Samples
	1,2-Dichlorobenzene	9600	<0.5	All Samples
~	1,3-Dichlorobenzene	9600	<0.5	All Samples
VOC	1,4-Dichlorobenzene	67	<0.5	All Samples
	Dichlorodiffluoromethane	4400	<2	All Samples
	1,1-Dichloroethane	3100	<0.5	All Samples
	1,2-Dichloroethane	12	<0.5	All Samples
	1,1-Dichloroethylene	17	<0.5	All Samples
	Cis-1,2-Dichloroethylene	1.6	<0.5	All Samples
	Trans-1,2-Dichloroethylene	1.6	<0.5	All Samples
	Methylene Chloride	610	<0.5	All Samples
	1,2-Dichloropropane	140	<0.5	All Samples
	1,3-Dichloropropane	45	<0.5	All Samples
	Hexane(n)	51	<1	All Samples
	Methyl Ethyl Ketone	470000	<20	All Samples

Table 16: Summary of Maximum Concentrations in Groundwater

	Parameter	Standard	Maximum Concentration	Location
	Methyl Isobutyl Ketone	140000	<20	All Samples
	Methyl-t-Butyl Ether	190	<2	All Samples
	Styrene	9100	<0.5	All Samples
	1,1,1,2-Tetrachloroethane	28	<0.5	All Samples
	1,1,2,2-Tetrachloroethane	15	<0.5	All Samples
	Tetrachloroethylene	17	<0.5	All Samples
	1,1,1-Trichloroethane	6700	<0.5	All Samples
/0C	1,1,2-Trichloroethane	6700	<0.5	All Samples
	Trichloroethylene	17	<0.5	All Samples
	Trichlorofluoromethane	2500	<5	All Samples
	Vinyl Chloride	1.7	<0.2	All Samples
	Benzene	430	0.5	Trip Blank
	Toluene	18000	<0.5	All Samples
	Ethylbenzene	2300	<0.5	All Samples
	Xylene	4200	<0.5	All Samples
	Acenaphthene	1700	<0.1	All Samples
	Acenaphthylene	1.8	<0.1	All Samples
	Anthracene	2.4	<0.1	All Samples
	Benzo(a)anthracene	4.7	<0.1	All Samples
	Benzo(a)pyrene	0.81	<0.01	All Samples
	Benzo(b/j)fluoranthene	0.75	<0.1	All Samples
	Benzo(ghi)perylene	0.2	<0.2	All Samples
	Benzo(k)fluoranthene	0.4	<0.1	All Samples
AHs	Chrysene	1	<0.1	All Samples
[Dibenzo(a,h)anthracene	0.52	<0.1	All Samples
	Fluoranthene	130	<0.1	All Samples
	Fluorene	400	<0.1	All Samples
	Indeno(1,2,3-cd)pyrene	0.2	<0.2	All Samples
	2- and 1- Methylnaphthalene	2	<0.5	All Samples
	Naphthalene	6400	<0.5	All Samples
	Phenanthrene	580	<0.1	All Samples
	Pyrene	68	<0.1	All Samples
	Aldrin	8.5	<0.01	All Samples
	Total Chlordane	28	<0.02	All Samples
	Total DDD	45	<0.05	All Samples
	Total DDE	20	<0.01	All Samples
	Total DDT	2.8	<0.05	All Samples
	Dieldrin	0.75	<0.01	All Samples
OCPs	gamma-BHC	1.2	<0.01	All Samples
ľ	Total Endosulfan	1.5	<0.05	All Samples
	Endrin	0.48	<0.05	All Samples
	Heptachlor	2.5	<0.01	All Samples
	Heptachlor epoxide	0.048	<0.01	All Samples
	Hexachlorobenzene	3.1	<0.01	All Samples
	Hexachlorobutadiene	4.5	<0.01	All Samples
Ps	Hexachloroethane	200	<0.01	All Samples
В	Methoxychlor	6.5	<0.01	All Samples

Notes for Soil and Groundwater Summary Tables

	For soil and groundwater analytical results, concentration exceeds the applicable Standards.
	For soil and groundwater analytical results, laboratory detection limits exceed the applicable Standards.
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
masl	Meters above sea level
MECP	Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition as contained in Table
Table 3	3 of the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental
SCS	Protection Act", published by the MECP on April 15, 2011.
mbgs	Meters below ground surface
NM	Not Monitored
NA	Not Available
OCPs	Organochlorine Pesticides
PAH	Polyaromatic Hydrocarbon
PHC	Petroleum Hydrocarbon
VOCs	Volatile Organic Compounds
Units	Units for all soil analyses are in μ g/g (ppm) unless otherwise indicated
Units	Units for all groundwater analyses are in μ g/L (ppb) unless otherwise indicated

Figures

J:\-GIS\2022 PROJECTS\22-110-100 1755 and 1805 Pickering Parkway, Pickering\1-QGIS\Phase Two - East Parcel\Figure 1 - Site Location Plan.qgs Jan-16 15:29

J:\-GIS\2022 PROJECTS\22-110-100 1755 and 1805 Pickering Parkway, Pickering\1-QGIS\Phase Two - East Parcel\Figure 2 - Phase Two Property Site Plan.ggs Mar-13 13:45

J:\-GIS\2022 PROJECTS\22-110-100 1755 and 1805 Pickering Parkway, Pickering\1-QGIS\Phase Two - East Parcel\Figure 4 - PCAs within Phase One Study Area.qgs Mar-14 08:38

J:\-GIS\2022 PROJECTS\22-110-100 1755 and 1805 Pickering Parkway, Pickering\1-QGIS\Phase Two - East Parcel\Figure 5 - Borehole Location Plan with APECs.qgs Mar-14 12:51

J:\-GIS\2022 PROJECTS\22-110-100 1755 and 1805 Pickering Parkway, Pickering\1-QGIS\Phase Two - East Parcel\Figure 6 - Shallow Groundwater Elevation Contours and Flow Direction.qgs Mar-14

Mar Soil AL ast 10-100 2022

BH112		-	BH	116	1
Sample I	D: SS3		Sample ID:	SS3	SS5
Sample Dat	e: 07-Apr-	21	Sample Date:	12-Mar-21	12-Mar-21
Sample Depth (mbgs): 1.5-2.1	1	Antimony	<0.8	3.0-3.7 c0.9
Antimony	<0.8		Arsenic	4.5	8.6
Arsenic	3.2	Me	etals, Se, B-HWS, CN-, Cr(VI),	Met T2 C/2	Mat T2 ere
s Se B-HWS CN- CrfV	n		Hg, pH (excl. Above)	Met 15 SC	Met 15 5G5
Hg, pH (excl. Above)	Met T3 S	SCS	/	-	
-		ВН	B Sa	H22-9 ample ID:	S2A
and the second s	100	/	Sam	ple Date:	18-Aug-22
1 1 1	/		Sample Depth	n (mbgs):	1.5-2.2
BH115	/		Antimony		<0.20
¥ /			Arsenic		<1.0
/	/		Metals, Se, B-HWS, Cl	N-, Cr(VI),	Met T3 SCS
//			Hg, pH (excl. Ab	ove)	XXX
			BH	122-8	
		-	Sar	nple ID:	S2A
			Samp	le Date:	18-Aug-22
		X	Sample Denth	(mhas).	15.22
		11	Janipie Depti	(mogs).	0.26
	11		Antimony		0.26
	1.1	-	Arsenic	-	2
BH1	11		Metals, Se, B-HWS, CN Hg, pH (excl. Abc	-, Cr(VI), ove)	Met T3 SCS
Samp	ne ID:	552	B. F. Center 1100		
Sample	Date: 07-	Apr-21	100 500	100	
Sample Depth (m	bgs): 0.1	8-1.4	2		
Antimony		<0.8	S. all Seatt		
Arsenic		2.6	STORE -		
tals, Se, B-HWS, CN-, C Hg, pH (excl. Above	Cr(VI),) Met	T3 SCS			
	ale -	0	50		00 m 2
O ENVIRONME 5 Pickering Parkv RACTERIZATI	NTAL SIT vay, Picker ON - ME T	E ASSE ing, ON FALS A	SSMENT		X
R.F.	Drawn By:		P.P Date:	-	March 2023
As Shown	Project No.:	22-1	10-100 Figure No.		7A
urce: Google Satellite Ima	ige				

o Image/Map S

	-	100	19	9770
7.00	В	H116		A
-	Sample ID:	SS4	SS6	
-	Sample Date:	12-Mar-21	12-Mar-21	
Sa	ample Depth (mbgs):	2.3-2.9	4.6-5.2	
_	PHCs	Met T3 SCS	Met T3 SCS	A BARR
		And Income States of the	71615	ALC: NOT THE OWNER.
BH115		BH116		
		0	50	100 m
		0	50	100 m
ENVIRONM Pickering Parl	IENTAL SITE ASS kway, Pickering, C	0 SESSMENT N	50	100 m
ENVIRONM Pickering Parl	IENTAL SITE ASS kway, Pickering, C FION -PHCs	0 SESSMENT	50 Date:	100 m

Image/Map Source: Google Satellite Image

R.F S.Y January 2023 Project No: Figure No.		Drawn By:		Date:
Project No: Figure No.	R.F		S.Y	January 2023
		Project No:		Figure No.
As Shown 22-110-100 1	As Shown		22-110-100	1

В'

HORIZONTAL SCALE: 1:1450 VERTICAL SCALE: 1:7250

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT Development Stage 2 - 1755 Pickering Parkway, Pickering, ON

R.F S.Y January 2023		Drawn By:		Date:	
Project No:	R.F		S.Y		January 2023
Figure No.		Project No:		Figure No.	
As Shown 22-110-100 1	As Shown		22-110-100		1

Appendix A

Appendix B

22-110-100

March 14, 2023

Bayfield Realty Advisors Inc. 2300 Yonge Street, Suite 904 Toronto, Ontario M4P 1E4

Re: Sampling and Analysis Plan – Phase Two Environmental Site Assessment Development Phase II: 1755 & 1805 Pickering Parkway, Pickering, Ontario

1. Introduction

DS Consultants Limited (DS) is pleased to present the Sampling and Analysis Plan (SAP) for the proposed Supplementary Phase Two Environmental Site Assessment of Development Phase II: 1755 & 1805 Pickering Parkway, Pickering, Ontario (the Site). It is DS' understanding that this Supplementary Phase Two ESA has been requested for due diligence purposes and for filing a Record of Site Condition (RSC) associated with the proposed redevelopment of the Site for residential purposes. This Supplemental Phase Two ESA was based on the results of Terraprobe Inc. Phase Two ESA completed on June 11, 2021.

The Supplementary Phase Two ESA will involve intrusive investigation in the areas determined in the Site visit to be Areas of Potential Environmental Concern (APECs), and will be completed in general accordance with O.Reg 153/04. Based on the findings of the field and laboratory analyses, a Phase Two ESA report will be prepared.

2. Background

The Phase One ESA was completed by Terraprobe Inc. in 2021. The investigation was completed on the entirety of 1755 & 1805 Pickering Parkway, and as such included the Site along with the adjacent lands to the west contained within 1755 Pickering Parkway. The Terraprobe 2021 Phase One ESA identified that the Phase Two Property was first developed for residential purposes prior to 1954, and later redeveloped for commercial use prior to 2002. A total of twelve (12) Potentially Contaminating Activities (PCAs) were identified in the Phase One ESA, which were considered to be contributing to four (4) Areas of Potential Environmental Concern (APECs) on the Phase Two Property. A summary of the APECs, associated PCAs, and contaminants of potential concern (COPC) identified is presented in the table below:

Table 1: Areas of Potential Environmental Concern

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase One Property	Potentially Contaminating Activity	otentially Location ntaminating of PCA Activity (on-site or off-site)		Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	Entire Site	N/S: Seasonal application of de-	On-Site	EC, SAR	Soil
		purposes.		Na, Cl-	Groundwater
APEC-2	Eastern Portion of Site	PCA-28: Gasoline and Associated Products Storage in Fixed Tanks	Off-Site PCA-7	PHCs, BTEX, VOCs, Metals	Groundwater
APEC-3	Southern Portion of Site	N/S: Seasonal application of de-	Off-Site	Na, Cl-	Groundwater
		icing salts for safety purposes.	PCA-10		
APEC-4	Northern Portion of Site	N/S: Application of De-icing salts	Off-Site	Na, Cl-	Groundwater
			PCA-11		

N/S - not specified in Table 2, Schedule D, of O.Reg. 153/04

Notes:

- 1. PHC (F1-F4) = Petroleum Hydrocarbons in the F1-F4 fraction ranges
- 2. VOCs = Volatile Organic Compounds
- 3. PAHs = Polycyclic Aromatic Hydrocarbons

3. Site Investigation Program

The proposed field investigation will involve the advancement of boreholes. The boreholes completed will be used to supplement the information previously obtained in the June 2021 Phase Two ESA completed by Terraprobe Inc. Based on the Terraprobe Phase Two ESA, groundwater sample results met the applicable SCS and was therefore not considered a media that required additional sampling for the Supplemental Phase Two ESA.

A total of ten (10) borehole locations have been identified. Details regarding the proposed boreholes/monitoring wells are provided in the following table:

Table 3-1: Summary of Proposed Investigation Program

ID	Proposed Depth	Well Installation (Y/N)	Well Install Depth	Purpose
BH22-1	3.1 mbgs	Ν	-	Horizontal delineation of Hydride-Forming Metals impacted soil on-Site.
BH22-2	3.1 mbgs	Ν	-	Horizontal delineation of Hydride-Forming Metals impacted soil on-Site.
BH22-3	3.1 mbgs	Ν	-	Horizontal delineation of Hydride-Forming Metals impacted soil on-Site.
BH22-4	3.1 mbgs	Ν	-	Horizontal delineation of Hydride-Forming Metals impacted soil on-Site.
BH22-5	3.1 mbgs	Ν	-	Horizontal delineation of Hydride-Forming Metals impacted soil on-Site.
BH22-6	3.1 mbgs	Ν	-	Horizontal delineation of Hydride-Forming Metals impacted soil on-Site.
BH22-7	3.1 mbgs	Ν	-	Horizontal delineation of Hydride-Forming Metals impacted soil on-Site.
BH22-8	3.1 mbgs	Ν	-	Horizontal delineation of Hydride-Forming Metals impacted soil on-Site.
BH22-9	3.1 mbgs	Ν	-	Horizontal delineation of Hydride-Forming Metals impacted soil on-Site.
BH22-10	3.1 mbgs	Ν	-	Horizontal delineation of Hydride-Forming Metals impacted soil on-Site.

Prior to mobilizing a drilling rig, we will lay out the proposed borehole and clear the buried utilities and services by using Ontario One Call System in addition to private utility locates.

The borings will be advanced to the indicated depths using a macro-core sampling system. A new, disposable PVC sample liner was used for each sample interval. A geodetic benchmark will be used to establish the elevation of each borehole. Drilling and sampling will conform to standard practice.

The Phase Two ESA involves the following principal tasks:

- Retain the services of public and private utility locaters to identify the locations of buried and overhead utility services prior to any excavation or demolition activities;
 - Certain underground utilities (such as those constructed or encased in plastic, fibreglass, clay, concrete pipe, untraceable cast iron, steel, and/or repaired services) cannot be traced by standard locating practices. DS will review all available Site Plans and/or "As Built" figures in an attempt to identify the locations of potential untraceable services. DS will not be held responsible for any damages to utility services that are not on the figures provided or cannot be located by standard utility locating practices;

- Advancement of boreholes as specified in Table 3-1. The proposed boreholes will be used to facilitate the collection of representative soil samples, and to provide information regarding the Site-specific geological conditions;
- All soil samples recovered during the proposed drilling activities will be field screened for visual and olfactory evidence of deleterious impacts and for the presence of petroleum hydrocarbon (PHC) and volatile organic compound (VOC) derived vapours using either a combustible gas detector (CGD) calibrated to hexane or a photo-ionization detector (PID) calibrated to isobutylene or equivalent;
- Submit soil samples from the newly advanced boreholes as follows:

Table 3-2: Summary of proposed soil chemical analyses

Borehole	Sample No	Sample Depth (mbgs)	Lab Analysis	Purpose						
BH22-1	S2A	1.5-2.2	Metals & Hydride- Forming Metals							
BH22-2	S2A	1.5-2.2	1.5-2.2 Metals & Hydride- Forming Metals							
BH22-3	S2A	1.5-2.2	Metals & Hydride- Forming Metals							
BH22-4	S2A	1.5-2.2	Metals & Hydride- Forming Metals							
BH22-5	S2A	1.5-2.2	Metals & Hydride- Forming Metals	Horizontal delineation of Hydride-						
BH22-6	S2A	1.5-2.2	Metals & Hydride- Forming Metals	and assess soil quality on the Site.						
BH22-7	S2A	1.5-2.2	Metals & Hydride- Forming Metals							
BH22-8	S2A	1.5-2.2	Metals & Hydride- Forming Metals							
BH22-9	S2A	1.5-2.2	Metals & Hydride- Forming Metals							
BH22-10	S2A	1.5-2.2	Metals & Hydride- Forming Metals							

- A Quality Assurance and Quality Control (QAQC) program will be implemented, involving the collection and analysis of duplicate soil and groundwater samples and trip blanks at the frequency specified under 0.Reg. 153/04 (as amended);
- A Phase Two ESA Report will be prepared upon receipt of all analytical results and groundwater monitoring data. The Phase Two ESA Report will be completed in general accordance with 0.Reg. 153/04 (as amended).

It should be noted that drilling activities may result in some disturbance to the ground surface at the site. Precautions will be taken by the drilling contractor to minimize any damage. The Client will be

notified should there be cause to extend the borehole termination depth based on field observations. It is assumed that the site can be accessed at our convenience, during regular business hours. Prior notice will be sent to the client and site representative

It is noted that if the Phase Two ESA reveals parameter concentrations greater than the applicable standards set out in *Ontario Regulation 153/04*, then additional work (i.e., supplemental delineation, additional drilling, sampling, analysis, and/or site remediation activities) will be deemed necessary prior to RSC filing, should an RSC be required. The costs for any additional work, if necessary, are beyond the current scope of work.

The SAP was created based on the request to complete a Phase Two ESA in support of the proposed redevelopment of the Site. The SAP was compiled to collect data to provide information on soil and/or groundwater quality in each APEC.

Additional delineation may be required following the implementation of this SAP to meet the requirements of 0.Reg. 153/04 which requires delineation of all areas where concentrations are above the applicable SCS such as in the following conditions:

- Unexpected contamination not previously discovered, or not related to identified APECs, is discovered which will require further delineation to identify source(s); and
- If the sampling results indicate that the soil and/or groundwater impacts are deeper than initially expected.

4. Closure

We trust that this Sampling and Analysis Plan meets the objectives of the Client. If further assistance is required on this matter, please do not hesitate to contact the undersigned.

Yours Very Truly,

DS Consultants Ltd.

Curs. po. .

Alice Gong, B.Sc agong@dsconsultants.ca

Appendix C

DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology

LOG	of Boi	REHOLE	BH22-1
-----	--------	--------	--------

PROJECT: Supplementary Phase Two ESA

CLIENT: Bayfield Realty Advisor Inc.

PROJECT LOCATION: 1755 and 1805 Pickering Pkwy, Pickering, ON DATUM: Geodetic

DRIL	LING	DATA

Method: Direct Push

Diameter:

Date: Aug/18/2022

REF. NO.: 22-110-100 ENCL NO.: 1

BH LOCATION: N 4856096.13 E 655257.31

	BHL	SOUR DOCULE				F 0					<u></u>		4 0		<u></u>										
		SUIL PROFILE				.E3	н			5		hear	u S	pac			s		PLAST		URAL STURE			TW.	REMARKS
	(m)		10			ଷ୍ଟ	VATI VS	7		()	opm	í)			()	opm) 1)		W _P	CON	ITENT N	WL	ET PEI kPa)	- UNIT	GRAIN SIZE
	ELEV	DESCRIPTION	A PI	К		0.3 п		TIOI							•	>0			I		o——		OCKE (Cu)	URAL (KN/	DISTRIBUTION
			[RA]	JMB	ĥ		UO5 DND	EVP.				X					•		WA	FER CO	ONTEN	T (%)	۵.	NAT	(%)
	88.0	FILL	l S	ž	7	ŗ	50	Ш	1	0 2	0 3	04	0	1	0 2	0 3	0 40)	1	0 2	20 3	30 			GR SA SI CL
	- 0.0	FILL: sand, some cobbies, moist, light brown	\bigotimes						-																
	-	5	\bigotimes						-																
	-		\bigotimes						-																
	-		\bigotimes	1	SS			٥	1				4												
	- 1		\bigotimes					87	-																
	-		\bigotimes						F																
	86.5		\bigotimes						-																
	- 1.5	SILTY CLAY: moist, stiff, brown	R.																						Matala 9
	-		W.	1																					Hydride
	-							86	_																Metals
	-		Hł.	2	SS			D	1				4	•											
	-		12	1					-																
	-								-																
	- 3 85 0		Hł.	1				05	-																
	3.0	END OF BOREHOLE						- 85																	
2																									
/14/2																									
Γ 11																									
GD.																									
DS																									
GPJ																									
OGS																									
22 L(
3 202																									
AUG																									
021																									
-M-2																									
50 PF				1																					
3~0 (
VIRC																									
EN																									
К	I			1											1						1				

■ DS CONSULTANTS LTD. Geotechnical ◆ Environmental ◆ Materials ◆ Hydrogeology

LOG (of Bo	REHOL	E Bł	122-2
-------	-------	-------	------	-------

DRILLING DATA

Diameter:

Method: Direct Push

Date: Aug/18/2022

			_	
PROJECT: Sup	plementary	/ Phase	I wo	ESA

CLIENT: Bayfield Realty Advisor Inc.

PROJECT LOCATION: 1755 and 1805 Pickering Pkwy, Pickering, ON DATUM: Geodetic

BH LOCATION: N 4856102.07 E 655276.27 SOIL PROFILE SAMPLES Soil Head Space Vapors PLASTIC NATURAL MOISTURE LIQUID LIMIT CONTENT LIMIT REMARKS GROUND WATER CONDITIONS PID CGD POCKET PEN. (Cu) (kPa) AND NATURAL UNIT ((kN/m³) (m) STRATA PLOT GRAIN SIZE (ppm) (ppm) WP w BLOWS 0.3 m w ELEVATION ELEV DEPTH DISTRIBUTION -0 DESCRIPTION NUMBER > (%) WATER CONTENT (%) TYPE ż 10 20 30 40 10 20 30 40 10 20 30 GR SA SI CL 88.0 0.0 FILL: sand, some cobbles, moist, \bigotimes light brown SS 1 87 86.5 SILTY CLAY: moist, stiff, brown to 1.5 Metals & dark brown Hydride Metals 2A SS 86 2B SS 85.0 END OF BOREHOLE 3.0

DS ENVIRO 0~50 PPM-2021 AUG 2022 LOGS.GPJ DS.GDT 11/14/22

REF. NO.: 22-110-100

ENCL NO.: 2

DS CONSULTANTS LTD. Geotechnical � Environmental � Materials � Hydrogeology

LOG (of Bof	REHOLE	BH22-3
-------	--------	--------	--------

PROJECT: Supplementary Phase Two ESA

CLIENT: Bayfield Realty Advisor Inc.

PROJECT LOCATION: 1755 and 1805 Pickering Pkwy, Pickering, ON

DATUM: Geodetic

DRILLING DATA

Method: Direct Push

Diameter:

Date: Aug/18/2022

REF. NO.: 22-110-100 ENCL NO.: 3

BH LOCATION: N 4856082 79 E 655293 75

DITE	OCATION. N 4650062.79 E 055295.75																							
	SOIL PROFILE		SAMPLES		~		Soil Head S					pace Vapors							URAL			₽	REMARKS	
(m) <u>ELEV</u> DEPTH	DESCRIPTION	TA PLOT	BER		aLOWS 0.3 m	JND WATEF	ATION)	PID ppm	ı)			(p	GE opm)			CON	STURE NTENT W		POCKET PEN. (Cu) (kPa)	(kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%)
07.0		STRA	NUME	ΓYPE	z	GROU	ELEV	1	0 2	0 3	0 4	0	1	0 20) 3)	WA	TER C	ONTEN 20 :	IT (%) 30	–	¥	
- 0.0 - 0.0 	FILL: sand, some silt, trace cobbles, trace brick pieces, moist, brown		1	SS	-		87	-					•											
<u>85.6</u> 1.5 <u>2</u>	SILTY CLAY: moist, some sand, stiff, brown to dark brown color		2	SS			86 85						>											Metals & Hydride Metals
3.0	END OF BOREHOLE																							
DS ENVIRO 0-50 PPM-2021 AUG 2022 LOGS.GPJ DS.GDT 11/14/22																								

 \bigcirc ${}^{\pmb{8}=3\%}$ Strain at Failure

DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology

CLIENT: Bayfield Realty Advisor Inc.

PROJECT LOCATION: 1755 and 1805 Pickering Pkwy, Pickering, ON DATUM: Geodetic

DRILLING DATA

Method: Direct Push

Diameter:

Date: Aug/18/2022

REF. NO.: 22-110-100 ENCL NO.: 4

BH LOCATION: N 4856074 78 E 655303 91

впц	SOIL PROFILE		s	SAMPL	ES				S	oil H	lead	d S	pac	e Va	apoi	rs								DEMARKS
(m) ELEV	DESCRIPTION	A PLOT	Ľ		<u>OWS</u> 3 m	D WATER IONS	NOL		(PID	1)) (CGE oprr) 1)		PLAST LIMIT W _P	IC MOIS CON	ORAL STURE ITENT W O	LIQUIE LIMIT W _L	CKET PEN. Su) (kPa)	RAL UNIT WT (kN/m ³)	AND GRAIN SIZE DISTRIBUTION
DEPTH 86.8	DESCRIPTION	STRATA	NUMBE	ТҮРЕ	"N"	GROUN CONDIT	ELEVAT	1	0 2	0 3	0 4	0	1	0 2	≥ 0 3	0 40)	WA ⁻ 1	TER CO	DNTEN	IT (%) 30	0 <u>0</u>	NATU	(%) GR SA SI CL
- 0.0	FILL: sand, some cobbles, moist, brown		1	SS			86						•											
- - - - - - - - - - - - - - 84.6			2A	SS			85	-				•	•									-		Metals & Hydride Metals
[2.3 - - - - - - - - - - - - - - - - - - -	SILTY CLAY: moist, stiff, brown		2B	SS			84	-				ć	•									-		
DS ENVIRO 0~50 PPM-2021 AUG 2022 LOGS.GPJ DS.GDT 11/14/22																								

DS CONSULTANTS LTD. Geotechnical Environmental Materials Hydrogeology

PROJECT: Supplementary Phase Two ESA

CLIENT: Bayfield Realty Advisor Inc.

PROJECT LOCATION: 1755 and 1805 Pickering Pkwy, Pickering, ON DATUM: Geodetic

BH LOCATION: N 4856082.61 E 655310.16

Method: Direct Push Diameter:

Date: Aug/18/2022

REF. NO.: 22-110-100 ENCL NO.: 5

0.112	SOIL PROFILE		s	SAMPL	.ES				Soi	l Hea	ad S	pac	e Va	apor	s								DEMADKO
(m)		гот			S E	WATER	z		P (pp	ID om)		-	(CGE)		PLAST LIMIT W _P	IC MOIS MOIS CON	UKAL STURE ITENT W	Liquie Limit W _L	(KPa) (kPa)	AL UNIT WT	
DEPTH	DESCRIPTION	STRATA F	NUMBER	түре	N" BLOV	GROUND	ELEVATIC	1	0 20	30	× 40	1	ب 0 2	→ 0 30		D	WA ⁻	TER C	O ONTEN 20 3	T (%) 30	POCK (Cu)	NATURA (KN	DISTRIBUTION (%)
- 0.0 - 0.0 	FILL: sandy silt, some clay, trace cobbles, moist, brown		1	SS	-		86					•				-							
 <u>85.2</u>	FILL: sand moist brown	\bigotimes				-																	
 		\bigotimes	2A	SS			85 I	-			•	•											Metals & Hydride Metals
2.3 - - - - - - - -	SILTY CLAY: moist, stiff, brown to dark brown		2B	SS			84					•											

DS CONSULTANTS LTD. Geotechnical � Environmental � Materials � Hydrogeology

LOG	OF	BO	REHO	OLE	BH22	-6
-----	----	----	------	-----	------	----

PROJECT: Supplementary Phase Two ESA

CLIENT: Bayfield Realty Advisor Inc.

PROJECT LOCATION: 1755 and 1805 Pickering Pkwy, Pickering, ON DATUM: Geodetic

Method: Direct Push Diameter:

Date: Aug/18/2022

REF. NO.: 22-110-100 ENCL NO.: 6

	SOIL PROFILE		s	SAMPL	ES	ъ			So	oil ⊢	lead	d Sp	bace	e Va	apor	S		PLAST	URAL	LIQUID		ΛT	REMARKS
(m) <u>ELEV</u> DEPTH	DESCRIPTION	RATA PLOT	JMBER	РЕ	" BLOWS 0.3 m	ROUND WATE	EVATION		F (p ₪	PID opm ≥■)			() () ()	CGE opm) I) Ø		LIMIT W _P WA	O O O O O O O NTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT ((kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%)
<u>85.8</u> - 0.0	FILL: sand, trace cobbles, moist, dark grey	ST ST	NN	7	Ž	R 23	EL	1	0 20) 3(0 40	0	1	0 2	0 3	0 4	0		20 :	30			GR SA SI CI
- - - - - -			1	SS			85	-				_	,										
- - - - - - 83.5			2A	SS			84 I					4	•										Metals & Hydride Metals
_ 2.3 - - - 	SILTY CLAY: moist, stiff, light brown		2B	SS			83					6	•										

DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology

LOG	OF	BO	REH	OLE	BH22	-7
-----	----	----	-----	-----	------	----

BBB IFOT O		D 1	-	
PROJECT: Sup	plementar	y Phase	I wo	ESA

CLIENT: Bayfield Realty Advisor Inc.

PROJECT LOCATION: 1755 and 1805 Pickering Pkwy, Pickering, ON

DATUM: Geodetic

DRIL	LING	DATA

Method: Direct Push

Diameter:

Date: Aug/18/2022

REF. NO.: 22-110-100 ENCL NO.: 7

BH LOCATION: N 4856162.38 E 655371.76

	SOIL PROFILE		5	SAMPL	ES	r		S	Soil I	lead S	pac	e Va	oors		PLAS			LIQUIT		Ł	REMARKS
(m) ELEV DEPTH	DESCRIPTION	TA PLOT	JER		<u>aLOWS</u> 0.3 m	JND WATEF	ATION	(12	PID (ppn) 1) _		C (p	GD pm) ~	_	LIMIT W _P	CON	STURE NTENT W		POCKET PEN. (Cu) (kPa)	TURAL UNIT V (kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%)
85.7		STRA	NUMB	TYPE	z.	GROU	ELEV	10	20 3	3 0 40	1	0 20	30	- # 40	WA	TER C 10	ONTEN 20	IT (%) 30	<u>۵</u>	Ā	GR SA SI CI
- 0.0 	FILL: sand, trace cobbles, trace brick pieces, moist, grey to dark grey		1	SS			85				•										
<u>. 84.2</u> 1.5	SILTY CLAY: moist, stiff, dark grey to dark brown		2A	SS			84 I				•										Metals & Hydride Metals
3 82 7			2B	SS			83				•										
3.0	END OF BOREHOLE																				

DS CONSULTANTS LTD. Geotechnical � Environmental � Materials � Hydrogeology

LOG	OF	BOI	REH	OLE	BH2	22-8
-----	----	-----	-----	-----	-----	------

PROJECT: Supplementary Phase Two ESA

CLIENT: Bayfield Realty Advisor Inc.

PROJECT LOCATION: 1755 and 1805 Pickering Pkwy, Pickering, ON DATUM: Geodetic

DRIL	LING	DATA

Method: Direct Push

Diameter:

Date: Aug/18/2022

REF. NO.: 22-110-100 ENCL NO.: 8

BH LOCATION: N 4856108 37 E 655399 19

	DITE	OCATION. IN +030100.37 E 033333.13																							
		SOIL PROFILE		5	SAMPL	ES				S	oil H	lea	d Sp	pace	e Va	apor	S		DI 407		URAL			т	REMARKS
	(m)		⊢				TER				PID				(CGD			LIMIT	IC MOIS	STURE	LIQUID	EN.	N TI W	AND
			LO.			SNE	AW V	z		()	opm	I)			()	opm)		WP		w	WL	KET F (KPa	AL UN N/m ³)	GRAIN SIZE
	DEPTH	DESCRIPTION	ITA	BER		0.3 0.3		ATIC			\geq				*	>0						- (0()	POCI (Cu	VTUR. (k	(%)
			TRA	IN	γPE	ż	NOI INO	LEV LEV	1	0 2	0 3	0 4	0	1	0 2	0 30		,	WA1	IER CO	ONTEN	T (%) 10		Ž	
	86.9	FILL: sand trace cobbles moist	XX XX	2		-	00	ш	<u> </u>					-	- 2			_			1				GR SA SI C
	- 0.0	grey to light brown	\bigotimes																						
	-		\bigotimes						F																
	-		\bigotimes						Ŀ																
	-		\bigotimes	1	SS			86					•	•											
	1		\bigotimes						-																
	-		\bigotimes																						
	85.4		\bigotimes						-																
	- 1.5	SILTY CLAY: moist, stiff, light	Ŕł						L																
		brown	H	124	00			85	È.																Metals & Hvdride
	2		K	124	33				Ē																Metals
	_		Ŵ						-																
	-		K.						-																
			Ĥ	2B	SS				1					•											
	_		Ĥ	1				84	-																
	<u>3 83.8</u>		KX	1				•••	-																
	5.0	END OF BOREHOLE																							
4/22																									
11/1																									
Ĕ																									
S.GI																									
D L																									
GP.																									
060																									
22 L																									
3 20.																									
AUC																									
021																									
M-2(
PP (
0~5(
RO																									
INVI																									
DS E				1																					

 \bigcirc ${}^{\pmb{8}=3\%}$ Strain at Failure

1 OF 1

DS CONSULTANTS LTD. Geotechnical ♦ Environmental ♦ Materials ♦ Hydrogeology

LOG OF BOREHOLE BH22-9

PROJECT: Supplementary Phase Two ESA

CLIENT: Bayfield Realty Advisor Inc.

PROJECT LOCATION: 1755 and 1805 Pickering Pkwy, Pickering, ON DATUM: Geodetic

DRILL	ING	DATA

Method: Direct Push

Diameter:

Date: Aug/18/2022

REF. NO.: 22-110-100 ENCL NO.: 9

ВН	LUCATION: N 4856146.29 E 655385.93)																						
	SOIL PROFILE		S	SAMPL	ES	~			S	ioil I	Head	I Sp	ace	e Va	por	s				URAL			F	REMARKS
(m) <u>ELE</u> DEPT	V TH DESCRIPTION	ITA PLOT	BER		aLOWS 0.3 m	JND WATEF	ATION)	PID ppm) 1)			() ()	CGE opm)				STURE ITENT W O		POCKET PEN. (Cu) (kPa)	(KN/m ³)	AND GRAIN SIZE DISTRIBUTION (%)
05		STRA	NUME	ΓΥΡΕ	z	GROU	ELEV		10 2	0 3	30 40)	1(0 2	0 30	. 0 40	D	WA ⁻	TER CO	DNTEN 20 3	т (%) 30	-	¥	GR SA SI CI
	TOPSOIL: trace organics FILL: sand, trace cobbles, moist, light brown to grey		1	SS			85						•											
- - - - - - 83	.6		2A	SS			84	-				-	•											Metals & Hydride Metals
2 	.3 SILTY CLAY: trace sand, moist, dark grey		2B	SS			83					•	•											
.GPJ DS.GDT 11/14/22																								
DS ENVIRO 0~50 PPM-2021 AUG 2022 LOGS																								

 \bigcirc ${}^{\pmb{8}=3\%}$ Strain at Failure

DS CONSULTANTS LTD. Geotechnical & Environmental & Materials & Hydrogeology

LUG UF DURENULE DHZZ-10	LOG	OF	BOR	EHOL	E Bł	122-10
-------------------------	-----	----	-----	------	------	--------

DRILLING DATA

Diameter:

Method: Direct Push

Date: Aug/18/2022

CLIENT: Bayfield Realty Advisor Inc.

PROJECT LOCATION: 1755 and 1805 Pickering Pkwy, Pickering, ON DATUM: Geodetic

BH LOCATION: N 4856140 34 E 655359 61

	UCATION: N 4856140.34 E 655359.61		. – –			r		-														-	
	SOIL PROFILE		s	SAMPL	.ES	~			S	oil H	lead	I Sp	bace '	Vap	ors		PLAS	TIC.NA		LIQUIE		ħ	REMARKS
(m) <u>ELEV</u> DEPTH	DESCRIPTION	TA PLOT	BER		BLOWS 0.3 m	JND WATEF	ATION		 1) ₩	PID opm	1)			C(pp	GD om) ≈		LIMIT W _P	CO	NTENT W	LIMIT W _L	POCKET PEN. (Cu) (kPa)	(kN/m ³)	AND GRAIN SIZE DISTRIBUTION (%)
95.6		STRA	NUME	ΓΥΡΕ	z	GROU	ELEV		10 20	03	0 40	,	10	20	30	4 0	WA	ATER C 10	ONTEN 20	IT (%) 30	 	¥	GR SA SI CI
- 0.0 - 0.0 - - -	FILL: sand, some cobbles, moist, grey	X	2		-		85	-															
- - - - - - - - - - - - - - -			1	SS			84					-	•										Metals & Hydride
<u>-</u> - - 83.3 - 2.3	SILTY CLAY: moist, stiff, dark		24	55		-		-					,										Metals
_ _ 	grey, trace sand		2B	SS			83					-	,										
DS ENVIRO 0-50 PPM-2021 AUG 2022 LOGS.GPJ DS.GDT 11/14/22																							

ENCL NO.: 10

REF. NO.: 22-110-100

1 OF 1

Appendix D

Your Project #: 22-110-100 Site Location: 1755 Pickering Pkwy Your C.O.C. #: n/a

Attention: Rick Fioravanti

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/11/16 Report #: R7390663 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2X0441 Received: 2022/11/10, 14:53

Sample Matrix: Soil

Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Cyanide (WAD) in Leachates	1	N/A	2022/11/15	CAM SOP-00457	OMOE 3015 m
Fluoride by ISE in Leachates	1	2022/11/15	2022/11/16	CAM SOP-00449	SM 23 4500-F- C m
Total Metals in TCLP Leachate by ICPMS	1	2022/11/15	2022/11/15	CAM SOP-00447	EPA 6020B m
Nitrate& Nitrite as Nitrogen in Leachate	1	N/A	2022/11/16	CAM SOP-00440	SM 23 4500-NO3I/NO2B
TCLP - % Solids	1	2022/11/14	2022/11/15	CAM SOP-00401	EPA 1311 Update I m
TCLP - Extraction Fluid	1	N/A	2022/11/15	CAM SOP-00401	EPA 1311 Update I m
TCLP - Initial and final pH	1	N/A	2022/11/15	CAM SOP-00401	EPA 1311 Update I m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Page 1 of 9

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

Your Project #: 22-110-100 Site Location: 1755 Pickering Pkwy Your C.O.C. #: n/a

Attention: Rick Fioravanti

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/11/16 Report #: R7390663 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2X0441 Received: 2022/11/10, 14:53

Encryption Key

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

> Total Cover Pages : 2 Page 2 of 9 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

O.REG 558 TCLP INORGANICS PACKAGE (SOIL)

Bureau Veritas ID		UGP719		
Sampling Date		2022/11/10		
COC Number		n/a		
	UNITS	TCLP	RDL	QC Batch
Inorganics				
Leachable Fluoride (F-)	mg/L	0.24	0.10	8346452
Leachable WAD Cyanide (Free)	mg/L	<0.010	0.010	8346456
Leachable Nitrite (N)	mg/L	<0.10	0.10	8346444
Leachable Nitrate (N)	mg/L	<1.0	1.0	8346444
Leachable Nitrate + Nitrite (N)	mg/L	<1.0	1.0	8346444
Metals				
Leachable Arsenic (As)	mg/L	<0.2	0.2	8346314
Leachable Barium (Ba)	mg/L	0.2	0.2	8346314
Leachable Boron (B)	mg/L	0.2	0.1	8346314
Leachable Cadmium (Cd)	mg/L	<0.05	0.05	8346314
Leachable Chromium (Cr)	mg/L	<0.1	0.1	8346314
Leachable Lead (Pb)	mg/L	<0.1	0.1	8346314
Leachable Mercury (Hg)	mg/L	<0.001	0.001	8346314
Leachable Selenium (Se)	mg/L	<0.1	0.1	8346314
Leachable Silver (Ag)	mg/L	<0.01	0.01	8346314
Leachable Uranium (U)	mg/L	<0.01	0.01	8346314
RDL = Reportable Detection Lim QC Batch = Quality Control Batch	it h		-	

Page 3 of 9 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

TCLP LEACHATE PREPARATION (SOIL)

Bureau Veritas ID		UGP719	UGP719						
Sampling Date		2022/11/10	2022/11/10						
COC Number		n/a	n/a						
	UNITS	TCLP	TCLP Lab-Dup	RDL	QC Batch				
Inorganics									
Final pH	рН	5.72	5.70		8346260				
Initial pH	рН	9.94	9.99		8346260				
TCLP - % Solids	%	100	100	0.2	8344458				
TCLP Extraction Fluid	N/A	FLUID 2	FLUID 2		8346258				
RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch									

Lab-Dup = Laboratory Initiated Duplicate

TEST SUMMARY

Bureau Veritas ID:	UGP719
Sample ID:	TCLP
Matrix:	Soil

Collected:	2022/11/10
Shipped:	

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Cyanide (WAD) in Leachates	SKAL/CN	8346456	N/A	2022/11/15	Prgya Panchal
Fluoride by ISE in Leachates	ISE	8346452	2022/11/15	2022/11/16	Kien Tran
Total Metals in TCLP Leachate by ICPMS	ICP1/MS	8346314	2022/11/15	2022/11/15	Azita Fazaeli
Nitrate& Nitrite as Nitrogen in Leachate	LACH	8346444	N/A	2022/11/16	Chandra Nandlal
TCLP - % Solids	BAL	8344458	2022/11/14	2022/11/15	Jian (Ken) Wang
TCLP - Extraction Fluid		8346258	N/A	2022/11/15	Jian (Ken) Wang
TCLP - Initial and final pH	PH	8346260	N/A	2022/11/15	Omer Imtiaz Uddin

Bureau Veritas ID:UGP719 DupSample ID:TCLPMatrix:Soil

Collected:	2022/11/10
Shipped:	
Received:	2022/11/10

Received: 2022/11/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
TCLP - % Solids	BAL	8344458	2022/11/14	2022/11/15	Jian (Ken) Wang
TCLP - Extraction Fluid		8346258	N/A	2022/11/15	Jian (Ken) Wang
TCLP - Initial and final pH	PH	8346260	N/A	2022/11/15	Omer Imtiaz Uddin

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

The following changes were requested by Alice Gong on 2022/11/10. Project Number changed to 22-110-100 Site Location changed to 1755 Pickering Pkwy

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 22-110-100 Site Location: 1755 Pickering Pkwy Sampler Initials: AG

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		Leachate Blank	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	Value	UNITS
8346314	Leachable Arsenic (As)	2022/11/15	100	80 - 120	101	80 - 120	<0.2	mg/L	NC	35	<0.2	mg/L
8346314	Leachable Barium (Ba)	2022/11/15	106	80 - 120	103	80 - 120	<0.2	mg/L	1.1	35	<0.2	mg/L
8346314	Leachable Boron (B)	2022/11/15	106	80 - 120	109	80 - 120	<0.1	mg/L	0.40	35	<0.1	mg/L
8346314	Leachable Cadmium (Cd)	2022/11/15	100	80 - 120	99	80 - 120	<0.05	mg/L	NC	35	<0.05	mg/L
8346314	Leachable Chromium (Cr)	2022/11/15	100	80 - 120	101	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
8346314	Leachable Lead (Pb)	2022/11/15	93	80 - 120	95	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
8346314	Leachable Mercury (Hg)	2022/11/15	89	80 - 120	99	80 - 120	< 0.001	mg/L	NC	35	<0.001	mg/L
8346314	Leachable Selenium (Se)	2022/11/15	103	80 - 120	102	80 - 120	<0.1	mg/L	NC	35	<0.1	mg/L
8346314	Leachable Silver (Ag)	2022/11/15	97	80 - 120	101	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L
8346314	Leachable Uranium (U)	2022/11/15	104	80 - 120	104	80 - 120	<0.01	mg/L	NC	35	<0.01	mg/L
8346444	Leachable Nitrate (N)	2022/11/16	85	80 - 120	99	80 - 120	<1.0	mg/L	NC	25	<1.0	mg/L
8346444	Leachable Nitrate + Nitrite (N)	2022/11/16	90	80 - 120	101	80 - 120	<1.0	mg/L	NC	25	<1.0	mg/L
8346444	Leachable Nitrite (N)	2022/11/16	112	80 - 120	109	80 - 120	<0.10	mg/L	NC	25	<0.10	mg/L
8346452	Leachable Fluoride (F-)	2022/11/16	101	80 - 120	102	80 - 120	<0.10	mg/L	4.7	25	<0.10	mg/L
8346456	Leachable WAD Cyanide (Free)	2022/11/15	89	80 - 120	105	80 - 120	<0.0020	mg/L	NC	20	<0.010	mg/L

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Leachate Blank: A blank matrix containing all reagents used in the leaching procedure. Used to determine any process contamination.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

DS Consultants Limited Client Project #: 22-110-100 Site Location: 1755 Pickering Pkwy Sampler Initials: AG

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Page 8 of 9 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com

DS Consultants Limited Client Project #: 22-110-100 Site Location: 1755 Pickering Pkwy Sampler Initials: AG

Exceedance Summary Table – Reg153/04 T3-Soil/Res-F/M

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summa	ry table is for information purp	oses only and should no	ot be considered a compreh	ensive listing or	statement of	conformance to
applicable regulatory gu	idelines.					

Your Project #: 22-110-100 Your C.O.C. #: 869480-23-01

Attention: Rick Fioravanti

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/08/25 Report #: R7268823 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2N7163 Received: 2022/08/19. 15:45

Sample Matrix: Soil # Samples Received: 11

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Extractable Metals by ICPMS	11	2022/08/24	2022/08/24	CAM SOP-00447	EPA 6020B m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 22-110-100 Your C.O.C. #: 869480-23-01

Attention: Rick Fioravanti

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/08/25 Report #: R7268823 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C2N7163 Received: 2022/08/19, 15:45

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Total Cover Pages : 2 Page 2 of 11 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

O.REG 153 ICPMS METALS (SOIL)

Bureau Veritas ID					TMR054	TMR055	TMR056	TMR057		
Sampling Date					2022/08/18	2022/08/18	2022/08/18	2022/08/18		
COC Number					869480-23-01	869480-23-01	869480-23-01	869480-23-01		
		UNITS	Criteria	Criteria-2	BH22-1/S2	BH22-2/S2A	BH22-3/S2	BH22-4/S2	RDL	QC Batch
Metals										
Acid Extractable Antimony	(Sb)	ug/g	7.5	7.5	<0.20	<0.20	<0.20	<0.20	0.20	8184277
Acid Extractable Arsenic (A	.s)	ug/g	18	18	2.3	1.1	2.0	1.5	1.0	8184277
Acid Extractable Barium (Ba	a)	ug/g	390	390	170	39	100	110	0.50	8184277
Acid Extractable Beryllium	(Be)	ug/g	4	4	0.78	0.28	0.51	0.42	0.20	8184277
Acid Extractable Boron (B)		ug/g	120	120	11	<5.0	5.9	<5.0	5.0	8184277
Acid Extractable Cadmium	(Cd)	ug/g	1.2	1.2	0.14	<0.10	<0.10	<0.10	0.10	8184277
Acid Extractable Chromium	n (Cr)	ug/g	160	160	29	11	21	18	1.0	8184277
Acid Extractable Cobalt (Co)	ug/g	22	22	11	3.8	7.7	7.0	0.10	8184277
Acid Extractable Copper (C	u)	ug/g	140	140	23	7.3	16	14	0.50	8184277
Acid Extractable Lead (Pb)		ug/g	120	120	9.1	3.8	6.1	4.7	1.0	8184277
Acid Extractable Molybden	um (Mo)	ug/g	6.9	6.9	<0.50	<0.50	<0.50	<0.50	0.50	8184277
Acid Extractable Nickel (Ni)		ug/g	100	100	24	7.9	16	14	0.50	8184277
Acid Extractable Selenium	(Se)	ug/g	2.4	2.4	<0.50	<0.50	<0.50	<0.50	0.50	8184277
Acid Extractable Silver (Ag)		ug/g	20	20	<0.20	<0.20	<0.20	<0.20	0.20	8184277
Acid Extractable Thallium (TI)	ug/g	1	1	0.25	0.071	0.13	0.13	0.050	8184277
Acid Extractable Uranium (U)	ug/g	23	23	0.56	0.40	0.53	0.49	0.050	8184277
Acid Extractable Vanadium	(V)	ug/g	86	86	44	19	34	32	5.0	8184277
Acid Extractable Zinc (Zn)		ug/g	340	340	63	18	40	35	5.0	8184277
No Fill	No Exceeda	ance								
Grey	Exceeds 1 o	criteria p	olicy/lev	el						
Black	Exceeds bo	th crite	ria/levels							
RDL = Reportable Detection	n Limit									
QC Batch = Quality Control	Batch									
Criteria: Ontario Reg. 153/0	04 (Amend	ed April	15, 2011)						
Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition										
Soil - Residential/Parkland/	Institution	al Prope	erty Use -	Coarse Tex	tured Soil					
Criteria-2: Ontario Reg. 153	3/04 (Amer	nded Ap	ril 15, 20	11)						
Table 3: Full Depth Generic	Site Condi	ition Sta	ndards in	a Non-Pot	able Ground Wa	iter Condition				

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 ICPMS METALS (SOIL)

Bureau Veritas ID					TMR058	TMR058	TMR059	TMR060		
Sampling Date					2022/08/18	2022/08/18	2022/08/18	2022/08/18		
COC Number					869480-23-01	869480-23-01	869480-23-01	869480-23-01		
		UNITS	Criteria	Criteria-2	BH22-5/S2A	BH22-5/S2A Lab-Dup	BH22-6/S2A	BH22-7/S2A	RDL	QC Batch
Metals										
Acid Extractable Antimo	ony (Sb)	ug/g	7.5	7.5	<0.20	<0.20	<0.20	<0.20	0.20	8184277
Acid Extractable Arsenic	: (As)	ug/g	18	18	<1.0	<1.0	2.2	1.6	1.0	8184277
Acid Extractable Barium	(Ba)	ug/g	390	390	19	18	85	120	0.50	8184277
Acid Extractable Berylliu	ım (Be)	ug/g	4	4	<0.20	<0.20	0.56	0.90	0.20	8184277
Acid Extractable Boron	(B)	ug/g	120	120	<5.0	<5.0	7.4	7.1	5.0	8184277
Acid Extractable Cadmiu	ım (Cd)	ug/g	1.2	1.2	<0.10	<0.10	0.11	0.15	0.10	8184277
Acid Extractable Chromi	ium (Cr)	ug/g	160	160	6.5	6.9	21	32	1.0	8184277
Acid Extractable Cobalt	(Co)	ug/g	22	22	2.1	1.9	8.7	12	0.10	8184277
Acid Extractable Copper	· (Cu)	ug/g	140	140	4.2	4.1	19	21	0.50	8184277
Acid Extractable Lead (P	'b)	ug/g	120	120	2.2	2.2	8.9	14	1.0	8184277
Acid Extractable Molybo	denum (Mo)	ug/g	6.9	6.9	<0.50	<0.50	<0.50	<0.50	0.50	8184277
Acid Extractable Nickel	(Ni)	ug/g	100	100	4.1	4.1	18	26	0.50	8184277
Acid Extractable Seleniu	ım (Se)	ug/g	2.4	2.4	<0.50	<0.50	<0.50	<0.50	0.50	8184277
Acid Extractable Silver (A	Ag)	ug/g	20	20	<0.20	<0.20	<0.20	<0.20	0.20	8184277
Acid Extractable Thalliu	m (Tl)	ug/g	1	1	<0.050	<0.050	0.14	0.22	0.050	8184277
Acid Extractable Uraniu	m (U)	ug/g	23	23	0.34	0.35	0.51	0.58	0.050	8184277
Acid Extractable Vanadi	um (V)	ug/g	86	86	15	15	33	45	5.0	8184277
Acid Extractable Zinc (Zr	n)	ug/g	340	340	11	10	43	66	5.0	8184277
No Fill	No Exceeda	ance								
Grey	Exceeds 1 o	criteria p	olicy/lev	el						
Black	Exceeds bo	th crite	ria/levels							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

O.REG 153 ICPMS METALS (SOIL)

Bureau Veritas ID					TMR061	TMR062	TMR063	TMR064		
Sampling Date					2022/08/18	2022/08/18	2022/08/18	2022/08/18		
COC Number					869480-23-01	869480-23-01	869480-23-01	869480-23-01		
		UNITS	Criteria	Criteria-2	BH22-8/S2A	BH22-9/S2A	BH22-10/S2A	DUP-1	RDL	QC Batch
Metals										
Acid Extractable Antimony	(Sb)	ug/g	7.5	7.5	0.26	<0.20	<0.20	<0.20	0.20	8184277
Acid Extractable Arsenic (As	s)	ug/g	18	18	2.0	<1.0	1.9	5.3	1.0	8184277
Acid Extractable Barium (Ba	a)	ug/g	390	390	86	35	140	110	0.50	8184277
Acid Extractable Beryllium ((Be)	ug/g	4	4	0.46	<0.20	0.52	0.56	0.20	8184277
Acid Extractable Boron (B)		ug/g	120	120	6.4	<5.0	8.6	7.4	5.0	8184277
Acid Extractable Cadmium	(Cd)	ug/g	1.2	1.2	0.11	<0.10	<0.10	0.14	0.10	8184277
Acid Extractable Chromium	ı (Cr)	ug/g	160	160	18	7.8	22	20	1.0	8184277
Acid Extractable Cobalt (Co)	ug/g	22	22	6.7	1.8	7.8	8.3	0.10	8184277
Acid Extractable Copper (Cu	u)	ug/g	140	140	15	9.1	20	18	0.50	8184277
Acid Extractable Lead (Pb)		ug/g	120	120	7.2	3.7	8.4	8.7	1.0	8184277
Acid Extractable Molybden	um (Mo)	ug/g	6.9	6.9	<0.50	<0.50	<0.50	1.1	0.50	8184277
Acid Extractable Nickel (Ni)		ug/g	100	100	15	4.2	17	18	0.50	8184277
Acid Extractable Selenium ((Se)	ug/g	2.4	2.4	<0.50	<0.50	<0.50	<0.50	0.50	8184277
Acid Extractable Silver (Ag)		ug/g	20	20	<0.20	<0.20	<0.20	<0.20	0.20	8184277
Acid Extractable Thallium (1	TI)	ug/g	1	1	0.13	<0.050	0.16	0.15	0.050	8184277
Acid Extractable Uranium (I	U)	ug/g	23	23	0.50	0.40	0.49	0.53	0.050	8184277
Acid Extractable Vanadium	(V)	ug/g	86	86	29	11	31	32	5.0	8184277
Acid Extractable Zinc (Zn)		ug/g	340	340	37	24	45	44	5.0	8184277
No Fill N	No Exceeda	ance								
Grey	Exceeds 1 o	riteria p	olicy/lev	el						
Black	Exceeds bo	th crite	ria/levels							
RDL = Reportable Detection	n Limit									
QC Batch = Quality Control	Batch									
Criteria: Ontario Reg. 153/C Table 2: Full Depth Generic Soil - Residential/Parkland/	criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil									
Criteria-2: Ontario Reg. 153 Table 3: Full Depth Generic	8/04 (Amer Site Condi	nded Ap tion Sta	ril 15, 20 ndards in	11) a Non-Pota	able Ground Wa	iter Condition				

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

TEST SUMMARY

Bureau Veritas ID: Sample ID:	TMR054 BH22-1/S2					Collected: Shipped:	2022/08/18
Matrix:	Soil					Received:	2022/08/19
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	oy ICPMS	ICP/MS	8184277	2022/08/24	2022/08/24	Daniel Tec	lu
Bureau Veritas ID: Sample ID:	TMR055 BH22-2/S2A					Collected: Shipped:	2022/08/18
Matrix:	Soil					Received:	2022/08/19
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	oy ICPMS	ICP/MS	8184277	2022/08/24	2022/08/24	Daniel Tec	lu
Bureau Veritas ID:	TMR056					Collected:	2022/08/18
Sample ID: Matrix:	BH22-3/S2 Soil					Shipped: Received:	2022/08/19
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	oy ICPMS	ICP/MS	8184277	2022/08/24	2022/08/24	Daniel Tec	lu
Bureau Veritas ID: Sample ID:	TMR057 BH22-4/S2					Collected: Shipped:	2022/08/18
Matulius	C - :					Dessived	0000/00/100
iviatrix:	5011					Received:	2022/08/19
Test Description	Soli	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	2022/08/19
Test Description Acid Extractable Metals b	SOII	Instrumentation ICP/MS	Batch 8184277	Extracted 2022/08/24	Date Analyzed	Analyst Daniel Tec	2022/08/19 lu
Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix:	TMR058 BH22-5/S2A Soil	Instrumentation ICP/MS	Batch 8184277	Extracted 2022/08/24	Date Analyzed 2022/08/24	Analyst Daniel Tec Collected: Shipped: Received:	2022/08/19 lu 2022/08/18 2022/08/19
Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix:	TMR058 BH22-5/S2A Soil	Instrumentation ICP/MS	Batch 8184277 Batch	Extracted 2022/08/24	Date Analyzed	Analyst Daniel Tec Collected: Shipped: Received: Analyst	2022/08/19 lu 2022/08/18 2022/08/19
Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b	TMR058 BH22-5/S2A Soil	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 8184277 Batch 8184277	Extracted 2022/08/24 Extracted 2022/08/24	Date Analyzed 2022/08/24 Date Analyzed 2022/08/24	Analyst Daniel Tec Collected: Shipped: Received: Analyst Daniel Tec	2022/08/19 lu 2022/08/18 2022/08/19
Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID:	TMR058 BH22-5/S2A Soil by ICPMS TMR058 Dup BH22-5/S2A	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 8184277 Batch 8184277	Extracted 2022/08/24 Extracted 2022/08/24	Date Analyzed 2022/08/24 Date Analyzed 2022/08/24	Analyst Daniel Tec Collected: Shipped: Received: Analyst Daniel Tec Collected: Shipped:	2022/08/19 lu 2022/08/18 2022/08/19 lu 2022/08/18
Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix:	TMR058 BH22-5/S2A Soil by ICPMS TMR058 Dup BH22-5/S2A Soil	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 8184277 Batch 8184277	Extracted 2022/08/24 Extracted 2022/08/24	Date Analyzed 2022/08/24 Date Analyzed 2022/08/24	Collected: Collected: Shipped: Received: Daniel Tec Collected: Shipped: Collected: Shipped: Received:	2022/08/19 lu 2022/08/18 2022/08/19 lu 2022/08/18 2022/08/18 2022/08/19
Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Bureau Veritas ID: Sample ID: Matrix: Test Description	TMR058 BH22-5/S2A Soil Dy ICPMS TMR058 Dup BH22-5/S2A Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation	Batch 8184277 Batch 8184277 Batch	Extracted 2022/08/24 Extracted 2022/08/24 Extracted	Date Analyzed 2022/08/24 Date Analyzed 2022/08/24 Date Analyzed	Analyst Daniel Tec Collected: Shipped: Received: Analyst Daniel Tec Collected: Shipped: Received: Received: Analyst	2022/08/19 lu 2022/08/18 2022/08/19 lu 2022/08/18 2022/08/18 2022/08/19
Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Matrix: Test Description Acid Extractable Metals b	y ICPMS TMR058 BH22-5/S2A Soil y ICPMS TMR058 Dup BH22-5/S2A Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 8184277 Batch 8184277 Batch 8184277	Extracted 2022/08/24 Extracted 2022/08/24 Extracted 2022/08/24	Date Analyzed 2022/08/24 Date Analyzed 2022/08/24 Date Analyzed 2022/08/24	Analyst Daniel Tec Collected: Shipped: Received: Analyst Daniel Tec Collected: Shipped: Received: Analyst Daniel Tec	2022/08/19 lu 2022/08/18 2022/08/19 lu 2022/08/18 2022/08/18 2022/08/19
Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix:	SOII TMR058 BH22-5/S2A Soil TMR058 Dup BH22-5/S2A Soil TMR058 Dup BH22-5/S2A Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS INSTRUMENTATION ICP/MS	Batch 8184277 Batch 8184277 Batch 8184277	Extracted 2022/08/24 Extracted 2022/08/24 Extracted 2022/08/24	Date Analyzed 2022/08/24 Date Analyzed 2022/08/24 Date Analyzed 2022/08/24	Analyst Daniel Tec Collected: Shipped: Received: Analyst Daniel Tec Collected: Shipped: Received: Analyst Daniel Tec Collected: Shipped: Received:	2022/08/19 lu 2022/08/18 2022/08/19 lu 2022/08/18 2022/08/19 lu 2022/08/18 2022/08/19
Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals ID: Sample ID: Matrix: Test Description	SOII TMR058 BH22-5/S2A Soil Py ICPMS TMR058 Dup BH22-5/S2A Soil Py ICPMS TMR059 BH22-6/S2A Soil	Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS Instrumentation ICP/MS	Batch 8184277 Batch 8184277 Batch 8184277	Extracted 2022/08/24 Extracted 2022/08/24 Extracted 2022/08/24	Date Analyzed 2022/08/24 Date Analyzed 2022/08/24 Date Analyzed 2022/08/24	Analyst Daniel Tec Collected: Shipped: Received: Analyst Daniel Tec Collected: Shipped: Received: Analyst Daniel Tec Collected: Shipped: Received: Collected: Shipped: Received: Analyst Daniel Tec Collected: Shipped: Received: Analyst	2022/08/19 lu 2022/08/18 2022/08/19 lu 2022/08/18 2022/08/19 lu 2022/08/18 2022/08/19 lu 2022/08/18 2022/08/19

Page 6 of 11 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

TEST SUMMARY

Bureau Veritas ID: Sample ID: Matrix:	TMR060 BH22-7/S2A Soil					Collected: Shipped:	2022/08/18
Watrix.	3011					Received.	2022/08/19
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals k	by ICPMS	ICP/MS	8184277	2022/08/24	2022/08/24	Daniel Teo	lu
Bureau Veritas ID:	TMR061					Collected:	2022/08/18
Sample ID:	BH22-8/S2A					Shipped:	
Matrix:	Soil					Received:	2022/08/19
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	by ICPMS	ICP/MS	8184277	2022/08/24	2022/08/24	Daniel Teo	lu
Bureau Veritas ID: Sample ID:	TMR062 BH22-9/S2A					Collected: Shipped:	2022/08/18
Matrix:	Soil					Received:	2022/08/19
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	by ICPMS	ICP/MS	8184277	2022/08/24	2022/08/24	Daniel Teo	lu
Bureau Veritas ID:	TMR063					Collected:	2022/08/18
Sample ID:	BH22-10/S2A					Shipped:	
Matrix:	Soil					Received:	2022/08/19
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals k	by ICPMS	ICP/MS	8184277	2022/08/24	2022/08/24	Daniel Teo	lu
Bureau Veritas ID:	TMR064					Collected:	2022/08/18
Sample ID:	DUP-1					Shipped:	
Matrix:	Soil					Received:	2022/08/19
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	by ICPMS	ICP/MS	8184277	2022/08/24	2022/08/24	Daniel Teo	lu

GENERAL COMMENTS

Each temperature	is the average of up to th	ree cooler temperatures taken at receipt
Package 1	0.7°C	
	·	
Results relate only	to the items tested.	

Page 8 of 11 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 22-110-100 Sampler Initials: AG

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8184277	Acid Extractable Antimony (Sb)	2022/08/24	95	75 - 125	102	80 - 120	<0.20	ug/g	NC	30
8184277	Acid Extractable Arsenic (As)	2022/08/24	89	75 - 125	99	80 - 120	<1.0	ug/g	NC	30
8184277	Acid Extractable Barium (Ba)	2022/08/24	93	75 - 125	98	80 - 120	<0.50	ug/g	6.1	30
8184277	Acid Extractable Beryllium (Be)	2022/08/24	96	75 - 125	98	80 - 120	<0.20	ug/g	NC	30
8184277	Acid Extractable Boron (B)	2022/08/24	90	75 - 125	96	80 - 120	<5.0	ug/g	NC	30
8184277	Acid Extractable Cadmium (Cd)	2022/08/24	93	75 - 125	96	80 - 120	<0.10	ug/g	NC	30
8184277	Acid Extractable Chromium (Cr)	2022/08/24	96	75 - 125	98	80 - 120	<1.0	ug/g	6.3	30
8184277	Acid Extractable Cobalt (Co)	2022/08/24	94	75 - 125	99	80 - 120	<0.10	ug/g	5.7	30
8184277	Acid Extractable Copper (Cu)	2022/08/24	92	75 - 125	98	80 - 120	<0.50	ug/g	3.8	30
8184277	Acid Extractable Lead (Pb)	2022/08/24	91	75 - 125	99	80 - 120	<1.0	ug/g	1.4	30
8184277	Acid Extractable Molybdenum (Mo)	2022/08/24	96	75 - 125	99	80 - 120	<0.50	ug/g	NC	30
8184277	Acid Extractable Nickel (Ni)	2022/08/24	91	75 - 125	100	80 - 120	<0.50	ug/g	1.4	30
8184277	Acid Extractable Selenium (Se)	2022/08/24	93	75 - 125	97	80 - 120	<0.50	ug/g	NC	30
8184277	Acid Extractable Silver (Ag)	2022/08/24	95	75 - 125	99	80 - 120	<0.20	ug/g	NC	30
8184277	Acid Extractable Thallium (TI)	2022/08/24	93	75 - 125	100	80 - 120	<0.050	ug/g	NC	30
8184277	Acid Extractable Uranium (U)	2022/08/24	93	75 - 125	100	80 - 120	<0.050	ug/g	3.5	30
8184277	Acid Extractable Vanadium (V)	2022/08/24	97	75 - 125	98	80 - 120	<5.0	ug/g	1.9	30
8184277	Acid Extractable Zinc (Zn)	2022/08/24	84	75 - 125	94	80 - 120	<5.0	ug/g	3.0	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary ta applicable regulatory guideli	ble is for information purp nes.	oses only and should not be	considered a comprehe	ensive listing o	or statement of co	onformance to

Exceedance Summary Table – Reg153/04 T3-Soil/Res-C

Result Exceedances

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summary tab applicable regulatory guidelin	le is for information purpo es.	oses only and should no	ot be considered a comprehe	ensive listing or	statement of	conformance to

Appendix E

Soil Remediation Report

Development Phase II: 1755 & 1805 Pickering Parkway Pickering, ON

Prepared For:

Pickering Ridge Lands Inc.c/o Bayfield Realty Advisors Inc.2300 Yonge Street, Suite 904Toronto, OntarioM4P 1E4

DS Project No: 22-110-100

Date: 2023-01-12

DS CONSULTANTS LTD. 6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

TABLE OF CONTENTS

1.0	Introduction	3
2.0	Remedial Actions	3
2.1	Soil Excavation and Soil Treatment Activities	3
	2.1.1 Soil Excavation	.3
3.0	Free Flowing Product	4
4.0	Confirmatory Sampling	4
4.1	Confirmatory Sampling Activities	4
	4.1.1 EX-1	.5
	4.1.2 EX-2	.5
4.2	Confirmatory Sampling Results	6
	4.2.1 EX-1	.6
	4.2.2 EX-2	.6
4.3	Quality Control and Quality Assurance	. 7
5.0	Conclusions	7
5.1	Signatures	8

FIGURES

Figure R1 – Remedial Excavation Location Plan
Figure R2A – Post Remediation Confirmatory Sampling in Excavation 1 – Hydride Metals
Figure R2B – Cross Section A-A' with H-Forming Metals Impacts in Soil (Pre-Remediation)
Figure R2C - Cross Section A-A' with H-Forming Metals Impacts in Soil (Post-Remediation)
Figure R2D – Cross Section B-B' with H-Forming Metals Impacts in Soil (Pre-Remediation)
Figure R2E - Cross Section B-B' with H-Forming Metals Impacts in Soil (Post-Remediation)
Figure R3A – Post Remediation Confirmatory Sampling in Excavation 2 – Hydride Metals
Figure R3B – Cross Section A-A' with H-Forming Metal Impacts in Soil (Pre-Remediation)
Figure R3C – Cross Section A-A' with H-Forming Metal Impacts in Soil (Post-Remediation)
Figure R3D – Cross Section B-B' with H-Forming Metal Impacts in Soil (Pre-Remediation)
Figure R3E – Cross Section B-B' with H-Forming Metal Impacts in Soil (Post-Remediation)
Figure R4 – Exposure Pathways and Receptors – Pre-Remediation
Figure R5 – Exposure Pathways and Receptors – Post-Remediation

TABLES

 Table 1 – Summary of Confirmatory Samples Submitted for Chemical Analysis

Table 2 – Summary of Hydride Forming Metals in Soil

Table 3 – Summary of Maximum Concentrations in Soil (Post Remediation)

APPENDIX

Appendix A – Laboratory Certificates of Analysis

1.0 Introduction

This report provides a summary of the remedial activity which were completed to reduce the concentrations of contaminants on, in or under a portion of the parcel of land with municipal address of 1755 & 1805 Pickering Parkway, Pickering, Ontario, herein referred to as the "Site". The Site is comprised of the second Phase (Phase II) of the future residential development. The Site is an 8.75-hectare (21.62 acres) parcel of land situated within a mixed residential and commercial neighbourhood in the City of Pickering, Ontario.

The following sections detail the remedial actions, the results of the confirmatory sampling and laboratory analysis, the results of the quality assurance/quality control (QA/QC) samples and conclusions.

The objective of the remediation program was to facilitate the remediation of the impacted soil which was identified in the Supplemental Phase Two Environmental Site Assessment (Supplemental Phase Two ESA) which was completed by DS in November 2022.

2.0 Remedial Actions

2.1 Soil Excavation and Soil Treatment Activities

The soil remediation at the Property consisted of excavation and off-site disposal of soil impacted with Hydride Forming Metals (Arsenic and/or Antimony) within the vicinity of borehole/monitoring well BH105 and BH110. The soils excavated were removed from the Site by the excavation contractor (Green Infrastructure Partners Inc.), thereby facilitating the remediation of the impacted shallow soil materials. The material removed was disposed of at a licensed waste management facility. The remediation of the impacted soil material was completed on November 17, 2022.

2.1.1 Soil Excavation

The Supplemental Phase Two ESA identified concentrations of Hydride Forming Metals (Arsenic and/or Antimony) parameters in excess of the applicable Ministry of Environment, Conservation and Parks Table 3 Site Condition Standards for Non-Potable Groundwater and Residential/Parkland/Institutional Property Use (MECP Table 3 RPI SCS) as follows:

- BH105 SS3 (1.5-2.1 mbgs): Arsenic and Antimony
- BH110 SS3 (1.5-2.1 mbgs): Arsenic

The impacts were identified by Terraprobe in 2021 as part of the previous Phase Two ESA report completed for the entirety of 1755 & 1805 Pickering Parkway Site. It is noted that the

vertical extent of the Hydride Forming Metals impacts was less than 2.3 mbgs, and the horizontal extent of impacts in soil was unknown prior to undertaking the remedial excavation.

The remedial excavation was completed on November 17, 2022. The excavation was conducted by Green Infrastructure Partners Inc. (GIP) under the direct supervision of DS personnel. Details regarding the two remedial excavation areas are provided below.

<u>EX-1</u>

Excavation "EX-1" was completed in the vicinity of BH105, in which Antimony and Arsenic impacts were identified in sample "SS3" which was collected at a depth of 1.5-2.1 mbgs. On November 17, 2022, an excavation of approximately 5.0 m x 5.0 m was opened to a depth of 2.3 mbgs and the impacted material surrounding SS3 was removed from Site for off-site disposal.

Approximately 57.5 m³ of soil was excavated from EX-1. A plan depicting the approximate location of EX-1 is provided in Figure 1.

<u>EX-2</u>

Excavation "EX-2" was completed in the vicinity of BH110, in which Arsenic impacts were identified in sample "SS3" which was collected at a depth of 1.5-2.1 mbgs. On November 17, 2022, an excavation of approximately 5.0 m x 5.0 m was opened to a depth of 2.3 mbgs and the impacted material surrounding SS3 was removed from Site off-site disposal.

Approximately 57.5 m³ of soil was excavated from EX-2. A plan depicting the approximate location of EX-2 is provided in Figure 1.

Additional details regarding the confirmatory sampling program are provided in Section 3.0 below.

3.0 Free Flowing Product

Free flowing product was not identified on the Phase Two Property.

4.0 Confirmatory Sampling

4.1 Confirmatory Sampling Activities

Upon completion of the excavation activities, field screening was completed in accordance with the requirements of O.Reg 153/04 (as amended). The screening samples collected were inspected and examined to assess soil type, and possible chemical contamination by visual and olfactory observations or by organic vapour screening. Samples submitted for chemical

analysis were collected from locations judged by the assessor to be most likely to exhibit the highest concentrations of contaminants based on several factors including (i) visual or olfactory observations, (ii) sample location, depth, and soil type (iii) ground water conditions.

4.1.1 EX-1

Four (4) sidewall samples, two (2) floor samples, and one (1) duplicate sample were collected from each excavation for laboratory analysis in November 2022. A list of the confirmatory soil samples is provided in the table below.

Sample ID	Date Collected	Sample Depth (mbgs)	Parameter	Sample Location
WS1	November 17, 2022	1.7-1.8		West Side Wall
WS8	November 17, 2022	1.8-1.9		North Side Wall
WS11	November 17, 2022	1.8-1.9		South Side Wall
WS13	November 17, 2022	1.8-1.9	Hydride-Forming Metals	East Side Wall
DUP1 (WS13)	November 17, 2022	1.8-1.9		East Side Wall
F1	November 17, 2022	2.3-2.4		Floor
F2	November 17, 2022	2.3-2.4		Floor

Table 4-1: Summary of Confirmatory Soil Samples Submitted

The approximate locations of these confirmatory samples are presented in Figure R2A.

4.1.2 EX-2

Four (4) sidewall samples, two (2) floor samples, and one (1) duplicate sample were collected from each excavation for laboratory analysis in November 2022. A list of the confirmatory soil samples is provided in the table below.

 Table 4-2: Summary of Confirmatory Soil Samples Submitted

Sample ID	Date Collected	Sample Depth (mbgs)	Parameter	Sample Location
WS17	November 17, 2022	1.9-2.0	Hvdride-Forming Metals	South Side Wall
WS21	November 17, 2022	1.9-2.0	,, ,,, ,,, ,,	West Side Wall

Sample ID	Date Collected	Sample Depth (mbgs)	Parameter	Sample Location
WS26	November 17, 2022	1.9-2.0		East Side Wall
WS28	November 17, 2022	1.6-1.7		North Side Wall
DUP2 (EX2-F1)	November 17, 2022	2.3-2.4		Floor
EX2-F1	November 17, 2022	2.3-2.4		Floor
EX2-F2	November 17, 2022	2.3-2.4		Floor

The approximate locations of these confirmatory samples are presented in Figure R3A.

4.2 Confirmatory Sampling Results

Confirmatory soil sampling was conducted in accordance with sampling requirements per Table 3 of Schedule E, Part V of O.Reg. 153/04 (as amended) in order to assess the efficacy of the remedial excavation activities.

A summary of the laboratory analytical results pertaining to the confirmatory sampling program is provided in Tables 1 through 3.

4.2.1 EX-1

The results of the chemical analyses indicated that all of the confirmatory samples from the perimeter and base of the final remedial excavations met the MECP Table 3 RPI SCS.

A visual representation of the confirmatory sample locations is presented on Figure R2A. Cross Sections depicting the vertical extent of the remedial excavation and confirmatory sample locations are provided in Figure R2B, R2C, R2D and R2E.

4.2.2 EX-2

The results of the chemical analyses indicated that all of the confirmatory samples from the perimeter and base of the final remedial excavations met the MECP Table 3 RPI SCS.

A visual representation of the confirmatory sample locations is presented on Figure R3A. Cross Sections depicting the vertical extent of the remedial excavation and confirmatory sample locations are provided in Figure R3B, R3C, R3D and R3E.

4.3 Quality Control and Quality Assurance

The field QA/QC program involved the collection of field duplicate soil samples. In addition to the controls listed above, the analytical laboratory employed method blanks, internal laboratory duplicates, surrogate spike samples, matrix spike samples, and standard reference materials.

A summary of the field duplicate samples analyzed and an interpretation of the efficacy of the QA/QC program is provided in the table below.

Sample ID	QA/QC duplicate	Medium	Parameter Analyzed	QA/QC Result
WS13	DUP1	Soil	Hydride Forming Metals	All results were within the analytical protocol criteria for RPD
EX2-F2	DUP2	Soil	Hydride Forming Metals	All results were within the analytical protocol criteria for RPD

Table 4-3: Summary of QA/QC Results

5.0 Conclusions

The results of the post-remediation confirmatory sampling indicated that the remedial efforts were successful in reducing the concentrations of contaminants in soil to levels below the MECP Table 3 SCS. Based on these findings no further remedial work is required to meet the requirements of 0.Reg. 153/04 (as amended).

5.1 Signatures

This Remedial Excavation program was conducted under the supervision of Mr. Patrick M Fioravanti, B.Sc., P.Geo, QP_{ESA} in accordance with the requirements of O.Reg. 153/04 (as amended). The findings and conclusions presented have been determined based on the information obtained at the time of the investigation, and on an assessment of the conditions of the Site at this time.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

DS Consultants Ltd

Prepared by:

Reviewed by:

Curs. po. o

Alice Gong, B.Sc. Environmental Specialist

Atomante

Patrick M. Fioravanti, B.Sc., P.Geo., QP_{ESA} Manager – Environmental Services

Project No.: 22-110-100 Remediation Report Phase II: 1755 and 1805 Pickering Pkwy, Pickering, ON

Table1: Summary of Confirmatory Samples Submitted for Chemical Analysis

Horizontal Extent	Sample Depth	Samples Submitted for Chemical Analysis	Sidewall or Floor	Parameters Analysed
	1.7-1.8	WS1	Sidewall	
	1.8-1.9	WS8	Sidewall	
	1.8-1.9	WS11	Sidewall	
Vicinity of BH105	1.8-1.9	WS13	Sidewall	
	2.3-2.4	F1	Floor	
	2.3-2.4	F2	Floor	
	1.8-1.9	DUP1 (WS13)	Sidewall	Hydride-Forming
	1.9-2.0	WS17	Sidewall	Metals
	1.9-2.0	WS21	Sidewall	
	1.9-2.0	WS26	Sidewall	
Vicinity of BH110	1.6-1.7	WS28	Sidewall	
DIIIIO	2.3-2.4	EX2-F1	Floor	
	2.3-2.4	EX2-F2	Floor	
	2.3-2.4	DUP2 (EX2-F1)	Floor	

For Table Notes see **Notes for Soil and Groundwater Summary Tables**, included at the end of this Section

DS Consultants Ltd. November 2022

fable 2: Summary of Hydride-Forming Metals in Soil															
Parameter		WS1	WS8	WS11	WS13	DUP1 (WS13)	F1	F2	WS17	WS21	WS26	WS28	EX2-F1	EX2-F2	DUP2 (EX2-F1)
Date of Collection		17-Nov-22													
Date Reported	MECP Table 3 SCS	18-Nov-22													
Sampling Depth (mbgs)		1.7-1.8	1.8-1.9	1.8-1.9	1.8-1.9	1.8-1.9	2.3-2.4	2.3-2.4	1.9-2.0	1.9-2.0	1.9-2.0	1.6-1.7	2.3-2.4	2.3-2.4	2.3-2.4
Analytical Report Reference No.		C2X8677/UI M063	C2X8677/UI M064	C2X8677/UI M065	C2X8677/UI M066	C2X8677/UI M069	C2X8677/UI M067	C2X8677/UI M068	C2X8660/UIL 982	C2X8660/UIL 983	C2X8660/UIL 984	C2X8660/UIL 985	C2X8660/UIL 980	C2X8660/UIL 981	C2X8660/UIL 986
Antimony	7.5	< 0.20	<0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20	<0.20	< 0.20	<0.20	< 0.20	<0.20	<0.20	<0.20
Arsenic	18.0	1.3	1.1	<1.0	1.6	1.3	1.4	2.1	2.4	<1.0	1.5	1.1	<1.0	1	<1.0
Selenium	2.4	< 0.50	<0.50	<0.50	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	0.55	<0.50	< 0.50	<0.50	< 0.50	<0.50

Project No.: 22-110-100 Remediation Report Phase II: 1755 and 1805 Pickering Pkwy, Pickering, ON

Table 3: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location
e- etals	Antimony	7.5	<0.20	All Samples
ydrid ing M	Arsenic	18	2.4	WS17
Form	Selenium	2.4	0.55	WS21

Project No.: 22-110-100 Remediation Report Phase II: 1755 and 1805 Pickering Pkwy, Pickering, ON

Notes for Soil Summary Table

mbgs =	Meters below ground surface
masl =	Meters above sea level
Units	Units for all soil analyses are in μ g/g (ppm) unless otherwise indicated
	Table 3 SCS: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for
MECP	Residential/Parkland/Institutional Use with medium-fine textured soils as contained in the April 15, 2011
Table 3	Ontario Ministry of Environment, Conservation and Parks (MECP) document entitled "Soil, Ground Water
SCS =	and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act
	For soil and groundwater analytical results, concentration exceeds the applicable Standards

1755 8 d C 2022

11:05

Mar-14

s6b

0

Image/Map Source: Google Earth Image

	1	-		L'A
Carlo and	1 and	1	r	
\backslash	Ех	cavat	ion Arc	ea 1
/	Bro	1		1
-	ok Road	Br		1
100		ock Road	1	1
3	2	amp	F	Ramp

Sample II	F2	
Sample Da	17-Nov-22	
Sample depth (2.3-2.4	
Parameter Units		Concentration
Antimony	µg/g	<0.20
Arsenic	µg/g	2.1
Selenium	µg/g	< 0.50

Sample ID:

Sample Date:

Sample depth (mbgs):

Antimony

Arsenic

Selenium

WS13

WS8

F2

WS11

BH105

Parameter Units Concentration

µg/g

µg/g

µg/g

WS8 17-Nov-22

1.8-1.9

< 0.20

1.1

< 0.50

BH	105			
Sample No.:	SS3	SS4		
Sample Depth (mbgs):	1.5-2.1	2.3-2.9		
Sample Date:	05-Mar-21	07-Apr-21		
Parameter	Result			
Antimony	15	<0.8		
Arsenic	1600	3.5		

Sample ID	:	WS13	DUP1 (WS13)
Sample Dat	Sample Date:		17-Nov-22
Sample depth (nbgs):	1.7-1.8	1.7-1.8
Parameter	Units	Сопсе	ntration
Antimony	µg/g	<0.20	<0.20
Arsenic	µg/g	1.6	1.3
Selenium	µg/g	< 0.50	< 0.50

				0	1.25	2.5 m			
	1.0								
DS CONSULTANTS LTD. 6221 Highway 7, UNIT 16 Very bar Orthoio 1 (11) 01/8	Project:	Project: SOIL REMEDIATION 1755 Pickering Parkway, Pickering ON							
Telephone: (905) 264-9393 www.dsconsultants.ca	Title:	POST REMEDIATION EXCAVATION 1 – HYD	CONFIRMATO	RY SAMPLING G METALS) IN				
	Size: 11x17	Approved By: R.	F. Drawn By:	S.Y	Date:	March 2023			
BATFIELD REALTY ADVISOR INC.	Rev.	- Scale: As Shov	n Project No.:	22-110-100	Figure No.:	R2A			
	0	Image/Map Source: Google Ear	h Image						

Sample ID):	WS1	
Sample Dat	te=	17-Nov-22	
Sample depth (Sample depth (mbgs):		
Parameter	Units	Concentration	
Antimony	Hg/g	<0.20	
Arsenic	µg/g	1,3	
Selenium	µg/g	<0.50	

WS1

E

Sample ID:

Sample Date: Sample depth (mbgs):

Antimony

Arsenic

Selenium

Parameter Units Concentration

µg/g

Hg/g

Ng/g

F1

WS11

17-Nov-22

1.8-1.9

< 0.20

<1.0

<0.50

Sample ID	F1			
Sample Dat	e:	17-Nov-22		
Sample depth (I	2.3-2.4			
Parameter	Units	Concentration		
Antimony	µg/g	<0.20		
Arsenic	Hg/g	1.4		
Selenium	µg/g	<0.50		

ed	er	hd
-99	-	194

Monitoring Well - Others

Sample Exceeds Applicable Standards

Confirmatory Sample Sample Met Applicable Standards

Sample ID	:	EX2-F2	DUP2 (EX2	
Sample Dat	te:	17-Nov-22	17-Nov-2	
Sample depth (mbgs):	2.3-2.4	2.3-2.4	
Parameter	Parameter Units		ntration	
Antimony	µg/g	<0.20	< 0.20	
Arsenic	µg/g	1	<1.0	
Selenium	µg/g	< 0.50	< 0.50	

BH	1110		
Sample No.:	SS3	SS4	
Sample Depth (mbgs):	1.5-2.1	2.3-3.0	
Sample Date:	11-Mar-21	07-Apr-21	
Parameter	Res	sult	
Antimony	6.3	<0.8 1.2	
Arsenic	730		

		Constanto	m	TUCAO			ampien		WS26
	-	Sample ID;		17 Nov 22		Sa	mple Da	te:	17-Nov-22
	- Sa	Sample donth	(mhach	16.17		Sample	e depth (mbgs):	1.9-2.0
	Sa	Daramata	el Haite	L.0-1./		Para	meter	Units	Concentration
		Antimonu	unta	concentration		Antii	nony	µg/g	<0.20
	1.0	Arconic	PS/S	11		Ars	enic	µg/g	1.5
		Salanium	Hg/g	-0.50		Selei	nium	μg/g	< 0.50
	-	-							
					W528		5 <i>m</i> _		
	Sample ID Sample Dat): te:	EX2-F1 17-Nov-22	2					
Sai	mple depth (mbgs):	2.3-2.4						
1.1	Parameter	Units Co	oncentrati	ion					
	American						-		
1	Antimony	µg/g	< 0.20			= 1	B	H110	F2
-	Arsenic	μg/g μg/g	<0.20 <1,0				Q	H110	F2
	Arsenic Selenium	µg/g µg/g µg/g	<0.20 <1.0 <0.50			F1	Q	H110	F2
Samp Sampl Maramo Antimony	Artimony Arsenic Selenium Selenium ele ID: e Date: pth (mbgs): eter Units y ug/g	μg/g μg/g μg/g WS21 17-Nov- 1.9-2.0 Concentra <0.20	<0.20 <1.0 <0.50 22) tion	WS21		F1	e	H110	F2
Samp Sampl Manual Sample Manual Antimony Arsenic	Arsenic Arsenic Selenium De ID: e Date: pth (mbgs): eter Units y µg/g µg/g	µg/g µg/g µg/g 17-Nov- 1.9-2.0 Сопсентга <0.20 <1.0	<0.20 <1.0 <0.50	WS21		F1	e	H110	F2
Samp Sampl Marianon Antimony Arsenic Selenium	Arsenic Arsenic Selenium De ID: e Date: pth (mbgs): eter Units y µg/g µg/g µg/g µg/g	μg/g μg/g μg/g WS21 17-Nov- 1.9-2.0 Concentra <0.20 <1.0 0,55	<0.20 <1.0 <0.50	WS21		F1	•	H110	F2
Samp Sampl ample dep Param Antimony Arsenic Selenium	Antimony Arsenic Selenium Selenium e Date: pth (mbgs): eter Units v µg/g µg/g h µg/g	μg/g μg/g μg/g μg/g 17-Nov- 1.9-2.0 Concentra <0.20 <1.0 0,55	<0.20 <1.0 <0.50	WS21	Sam	Sample I Sample Da ple depth Parameter ntimony	D: itte: (mbgs): Units µg/g	W: 17-N 1.9 Concen	F2 517 ov-22 -2.0 ttration .20
Samp Sampl mple deg Param Antimony Arsenic Selenium	Antimony Arsenic Selenium ble ID: e Date: pth (mbgs): eter Units y µg/g µg/g µg/g	μg/g μg/g μg/g μg/g 17-Nov- 1.9-2.0 Concentra <0.20 <1.0 0.55	<0.20 <1.0 <0.50	WS21	Sam Ar	Sample I Sample Da ple depth Parameter ntimony arsenic	D: ite: (mbgs): Units µg/g µg/g	W3 17-N 1.9 Concen <0 2	F2 517 ov-22 -2.0 ttration .20 .4

Legend

Phase Two Property

Excavation Area

Monitoring Well - Others

R.F.	Drawn By:	S.Y	Date:	March 2023
As Shown	Project No.:	22-110-100	Figure No.:	R2B
Cooole Farth Im	ae		1	

Client:

BAYFIELD REALTY

ADVISOR INC.

Size:

Rev.

11 X 17

Scale:

LEGEND Fill Bedrock

Parameter

Antimony

Arsenic

Selenium

Units

μg/g

µg/g

µg/g

Parameter Units

μg/g

µg/g

µg/g

Antimony

Arsenic

Selenium

Concentration

< 0.20

1.4

< 0.50

							BH110					
							San	npl	e No.:		SS3	SS4
		XA/	\$21	1			Sample Depth (mbgs):		ubgs):	1.5-2.1	2.3-3.0	
		17 N	<u>521</u>	-			Sam	nple	e Date	: 1	1-Mar-21	l 07-Apr-21
5a 5 (mhac).	10	-2.0	-			Pa	ran	neter		R	lesult
ı (or	IIInits	Concer	tration	-			Ar	ntin	nony		6.3	<0.8
			20	-			A	Arse	enic		730	1.2
	μg/g μg/g	<: 0.	1.0 55				$\left \right $	_				
	W	S28			=					Sample II):	WS26
	17-N	ov-22							S	ample Da	te:	17-Nov-22
):	1.6	5-1.7				T	$\langle \rangle$	\land	Samp	le depth (mbgs):	1.9-2.0
S	Concer	ntration					X		P	arameter	Units	Concentration
5	<().20				1			Ant	imony	μg/g	<0.20
5	1.1								Ar	senic	μg/g	1.5
5	<().50			·///			1 L	Sel	enium	μg/g	< 0.50
				0	0				Samp Samp Pa Ant	Sample ID ample Dat le depth (arameter imony	e: te: mbgs): Units μg/g	WS17 17-Nov-22 1.9-2.0 Concentration <0.20
			```	$\setminus$		$\checkmark$			Ar	senic	μg/g	2.4
					)				5616		μg/g	<0.50
	S	ample II	D:	EX2-F1			Sample II	D:		EX2-	F2	DUP2 (EX2-F1)
	Sa	mple Da	te:	17-Nov-22		5	Sample Da	te:		17-No	v-22	17-Nov-22
	Sample	e depth (	(mbgs):	2.3-2.4		Samp	le depth (	mb	ogs):	2.3-2	2.4	2.3-2.4
	Pa	rameter	Units	Concentration		P	arameter	U	nits		Concen	tration
	Antir	nony	μg/g	<0.20		An	timony	μ	ıg/g	<0.2	20	< 0.20
	Arse	enic	μg/g	<1.0		Aı	rsenic	μ	ıg/g	1		<1.0
	Seler	nium	μg/g	<0.50		Sel	enium	μ	ιg/g	< 0.5	0	< 0.50
						-			~ ~			



Concentration

< 0.20

2.1

< 0.50

Fill

Silty Clay to Clayey Silt, Silt and Clay

**EXCAVATION 2** 

- WELL SYMBOL WELL SCREEN

# 1755 Pickering Parkway, Pickering ON

## SECTION A-A' WITH H-FORMING METAL IMPACTS IN SOIL

- /				
	Drawn By:		Date:	
R.F		S.Y		January 2023
	Project No:		Figure No.	
As Shown		22-110-100		R3Bi





Antimony

Arsenic

Selenium

< 0.20

1.4

< 0.50

μg/g

µg/g

µg/g

Antimony

Arsenic

Selenium

					BH110				
					Sample No.:			SS3	SS4
D.	W	521	ן		Sample Depth (mbgs):			1.5-2.1	2.3-3.0
te:	17-N/		1		Sam	ple Date	: 1	1-Mar-21	07-Apr-21
mbgs):	19.	-2.0	-		Pa	rameter		R	lesult
Units	Concen	tration			Ar	ntimony		6.3	<0.8
ug/g	<0	.20			A	rsenic		730	1.2
μg/g	<1	.0							
μg/g	0.5	55		2					
					Х				
WS	20	л /	$\wedge$ $\dot{\mathbf{T}}$	· /	$\langle \ \rangle$		Sample II	<b>)</b> .	W\$26
17-No	<u>40</u> v-22	+					Sample II	). to:	17-Nov-22
1,-10	17	- / -				Samn	le denth (	mhos).	19-20
Concent	ration					P	arameter	Units	Concentration
< 0.2	20					Ant	imonv	ug/g	< 0.20
1.1	1.1					Ar	senic	μg/g	1.5
< 0.5	<0.50				<b>/</b>	Sel	enium	μg/g	< 0.50
							Sample II	).	WS17
		V				S	ample Da	r. te	17-Nov-22
			> ∖			Samp	le depth (	mbgs):	1.9-2.0
				$\mathbf{O}$	$\frown$	- P	arameter	Units	Concentration
						Ant	imony	μg/g	<0.20
		$\backslash$				Ar	senic	μg/g	2.4
				$\neg$		Sel	enium	μg/g	<0.50
Sai	mple ID	):	EX2-F1		Sample II	);	EX2-	F2	DUP2 (EX2-F1)
Sam	ple Da	te:	17-Nov-22		Sample Da	te:	17-No	v-22	17-Nov-22
Sample o	depth (	mbgs):	2.3-2.4	Samp	ole depth (	mbgs):	2.3-2	2.4	2.3-2.4
Para	meter	Units	Concentration	F	Parameter	Units		Concent	tration
Antimo	ony	μg/g	<0.20	An	timony	μg/g	<0.2	20	<0.20
Arsen	nic	μg/g	<1.0	A	rsenic	μg/g	1		<1.0
Seleni	um	μg/g	<0.50	Se	lenium	enium μg/g <			< 0.50



< 0.20

2.1

< 0.50

μg/g

µg/g

µg/g

Fill

Silty Clay to Clayey Silt, Silt and Clay

**EXCAVATION 2** 

- WELL SYMBOL WELL SCREEN

## 1755 Pickering Parkway, Pickering ON

# SECTION A-A' WITH H-FORMING METAL IMPACTS IN SOIL

,				
	Drawn By:		Date:	
R.F		S.Y		January 2023
	Project No:		Figure No.	
As Shown		22-110-100		R3C





				BH105											
		Sam	ple No.:	SS3	SS3 SS4										
		Sample Depth (mbgs)			2.	.3-2.9		EX	CAVAT	ΓΙΟ	N 1				
		Sample Date:			1 07-	Apr-21									
		Par	ameter	I	Result										
		An	timony	15		<0.8									
		Arsenic				3.5									
						$\rightarrow$		2	$\overline{}$	Γ	Samp	ole ID:	WS13	DUP1 (WS13	)
	Г	Samulo II	).	W/\$8		Æ.	$ \not\leftarrow $	9			Sampl	e Date:	17-Nov-22	17-Nov-22	
	-	Sample Date		17-Nov-22				I	$\backslash$		Sample depth (mbgs):		1.7-1.8 1.7-1.8		ł
	-	Sample denth (	mhøs).	18-19	~ / 9			В		, L	Param	eter Units	Conce	entration	
	-	Parameter	Units Co	ncentration	$\sim$					$\backslash$	Antimony	y µg/g	<0.20	<0.20	
		Antimony	ия/я	<0.20						.)	Arsenic	μg/g	1.6	1.3	
		Arsenic	119/9	1.1							Selenium	n µg/g	< 0.50	< 0.50	
		Selenium	нв/в ug/g	< 0.50						V					
	L		10/0						/	1				_	
											Sam	ple ID:	WS11	_	
		Sampl	e ID:	WS1							Samp	le Date:	17-Nov-22	_	
		Sample	Date:	17-Nov-22						/	Sample de	pth (mbgs):	1.8-1.9	1	
		Sample dept	th (mbgs):	1.7-1.8		\	Ų.			/	Paran	ieter Units	Concentration	n	
		Parame	ter Units	Concentration			×(/)				Antimon	y µg/g	<0.20	_	
		Antimony	μg/g	<0.20							Arsenic	μg/g	<1.0	_	
		Arsenic	μg/g	1.3		<b>X</b>		Ĭ <b>Ŏ</b> Ţ			Seleniun	n µg/g	<0.50		
		Selenium	µg/g	<0.50		X			$\times$						
Sa					Sample ID: F2			Sample ID:			F1			WEL	L SYMBOL
	-111			Sample Da	Sample Date:			Sample Date:		e:	17-Nov-22			WEL	L SCREEN
Silty Clay to Clayey Silt, Silt and			Sample depth	mbgs):	2.3-2.4	1	Sam	ple depth (1	mbgs):	2.3-2	.4		<b>D</b>		
			Parameter	Units	Concentration			Parameter	Units	Concent	ration		-	40	
			Antimony	μg/g	<0.20		A	ntimony	μg/g	<0.2	0	и Н	5	10m I	
				Arsenic	µg/g	2.1	1	A	Arsenic	μg/g	1.4				
			Selenium	µg/g	<0.50		S	elenium	μg/g	< 0.5	0	U V I	1	2m I	
							-								
					n	CONCULTANTE	TN	Project:							
					6221 Highway 7 LINIT 16				SUIL REMEDIATION						
Sample Met Applicable Standards				Va	aughan, Ontario L4F	1 0K8	1755 Pickering Parkway, Pickering ON								
	Sample Exceeds Applicable Standards				Telephone: (905) 264-9393				SECTION B-B' WITH H-FORMING METAL IMPACTS IN						SOIL
			×	W	ww.dsconsultants.ca	a		(PRE-RE	MED	IATION)					
Estimated Extent of H-Forming Metal Impacts in Soil			Client:	Client: BAYFIELD REALTY ADVISOR INC.				Approved B	y:		Drawn By:		Date:		
			В							R.F		S.Y	Janua	ry 2023	
								A	Scale:			Project No:		Figure No.	R3Di
									A	As Shown		22-110.100			

		Sam	ple No.:	SS3	SS3 SS4											
		Sample Depth (mbgs)			2.	3-2.9	EXCAVATION 1									
		Sam	05-Mar-2	05-Mar-21 07-Apr-21												
		Par	F	Result												
		An	15	<	<0.8											
		Arsenic		1600		3.5										
							$\times$	5			Samp	le ID:	WS13	DUP1 (WS13)		
	Г	Sample ID	):	WS8		/	$\left( - \right)$	10		_	Sample Date:		17-Nov-22	17-Nov-22		
	F	Sample Date: 1		17-Nov-22		/ 9		T	$\backslash$		Sample depth (mbgs):		1.7-1.8 1.7-1.8			
		Sample depth (	mbgs):	1.8-1.9		/			$\backslash$		Parameter Units		Conce	entration	_	
		Parameter	Units Co	ncentration		<u> </u>	m \		,	$\setminus$	Antimony	γ µg/g	<0.20	< 0.20		
		Antimony	μg/g	<0.20				1		<u></u>	Arsenic	μg/g	1.6	1.3	_	
		Arsenic	μg/g	1.1							Selenium	μg/g	<0.50	<0.50		
	Ľ	Selenium	μg/g	<0.50						X						
							$\backslash$		/		Samp	ole ID:	WS11	Γ		
		Sample	e ID:	WS1							Sampl	e Date:	17-Nov-22			
		Sample	Date:	17-Nov-22							Sample dep	pth (mbgs):	1.8-1.9	_		
		Sample dept	h (mbgs):	1.7-1.8						7	Param	eter Units	Concentration	1		
		Paramet	Concentration		\				/	Antimony	y μg/g	< 0.20				
		Antimony	μg/g	< 0.20		H			$\rightarrow$		Arsenic	μg/g	<1.0			
		Arsenic	μg/g	1.3				<b>OTO</b>			Selenium	n μg/g	< 0.50	-		
		Selenium	μg/g	<0.50			$\checkmark$	Ϋ́	$\mathbf{\mathbf{X}}$	L.						
				Sample II	):	F2		Sample ID:			F1			WELL	SYMBOL	
				Sample Da	te:	17-Nov-2	22 Sample Date:		te:	17-Nov	-22		WELL	SCREEN		
Silty Clay to Clayey Silt, Silt and			Sample depth (	mbgs):	2.3-2.4		Sam	ple depth (	mbgs):	2.3-2.	.4					
	- <b>J</b>			Parameter	Units	Concentrat	ion		Parameter	Units	Concentr	ation	0	-	40	
			Antimony	μg/g	< 0.20		A	ntimony	μg/g	<0.20	0	U H I	5	10m		
			Arsenic	µg/g	2.1		1	Arsenic	μg/g	1.4						
				Selenium	µg/g	< 0.50		S	elenium	μg/g	<0.50	0	U V I	1	2m I	
LEGEND SCONSUL						6 CONSULTAI	NTS LTD.	Project:	SOIL RE	MEDIA						
6221 Highway				21 Highway 7,	, UNIT 16	1755 Pickering Parkway, Pickering ON										
			ughan, Ontari	o L4H 0K8	Title:	OFOTIO		, NA/ITI I I								
Sample Exceeds Applicable Standards				www.dsconsult				(POST-R			i-rukiviin )		WPACIS IN S			
				Client:				Size:	Approved B	y:		, Drawn By:		Date:		
			В	BAYFIELD REALTY ADVISOR INC.			8.5 x 11			R.F		S.Y	Januar	y 2023		
			Ā				Rev.	Scale:		[	Project No:		Figure No.			
									A	As Shown		22-110.100		K3E		

Path:j:\-gis\2022 projects\22-110-100 1755 and 1805 pickering parkway, pickering\7-misc\cad\figure r4 - exposure pathways and receptors - pre-.dwg


Path:j:\-gis\2022 projects\22-110-100 1755 and 1805 pickering parkway, pickering\7-misc\cad\figure r5 - exposure pathways and receptors - post.dwg





Your Project #: 22-110-100 Site Location: 1755 PICKERING PKWY - EX2 Your C.O.C. #: n/a

#### Attention: Rick Fioravanti

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/11/18 Report #: R7394690 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

#### BUREAU VERITAS JOB #: C2X8660 Received: 2022/11/17, 18:25

Sample Matrix: Soil # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Extractable Metals by ICPMS	7	2022/11/18	2022/11/18	CAM SOP-00447	EPA 6020B m

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.



Your Project #: 22-110-100 Site Location: 1755 PICKERING PKWY - EX2 Your C.O.C. #: n/a

#### Attention: Rick Fioravanti

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/11/18 Report #: R7394690 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C2X8660 Received: 2022/11/17, 18:25

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

-----

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



## **O.REG 153 ICPMS METALS (SOIL)**

Bureau Veritas ID				UIL980		UIL981		UIL982	UIL982	UIL983		
Sampling Date				2022/11/17		2022/11/17		2022/11/17	2022/11/17	2022/11/17		
COC Number				n/a		n/a		n/a	n/a	n/a		
		UNITS	Criteria	EX2-F1	QC Batch	EX2-F2	QC Batch	WS17	WS17 Lab-Dup	WS21	RDL	QC Batch
Metals												
Acid Extractable Antimor	ny (Sb)	ug/g	7.5	<0.20	8353941	<0.20	8353944	<0.20	<0.20	<0.20	0.20	8353941
Acid Extractable Arsenic	(As)	ug/g	18	<1.0	8353941	1.0	8353944	2.4	2.5	<1.0	1.0	8353941
Acid Extractable Seleniun	n (Se)	ug/g	2.4	<0.50	8353941	<0.50	8353944	<0.50	<0.50	0.55	0.50	8353941
No Fill	No E	xceeda	nce									
Grey	Exce	eds 1 cr	iteria pol	icy/level								
Black	Exce	eds bot	h criteria,	/levels								
RDL = Reportable Detecti	ion Limi	t										
QC Batch = Quality Contr	ol Batch	า										
Lab-Dup = Laboratory Ini	tiated D	uplicate	2									
Criteria: Ontario Reg. 153 Table 2: Full Depth Gener	8/04 (An ric Site (	nended Conditio	April 15, n Standa	2011) rds in a Potab	le Ground V	Water Conditi	on					

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Bureau Veritas ID				UIL984	UIL985	UIL986		
Sampling Date				2022/11/17	2022/11/17	2022/11/17		
COC Number				n/a	n/a	n/a		
		UNITS	Criteria	WS26	WS28	DUP2	RDL	QC Batch
Metals								
Acid Extractable Antimony (Sb) ug/g 7.5 <0.20 <0.20 <0.20 0.20 83539							8353941	
Acid Extractable A	Arsenic (As)	ug/g	18	1.5	1.1	<1.0	1.0	8353941
Acid Extractable Selenium (Se) ug/g 2.4 <0.50 <0.50 <0.50 0.50						8353941		
No Fill	No Exceedan	ce						
Grey	Exceeds 1 cri	teria po	licy/level					
Black	Exceeds both	criteria	/levels					
RDL = Reportable	Detection Limi	t						
QC Batch = Qualit	y Control Batch	1						
Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil								



## **TEST SUMMARY**

Bureau Veritas ID: Sample ID: Matrix:	UIL980 EX2-F1 Soil					Collected: Shipped: Received:	2022/11/17 2022/11/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	by ICPMS	ICP/MS	8353941	2022/11/18	2022/11/18	Viviana Ca	nzonieri
Bureau Veritas ID: Sample ID: Matrix:	UIL981 EX2-F2 Soil					Collected: Shipped: Received:	2022/11/17 2022/11/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	oy ICPMS	ICP/MS	8353944	2022/11/18	2022/11/18	Viviana Ca	nzonieri
Bureau Veritas ID: Sample ID: Matrix:	UIL982 WS17 Soil					Collected: Shipped: Received:	2022/11/17 2022/11/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	by ICPMS	ICP/MS	8353941	2022/11/18	2022/11/18	Viviana Ca	nzonieri
Bureau Veritas ID: Sample ID: Matrix:	UIL982 Dup WS17 Soil					Collected: Shipped: Received:	2022/11/17 2022/11/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	by ICPMS	ICP/MS	8353941	2022/11/18	2022/11/18	Viviana Ca	nzonieri
Bureau Veritas ID: Sample ID: Matrix:	UIL983 WS21 Soil					Collected: Shipped: Received:	2022/11/17 2022/11/17
Test Description			D a L a L				
		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	by ICPMS	ICP/MS	8353941	Extracted 2022/11/18	Date Analyzed 2022/11/18	Analyst Viviana Ca	nzonieri
Bureau Veritas ID: Sample ID: Matrix:	UIL984 WS26 Soil	ICP/MS	8353941	Extracted 2022/11/18	Date Analyzed 2022/11/18	Analyst Viviana Ca Collected: Shipped: Received:	nzonieri 2022/11/17 2022/11/17
Acid Extractable Metals D Bureau Veritas ID: Sample ID: Matrix: Test Description	UIL984 WS26 Soil	ICP/MS	Batch	Extracted 2022/11/18 Extracted	Date Analyzed 2022/11/18 Date Analyzed	Analyst Viviana Ca Collected: Shipped: Received: Analyst	nzonieri 2022/11/17 2022/11/17
Acid Extractable Metals of Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b	UIL984 WS26 Soil	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 8353941 Batch 8353941	Extracted 2022/11/18 Extracted 2022/11/18	Date Analyzed           2022/11/18           Date Analyzed           2022/11/18	Analyst Viviana Ca Collected: Shipped: Received: Analyst Viviana Ca	nzonieri 2022/11/17 2022/11/17 nzonieri
Acid Extractable Metals D Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix:	UIL984 WS26 Soil Dy ICPMS UIL985 WS28 Soil	Instrumentation ICP/MS Instrumentation ICP/MS	Batch 8353941 Batch 8353941	Extracted 2022/11/18 Extracted 2022/11/18	Date Analyzed           2022/11/18           Date Analyzed           2022/11/18	Analyst Viviana Ca Collected: Shipped: Received: Viviana Ca Viviana Ca Collected: Shipped: Received:	nzonieri 2022/11/17 2022/11/17 nzonieri 2022/11/17 2022/11/17
Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description Acid Extractable Metals b Bureau Veritas ID: Sample ID: Matrix: Test Description	UIL984 WS26 Soil Dy ICPMS UIL985 WS28 Soil	Instrumentation ICP/MS Instrumentation ICP/MS INSTRUMENTATION	Batch 8353941 Batch 8353941 Batch	Extracted 2022/11/18 Extracted 2022/11/18 Extracted	Date Analyzed 2022/11/18 Date Analyzed 2022/11/18 Date Analyzed	Analyst Viviana Ca Collected: Shipped: Received: Analyst Viviana Ca Collected: Shipped: Received: Analyst	nzonieri 2022/11/17 2022/11/17 nzonieri 2022/11/17 2022/11/17

Page 4 of 9

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



## **TEST SUMMARY**

Bureau Veritas ID: Sample ID: Matrix:	UIL986 DUP2 Soil					Collected: 2022/11/17 Shipped: Received: 2022/11/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Acid Extractable Metals b	y ICPMS	ICP/MS	8353941	2022/11/18	2022/11/18	Viviana Canzonieri

Page 5 of 9 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



## **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

Page 6 of 9 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



## **QUALITY ASSURANCE REPORT**

DS Consultants Limited Client Project #: 22-110-100 Site Location: 1755 PICKERING PKWY - EX2 Sampler Initials: AG

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RPI	)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8353941	Acid Extractable Antimony (Sb)	2022/11/18	87	75 - 125	98	80 - 120	<0.20	ug/g	NC	30
8353941	Acid Extractable Arsenic (As)	2022/11/18	90	75 - 125	100	80 - 120	<1.0	ug/g	0.53	30
8353941	Acid Extractable Selenium (Se)	2022/11/18	94	75 - 125	103	80 - 120	<0.50	ug/g	NC	30
8353944	Acid Extractable Antimony (Sb)	2022/11/18	101	75 - 125	101	80 - 120	<0.20	ug/g		
8353944	Acid Extractable Arsenic (As)	2022/11/18	96	75 - 125	99	80 - 120	<1.0	ug/g	3.0	30
8353944	Acid Extractable Selenium (Se)	2022/11/18	99	75 - 125	103	80 - 120	<0.50	ug/g		
Duplicate: Pa	Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.									

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



#### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Page 8 of 9 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



# Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

**Result Exceedances** 

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS
No Exceedances						
The exceedance summa	ary table is for information purp	oses only and should no	ot be considered a compreh	ensive listing or	statement of	conformance to
applicable regulatory g	uidelines.					



Your Project #: 22-110-100 Site Location: 1755 PICKERING PKWY - EX1 Your C.O.C. #: n/a

#### Attention: Rick Fioravanti

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/11/18 Report #: R7394417 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

#### BUREAU VERITAS JOB #: C2X8677 Received: 2022/11/17, 18:25

Sample Matrix: Soil # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Acid Extractable Metals by ICPMS	7	2022/11/18	2022/11/18	CAM SOP-00447	EPA 6020B m

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.



Your Project #: 22-110-100 Site Location: 1755 PICKERING PKWY - EX1 Your C.O.C. #: n/a

#### Attention: Rick Fioravanti

DS Consultants Limited 6221 Highway 7, Unit 16 Vaughan, ON CANADA L4H 0K8

> Report Date: 2022/11/18 Report #: R7394417 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C2X8677 Received: 2022/11/17, 18:25

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to: Ashton Gibson, Project Manager Email: Ashton.Gibson@bureauveritas.com Phone# (905)817-5765

-----

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



## **O.REG 153 ICPMS METALS (SOIL)**

Bureau Veritas ID					UIM063	UIM064	UIM065	UIM066	UIM067		
Sampling Date					2022/11/17	2022/11/17	2022/11/17	2022/11/17	2022/11/17		
COC Number					n/a	n/a	n/a	n/a	n/a		
		UNITS	Criteria	Criteria-2	WS1	WS8	WS11	WS13	F1	RDL	QC Batch
Metals							•			•	
Acid Extractable Antimo	ony (Sb)	ug/g	7.5	7.5	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	8353941
Acid Extractable Arsenio	c (As)	ug/g	18	18	1.3	1.1	<1.0	1.6	1.4	1.0	8353941
Acid Extractable Seleniu	ım (Se)	ug/g	2.4	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	8353941
No Fill	No Exc	eedanc	e							-	
Grey	Exceeds 1 criteria policy/level										
Black	Exceeds both criteria/levels										

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)

Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition

Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil

Bureau Veritas II	C				UIM068	UIM069		
Sampling Date					2022/11/17	2022/11/17		
COC Number					n/a	n/a		
		UNITS	Criteria	Criteria-2	F2	DUP1	RDL	QC Batch
Metals								
Acid Extractable	Antimony (Sb)	ug/g	7.5	7.5	<0.20	<0.20	0.20	8353941
Acid Extractable	Arsenic (As)	ug/g	18	18	2.1	1.3	1.0	8353941
Acid Extractable	Selenium (Se)	ug/g	2.4	2.4	<0.50	<0.50	0.50	8353941
No Fill	No Exceedance							
Grey	Exceeds 1 crit	teria pol	icy/level					
Black	Exceeds both	criteria	/levels					
RDL = Reportable	Detection Limi	t						
QC Batch = Quali	ty Control Batch	n						
Criteria: Ontario	Reg. 153/04 (An	nended	April 15,	2011)				
Table 2: Full Dept	th Generic Site C	Conditio	n Standa	rds in a Pot	able Ground V	Vater Conditio	on	
Soil - Residential/	Parkland/Instit	utional F	Property	Use - Coars	e Textured Soi	il		
Criteria-2: Ontari	Criteria-2: Ontario Reg. 153/04 (Amended April 15, 2011)							
Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition								
Soil - Residential/Parkland/Institutional Property Use - Coarse Textured Soil								



## **TEST SUMMARY**

Bureau Veritas ID:	UIM063					Collected:	2022/11/17
Matrix:	Soil					Received:	2022/11/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	oy ICPMS	ICP/MS	8353941	2022/11/18	2022/11/18	Viviana Ca	nzonieri
Bureau Veritas ID:	UIM064					Collected:	2022/11/17
Sample ID: Matrix:	WS8 Soil					Shipped: Received:	2022/11/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	oy ICPMS	ICP/MS	8353941	2022/11/18	2022/11/18	Viviana Ca	nzonieri
Bureau Veritas ID:	UIM065					Collected:	2022/11/17
Sample ID:	WS11					Shipped:	2022/44/47
Matrix:	Soll					Received:	2022/11/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	oy ICPMS	ICP/MS	8353941	2022/11/18	2022/11/18	Viviana Ca	nzonieri
Bureau Veritas ID:	UIM066					Collected:	2022/11/17
Sample ID: Matrix:	WS13 Soil					Shipped: Received:	2022/11/17
Matrix.	501					neceiveu.	2022/11/1/
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	y ICPMS	ICP/MS	8353941	2022/11/18	2022/11/18	Viviana Ca	nzonieri
Bureau Veritas ID:	UIM067					Collected:	2022/11/17
Sample ID:	F1					Shipped:	
Matrix:	Soil					Received:	2022/11/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	oy ICPMS	ICP/MS	8353941	2022/11/18	2022/11/18	Viviana Ca	nzonieri
Bureau Veritas ID:	UIM068					Collected:	2022/11/17
Matrix:	Soil					Received:	2022/11/17
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Acid Extractable Metals b	by ICPMS	ICP/MS	8353941	2022/11/18	2022/11/18	Viviana Ca	nzonieri
Bureau Veritas ID:	UIM069					Collected:	2022/11/17
Sample ID: Matrix:	DUP1 Soil					Shipped: Received:	2022/11/17
<b>T</b> . ( <b>D</b>							
Lest Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst	

Page 4 of 8

Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



## **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 1.3°C

Results relate only to the items tested.

Page 5 of 8 Bureau Veritas 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvna.com



## QUALITY ASSURANCE REPORT

DS Consultants Limited Client Project #: 22-110-100 Site Location: 1755 PICKERING PKWY - EX1 Sampler Initials: AG

			Matrix Spike		SPIKED BLANK		Method Blank		RPE	)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8353941	Acid Extractable Antimony (Sb)	2022/11/18	87	75 - 125	98	80 - 120	<0.20	ug/g	NC	30
8353941	Acid Extractable Arsenic (As)	2022/11/18	90	75 - 125	100	80 - 120	<1.0	ug/g	0.53	30
8353941	Acid Extractable Selenium (Se)	2022/11/18	94	75 - 125	103	80 - 120	<0.50	ug/g	NC	30

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



#### VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.



# Exceedance Summary Table – Reg153/04 T2-Soil/Res-C

**Result Exceedances** 

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS		
No Exceedances								
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to								
applicable regulatory guid	lelines.							

## Exceedance Summary Table – Reg153/04 T3-Soil/Res-C

**Result Exceedances** 

Sample ID	Bureau Veritas ID	Parameter	Criteria	Result	DL	UNITS	
No Exceedances							
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to							
applicable regulatory guidelines.							



# Appendix F



The Regional Municipality of Durham

Planning and Economic Development Department

**Planning Division** 

605 ROSSLAND RD. E. 4TH FLOOR PO BOX 623 WHITBY ON L1N 6A3 CANADA 905-668-7711 1-800-372-1102 Fax: 905-666-6208 Email: planning@durham.ca

#### www.durham.ca

Brian Bridgeman, MCIP, RPP Commissioner of Planning and Economic Development Patrick (Rick) Fioravanti, B.Sc., P.Geo, QP_{ESA} Manager, Environmental Services DS Consultants Ltd. 6221 Highway 7, Unit 16

Dear Rick,

March 13, 2023

Vaughan, ON L4H 0K8

Re:Notice of Approval Pursuant to Section 35 (3) of Ont.<br/>Reg. 153/04 Under the Environmental Protection Act<br/>(EPA)<br/>Request to Utilize Non-Potable Site Condition Standards<br/>Location:1755 Pickering Parkway<br/>City of Pickering<br/>Regional File No.:D15-NP-21-08

I am writing in response to the re-approval request, dated March 13, 2023. As indicated in your email, no new fill material or potentially contaminating activities have occurred on the subject properties since the last approval in March 3, 2022. As such, the Region continues to concur and accept your recommendation to use the Province's Table 3 non-potable groundwater condition standard for residential/parkland/institutional property use on the lands municipally known as 1755 Pickering Parkway in the City of Pickering.

Please note that this approval is conditional on the submission of the Record of Site Condition (RSC) within six months. If there is no movement towards filing of this RSC, the Region of Durham may revoke its approval. Please send the Region a copy of the Ministry of the Environment, Conservation and Parks Receipt and Acknowledgement of the RSC to my attention.

Please call me if you have any questions.

Yours truly,

Heather Finlay

Heather Finlay, MCIP, RPP, MPPAL Acting Manager, Transit Oriented Development

cc: A. Harras, Regional Clerk, Clerk's Department S. Cassel, City Clerk, City of Pickering

If this information is required in an accessible format, please contact Planning Reception at 1-800-372-1102, extension 2551.

