

603 – 699 Kingston Road, Town of Pickering

Functional Servicing and Stormwater Management Report

October 2023

Submitted by:

SCS Consulting Group Ltd 30 Centurian Drive, Suite 100 Markham, ON, L3R 8B8 Phone 905 475 1900 Fax 905 475 8335

Project Number: 2626

Table of Contents

Page

1.0	Introd	luction	1
1.1	L Purp	pose of the Report	1
1.2	2 Stuc	dy Area	1
1.3	B Bacl	kground Servicing Information	2
2.0		Sewer System	
2.1	L Exis	ting Storm Sewer System	4
		posed Storm Sewer System	
3.0		water Management	
3.1	L Exis	ting Drainage	6
		ting Peak Flows	
3.3	3 Stor	mwater Runoff Control Criteria	6
3.4	1 Stor	mwater Best Management Practices Selection	7
	3.4.1	At-Source Controls Evaluation	9
	3.4.2	Conveyance Controls Evaluation	9
	3.4.3	Proposed End-of-Pipe Controls	10
3.5		oosed Storm Drainage	
		Quantity Control	
	3.5.2	Quality Control	13
		Water Balance	
		Erosion Control	
	3.5.5	Emergency Overflow	14
4.0	Sanita	ary Servicing	15
4.1	L Exis	ting Sanitary Servicing	15
		oosed Sanitary Servicing	
		r Servicing	
		ting Water Servicing	
		posed Water Servicing	
			19
6.1	L Prop	posed Short-term Construction Dewatering	19
		oosed Long-term Groundwater Mitigation	
7.0	Gradi	ng	20
7.1	L Exis	ting Grading Conditions	
		oosed Grading Concept	
8.0	Erosic	on and Sediment Control During Construction	21
9.0	Summ	nary	22

•••

≻

List of Tables

- Table 2-1: Summary of Existing Peak Flows
- Table 2-2: Stormwater Runoff Control Criteria

Table 2-3: Summary of the Recommended Stormwater Best Management Practices (BMPs)

Table 2-4: Summary of 100 Year Release Rates

Table 2-5: Summary of 100 Year Storage Volumes

Table 2-6 Summary of Proposed Manufactured Treatment Devices

List of Figures

- Figure 1.1 Site Location Plan
- Figure 2.1 Proposed Storm Servicing Figure 1
- Figure 2.2 Proposed Storm Servicing Figure 2
- Figure 3.1 Existing Storm Drainage Plan 1
- Figure 3.2 Existing Storm Drainage Plan 2
- Figure 3.3 Proposed Storm Drainage Plan 1
- Figure 3.4 Proposed Storm Drainage Plan 2
- Figure 4.1 Proposed Sanitary Servicing Figure 1
- Figure 4.2 Proposed Sanitary Servicing Figure 2
- Figure 4.3 Proposed Sanitary Servicing Figure 3
- Figure 4.4 Proposed Sanitary Servicing Figure 4
- Figure 4.5 Proposed Sanitary Servicing Figure 5
- Figure 5.1 Proposed Watermain Servicing Figure 1
- Figure 5.2 Proposed Watermain Servicing Figure 2
- Figure 6.1 Proposed Grading Figure 1
- Figure 6.2 Proposed Grading Figure 2

List of Appendices

- Appendix A Site Plan
- Appendix B Background Information
- Appendix C Stormwater Management Calculations
- Appendix D Sanitary Sewer Capacity Analysis
- Appendix E Water Distribution Analysis
- Appendix F Manufactured Treatment Device Sizing and Maintenance Information

Submission History

Submission	Date	In Support Of	Distributed To
1 st	October, 2023	Re-Zoning	City of Pickering,
			Region, Region of
			Durham, Toronto
			Region
			Conservation
			Authority (TRCA),
			Ministry of
			Transportation
			(MTO), MECP,
			Sorbara
			Development
			Group

≻

1.0 Introduction

SCS Consulting Group Ltd. has been retained by Sorbara Development Group to prepare a Functional Servicing and Stormwater Management (SWM) Report for a proposed residential concept development located at Kingston Road and Whites Road North in the City of Pickering.

1.1 Purpose of the Report

The Functional Servicing and SWM Report has been prepared in support of the re-zoning applications for the proposed development. The Site Plan is provided in **Appendix A**.

The purpose of this report is to demonstrate that the proposed development can be accommodated by the external storm, sanitary and water infrastructure and to establish servicing and grading expectations for the future site plan application in accordance with the Town of Pickering, Toronto Region Conservation Authority (TRCA), Ministry of Transportation Ontario (MTO), and the Ministry of Environment, Conservation and Parks (MECP) design criteria.

1.2 Study Area

The proposed development is comprised of existing commercial and open space areas located within the Petticoat Creek Watershed in the Town of Pickering. As shown on **Figure 1.1**, the study area is bound by:

- Kingston Road North to the north;
- Highway 401 to the south;
- White's Road North to the east; and
- Existing commercial development to the west.

Figure 1.1: Site Location Plan

The proposed development is approximately 4.85 ha in size and consists of mid-rise and high-rise condo blocks, a park block, a proposed private or public (municipal) road running both east-west and north-south and a proposed private road running east-west (refer to the Site Plan in **Appendix A**). Access to the proposed development is proposed from Kingston Road via the proposed private or public (municipal) road extending south from the Steeple Hill/Kingston Road intersection.

1.3 Background Servicing Information

In preparation of the site servicing and SWM strategies, the following design guidelines and standards were used:

- City of Pickering Stormwater Management Design Guidelines (July 2019);
- Ontario Building Code (latest amendment);
- Toronto Region Conservation Authority Stormwater Management Criteria (August 2012); and
- Ministry of the Environment, Conservation and Parks (MECP) Stormwater Management Planning and Design Manual (March 2003).

The following reports have been referred to with regards to the proposed development (relevant excerpts are included in **Appendix B**):

 Functional Servicing Report – 603-643, 645-699 Kingston Road, prepared by WSP Canada Group Ltd. (April 2020);

- Updated Plan and Site Statistics Whites Road & Hwy 401, prepared by Graziani & Corazza Architects (June 2023);
- Boundary & Topographical Survey 603-643, 645-699 Kingston Road, prepared by R. Avis Surveying Inc. (November 2018);
- Phase One Environmental Site Assessment 603-643, 645-699 Kingston Road, prepared by Toronto Inspection Ltd. (April 2020);
- Stormwater Management Report 603-643, 645-699 Kingston Road, prepared by WSP Canada Group Ltd. (April 2020);

2.0 Storm Sewer System

2.1 Existing Storm Sewer System

As indicated in the Kingston Road plan and profiles (**Appendix B**), the sizes and locations of the existing storm sewers surrounding the site are:

- A 300 mm diameter PVC storm sewer on the north side of Kingston Road flowing southwest;
- A 300 mm diameter PVC storm sewer on the south side of Kingston Road flowing southwest;
- A 450 mm diameter PVC storm sewer on the south side of Kingston Road flowing northeast;
- A 450 mm diameter PVC storm sewer on the south side of Kingston Road flowing southwest; and
- A 1200 mm x 1200 mm concrete storm box culvert on Kingston Road flowing southeast

The 450 mm diameter storm sewers and the 1200 mm x 1200 mm box culvert on Kingston Road currently connect into an existing storm sewer within the subject site. This existing storm sewer outlets to an existing MTO drainage ditch via a headwall located at the southeast corner of the site.

2.2 Proposed Storm Sewer System

The storm sewer system (minor system) within the proposed development (**Figure 2.1** and **2.2**) is to be designed for the 5 year return storm per the City of Pickering standards. The storm sewer system will be designed in accordance with the City of Pickering, Ontario Building Code and MECP guidelines, including the following:

- Pipes to be sized to accommodate runoff from a 5 year storm event
- Minimum Pipe Size: 300 mm diameter
- Maximum Flow Velocity: 6.0 m/s
- Minimum Flow Velocity: 0.8 m/s
- Minimum Pipe Depth: 1.8 m to obvert

The existing storm sewers within the site will be removed and replaced with a proposed storm sewer system which will connect to the existing 1050 mm diameter concrete storm sewer located in the southeast corner of the site, as shown on **Figure 2.1 and 2.2.** The existing 1050 mm diameter concrete storm sewer currently connects to an existing headwall which outlets to the existing MTO drainage ditch. The proposed storm sewer will be installed within the Kingston Road R.O.W. directly fronting our site before entering the proposed development along the private or public road (north-south), and

then through a storm sewer easement (east-west, then north-south) within the private road, before connecting to the existing 1050 mm concrete storm sewer adjacent to the MTO setback limit. There will also be a storm sewer and storage system (box culvert) underneath the western portion of the private or public (municipal) road for stormwater management of the private or public road.

Each site plan block will be serviced by separate storm service connections to municipal sewers and will have individual on-site stormwater management facilities to control the storm flows.

Please refer to **Section 3.0** for details of the stormwater management strategy for the site.

3.0 Stormwater Management

3.1 Existing Drainage

The existing lands (4.85 ha) drain south to Highway 401 (Catchment 101 on **Figure 3.1** and **Figure 3.2**) via an existing internal storm sewer and overland flow. The storm sewer outlets to an existing ditch adjacent to Highway 401 which eventually outlets to a tributary of the Petticoat Creek.

External drainage north of the site (0.09 ha) from Kingston Road drains south via overland flow into the site where it is conveyed to the existing ditch system and tributary (Catchment EXT-1 on **Figure 3.1** and **Figure 3.2**).

3.2 Existing Peak Flows

The City of Pickering guidelines require the proposed release rates for the proposed development to be controlled to the existing peak runoff rates for the subject lands for the 2 through 100 year storm events. However, during a pre-consultation meeting on May 27th, 2019 with WSP Canada Group Ltd., it was noted that the 100 year post development flows shall be controlled to the 2 year pre-development level, refer to the SWM Report (April 2022) in **Appendix B**. The modified rational method was used to determine the target release rates from the site based on Intensity-Duration-Frequency (IDF) rainfall curves from the City of Pickering Design Standards. Supporting calculations are provided in **Appendix C**. **Table 2.1** summarizes the existing 2 year peak flow from the site to the Highway 401 outlet.

Return	Highway
Period	401 Outlet
Storm	(L/s)
2 Year	959.7

3.3 Stormwater Runoff Control Criteria

The following stormwater runoff control criteria have been established based on the City of Pickering design criteria (July 2019) and the MECP Stormwater Management Planning and Design Manual (2003). The stormwater runoff criteria are summarized below in **Table 2.2**.

Criteria	Control Measure
Quantity Control	Control proposed peak flows to existing peak flows for the 2 through 100 year storm events (City of Pickering, 2019). As per the pre-consultation meeting on May 27 th , 2019 with WSP Canada Group Ltd., the 100 year post development flows shall be controlled to the 2 year pre-development level (WSP SWM Report, 2021).
Quality Control	Provide MECP Enhanced (Level 1) Protection for 80% TSS Removal.
Erosion Control	Detention of the 5 mm rainfall runoff will be retained on site (City of Pickering, 2019).
Water Budget	Maintain existing groundwater recharge rates and appropriate distribution, ensuring the protection of related hydrology ecologic functions. At a minimum retain the equivalent of 5 mm of rainfall over the development under the Erosion Control criteria (City of Pickering, 2019)

Table 3-2: Stormwater Runoff Control Criteria

3.4 Stormwater Best Management Practices Selection

In accordance with the Ministry of Environment Stormwater Management Planning and Design Manual (2003), a review of stormwater management best practices was completed using a treatment train approach, which evaluated at-source, conveyance system, and end-of-pipe alternatives. The potential best management practices were evaluated based on the stormwater management objectives listed in **Table 2.2**.

The following site characteristics were taken into consideration:

- Developable area of 4.85 ha consisting of existing commercial developments;
- The site drains south to Highway 401 which eventually outlets to a tributary of Petticoat Creek and Lake Ontario;
- The is located approximately 200 m north of Lake Ontario;
- Based on the Geotechnical Investigation (Nov 2023), the site is consists of asphalt pavement underlain by a fill of sandy silt till, sand, silty sand and sand and gravel deposits;
- Based on the Hydrogeological Investigation (Nov 2023), the water table on site ranges from 96.53 to 103.57 masl and a depth between 1.4 m and 8.9 m below the ground surface. The hydraulic conductivity was determined to be approximately 5.0x10-4 cm/s within the sand and gravel unit; and

The majority of the development will consist of underground parking structures which limit opportunities for infiltration across the majority of the development outside the municipal ROW and private street.

The following are examples of at-source, conveyance and end-of-pipe controls that were evaluated for use in the proposed development. While evaluating the following controls, cost, feasibility, groundwater and grading constraints were taken into consideration.

At-Source Controls

At-source controls are at-source measures that reduce runoff prior to stormwater entering the conveyance system, such as:

- Increased topsoil depth;
- Roof leaders to grassed areas;
- At-source storage (i.e. rooftop or parking lot storage);
- Pervious pavements; and
- Infiltration trenches/soak-away pits.

Conveyance Controls

Conveyance controls provide treatment of stormwater during the transport of runoff from individual lots to the receiving watercourse or end-of-pipe facility. Examples of conveyance controls include:

- ➡ Grassed Swales;
- Pervious pipe system.

End-of-Pipe Controls

End-of-pipe stormwater management facilities receive stormwater flows from a conveyance system (i.e., storm sewers or ditches) and provide treatment of stormwater prior to discharging flows to the receiving watercourse. Typical end-of-pipe controls include:

- Wet ponds;
- Wetlands;
- Dry ponds;
- Infiltration basins; and
- Underground storage.

3.4.1 At-Source Controls Evaluation

It is noted these controls are proposed on private properties. Incorporating controls that require minimal routine maintenance can be an effective method in the treatment train approach to SWM. The following controls have been evaluated for use in the proposed development:

Increased Topsoil Depth

An increase in the proposed topsoil depth is recommended to promote at source infiltration (minimum 0.3 m depth). Increased topsoil depth will also contribute to at source quality and quantity control and will contribute to groundwater recharge. A topsoil depth of 0.30 m is proposed.

Roof Leaders to Surface

Roof drainage will be captured by the internal mechanical piping and directed to the sewers. Therefore, roof leaders directed to the surface are not feasible on the proposed residential towers.

Permeable Pavers

By encouraging infiltration and filtration, pervious pavement can contribute to water quality, balance and erosion control. Permeable pavers are proposed within the proposed municipal ROW.

Passive Landscaping

Planting of gardens and other vegetation designed to minimize local runoff or use rainwater as a watering source can be used to reduce rainwater runoff by increasing evaporation, transpiration, infiltration and contribute to groundwater recharge. Homeowner education should be encouraged to use passive landscaping practices as part of the homeowner turnover package of information. By promoting infiltration through passive landscaping, water quality and quantity control is provided for the volume of water infiltrated. Passive landscaping can provide significant stormwater management benefits as part of the overall treatment train approach for the proposed development.

3.4.2 Conveyance Controls Evaluation

Conveyance controls provide treatment of stormwater during the transport of runoff from individual lots to the receiving watercourse or end-of-pipe facility. The following conveyance controls have been evaluated for use in the proposed development:

Grassed Swales

Grassed swales conveying runoff promote infiltration, filtration, and evapotranspiration, contributing to water quality and quantity control, and contribute to groundwater recharge. Runoff from the proposed municipal park block will be conveyed to the municipal ROW via grassed swales. Additional details will be provided at the Site Plan Application stage.

3.4.3 Proposed End-of-Pipe Controls

While at-source and conveyance system controls are valuable components of the overall SWM plan, on their own they are not sufficient to meet the quantity and quality control objectives for the proposed development. End-of-pipe stormwater management facilities receive stormwater flows from a conveyance system (i.e., storm sewers or ditches) and provide treatment of stormwater prior to discharging flows to the receiving outlet. Accordingly, the following end-of-pipe controls have been evaluated for use in the proposed development:

Underground Storage

To meet quantity control targets, flow restrictors can be used to control stormwater release rates. To accommodate the reduced release rate, stormwater detention facilities are required to store stormwater runoff. Stormwater storage is proposed to be provided by on-site underground storage chambers (e.g., CULTEC or approved equivalent) and a proposed box culvert within the proposed development as shown on **Figure 3.3 and Figure 3.4**. Refer to **Section 3.5.2** for additional details.

Manufactured Treatment Device

A properly sized manufactured treatment device (MTD) can assist in providing MECP Enhanced (Level 1) treatment and can contribute to the treatment train approach for water quality control. **Appendix F.** It is recognized that TRCA policy only acknowledges 50% reduction of TSS by a gravity-based Oil-Grit Separator unit. Therefore, vortex-based HydroDome filtration units will be proposed to provide overall Enhanced quality control. Refer to **Section 3.5.1** for additional MTD details.

Table 2.3 below summarizes the recommended stormwater management BestManagement Practices (BMPs) for the proposed development.

Project No. 2626

Stormwater Management Control	Recommended BMP	
	Increased Topsoil Depth	
At-Source Controls	Permeable Pavers	
	Passive Landscaping	
Conveyance System Controls	Grassed Swales	
	Underground Stormwater	
End Of Pipe Controls	Detention System	
	Manufactured Treatment	
	Device	

Table 3-3: Summary of the Recommended Stormwater Best Management Practices(BMPs)

3.5 Proposed Storm Drainage

The proposed major and minor system flow patterns and drainage areas are shown on **Figure 3.3** and **Figure 3.4**. As illustrated, the proposed development will convey runoff to underground storage facilities prior to outletting to Highway 401 which eventually outlets to a tributary of Petticoat Creek.

Major and minor system flows from Catchments 201, 203 – 206 and 208 (0.54 ha, 0.53 ha, 0.63 ha, 0.43 ha, 0.39 ha, and 0.69 ha, respectively, **Figure 3.3** and **Figure 3.4**) will be captured via a proposed internal storm sewer system and detained on-site in underground storage tanks before outletting to Highway 401. Drainage from the proposed municipal right-of-way (Catchment 202, 0.87 ha, **Figure 3.3** and **Figure 3.4**) will be captured via the proposed internal storm sewer system and retained within a proposed municipal 1.8 m x 0.9 m box culvert before outletting to Highway 401.

The remaining 0.78 ha of the proposed development (Catchment 207, **Figure 3.3** and **Figure 3.4**) will drain uncontrolled to Highway 401.

3.5.1 Quantity Control

The proposed total 100 year piped release rate from the development will be controlled to the existing 2 year peak runoff rate to Highway 401 via orifice plates located on the downstream faces of the control manholes (**Figure 3.3** and **Figure 3.4**). Allowable release rates for each proposed catchment and block have been determined using the total allowable release rate from the development and area-weighted calculations. Proposed release rates and required storage volumes were calculated using the modified rational method and the IDF rainfall curves from the City of Pickering Design Standards. Calculations are included in **Appendix C**.

Project No. 2626

To accommodate the controlled release rate, six (6) underground stormwater detention systems (tanks incorporated into the underground parking garages) and a 1.8 m x 0.9 m box culvert within the municipal right-of-way are proposed, and are shown on **Figure 3.3** and **Figure 3.4**. Orifice plates located on the downstream faces of the control manholes will control the release rates from the underground storage tanks within the proposed development. The underground storage systems (CULTEC Recharger V8HD Chamber System or approved equivalent) will provide approximately 808 m³ of total detention storage in the underground detention tanks in the proposed parking garages and 122 m³ in the box culvert. A hydraulic grade line (HGL) analysis will be completed during the detailed design stage to ensure that any tailwater effects from the superpipe are considered and further analysis of pumping the tanks will be completed at detailed design.

Additional details will be provided at the site plan application stage. Calculations are provided in **Appendix C**. A summary of the quantity control provided is listed in **Table 3.4** and **Table 3.5**.

Catchment	100 Year Allowable Release Rate to Storm Sewer (L/s))	Controlled Site Release Rate (L/s)	Uncontrolled Site Release Rate (L/s)	Total Proposed Site Release Rate (L/s)
201	99.28	99.28	0	99.28
202	375.85	375.85	0	375.85
203	97.76	97.76	0	97.76
204	116.21	116.21	0	116.21
205	79.32	79.32	0	79.32
206	71.94	71.94	0	71.94
207	-	0	207.6	207.6
208	127.26	127.26	0	127.26
Total:	959.7	725.1	207.6	959.7

Table 3-4: Summary of 100 Year Release Rates

Table 3-5: Summary of 100 Year Storage Volumes

Catchment	Total Required 100 Year Storage (m ³)	Underground Storage System Provided (m ³)	Total Provided Storage (m ³)
201	135.5	136.0	136.0
202	115.9	121.5	121.5

Catchment	Total Required 100 Year Storage (m ³)	Underground Storage System Provided (m ³)	Total Provided Storage (m ³)
203	133.4	135.0	135.0
204	158.6	160.0	160.0
205	108.2	110.0	110.0
206	98.2	100.0	100.0
208	173.7	175.0	175.0
		Total:	937.5

3.5.2 Quality Control

Each site plan within the development is required to provide MECP Enhanced (Level 1) Protection (80% TSS removal). To contribute to the treatment train approach and to improve the level of quality control, six (6) MTD units, specifically six (6) Hydrodome filter units are provided to treat runoff from the proposed site plans prior to discharging to Highway 401. One (1) additional larger Hydrodome unit is proposed within the municipal R.O.W. to treat runoff from the municipal road, as well as provide additional treatment to the runoff from the site plans directly upstream of the unit. Summaries of the proposed MTD units for each private and municipal catchment is provided in **Table 3.6** and **Table 3.7** below.

Catchment	Proposed Manufactured Treatment Device (MTD)
201	Hydrodome HD 4
202	Hydrodome HD 8
203	Hydrodome HD 4
204	Hydrodome HD 4
205	Hydrodome HD 4
206	Hydrodome HD 4
208	Hydrodome HD 4

Table 3-6 Summary of Proposed Manufactured Treatment Devices (Site Plans)

Catchment	Proposed Manufactured Treatment Device (MTD)
202	Hydrodome HD 8

Sizing calculations, as well as operation and maintenance information is provided in **Appendix F**. Additional details will be provided at the site plan application stage.

3.5.3 Water Balance

In order to achieve the City of Pickering water balance criteria, the equivalent of the 5 mm rainfall event is required to be retained on-site. To achieve this, the underground detention tanks and box culvert are proposed to capture and retain the required volume. The 5 mm rainfall volume across the proposed development is 208.2 m³. Initial abstraction volumes will not be counted towards achieving the water budget, therefore retention of the total water balance volume of 208.2 m³. The provided water balance volume is 208.2 m³. Refer to calculations in **Appendix C**.

3.5.4 Erosion Control

The erosion control criteria is to retain the initial 5 mm runoff from the site. Where feasible, measures to retain the runoff volume from a 5 mm rainfall event will be incorporated.

3.5.5 Emergency Overflow

Perforated lids are proposed on the maintenance access manholes within the underground SWM tanks. In the event the proposed outlet structure becomes blocked, emergency flows will spill out of the manhole lid and be conveyed south to Highway 401. Refer to **Figure 3.3 and Figure 3.4**.

4.0 Sanitary Servicing

4.1 Existing Sanitary Servicing

As indicated in the Kingston Road plan and profiles **(Appendix B)**, the sizes and locations of the existing sanitary sewers surrounding the site are:

- A 300 mm asbestos cement sanitary sewer on the south side of Kingston Road, within a servicing easement on the property
- Two sanitary service connections servicing the existing property off the existing 300 mm asbestos cement sanitary sewer

The existing 300 mm asbestos cement on the property flows west parallel to Kingston Road and eventually to Rosebank Road where it turns south and flow under Highway 401. There are no existing sanitary sewers on Kingston Road except for an abandoned 150 mm PVC sanitary forcemain.

4.2 Proposed Sanitary Servicing

The sanitary servicing system within the proposed development (Figure 4.1 to 4.5) will be designed in accordance with the Durham Region and MECP criteria, including but not limited to:

- Residential Sanitary Generation Rate: 364 l/c/d
- Commercial Sanitary Generation Rate: 2.08 l/s/gross floor ha (including infiltration and peaking effect)
- Industrial/Schools & Institutions Sanitary Generation Rate: 1.04 l/s/gross ha (including infiltration and peaking effect)
- Population Density
 - Single Family (3.3 people/unit)
 - Townhouse (3.0 people/unit)
 - Apartments 1 Bedroom (1.5 people/unit)
 - Apartments 2 Bedroom (2.5 people/unit)
 - Apartments 3 Bedroom (3.5 people/unit)
 - Apartments 4 Bedroom or larger (4.5 people/unit)
- Peaking Factor: Harmon (Max. 3.8, Min. 1.5)
- Infiltration Rate: 0.26 L/s/ha
- Minimum Pipe Size: 200 mm diameter
- Minimum Pipe Cover: 2.75 m
- Minimum Actual Velocity: 0.60 m/s
- Maximum Velocity: 3.65 m/s

Through discussions with the Region of Durham, we were informed that the existing downstream sanitary sewer is already surcharging under existing conditions and an alternative sanitary solution along Kingston Road draining east should be explored to service the proposed development. Upon further review, it is determined that a new sanitary sewer along Kingston Road, draining east and connecting to the existing 750 mm sanitary trunk, located within an easement just east of the Highway 401 ramp is feasible to service the proposed development and any future developments in the area. A preliminary design of this sanitary solution has been prepared and submitted to the Region for review. The Region will confirm the downstream capacity of the 750 mm trunk sewer and the criteria to be used to detail design the proposed sanitary sewer. The preliminary layout of the proposed sanitary sewer on Kingston Road are shown on **Figures 4.1, 4.2, 4.3, 4.4 and 4.5.** The new sanitary trunk sewer within Kingston Road will have slopes ranging between 0.5% and 1.1% (typically) and will be provided at 3 m to 8.5 m deep, which is sufficient to service the proposed development. Refer to **Appendix D** for supporting calculations.

The existing 300 mm Asbestos Cement sanitary sewer within the subject site will be removed. New 200 mm, 300 mmm and 375 mm municipal PVC sanitary sewer system is proposed within the proposed municipal road and connect to the new sanitary sewer on Kingston Road, as shown on **Figures 4.1 and 4.2**. Each private development blocks will be serviced via separate sanitary service connections to the municipal sanitary sewers. The sanitary sewers within the site will have slopes ranging between 0.5% and 2% (typically) and will be provided at 3 m to 5 m deep, which is sufficient to service the proposed buildings within the development.

5.0 Water Servicing

5.1 Existing Water Servicing

As indicated in the Kingston Road plan and profiles (**Appendix B**), the following existing watermains surround the site:

 A 400 mm diameter ductile iron watermain on the north side of Kingston Road

There are two existing 300 mm PVC watermain connections currently servicing the site which will be reused. Any existing water servicing infrastructure located within the proposed development will be removed and decommissioned per City of Pickering/Durham Region's specifications and standards.

5.2 Proposed Water Servicing

Water supply for the proposed development will be provided from the existing 400 mm diameter ductile iron watermain on Kingston Road. A proposed 300mm diameter municipal watermain within the private or public (municipal) road shall service all private development blocks within the site via separate service connections, except for Tower 9 and 10 where existing service connections are being re-used. The municipal watermain shall be looped within the site and connect to the existing 400 mm diameter ductile iron watermain on Kingston Road in two locations.

The proposed municipal water distribution system will be designed in accordance with the Durham Region and MECP criteria, including but not limited to the following:

- Watermains shall be sized to carry the greater of maximum day plus fire flow or maximum hour demand
- Maximum Operating Pressures: 700 kPa
- Maximum Day and Fire Flow Minimum Pressures: 140 kPa
- Normal Operating Conditions Minimum Pressures: 275 kPa
- Population Density
 - Single Family (3.3 people/unit)
 - Townhouse (3.0 people/unit)
 - Apartments 1 Bedroom (1.5 people/unit)
 - Apartments 2 Bedroom (2.5 people/unit)
 - Apartments 3 Bedroom (3.5 people/unit)
 - Apartments 4 Bedroom or larger (4.5 people/unit)
- Minimum Pipe Size: 150 mm diameter (residential)
- Minimum Pipe Depth: 1.80 m
- Maximum Hydrant Spacing: 150 m (residential)

A hydrant flow test was completed on May 19, 2023 to determine existing flows and pressures for the Kingston Road watermain (**Appendix E**). The Domestic Water Modelling Analysis, prepared by Municipal Engineering Solutions (MES), and Fire Underwriters Survey 2020 calculations can be found in **Appendix E**. A summary of the domestic and fire demands in presented in **Table 5.1** below. The proposed watermain layout is shown on **Figures 5.1 and 5.2**.

No.	Demand Type	Total Demand
1	Average Day	45.45 L/s
2	Peak Hour	136.35 L/s
3	Maximum Day	90.90 L/s
4	Fire Flow	150 L/s
		(9,000 L/min)
5	Maximum Day + Fire Flow	240.90 L/s
		(14,454 L/min)

Table 5.1: Water Demands and Pressures

According to the water model completed by MES, using the two (2) hydrant flow tests results as boundary conditions to calibrate the model, the available fire flow within the existing 400 mm diameter watermain on Kingston Road has a fire flow of 262.4 L/s at 20 psi (140 kPa) for Test A and 241.8 L/s at 20 psi (140 kPa) for Test B. Taking into account the maximum day demand of 90.90 L/s and pressure losses through water meters and appurtenances, the available fire flow of Test B in the existing watermain drops to 147 L/s, which is slightly below the fire flow demand of 150 L/s. However, the domestic flow calculations have been evaluated on a conservative unit bedroom count of 2.5 bedrooms per unit, assuming all units being a 2-bedroom apartment. This assumption was made due to detailed unit bedroom information being unavailable. More detailed unit bedroom type information will be available in later stages of the project and will reveal a more accurate domestic flow, which we anticipate will be lower than the current calculated demand. Therefore, we anticipate that there will be sufficient flow along the existing watermain to supply the proposed development with fire and domestic demands. Refer to Appendix E for the Domestic Water Modelling Analysis and Fire Underwriters Survey 2020 calculations, prepared by Municipal Engineering Solutions (MES).

6.0 Groundwater

A Hydrogeological Investigation was prepared by Toronto Inspection Ltd. to investigate the soil and groundwater conditions on site. The highest existing groundwater level was measured by Toronto Inspection Ltd. May 7, 2019 at 1.4 mbg, or 103.57 m in elevation.

The groundwater quality was also assessed, and with the exception of Total Suspended Solids (TSS), and was found to exceed the receiving sewer By-law criteria of the storm sewer system. Additionally, all parameters, including TSS were found to have met the criteria for the receiving sewer By-Law criteria for the sanitary sewer.

6.1 Proposed Short-term Construction Dewatering

During construction, Toronto Inspection Ltd. expects that dewatering will be required to draw the water level down to below the depth of excavation required for the parking and building foundations. Some water is expected to collect in the base of the excavation due to precipitation events and from perched groundwater conditions. The estimated daily short-term pumping rate was determined to be approximately 8.7 L/s. It is anticipated that construction dewatering will be discharged to the existing sanitary sewer system.

6.2 Proposed Long-term Groundwater Mitigation

As recommended by Toronto Inspection Ltd., the proposed building foundations are expected to require permanent foundation drainage. The building foundations are expected to extend below the seasonal high water table and therefore, a method of groundwater control may be required to manage groundwater seepage around the foundation floor and walls. If foundation drains are used as the management method, it is anticipated that approximately one-third the rate of short-term dewatering, 1.5 L/s may be required long-term to discharge to the City storm sewers. It is noted that this represents approximately 0.1% of the site release rate and therefore is negligible.

7.0 Grading

7.1 Existing Grading Conditions

Under existing conditions, the majority of the site drains from north to south towards Highway 401. The ground surface elevations through the site range on average from approximately 107.31 m to 103.85 m.

7.2 Proposed Grading Concept

In general, the proposed development will be graded in a manner which satisfies the following goals:

Satisfy the City of Pickering lot and road grading criteria, create required depth for sanitary sewer, as well as provision of an efficient earthworks program, including:

- Minimum Road Grade: 0.5%
- Maximum Road Grade: 6.0%
- Minimum Lot Grade: 2%
- Maximum Lot Grade: 5%
- Minimum Driveway Grade: 2%
- Maximum Driveway Grade: 8%
- Eliminate the need for retaining walls
- Minimize the volume of earth to be moved and minimize cut/fill differentials
- Achieve the stormwater management objectives required for the proposed development.

A preliminary grading plan is provided on **Figures 6.1 and 6.2**. The site will generally be graded to match existing elevations along the boundaries on all sides. As illustrated in **Figures 6.1 and 6.2**, the preliminary internal road grades will approximately range from 0.5% to 2.4%.

At the site plan application stage, the preliminary grading shown on **Figures 6.1 and 6.2** will be subject to a more in-depth analysis in an attempt to balance the cut and fill volumes and minimize slopes and retaining walls.

Project No. 2626

8.0 Erosion and Sediment Control During Construction

During the detailed design stage, erosion and sediment control measures will be designed with a focus on erosion control practices (such as stabilization, track walking, staged earthworks, etc.) as well as sediment controls (such as fencing, mud mats, catchbasin sediment control devices, rock check dams and temporary sediment control ponds). These measures will be designed and constructed as per the "Erosion and Sediment Control Guide for Urban Construction" document published by the Greater Golden Horseshoe Area Conservation Authorities (December 2019). A detailed erosion and sediment control plan will be prepared for review and approval by the City of Pickering and TRCA prior to any site grading being undertaken. This plan will address phasing, inspection and monitoring aspects of erosion and sediment control. All reasonable measures will be taken to ensure sediment loading to the adjacent watercourses and properties are minimized both during and following construction.

9.0 Summary

This Functional Servicing and Stormwater Management Report has outlined the means by which:

- The site can be serviced by full municipal services (storm, sanitary and water);
- The Site Plan layout supports the stormwater management requirements.

This Functional Servicing and Stormwater Management Report has outlined the means by which proposed development at 603 – 699 Kingston Road will meet the objectives of the City of Pickering Stormwater Management Guidelines through the following measures:

Quantity Control

- Runoff from the development during the 100 year storm event will be limited to the 2 year existing design flow rate;
- Stormwater quantity control will be achieved through orifice control with stormwater storage provided by six (6) underground storage chambers and a proposed box culvert in the municipal R.O.W.

Quality Control

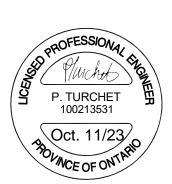
- To provide enhanced level treatment (80% TSS Removal) six (6)
 HydroDome units are proposed within the proposed site plans and one (1)
 HydroDome is proposed within the municipal R.O.W.
- Additional treatment will be provided by permeable pavers within the municipal R.O.W.

Water Balance

 On-site retention of runoff from a 5 mm rainfall event is provided through storage in the proposed underground storage tanks.

Erosion Control

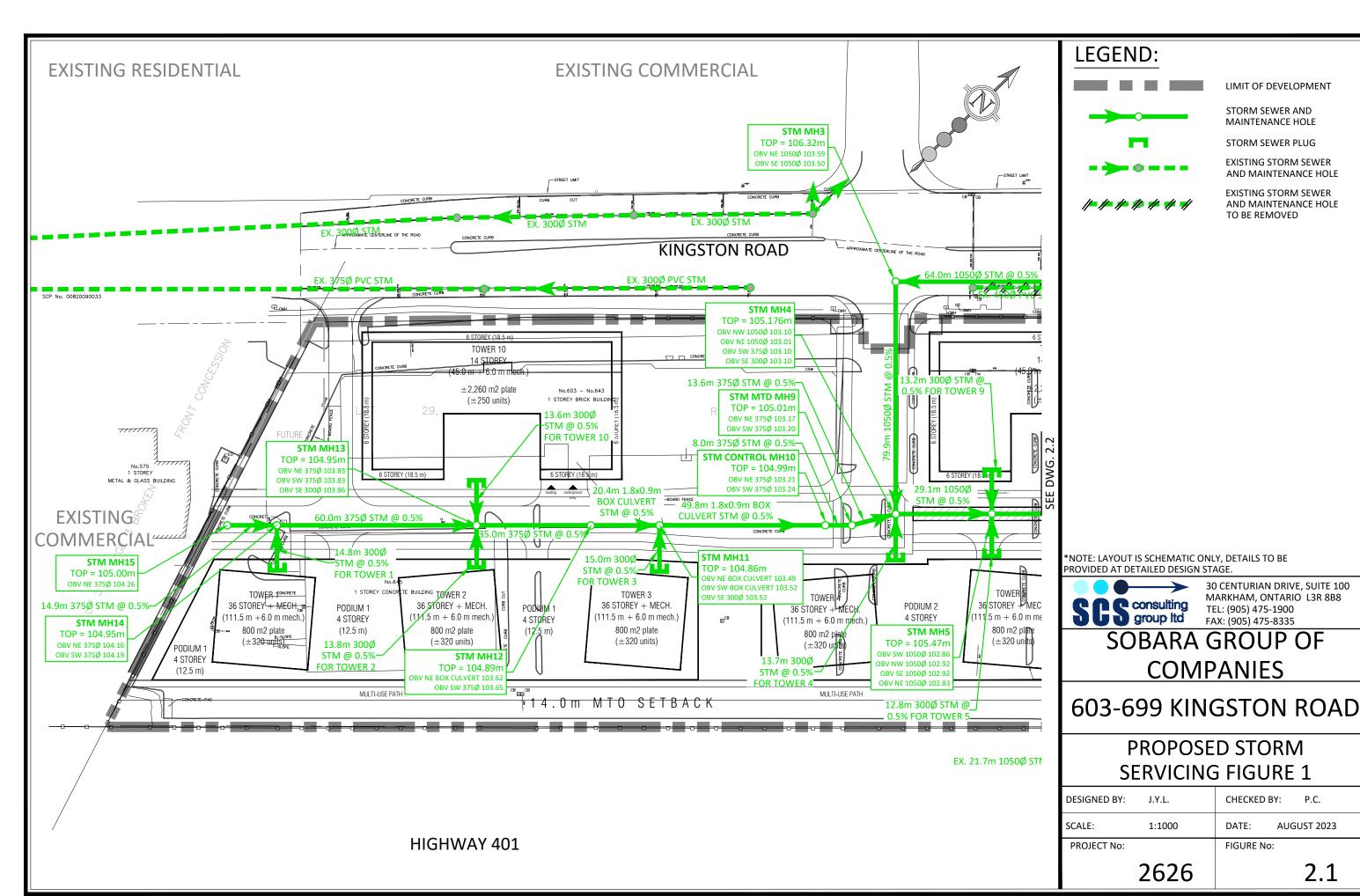
The erosion control criteria is satisfied as the design meets the water balance criteria, and the site does not discharge directly or within 100 m of a natural watercourse.

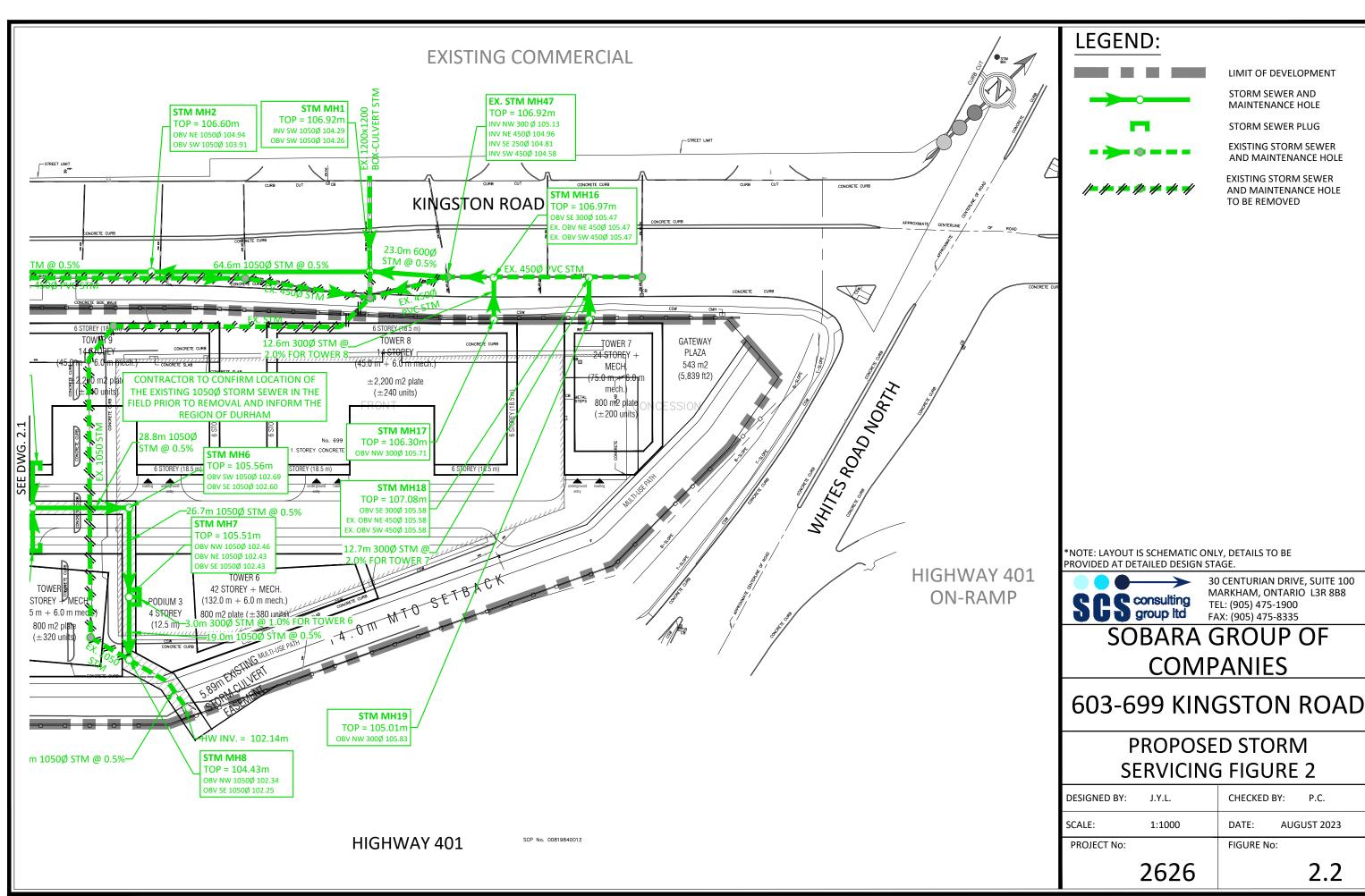


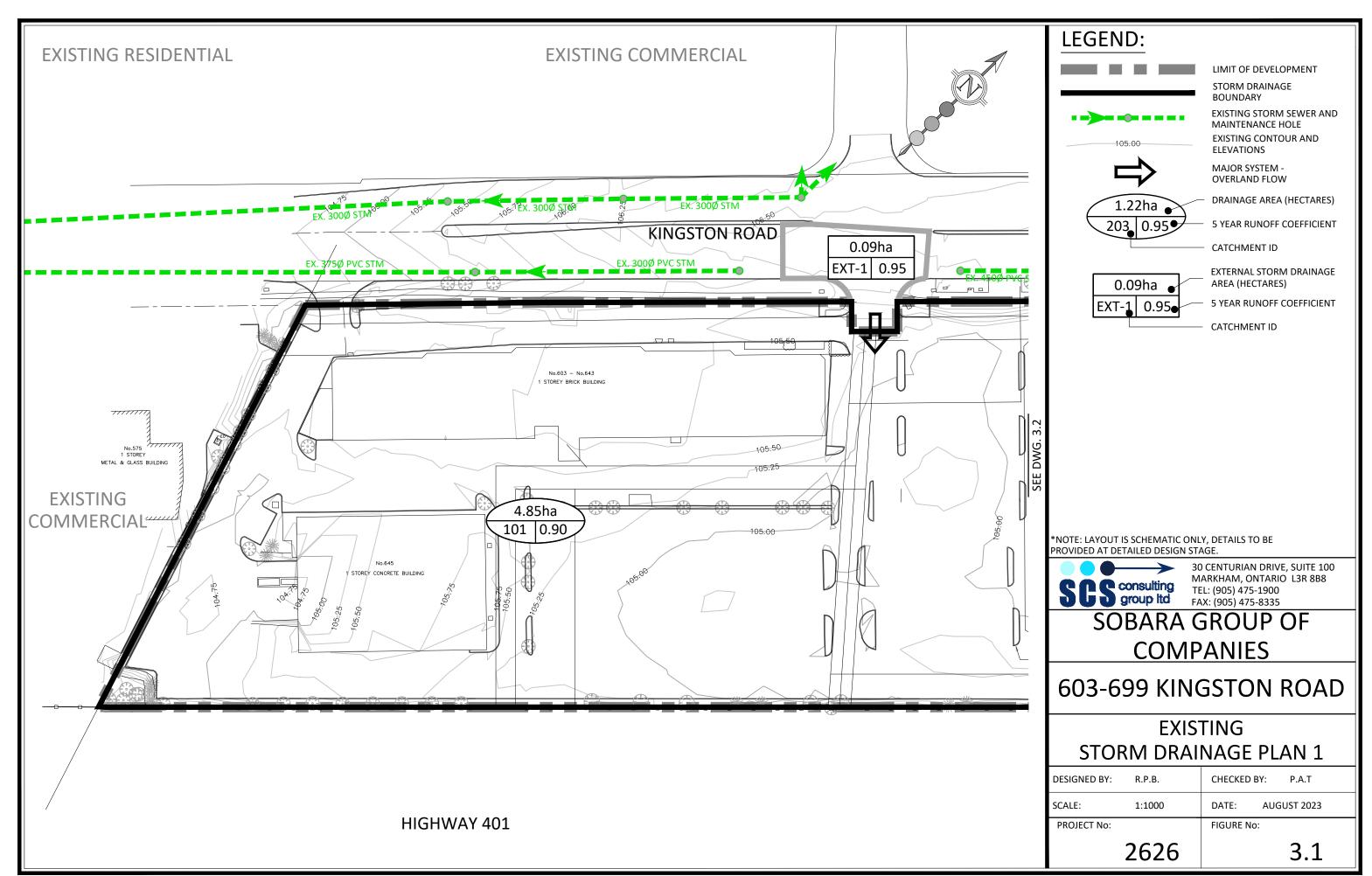
Respectfully Submitted:

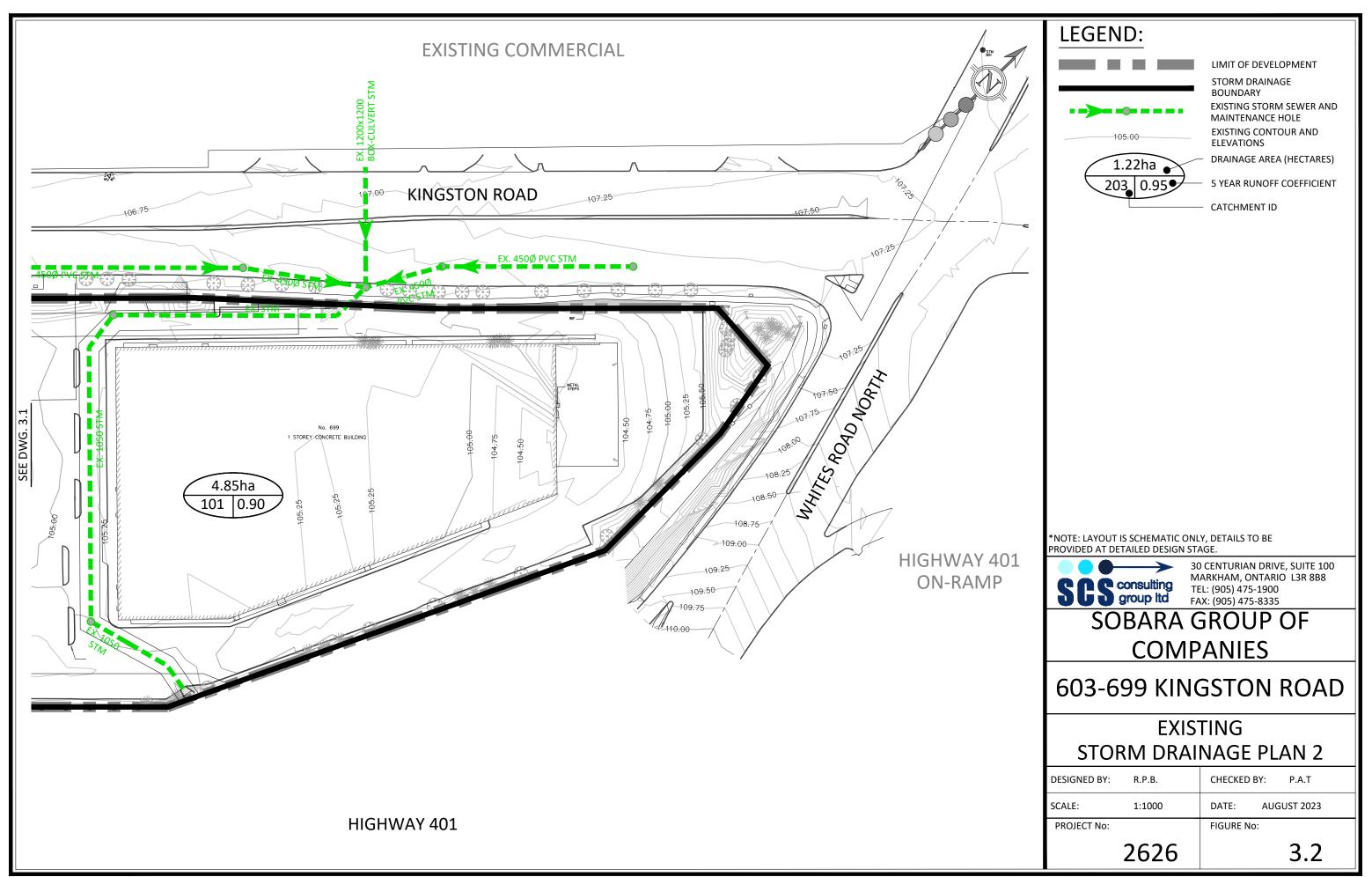
SCS Consulting Group Ltd.

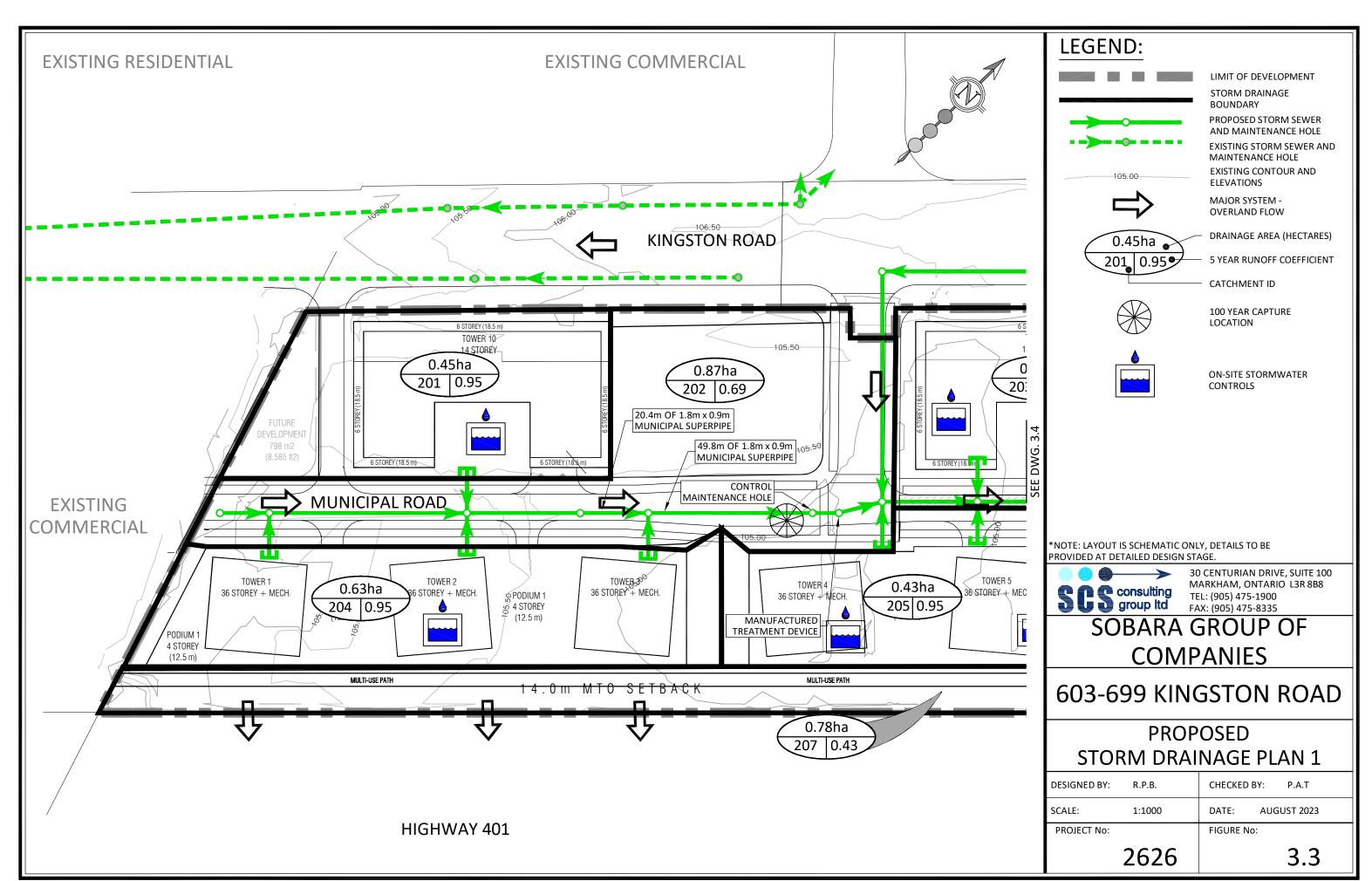
RebuerBar

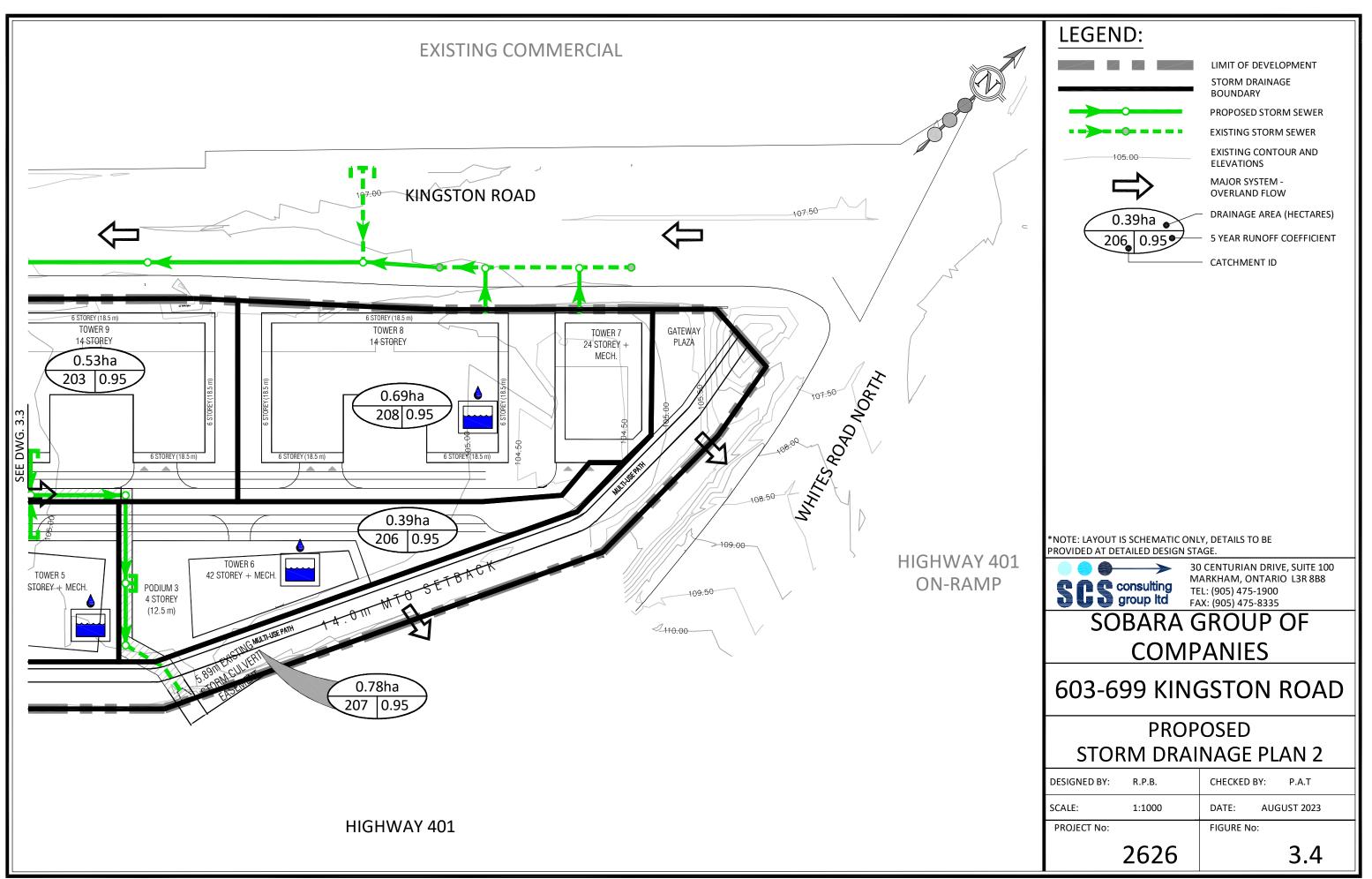

Rebecca Bar, E.I.T. rbar@scsconsultinggroup.com

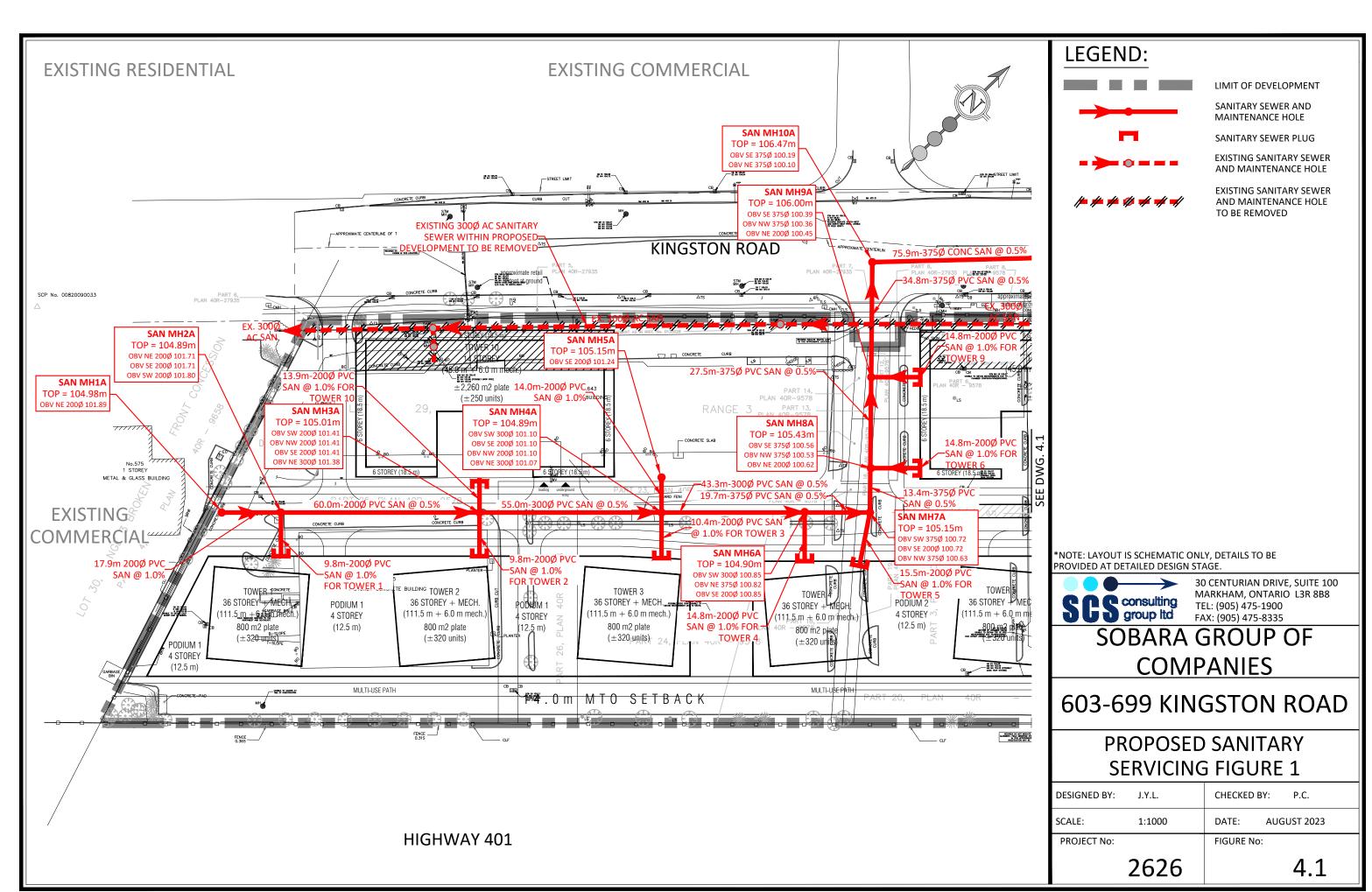


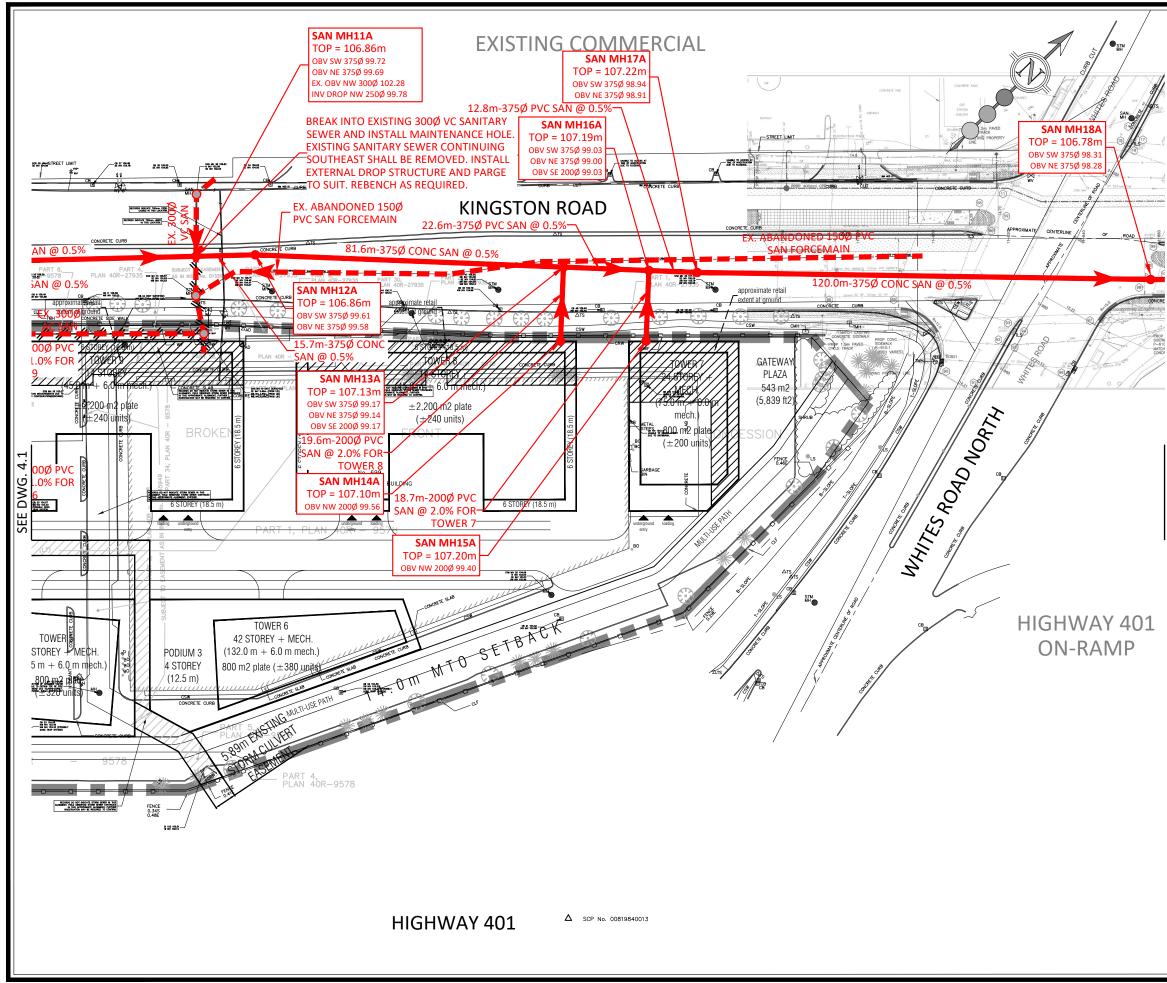

Paige Turchet, P. Eng. pturchet@scsconsultinggroup.com

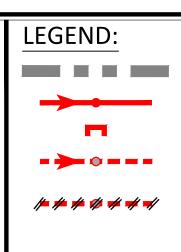

P:\2626 603-699 Kingston Road - Pickering\Design\Reports\FSR\2626-FSSR-2023JunXX.docx











LIMIT OF DEVELOPMENT

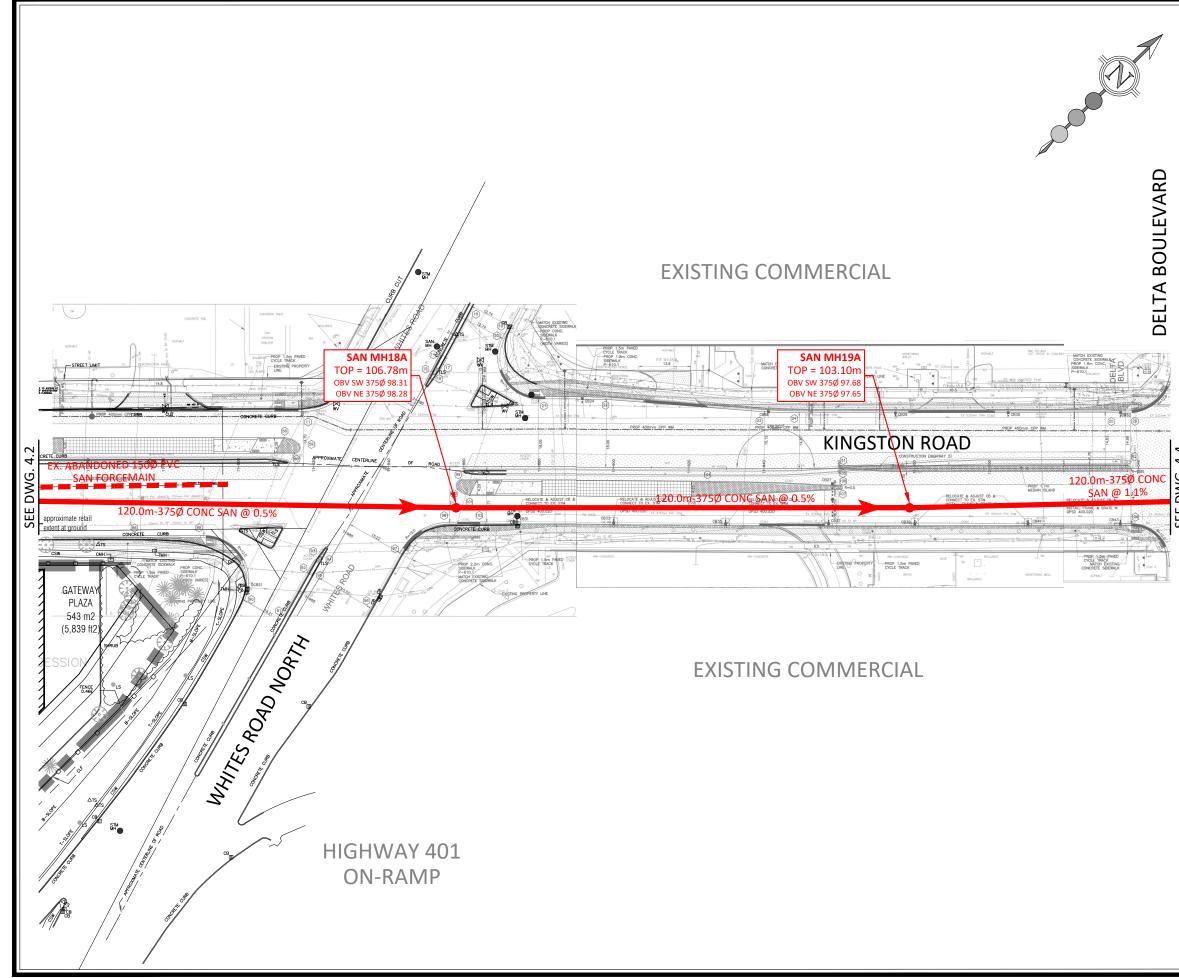
SANITARY SEWER AND MAINTENANCE HOLE

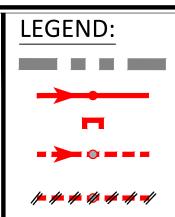
SANITARY SEWER PLUG

EXISTING SANITARY SEWER AND MAINTENANCE HOLE

EXISTING SANITARY SEWER AND MAINTENANCE HOLE TO BE REMOVED

*NOTE: LAYOUT IS SCHEMATIC ONLY. DETAILS TO BE PROVIDED AT DETAILED DESIGN STAGE.


30 CENTURIAN DRIVE, SUITE 100 MARKHAM, ONTARIO L3R 8B8 TEL: (905) 475-1900 FAX: (905) 475-8335


COMPANIES

603-699 KINGSTON ROAD

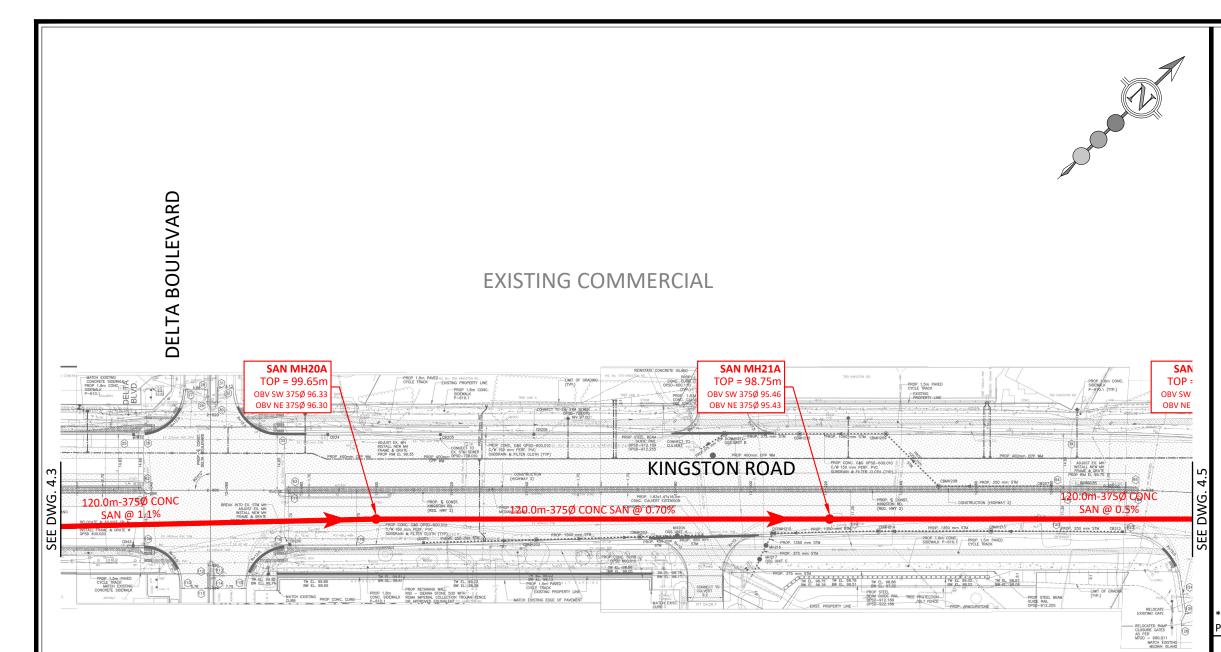
PROPOSED SANITARY SERVICING FIGURE 2

DESIGNED BY: J.Y.L.		CHECKED BY: P.C.	
SCALE:	1:1000	DATE:	AUGUST 2023
PROJECT No:		FIGURE No:	
	2626		4.2

LIMIT OF DEVELOPMENT

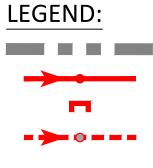
SANITARY SEWER AND MAINTENANCE HOLE

SANITARY SEWER PLUG


EXISTING SANITARY SEWER AND MAINTENANCE HOLE

EXISTING SANITARY SEWER AND MAINTENANCE HOLE TO BE REMOVED

*NOTE: LAYOUT IS SCHEMATIC ONLY, DETAILS TO BE PROVIDED AT DETAILED DESIGN STAGE.



SCALE:	1:1000	DATE:	AUGUST 2023
PROJECT No:		FIGURE No:	
2626		4.3	

EXISTING COMMERCIAL

HIGHWAY 401 RAMP

LIMIT OF DEVELOPMENT

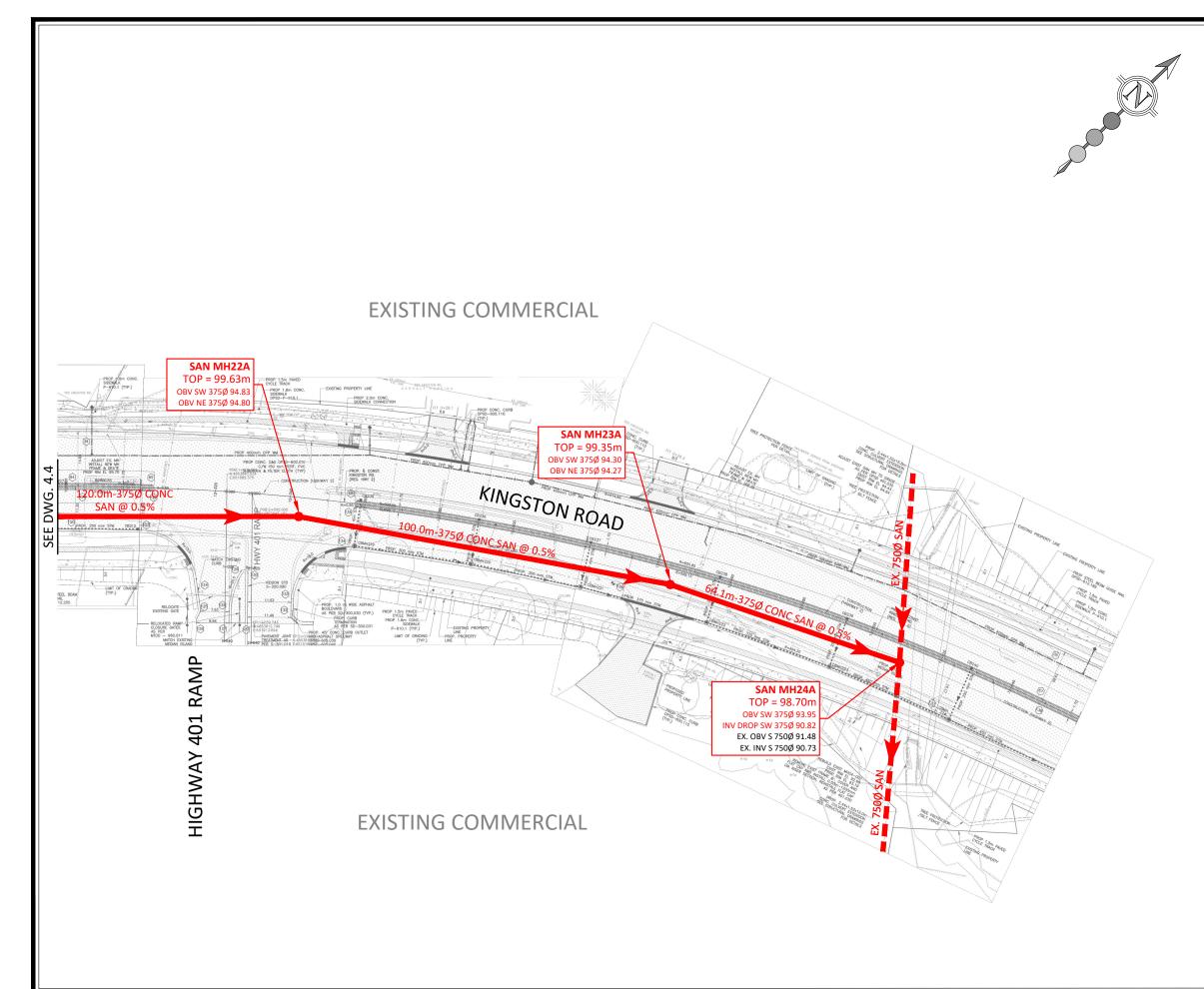
SANITARY SEWER AND MAINTENANCE HOLE

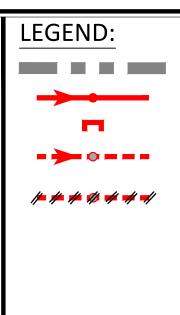
SANITARY SEWER PLUG

EXISTING SANITARY SEWER AND MAINTENANCE HOLE

EXISTING SANITARY SEWER AND MAINTENANCE HOLE TO BE REMOVED

*NOTE: LAYOUT IS SCHEMATIC ONLY, DETAILS TO BE PROVIDED AT DETAILED DESIGN STAGE.


30 CENTURIAN DRIVE, SUITE 100 MARKHAM, ONTARIO L3R 8B8 TEL: (905) 475-1900 FAX: (905) 475-8335


COMPANIES

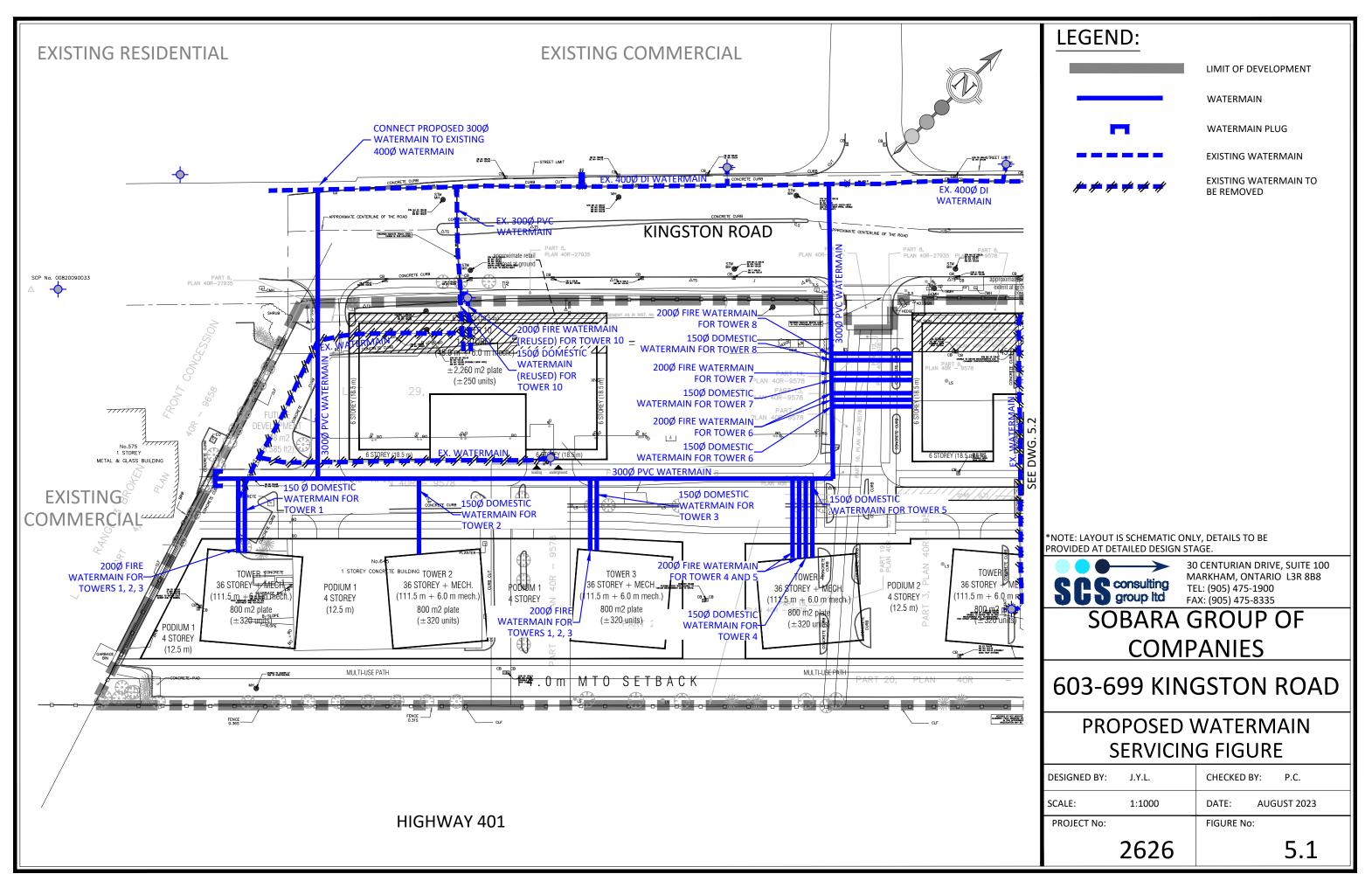
603-699 KINGSTON ROAD

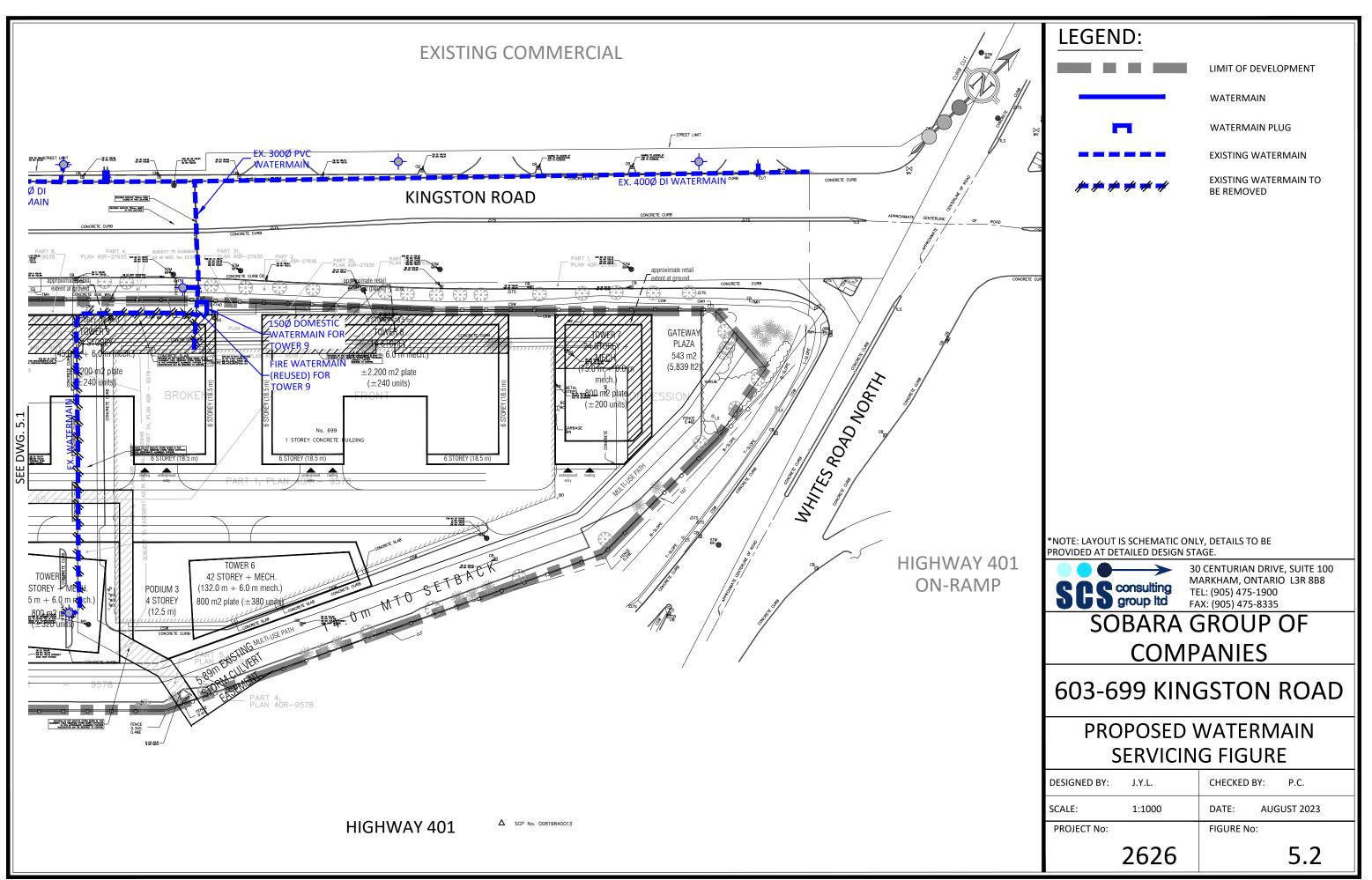
PROPOSED SANITARY SERVICING FIGURE 4

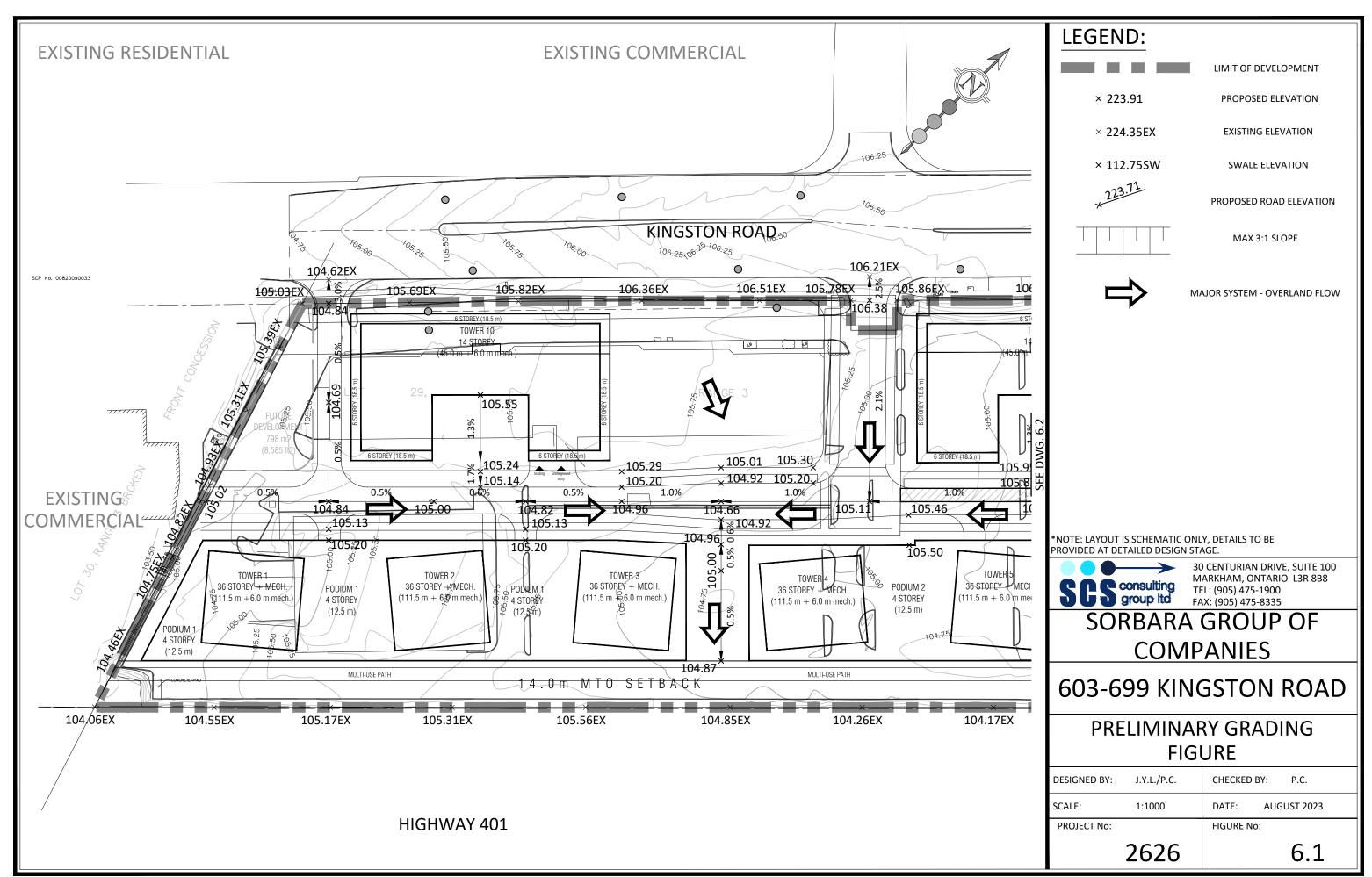
DESIGNED BY:	J.Y.L.	CHECKED	BY: P.C.
SCALE:	1:1000	DATE:	AUGUST 2023
PROJECT No:		FIGURE N	lo:
	2626		4.4

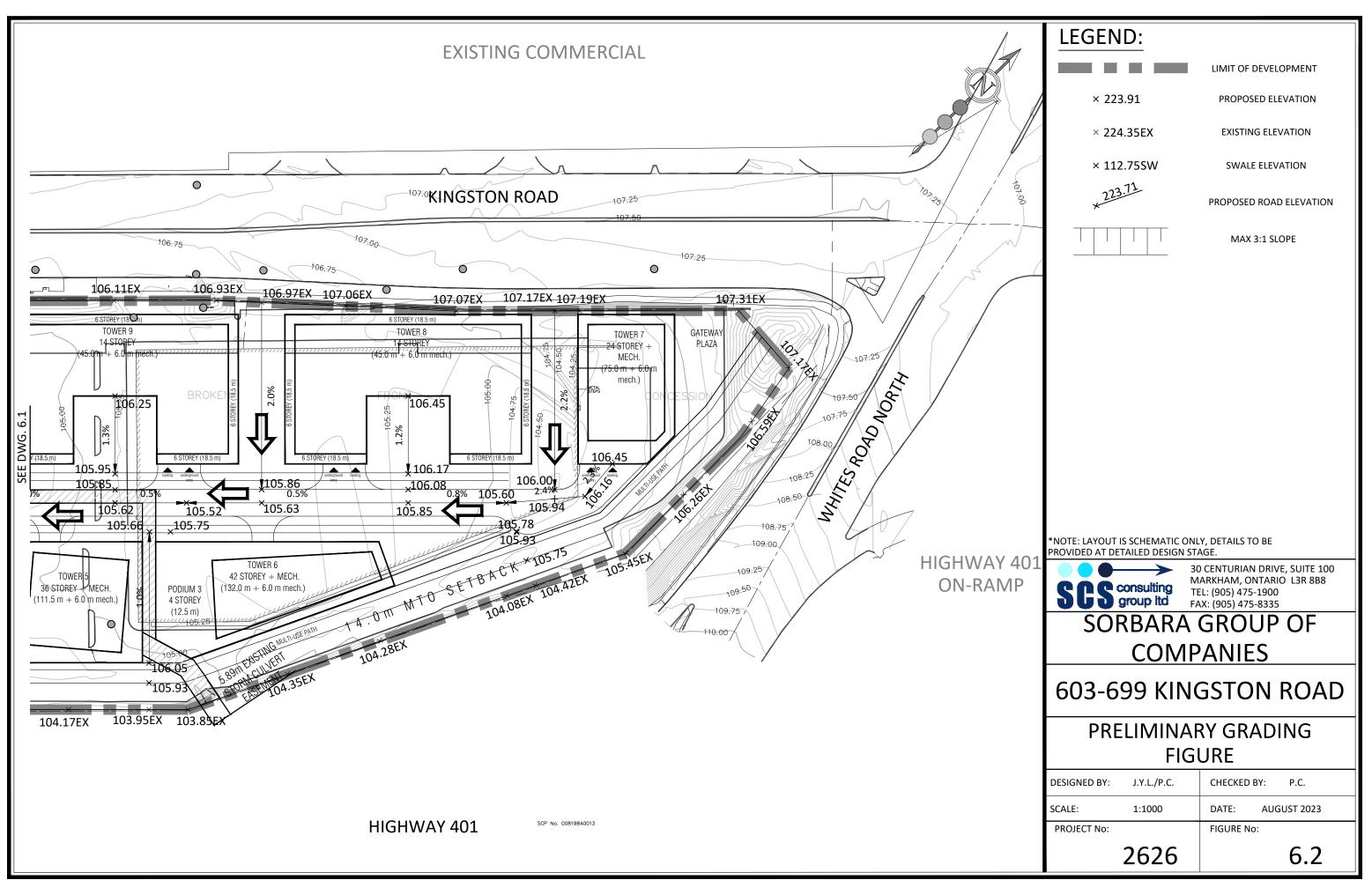
LIMIT OF DEVELOPMENT

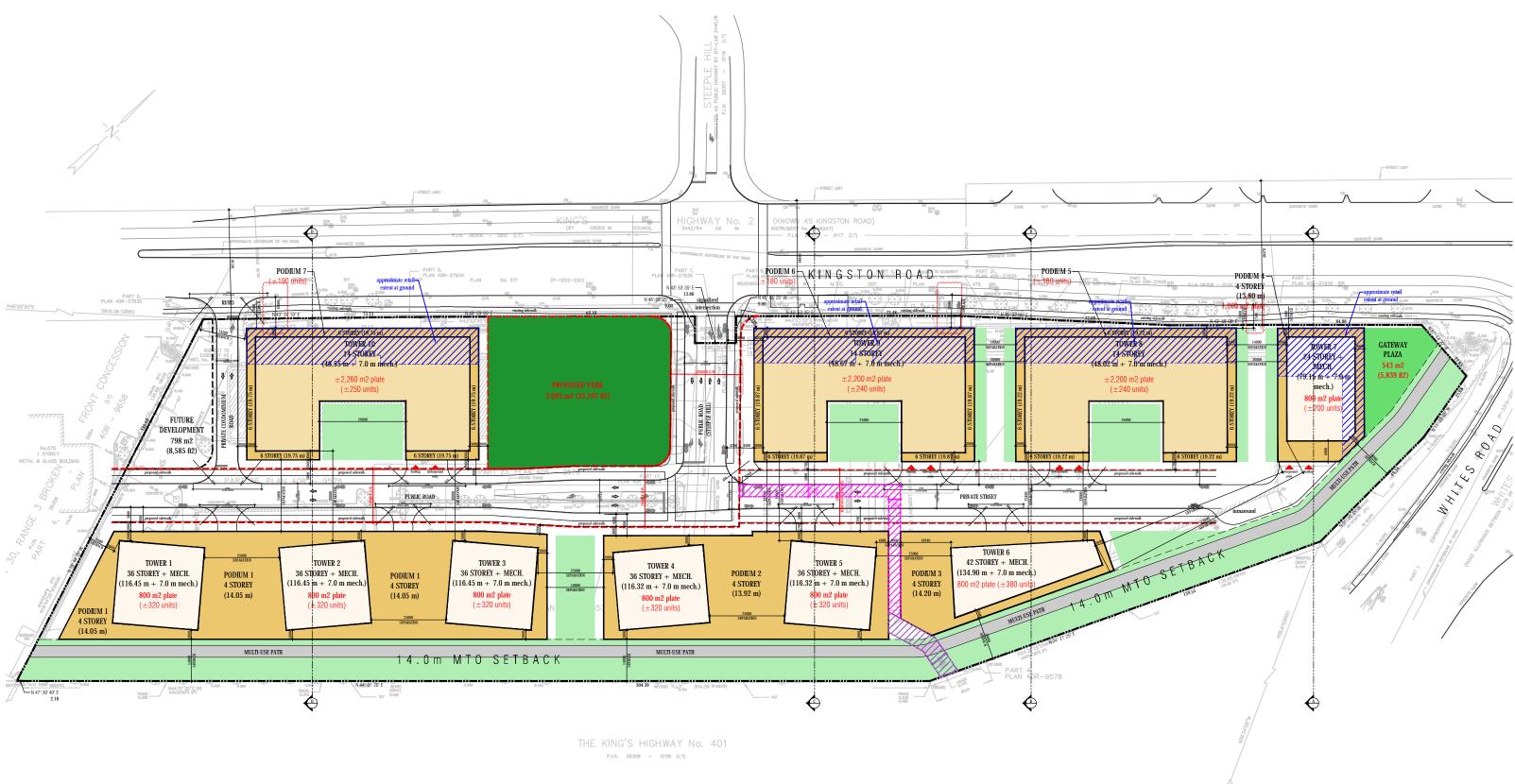
SANITARY SEWER AND MAINTENANCE HOLE


SANITARY SEWER PLUG


EXISTING SANITARY SEWER AND MAINTENANCE HOLE


EXISTING SANITARY SEWER AND MAINTENANCE HOLE TO BE REMOVED


*NOTE: LAYOUT IS SCHEMATIC ONLY, DETAILS TO BE PROVIDED AT DETAILED DESIGN STAGE.

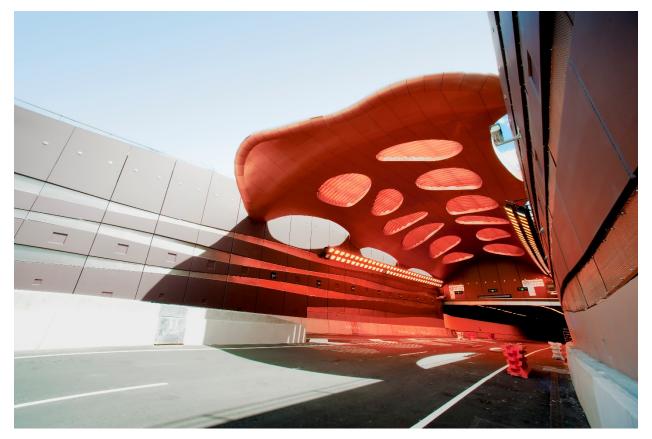


Appendix A Site Plan

- WITHOUT PREJUDICE -

CONCEPTUAL SITE PLAN • Sorbara Group of Companies • Whites Road & Hwy 401 • 1682.19 • Jul. 11, 2023

Appendix B Excerpts from Background Reports



DIRECTOR INDUSTRIAL HOLDINGS LIMITED

603-643, 645-699 KINGSTON ROAD FUNCTIONAL SERVICING REPORT

APRIL 15, 2020

vsp

603-643, 645-699 KINGSTON ROAD FUNCTIONAL SERVICING REPORT

DIRECTOR INDUSTRIAL HOLDINGS LIMITED

FUNCTIONAL SERVICING REPORT

PROJECT NO.: 19M-00841 DATE: APRIL 15 2020

WSP CANADA GROUP LIMITED SUITE 201 701 ROSSLAND ROAD EAST WHITBY, ON, CANADA L1N 8Y9

T: +1 905 668-3022 F: +1 905 668-9443 WSP.COM

SIGNATURES

PREPARED BY

Lisa Lovell

REVIEWED BY

Andrew Kerr, P.Eng Senior Project Engineer

This report was prepared by WSP Canada Group Limited for the account of DIRECTOR INDUSTRIAL HOLDINGS LIMITED, in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP Canada Group Limited's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP Canada Group Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.

wsp

TABLE OF CONTENTS

1		1
1.1	Introduction	1
1.2	Site Description	2
1.3	Development Concept	2
1.4	Phasing	3
1.5	Report Outline	3
2	SITE GRADING	8
2.1	Site Grading	8
3	STORMWATER MANAGEMENT	10
3.1	Minor Storm System	10
3.2	Major Storm System	
3.3	Existing Easement	
4	SANITARY DRAINAGE	
4.1	Introduction	
4.2	Existing Easement	
4.3	Pre- and Post-Development Flows	
4.4	Proposed Sanitary Connection	12
4.5	Downstream Sanitary Sewer Analysis	12
5	WATER SUPPLY	13
5.1	Water supply	13
6	CONCLUSIONS	15

vsp

FIGURES

SITE LOCATION	4
TOPOGRAPHIC SURVEY	5
PRELIMINARY SITE PLAN ABOVE GRADE	6
PRELIMINARY SITE PLAN BELOW GRADE	7
PRELIMINARY SITE GRADING PLAN	9
PRELIMINARY SITE SERIVICING PLAN ABOVE GRADE	14

APPENDICES

- A PRE- AND POST-DEVELOPMENT SANITARY FLOWS
- B DOWNSTREAM SANITARY SEWER CAPACITY ANALYSIS

1 INTRODUCTION

1.1 INTRODUCTION

This report has been prepared for the Director Industrial Holdings Limited Lands located at 603-643, 645-699 Kingston Road (hereinafter referred to as the "Site") in the City of Pickering, to identify any servicing or grading issues and to identify how these lands may be developed. The current development concept, as represented in the conceptual site plan drawings and development statistics prepared by Graziani + Corazza Architects, dated April 6, 2020, enclosed with this submission, is preliminary in nature and is subject to change. The development is bordered by Kingston Road to the north, Whites Road to the east, Highway 401 to the south and existing commercial lands to the west. The location of the development block is identified on **Figure No. 1**. The existing site conditions is shown on **Figure No. 2**, and details the Site Limits and the neighboring properties.

The current development concept, which represents a high-level master plan for a new mixed-use community, is primarily intended to form the basis of the proposed Draft Official Plan Amendment, which is required to facilitate the proposed density and Floor Space Index on the subject lands, as well as the proposed Draft Zoning By-law Amendment which is required to establish a new site-specific zoning framework that will implement the City's current land use vision for the subject lands.

This proposed official plan and zoning by-law amendment framework is intended to provide flexibility to ensure that the development of the lands responds to market conditions and can result in implementation of plans and alternative plans to achieve principles of intensification based on good planning and urban design principles. As such, it is anticipated that the development concept as presented be considered conceptual and will be revised, as necessary, to account for new and/or evolving considerations related to the master-planned community.

The purpose of this report is to describe the existing services in the vicinity of the Site in order to determine how these lands will be serviced by storm, sanitary and water. The report also reviews the site grading at a preliminary level to determine drainage boundaries and grading constraints. A separate Stormwater Management, also prepared by WSP, speaks to the Storm Water Management strategies including Low Impact Development (LIDs), Water Quality, and potential outfalls for this site.

1.2 SITE DESCRIPTION

The total Site area is 4.85 ha (11.98 acres). The Site generally fairly flat with existing localized low points to collect drainage. The existing overland flow route is to the south towards Highway 401. There is an existing retaining wall along the northeast portion of the site, adjacent to Kingston Road. The retaining wall is on the public right-of-way however it is understood from the projects pre-consultation that the City and Region would prefer for this wall to be removed as part of the development. Therefore, there will be a high point in the northwest corner of the site after development of the site. Existing Site grading is shown on the Topographic Survey, **Figure No 2**. The existing grades were established by field survey on November 12th, 2018 by R. Avis Surveying Inc. (Project No. 3230-0).

There are two existing active easements on the property. There is a sanitary sewer easement running parallel to Kingston Rd along the NE portion of the site (Inst No. D133028). Record drawings received from the Region of Durham indicate that this easement contains an active 300mm sanitary sewer. The second easement is a storm sewer easement that bisects the property and runs north-south from Kingston Rd to Highway 401 (Inst No. D245949). Neither the Region of Durham or the City of Pickering were able to provide drawings for the sewer in this easement, however based on the pre-consultation meeting minutes and surveyed at grade structures we believe that this easement contains a trunk storm sewer which conveys flow from the Kingston Rd Right-of-Way to a headwall which outlets to Highway 401.

1.3 DEVELOPMENT CONCEPT

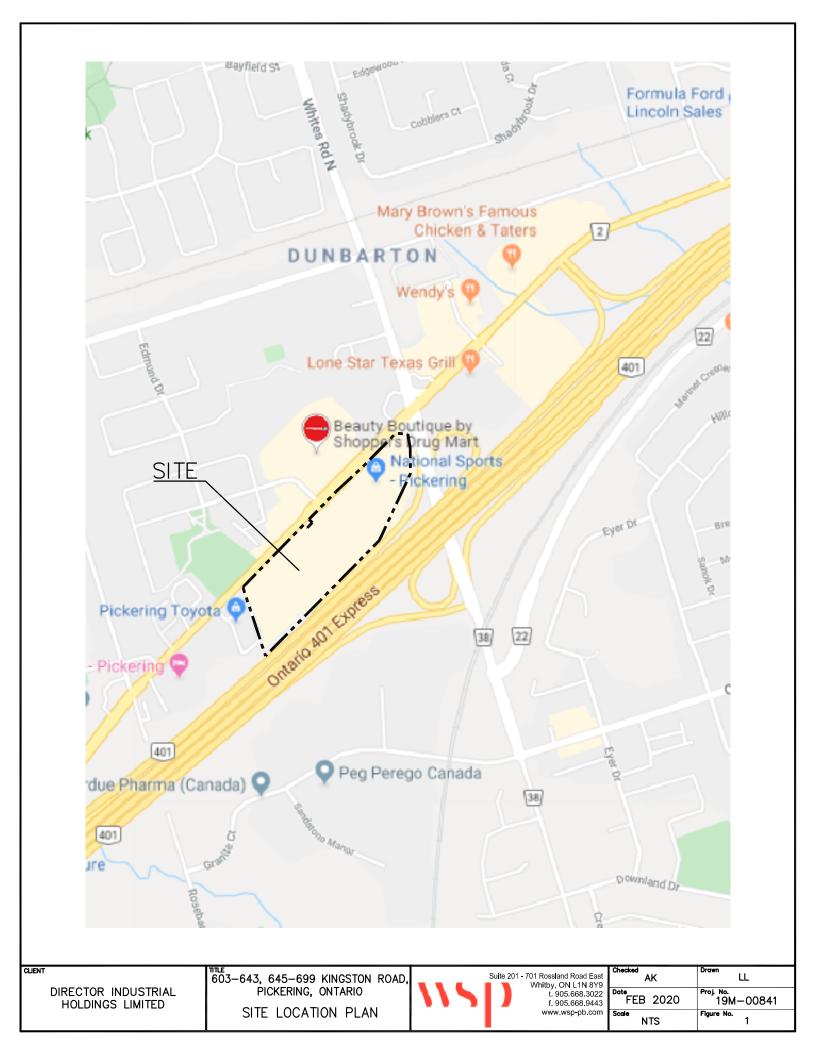
The current concept development will consist of 6 high-rise towers, 2 mid-rise towers, and 4 townhouse blocks.

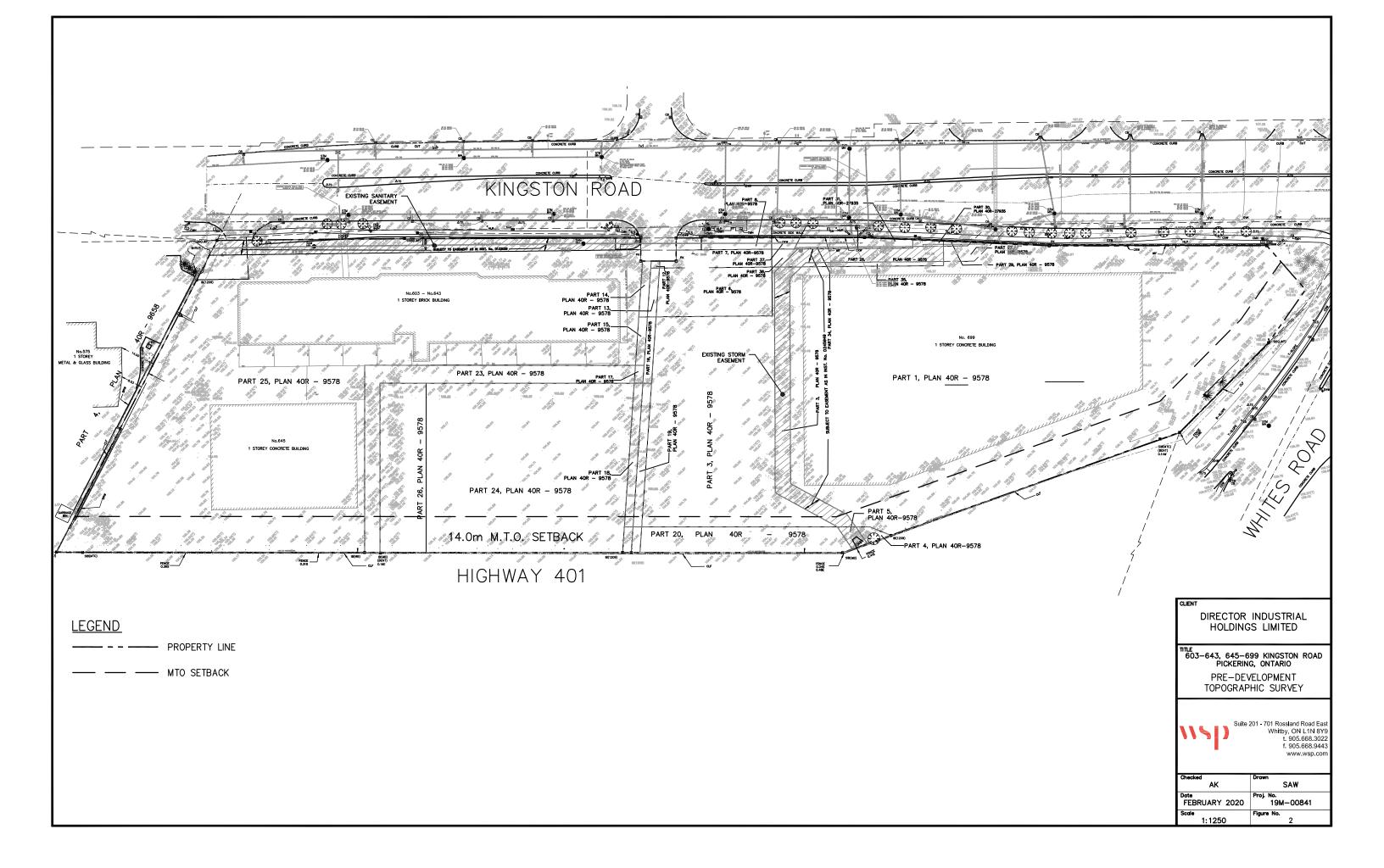
Four (4) of the proposed building are townhouse blocks in the northern portion of the site closest to Kingston Road (called Block 1 through Block 4). The townhouse blocks each contain 36 units, for a total of 144 residential townhouse units.

In addition to the townhouse blocks there are 5 proposed podiums containing a total of 8 residential towers. Podium 1 is a 4-storey podium in the southwest portion of the site and contains one 29-storey residential tower (Tower 1), one 32-storey residential tower (Tower 2), and one 36 storey residential tower (Tower 3) with 250 units, 280 units, and 320 units respectively. Podium 2 is a 6-storey residential podium in the northern portion of the site and contains one 18-storey residential tower with 360 units (Tower 4). Podium 2 contains 170 units. Podium 3 is a 6-storey residential podium in the northern portion of the site which contains an 18-storey residential tower with 360 units (Tower 5). Podium 3 contains 170 units. Podium 4 is a 4-storey residential podium in the southeast portion of the site and contains one 29-storey residential tower (Tower 6) and one 42-storey residential (Tower 7) with 250 units and 380 units respectively. Podium 5 is a 4-storey residential tower (Tower 8) containing 200 units. In total between the 8 towers, 5 podiums, and the four townhouse blocks a total of 2884 residential units are proposed.

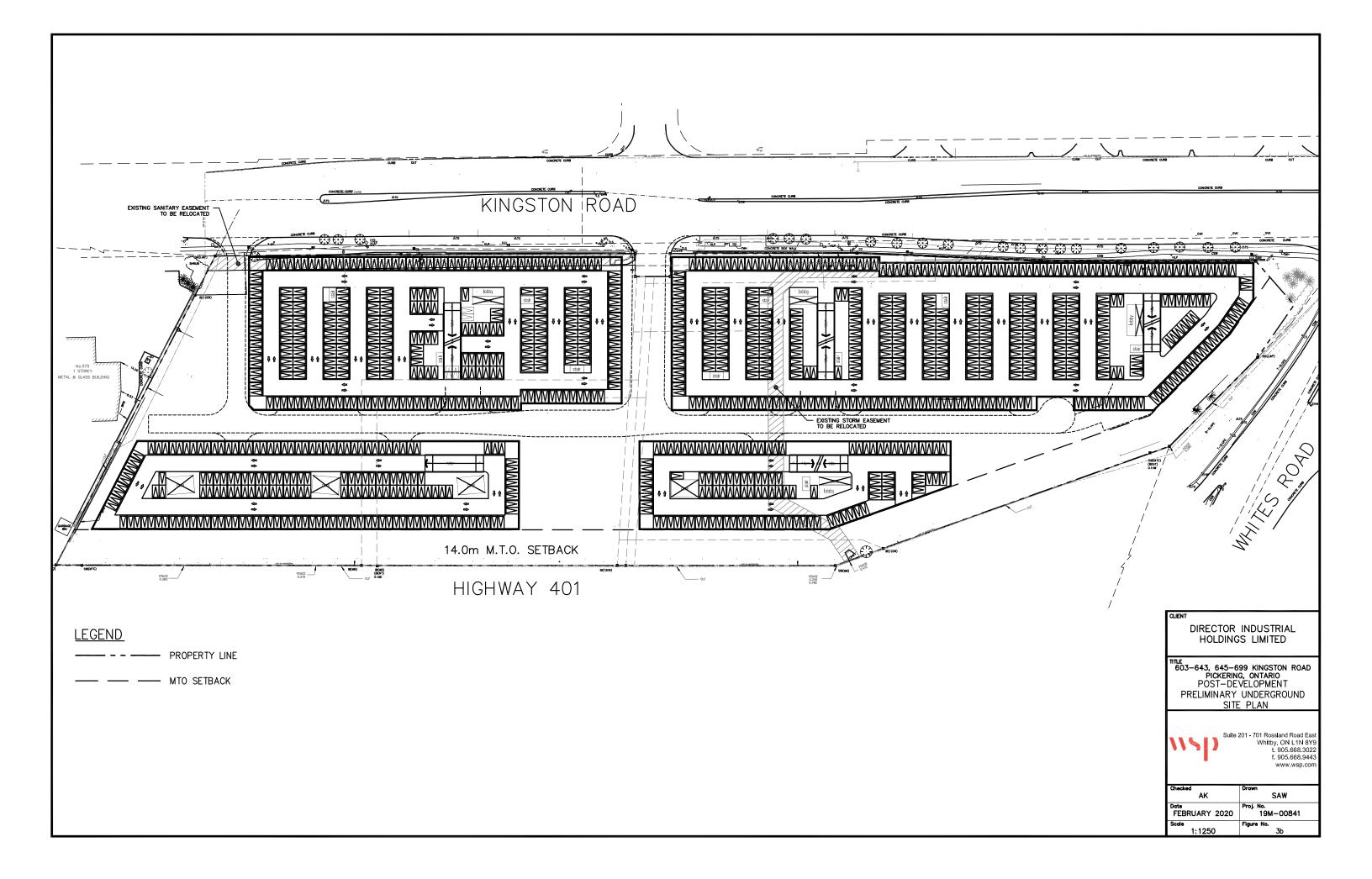
There are 4 separate below grade parking structures proposed on the site. Townhouse Block 1 and 2, and Podium 2 will share one below grade parking structure. Similarly, Townhouse Block 3 and 4, Podium 3, and Podium 5 will share one below grade parking structure. Podium 1 and Podium 2 will each have their own below grade parking structure.

The proposed development also includes three parks, one west of Podium 5 (0.14ha), one between Podium 1 and Podium 4 (0.14ha), and one at the west edge of the site (0.11ha), which is proposed to be a part of larger future park. In addition to the parks there is other proposed soft landscaped areas as shown on the architectural drawings.


The proposed development plan is shown on Figure No's. 3a (above grade) and 3b (below grade).

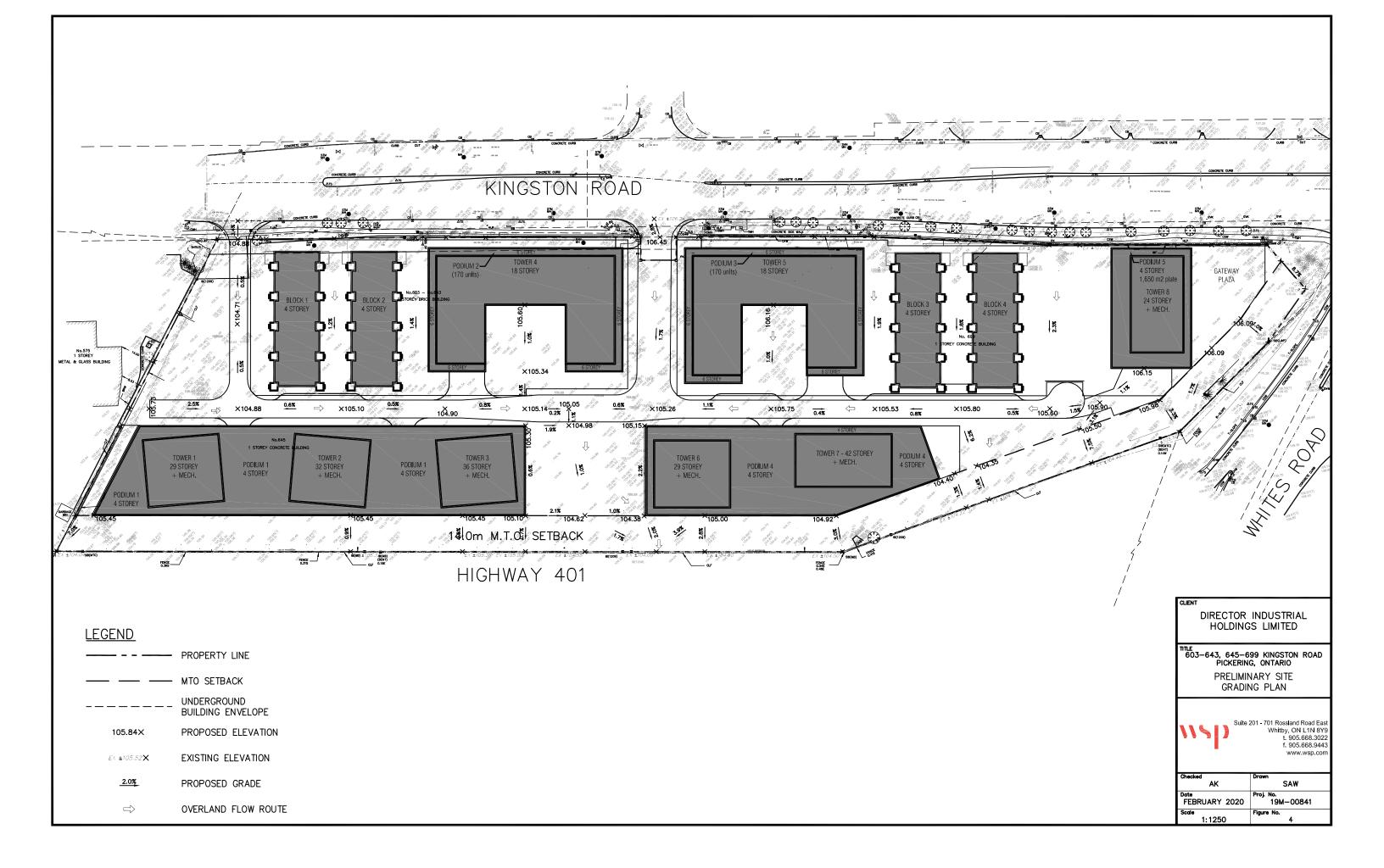

1.4 PHASING

The Site Plan is expected to be developed in multiple phases. The phasing of the site plan is to be determined at a later date.


1.5 REPORT OUTLINE

For the purpose of this report a number of preliminary figures have been prepared to clarify the servicing and grading issues and potential solutions. The Site limits are identified in **Figure No. 1** and discussed in Section 1.2 of this report. The development block is identified by the Topographic Survey in **Figure No. 2**. The Conceptual Site Plan is shown in both **Figure No's. 3a** and **3b**, each outlining the conceptual layout for both the surface Site Plan and the underground parking Site Plan respectively. The Preliminary Site Grading section of this report outlines the issues encountered with the existing grade and solutions to control the major and minor overland flow, as shown in **Figure No. 4**. The Preliminary Site Servicing outlines the proposed watermain, sanitary, and storm connections for the Site, and schematically lays out the proposed on-site servicing, and can be seen in **Figure No. 5**.

2 SITE GRADING


2.1 SITE GRADING

Site grading will be designed in accordance with the City of Pickering's Storm Sewer Servicing and Roads grading criteria with respect to minimum and maximum grades. The Site's predevelopment overland flow is directed south towards Highway 401. Minor storm flows are collected in various on-site drains and directed towards a headwall on the southeast edge of the site where it is discharged south towards Highway 401.

The proposed development will be graded to direct all storm drainage to localized on-site drains, and the overland flow route to Highway 401 will be maintained.

Preliminary internal road elevations are shown on **Figure 4** (Preliminary Grading Plan). Access to the site will be provided by two entrance off of Kingston Road, both southwest of the Kingston Rd and Whites Rd intersection. Based on the existing and preliminary proposed elevations, road grades will generally vary between 0.5% and 2.5%. The minor flow will be captured in drains and directed to a stormwater detention and retention facility located under the proposed park between Podium 1 and Podium 4. The major flow in excess of the 100-year storm will be directed to a proposed low point between Podium 1 and Podium 4, which would then flow south through the park to Highway 401, matching the existing predevelopment overland flow route. All storm water will ultimately flow into Petticoat Creek to the west of the site.

The proposed site grading would eliminate the need for a retaining wall adjacent to Kingston Rd, as requested in the preconsultation meeting minutes.

3 STORMWATER MANAGEMENT

3.1 MINOR STORM SYSTEM

The on-site storm drains and sewers will be designed to convey the 100-year flow from the development. These storm flows are to be directed to an stormwater management system located beneath the park between Podiums 1 and 4. The schematic location of the stormwater management facility is shown in **Figure No. 5** (Preliminary Site Servicing Plan). The stormwater management facility will provide water quantity, water quality, erosion and sediment control and water balance requirements set out by the City of Pickering. Please see Stormwater Management Report, also prepared by WSP, for details of the proposed Stormwater Management System.

3.2 MAJOR STORM SYSTEM

The on-site storm drainage system will be designed to capture and convey to 100-year storm event. Any overland flows from storm events greater than the 100-year event will be directed to a low point on the south edge of the site, adjacent to the proposed park between Podium 1 and Podium 4. Overland flow from the Site, similar to the existing predevelopment flow, will continue to be directed southerly towards Highway 401, which ultimately conveys the flows to Petticoat Creek.

3.3 EXISTING EASEMENT

The proposed development site contains a storm sewer easement which runs north to south through the site. It is presumed that this easement contains a trunk storm sewer that conveys flows from Kingston Rd to High 401. The easement is in conflict with the proposed re-development of the site. As such the developer proposes that the existing storm sewer and easement be relocated to avoid the proposed structures. Detailed design of the relocated storm sewer will be completed at a later stage of the project. A preliminary schematic illustration of the proposed relocation is shown on **Figure 5**.

4 SANITARY DRAINAGE

4.1 INTRODUCTION

Based on the record drawings received from the Region of Durham there are a number of existing sanitary sewers in the vicinity of the site:

- A 300mm diameter sanitary sewer on the north side of Kingston Road
- A 150mm diameter sanitary forcemain on the south side of Kingston Road
- A 300mm diameter sanitary sewer in the easement in the north-west corner of the site.

The 300mm sanitary sewer on the north side of Kingston Road flows from east to west and crosses Kingston Road at approximately the mid-point of the site prior to entering the easement across the subject property. The 150mm sanitary force main discharges into the 300mm gravity sewer just prior to entering the easement. The 300mm sewer in the easement flows to the west ultimately draining off the site and continuing west parallel to Kingston Road.

4.2 EXISTING EASEMENT

The proposed development site contains a sanitary sewer easement in the northwest portion of the site. This easement contains a sanitary sewer that flows from east to west parallel to Kingston Rd. The easement is in conflict with the proposed re-development of the site. As such the developer proposes that the existing sanitary sewer be relocated into the Kingston Road right-of-way. Detailed design of the relocated sanitary sewer will be completed at a later stage of the project. A preliminary schematic illustration of the proposed relocation is shown on **Figure 5**.

4.3 PRE- AND POST-DEVELOPMENT FLOWS

The estimated pre- and post-development sanitary sewage flows are estimated based on the Region of Durham Sanitary design criteria.

In the pre-development condition the property contains 3 single storey commercial buildings with a combined GFA of approximately $15,250m^2$. Based on an average flow rate of $180m^3/ha/d$ (including infiltration and peaking factor) the peak sanitary flow from the site in the existing condition is 3.18 L/s.

In the post-development condition the development is proposed to contain 144 townhouse units, 2,740 apartment units, 2,232m² of commercial space and 4,448m² of office space. The apartment units are broken down into approximately 30% one bedroom occupancy and 70% two bedroom occupancy. Based on these unit counts and floor areas and the Region of

Durham Design Criteria the peak post-development sanitary flow from the site, including infiltration is 75.34/s. Therefore the development of the site will increase the sanitary flow by approximately 72.2L/s.

For a detailed breakdown of the pre- and post-development flow calculations see Appendix A.

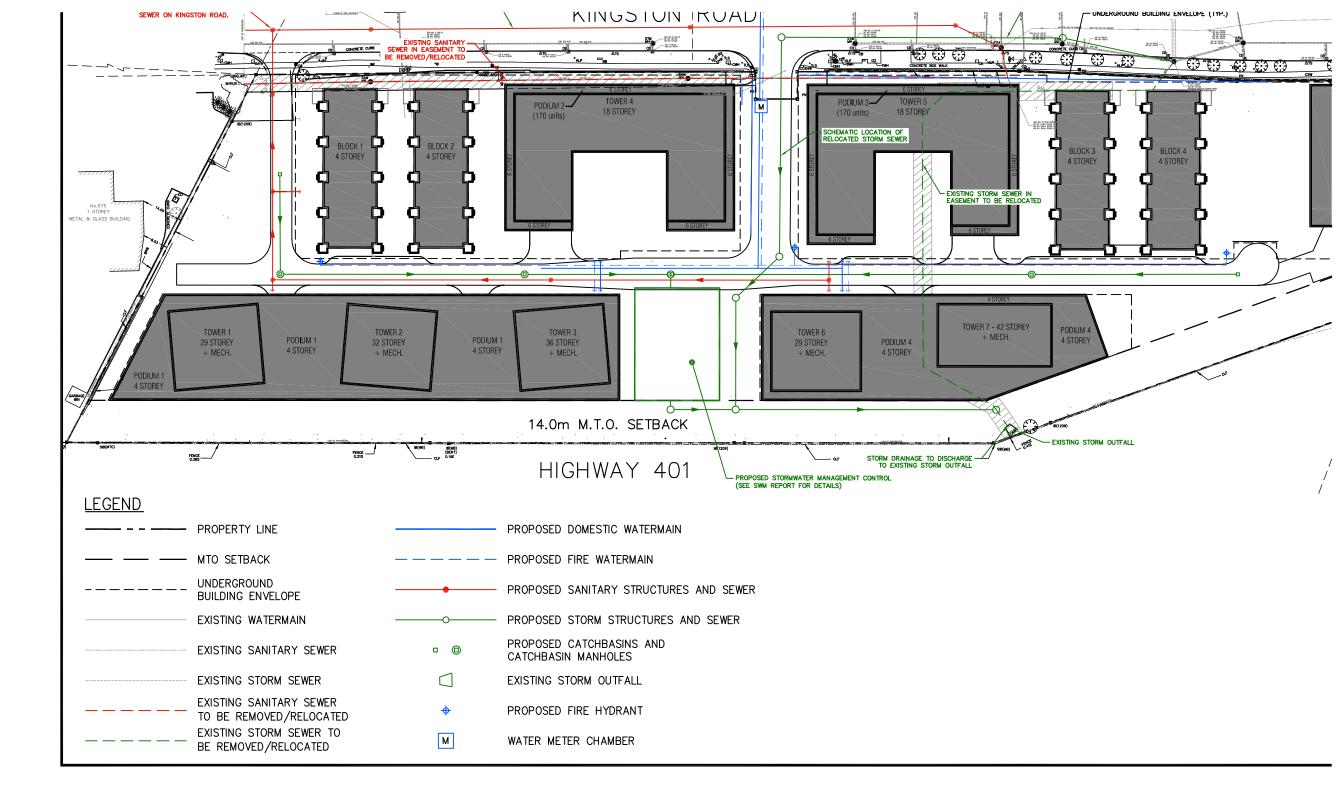
4.4 PROPOSED SANITARY CONNECTION

The proposed development will have one 300mm diameter connection to the existing 300mm diameter gravity sanitary sewer on Kingston Road northeast of the site's existing control manhole and westernmost entrance. This connection will have a control manhole immediately inside the property line and will be designed per the Region of Durham design criteria. Within the private site the individual buildings will have sanitary service connections to a common element sewer which is proposed to flow to the control manhole and ultimately the municipal sanitary sever system. The proposed sanitary servicing for the site is shown on **Figure 5**.

4.5 DOWNSTREAM SANITARY SEWER ANALYSIS

At the project's pre-consultation meeting the Region advised that a sanitary sewer analysis is required to support this development proposal. WSP has previously completed a downstream sewer capacity analysis for the receiving sewers, which was previously presented to the Region. The receiving sanitary sewer on Whites Road flows to the west to Rosebank Road where it then flows south under Highway 401. From there the flow continues south in a sanitary sewer that flows south, parallel to Petticoat Creek. Prior to reaching Lake Ontario the sewer turns east and connects with a number of other sewers, including a force main from the west, at the intersection of Cliffview Rd and Park Cr. This forms the endpoint of our analysis.

Under the existing conditions there are 28 legs of sewer which are currently operating over capacity, including all the legs of sewer running underneath Highway 401 and parallel to Petticoat Creek. In the post-development condition, after the addition of the proposed development flows, the surcharging in the existing sewers is maintained. In order for this development to proceed there will need to be downstream sewer improvements which alleviate existing capacity issues and provide capacity to support proposed and future developments.


5 WATER SUPPLY

5.1 WATER SUPPLY

The proposed development is located within pressure district Zone A1. There is an existing 400mm feeder watermain on the north side of Kingston Road. There are no other watermains available adjacent to the site. The proposed development will have one 300mm diameter domestic connection and one 300mm diameter fire connection to the existing 400mm watermain on Kingston Road. The domestic line will connect to a chamber on the private property complete with a backflow preventer and flow meter per Region of Durham Standards. The fire line will connect to a separate chamber containing a double check valve assembly per Region of Durham standards.

Within the site the domestic line will be extended to provide a dedicated domestic service to each of the five Podiums (and associated towers) as well as all the townhome blocks. The fire line will form a 'T' along the new private road and provide dedicated fire service to each of the five Podiums (and associated towers) as well as all the townhome blocks. In addition the fire line will have 3 proposed hydrants to provide fire protection for the development. The domestic and fire servicing within the individual buildings is to be designed by the mechanical consultant.

The proposed water servicing layout for the site is shown in Figure 5.

6 CONCLUSIONS

The following point form list summarizes the opportunities for the servicing and grading of the proposed development at 603-643, 645-699 Kingston Road in Pickering, Ontario.

- Boundary grades will generally be matched.
- Road grades will generally range between 0.5% and 2.5%.
- Storm flows from the site will be directed to on-site drains and directed to a stormwater management facility under the proposed park between Podium 1 and Podium 4. The stormwater management facility will provide quantity, quality, erosion and water balance requirements.
- The overland flows for up to the 4 hour 25mm storm event will be detained internally on site using the various water retention methods described in the SWM report. All overland flows over this regulated volume will continue to approximately follow the existing travelled path to the south of the site flowing and discharging adjacent to Highway 401, ultimately contributing to Petticoat Creek.
- There is an existing storm sewer in an easement on site that will need to be relocated to facilitate the proposed development.
- Sanitary Flows from the site will be discharged though a new connection into the relocated sanitary sewer which is currently located within an on-site easement.
- The development is located in Region of Durham pressure district Zone 1A. There is an existing 400mm watermain of the north side of Kingston Road. Domestic and Fire Lines will be extended from this existing watermain to provide water service for the site. The water system within the underground parking structure will be designed by the mechanical consultant to meet the Ontario Building Code.

Director Industrial Holdings Limited

603-643, 645-699 Kingston Road Pickering, ON Stormwater Management Report

April 16, 2020

115

603-643, 645-699 Kingston Road Pickering, ON

Stormwater Management Report

Director Industrial Holdings Limited

Rezoning Application

Project No.: 19M-00841-00 Date: April 16, 2020

WSP 100 Commerce Valley Drive West Thornhill, ON, Canada L3T 0A1

wsp.com

Revision History

FIRST ISSUE

2020-01-31	Rezoning Application	i (RZA)		
Prepared by	Reviewed and			
	Approved by			
Gordon Wong, EIT	lain Smith, P.Eng.			
REVISION 1		1	1	<u> </u>
2020-03-27	Rezoning Application	ı (RZA)		
Prepared by	Reviewed by	Approved By		
Ivan Mock, EIT	lain Smith, P.Eng.			
REVISION 2			•	
2020-04-16	Rezoning Application	ı (RZA)		
Prepared by	Reviewed by	Approved By		
Ivan Mock, EIT	lain Smith, P.Eng.			
FINAL			l	
Prepared by	Reviewed by	Approved By		

Signatures

Prepared by

guerk

Ivan Mock, EIT Designer, Water Resources

Date

04/16/2020

Iain Smith, P.Eng. Project Engineer Date

WSP Canada Group Limited prepared this report solely for the use of the intended recipient, Director Industrial Holdings Limited, in accordance with the professional services agreement. The intended recipient is solely responsible for the disclosure of any information contained in this report. The content and opinions contained in the present report are based on the observations and/or information available to WSP Canada Group Limited at the time of preparation. If a third party makes use of, relies on, or makes decisions in accordance with this report, said third party is solely responsible for such use, reliance or decisions. WSP Canada Group Limited does not accept responsibility for damages, if any, suffered by any third party as a result of decisions made or actions taken by said third party based on this report. This limitations statement is considered an integral part of this report.

The original of this digital file will be conserved by WSP Canada Group Limited for a period of not less than 10 years. As the digital file transmitted to the intended recipient is no longer under the control of WSP Canada Group Limited, its integrity cannot be assured. As such, WSP Canada Group Limited does not guarantee any modifications made to this digital file subsequent to its transmission to the intended recipient.

¹ Approval of this document is an administrative function indicating readiness for release and does not impart legal liability on to the Approver for any technical content contained herein. Technical accuracy and fit-for-purpose of this content is obtained through the review process. The Approver shall ensure the applicable review process has occurred prior to signing the document.

Contributors

Client

Director Industrial Holdings Limited

WSP	
Designer	Ivan Mock, EIT
Designer	Gordon Wong, EIT
Project Engineer	lain Smith, P.Eng.

TABLE OF CONTENTS

\\SD

1	INTRODUCTION	1
1.1	Scope	1
1.2	Site Location	1
1.3	Stormwater Management Plan Objectives	2
1.4	Design Criteria	2
1.4.1	Water Quantity	2
1.4.2	Water Quality	2
1.4.3	Erosion Control	2
1.4.4	Water Balance	3
2	PRE-DEVELOPMENT CONDITIONS	5
2.1	General	5
2.2	Rainfall Information	5
2.3	Allowable Flow Rates	7
2.4	Groundwater, Hydrogeology and Groundwater Characterization	8
3	POST-DEVELOPMENT CONDITIONS	10
3.1	General	10
3.2	Water Quantity Control	13
3.3	Water Quality Control	15
3.4	Erosion Control	15
3.5	Water Balance	17
4	CONCLUSIONS	18
5	BIBLIOGRAPHY	19

vsp

Tables

Table 2-1:	IDF Parameters used by the City of Pickering5
Table 2-2:	Pre-Development Peak Flow Rate and Maximum Allowable Site Discharge Rate
Table 2-3:	Relationship between Hydraulic Conductivity and Infiltration Rate 8
Table 3-1:	Proposed Land-Use Area Breakdown11
Table 3-2:	Summary of Modelling Results 14
Table 3-3:	Water Balance Calculation for Post-Development Condition 16
Table 3-4:	Water Balance Calculation for Pre-Development Condition 17

Figures

Figure 1:	Location of Site 4	1
Figure 2:	Existing Condition6	3
Figure 3:	Proposed Condition 12	2

Appendices

- **A** Stormwater Management Calculations
- B Hydrologic Model Output (HydroCAD)

C Water Quantity Installation Guide and Specifications

D Water Quality Unit Sizing Report and Specifications

1 INTRODUCTION

1.1 Scope

WSP Canada Group Limited has been retained by Director Industrial Holdings Limited to prepare a Stormwater Management (SWM) report to support the rezoning application for the proposed development at 603-643, 645-699 Kingston Road Pickering, ON in the City of Pickering.

The current development concept, as represented in the conceptual site plan drawings and development statistics prepared by Graziani + Corazza Architects, dated April 6, 2020, enclosed with this submission, is preliminary in nature and subject to change.

The current development concept, which represents a high-level master plan for a new mixed-use community, is primarily intended to form the basis of the proposed Draft Official Plan Amendment, which is required to facilitate the proposed density and Floor Space Index on the subject lands, as well as the proposed Draft Zoning By-law Amendment which is required to establish a new site-specific zoning framework that will implement the City's current land use vision for the subjects lands.

This proposed official plan and zoning by-law amendment framework is intended to provide flexibility in order to ensure that the development of the lands responds to market conditions and can result in implementation of plans and alternative plans to achieve principles of intensification based on good planning and urban design principles.

As such, it is anticipated that the development concept as presented to be sconsidered conceptual and will be revised, as necessary, to account for new and/or evolving considerations related to the master-planned community.

This SWM report examines the potential water quality, water quantity, erosion control, and water balance impacts of the proposed development and summarizes how each parameter will be addressed in accordance with the City of Pickering Stormwater Management Design Guidelines dated July 2019.

1.2 Site Location

The site is located north of Highway 401, west of Whites Road North, and south of Kingston Road in the City of Pickering. The subject site is currently occupied by 42 municipal addresses which consist mainly of commercial/retail buildings and a restaurant. The location of the proposed re-development is illustrated in Figure 1.

1.3 Stormwater Management Plan Objectives

The objectives of the stormwater management plan are as follows:

- Determine site specific stormwater management requirements to ensure that the proposals are in conformance with the City of Pickering Stormwater Management Design Guidelines;
- Evaluate various stormwater management practices that meet the requirements of the City and recommend a preferred strategy; and
- Prepare a stormwater management report documenting the strategy along with the technical information necessary for the justification and preliminary sizing of the proposed stormwater management facilities.

1.4 Design Criteria

The City of Pickering issued the Stormwater Management Design Guidelines in July 2019 to provide direction on the management of rainfall and runoff inside the City's jurisdiction. A summary of the stormwater management criteria applicable to this project are as follows:

1.4.1 Water Quantity

The guideline requires the development to attenuate post-development flows for all storms up to and including the 100-year storm to pre-development levels. In a pre-consultation meeting on May 27th, 2019, the city noted that the 100-year post-development flow shall be controlled to the 2-year pre-development level.

1.4.2 Water Quality

The guideline requires the development to provide water quality measures that are designed to provide Enhanced (Level 1) level of protection as defined in the 2003 Stormwater Management Planning and Design Manual by the Ministry of the Environment, Conservation and Parks (MECP). This was also noted in the pre-consultation meeting with the municipality.

1.4.3 Erosion Control

The guideline states that for small sites (<5 ha), the minimum erosion control requirements are:

 Extended detention of the 4-hour, 25 mm Chicago distribution rainfall event for a minimum of 24 hours, or Runoff reduction from the site through infiltration, evapotranspiration and reuse of a minimum 5 mm of rainfall depth across all impervious surfaces

In addition, appropriate erosion and sediment controls shall be implemented and maintained during construction

1.4.4 Water Balance

The guideline does not explicitly state the requirements regarding water balance. It is encouraged to maintain the natural water balance of the site and to use SWM facilities that reduces runoff volumes, which will result in reduced loading of pollutants.

2 PRE-DEVELOPMENT CONDITIONS

2.1 General

The 4.85 ha site is currently occupied by mainly commercial/retail buildings and a restaurant. The existing runoff coefficient is estimated to be 0.90 as majority of the site is comprised of impervious surfaces. Based on the topographic survey, an external area of approximately 0.09 ha currently discharges into the site. This area will be accounted for in the post-development condition to meet the water quantity requirement. The existing condition of the site is shown in Figure 2.

2.2 Rainfall Information

The rainfall intensity for the site was calculated using the following equation as stated in the Section 6.2.4. of the City of Pickering Stormwater Management Design Guidelines:

$$I = \frac{A}{(t_c + B)^c}$$

Where;

I = Rainfall intensity in mm/hr

T_c = Time of concentration in minutes

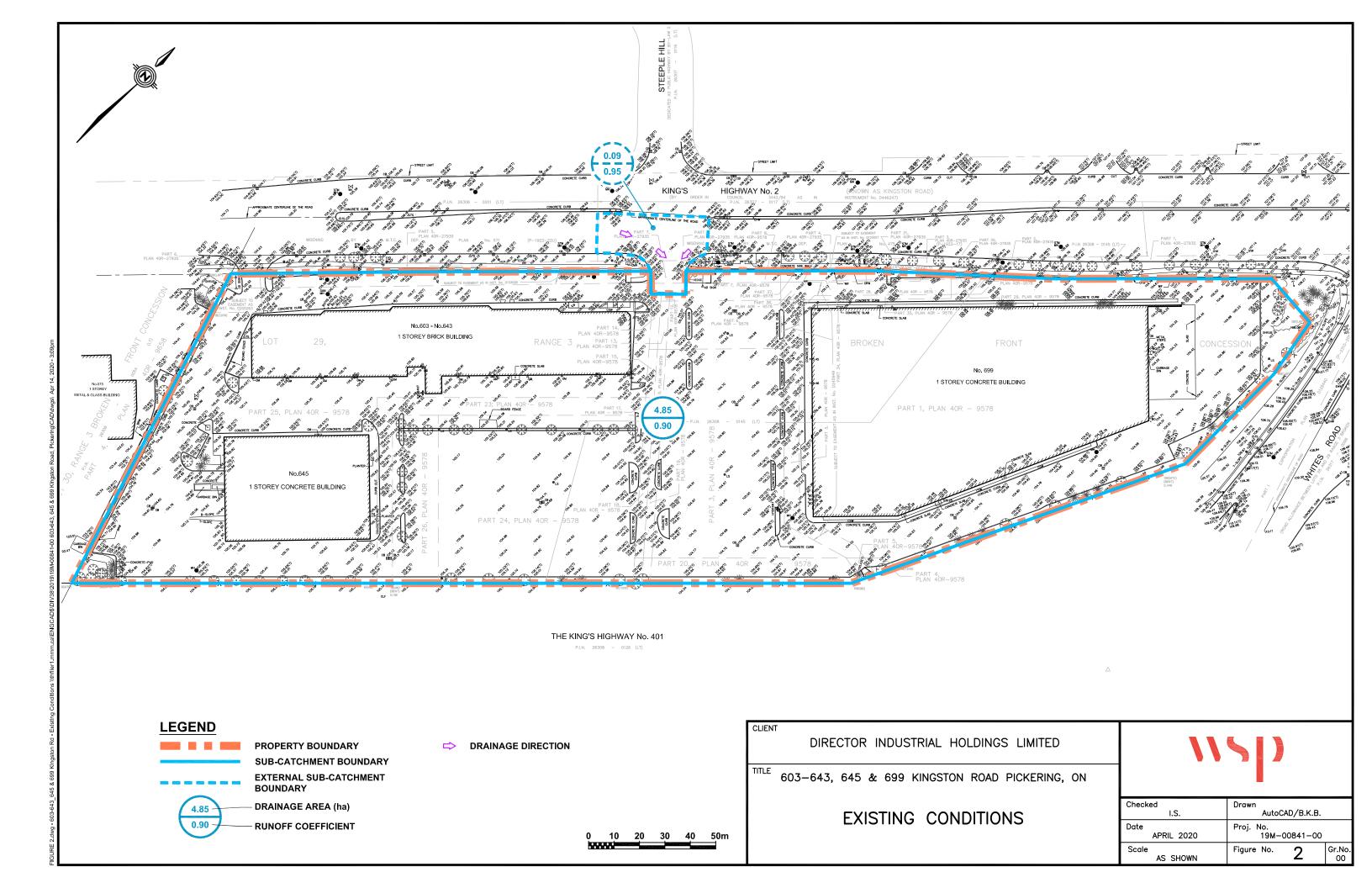

A, B and C = Constant parameters as stated in "Table 12 – Pickering IDF Parameters" in the City of Pickering Stormwater Management Design Guidelines. The parameters are summarized in Table 2-1.

Table 2-1: IDF Parameters used by the City of Pickering

Return Period (Years)	2	5	10	25	50	100
А	715.076	1,082.901	1,313.979	1,581.718	1,828.009	2,096.425
В	5.262	6.007	6.026	6.007	6.193	6.485
С	0.815	0.837	0.845	0.848	0.856	0.863

Source: City of Pickering Stormwater Management Design Guidelines (July 2019)

An initial time of concentration, T_c , of 10 minutes was assumed for the calculation for rainfall intensity.

2.3 Allowable Flow Rates

As noted in Section 1.4.2, from the City of Pickering Stormwater Management Design Guidelines and the pre-consultation meeting, the discharge rate from this site in the post-development condition shall be controlled to the allowable release rate which is defined as the 2-year pre-development discharge from the site.

This site is proposed to have permanent groundwater discharge rate of 0.8 Ls which will be detailed in section 2.4 of this report. This stormwater shall be discharged to the sanitary sewers and therefore, be subtracted from the flows exiting the site.

There is an external drainage area located north of the site. It is assumed that the runoff from this area will be collected by the onsite stormwater infrastructure and conveyed to the proposed system. This flow shall therefore be added to the allowable release rate.

The calculated pre-development peak flow rates for the existing site for the 2-year to 100year storm events are summarized in Table 2-2. Detailed calculations are provided in Appendix A.

Return Period (Years)	Rainfall Intensity, I (mm/hr)	Runoff Coefficient Adjustment Factor, Ca*	Existing Peak Runoff Rates, Q (L/s)**	Proposed Permanent Dewatering Rate, Q _{GW} (L/s)	External Area Release Rate Q _{EX} (L/s)***	Maximum Allowable Release Rate, Q _p (L/s)
2	77.6	1.00	943.4		18.8	
5	106.3	1.00	1,292.9		25.7	
10	126.3	1.00	1,532.8	0.8	30.5	961.4
25	150.6	1.10	2,014.8	0.0	38.4	301.4
50	168.6	1.20	2,274.7		42.9	
100	186.7	1.25	2,519.2		47.6	

Table 2-2:Pre-DevelopmentPeakFlowRateandMaximumAllowableSiteDischarge Rate

*Runoff Coefficient Adjust Factor are required for storms greater than the 25-year storm event when calculating the peak flows using the Rational Method, as stated in Section 6.2.3 of the City of Pickering Stormwater Management Design Guidelines. Note the product of C and Ca cannot be larger than 1.00. **C = 0.90, pre-development catchment area of 4.85 ha and time of concentration of 10 minutes. ***C = 0.95, catchment area of 0.09 ha and a time of concentration of 10 minutes.

2.4 Groundwater, Hydrogeology and Groundwater Characterization

A Hydrogeological investigation was carried out by Toronto Inspections Ltd. in the spring and summer of 2019 to assess the groundwater conditions and soil characteristics of the development, and test the presence of groundwater contamination.

Based on the report dated June 19, 2019, the estimated permanent dewatering rate is approximately 69,471 L/day, which is equivalent to approximately 0.80 L/s. The groundwater quality for the discharge water during construction does not meet the City's Sewer By-Law requirements for discharge to the storm sewer but it does meet the requirements for discharge to the sanitary sewer. It was not stated where the groundwater will be discharged in the long-term scenario. As a conservative measure, it is assumed the groundwater will be discharged to the storm sewers after construction and will be accounted for when checking the water quantity requirement.

The subsurface of the site is composed of mainly sandy silt till. From in-situ hydraulic conductivity tests conducted at various monitoring wells, the hydraulic conductivity ranged between 1.6x10⁻⁶ cm/s and 1.8x10⁻⁵ cm/s with a geometric mean of 6.0x10⁻⁶ cm/s. The Credit Valley Conservation (CVC) Low Impact Development Stormwater Management Planning and Design Guide has a table from the Ontario Building Code relating the hydraulic conductivity and infiltration rate in its supplementary guideline, SG-6 Percolation Time and Soil Descriptions. The table has been summarized in Table 2-3.

Hydraulic Conductivity (cm/s)	Infiltration Rate (mm/hr)
0.1	300
0.01	150
0.001	75
0.0001	50
0.00001	30
0.000001	12

Table 2-3:	Relationship between	Hydraulic Conductivit	y and Infiltration Rate
------------	----------------------	-----------------------	-------------------------

Source: CVC Low Impact Development Stormwater Management Planning and Design Guide – Appendix C (2011)

Based on the table above, it is assumed that the infiltration rate of the sandy silt till ranges from 12 mm/hr and 30 mm/hr, with a geometric mean of approximately 22 mm/hr. This value is greater than the minimum infiltration rate, 15 mm/hr, for stormwater management system that uses infiltration, as recommended in the 2003 Stormwater Management

Planning and Design Manual created by the Ministry of the Environment, Conservation and Parks.

In addition, the water table level ranges from 96.53 and 103.57 m above sea level and the depth between the water table and the ground surfaces ranges from 1.4 m to 8.9 m. From the borehole testing, it is estimated that bedrock is located deeper than 20 m below the ground surfaces.

Based on the analysis above, stormwater management facilities that uses infiltration measures are recommended for this site since the soil has a favourable infiltration rate and there is sufficient distance from the ground surface to the water table and bedrock. However, more analysis would need to be taken at the location of the proposed stormwater management facilities before finalizing the design.

3 POST-DEVELOPMENT CONDITIONS

3.1 General

The total Site area is 4.85 ha (11.98 acres). The current concept development will consist of six high-rise towers, two mid-rise towers, and four townhouse blocks:

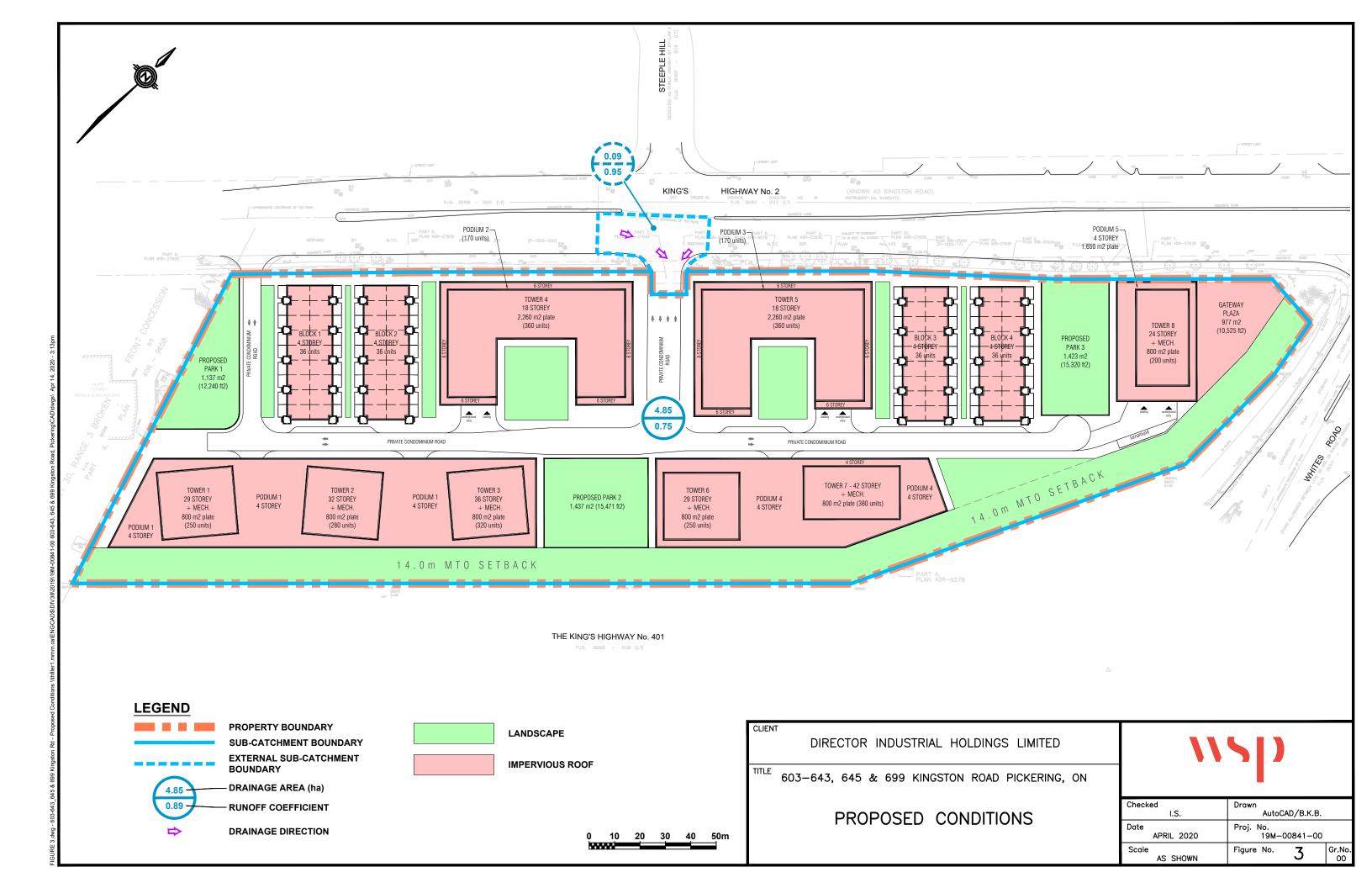
1. Blocks 1 to 4 are 4-storey townhouse blocks with stacked back-to-back units. Blocks 1 and 2 are located toward the northwest corner of the site. Blocks 3 and 4 are located toward the northeast corner of the site.

2. Towers 1, 2 and 3 are located along the south property line, at the west side for the site. The towers range in height from 29 to 36 storeys, which are connected by a 4-storey podium (Podium 1).

3. Towers 4 and 5 are each "U"-shaped buildings and are located along the north property line, at the centre of the site. Both mid-rise towers are 18 storeys.

4. Towers 6 and 7 are located along the south property line, near the centre of the site. Towers 6 and 7 are 29 and 42 storeys, respectively. The towers are connected by a 4-storey podium (Podium 4).

5. Tower 8 is located at the northeast corner of the site. The tower is 24 storeys, with a 4-storey commercial area located within a 4-storey podium (Podium 5).


Grade-level parks will be provided at the south side of the site (between Towers 3 and 6) as well as the northeast and northwest corners of the site. A private internal road network with two access points off of Kingston Road and access to the below grade parking. The concept development includes two levels of underground parking with the exception of Podium 1, which will have one level of underground parking, as well as parking in Podiums 1 and 4.

As mentioned in Section 2.1, the site receives flows from a 916 m² asphalt external area north of the site. This area will be included in the hydrologic analysis to meet the water quantity requirements.

An area breakdown for the new layout is provided below in Table 3-1. Please refer to Figure 3 for details of the post-development conditions and land-uses. Detailed calculations can be found in Appendix A.

Land-Use	Area (m²)	Runoff Coefficient (2,5,10 yr)	Runoff Coefficient (25 yr)	Runoff Coefficient (50 yr)	Runoff Coefficient (100 yr)	% Coverage
Impervious Roof Area	19,757	0.95	1.00	1.00	1.00	41%
Soft Landscaping	14,117	0.25	0.28	0.30	0.31	29%
At-Grade Impervious	14,665	0.95	1.00	1.00	1.00	30%
Total Site Area	48,539	0.75	0.79	0.80	0.80	100%

Table 3-1: Proposed Land-Use Area Breakdown

3.2 Water Quantity Control

As mentioned in Section 1.4.1, the post-development discharge rates for all storms up to and including the 100-year storm event are to be attenuated to the 2-year predevelopment discharge rate, less the groundwater discharge, plus the external drainage area which is equivalent to 961.4 L/s.

It is proposed that the runoff from the entire site will be collected into a subsurface storage system located underneath of the proposed park between Tower 3 and Tower 6. The subsurface storage system comprises of 60 rows of 40 Brentwood 48" StormTank[®] units. The system will have a stone base of 165 mm, stone cover of 305 mm and 305 mm wide wall of stone surrounding the system. The system will have a footprint of approximately 1,043 m² and provide a storage volume of approximately 1,238.5 m³. The system will be gravity drained via a 600 mm diameter orifice tube set at 0.12 m above the internal bottom of the StormTank[®] units. The installation guide for the Brentwood StormTank[®] can be found in Appendix C.

The 'HydroCAD' sottware package (Version 10) has been used to model the behaviour of the proposed SWM system, and to determine its response under various storm events. This software utilises the Modified Rational Method to calculate flow rates and related storage values. Detailed output from the modelling is included in Appendix B. Please note the runoff coefficient adjustment factors were also considered for the modelled catchments in HydroCAD. Based on the criteria defined in Section 1.4.1, all stormwater runoff from events up to and including the 100-year storm must be contained on site and released at or below the allowable rate.

As mentioned before, the 916 m² asphalt external area located north of the site will be draining into the site. It is assumed that runoff from that area will be collected by onsite measures (i.e. catchbasins) and conveyed to the subsurface storage system. Therefore, the target release rate would be the addition of the 2-year pre-development release rate and the release rate from the external area for each storm event. In addition, as mentioned in Section 2.4, there is a flow of 0.8 L/s from the groundwater pumping system which would be discharged into the storm sewers and that amount would have to be subtracted from the allowable release rate as a conservative measure. These groundwater flows will not enter the subsurface chamber. Calculations for the release rate of the external area can be found in Appendix A.

Summaries of the modelled peak offsite discharge rates for the subsurface storage system are provided in Table 3-2.

Return Period (years)	Peak Elevation in system /1.54 (m)	System Storage /1238.5(m ³)	System Discharge (L/s)	Allowable Release Rate (L/s)	
2	0.688	580.3	321.7		
5	0.805	694.2	470.2	961.4	
10	0.885	772.3	549.7		
25	1.033	917.1	670.7	501.4	
50	1.129	1010.6	738.8		
100	1.225	1,104.9	801.7		

Table 3-2: Summary of Modelling Results

The modelling results demonstrate that the post-development peak flow rates for all events up to the 100-year storm are lower than the target release rate. The maximum required storage volume to control the 100-year post-development runoff is 1,104.9 m³, while the provide storage volume is 1,238.5 m³. Note that this total utilized storage volume includes the water quality/erosion control volume described in the following sections.

As most of the flow rates are controlled by the site's subsurface storage system, the rainfall intensity and storm duration resulting in the maximum utilized storage produces the largest flows. This has been iteratively determined at $t_d = 20$ minutes (for the 100-year event).

3.3 Water Quality Control

As mentioned in Section 1.4.2, Enhanced Level of protection is required for the proposed development. The target is to treat 90% of the annual runoff volume and remove 80% of the total suspended solids (TSS). A treatment train which consists of an oil/grit separator upstream of the subsurface storage system is proposed.

The proposed treatment train approach consists of an OGS (Stormceptor EFO 12) which has been sized to capture approximately 60% of TSS and over 90% of the annual runoff volume. The OGS has been sized using Imbrium's online PCSWMM for Stormceptor tool with the CA ETV particle size distribution. Please refer to Appendix D for the sizing report. It is to be noted that from the pre-consultation meeting with the City of Pickering, OGS are credited for only 50% of TSS, this will be considered in the calculation of the overall TSS removal of the treatment train.

The OGS will act as a pre-treatment device for the runoff before it flows to the subsurface storage system. Using Table 3.2 of the 2003 Stormwater Management Planning and Design Manual from the Ministry of the Environment, Conservation and Parks, it was determined that an infiltration volume of 175.5 m³ is required to achieve an 80% TSS removal for a 4.95 ha drainage area with an imperviousness of 71%. The subsurface storage system will provide 191.1 m³ of infiltration volume which exceeds the requirement to achieve 80% TSS removal. By proposing the treatment train, it is expected the overall TSS removal efficiency is 90%. Please refer to Appendix A for the detailed calculations.

3.4 Erosion Control

As noted in Section 1.4.3, for site plans smaller than 5 ha there are minimum requirements that the development must meet. The site has been designed to meet the second requirement in the City of Pickering Stormwater Management Design Guidelines which states "runoff reduction from the site through infiltration, evapotranspiration and reuse of a minimum 5mm of rainfall depth across all impervious surfaces."

Allowing for an initial abstraction of 1 mm from impervious surfaces and 5 mm pervious surfaces (soft landscaping), a water balance volume for the post-development conditions is calculated. Table 3-3 outlines the water balance volume to retain the runoff from a 5 mm storm on site in the post-development condition. Detailed water balance calculations can be found in Appendix A of this report.

Surface Type	Area (m²)	Initial Abstraction (m ³)	Volume Abstracted (m ³)	5 mm Volume (m³)	Water Balance (m ³)
Impervious	19,757	0.001	19.76	98.78	79.03
Roof Area					
Soft	14,117	0.005	70.59	70.59	0.00
Landscaping					
At-Grade	14,665	0.001	14.66	73.32	58.66
Impervious					
Total	48,539	-	105.01	242.69	137.69

Table 3-3: Water Balance Calculation for Post-Development Condition

The water balance volume of 137.69 m³ shall be stored in the stone base and the bottom of the subsurface storage units. As stated in Section 3.3, a sump volume of 191.1 m³ will be provided in the subsurface storage system to meet the water quality requirement therefore the erosion control requirement will also be satisfied. Detailed calculations can in found in Appendix A of this report. During construction, appropriate erosion and sediment controls shall be implemented to ensure the impact from construction of the proposed development is minimized.

It is assumed that the captured stormwater will infiltrate into the native soil below the subsurface storage system. Based on the information from Borehole 9, which was located between proposed Tower 3 and 6, the base of the subsurface storage system will be approximately 1.0 m above the water table and at least 20 m above the bedrock. It is recommended to conduct more site investigation to determine the infiltration capacity of the soil surrounding the subsurface storage system before further analysis and finalizing the design.

3.5 Water Balance

As noted in Section 1.4.4, the objective for water balance is that the water balance volume in the post-development conditions shall be equal to or lesser than the pre-development condition. To compare the water balance volume between the pre- and post-development conditions, the runoff volume from a 5 mm rainfall on site was calculated under both conditions.

Allowing for an initial abstraction of 1 mm from impervious surfaces and 5 mm pervious surfaces (soft landscaping), a water balance volume for the pre-development conditions is calculated. Table 3-4 outlines the water balance volume to retain the runoff from a 5 mm storm in the pre-development condition and Table 3-3 outlines the water balance volume to retain the runoff from a 5 mm storm in the post-development condition. Detailed water balance calculations can be found in Appendix A of this report.

Surface Type	Area (m²)	Initial Abstraction (m ³)	Volume Abstracted (m ³)	5 mm Volume (m³)	Water Balance (m ³)
Impervious	15,249	0.001	15.25	76.25	61.00
Roof Area					
Soft	2,959	0.005	14.80	14.80	0
Landscaping					
At-Grade	30,330	0.001	30.33	151.65	121.32
Impervious					
Total	48,539	-	60.38	242.66	182.32

Table 0.4	We to Balance Oals lefter for Bar Bar also and Oals life
1 able 3-4:	Water Balance Calculation for Pre-Development Condition

As shown in Table 3-3 and Table 3-4, the post-development water balance (137.69 m³) is smaller than the pre-development water balance volume (182.32 m³) due to the increase in soft landscaping area in the post-development condition. The result illustrates that in 5 mm storms or for any other storms, there will be more runoff in the pre-development condition than in the post-development condition. It is also important to note that in the post-development condition, at least 191.1 m³ of the runoff volume from any storm will be retained in the subsurface storage system and infiltrated into the native soil. Therefore, not only is the runoff volume lower in the post-development condition due to the increase in landscaped areas but a volume of 191.1 m³ of the runoff will be infiltrated into the subsurface storage system.

4 CONCLUSIONS

A stormwater management plan has been prepared to support the rezoning application for the proposed redevelopment of 603-643, 645 and 699 Kingston Road in the City of Pickering. The key points are summarized below.

Water Quantity

Runoff from the entire site and external area will directed to the 1,238.5 m³ Brentwood StormTank[®] subsurface storage system located in the proposed park between Tower 3 and 6. The maximum storage volume utilized is 1,104.9 m³, including the sump volume for reuse and water quality. Outflow from the system will be controlled to below the 2-year pre-development discharge rate by a 600 mm orifice tube, while accounting for potential groundwater discharge and runoff from external area.

Water Quality

A treatment train consisting of an oil/grit separator and the subsurface storage system is proposed to achieve the required Enhanced level of water protection. The overall TSS removal of the treatment train is approximately 90%, which exceeds the 80% TSS requirement for Enhanced level of protection

Erosion Control

A minimum water reuse volume of 191.06 m³ will be provided in a sump volume below the invert of the outlet of the subsurface storage system to store the required volume for reuse. It is proposed that the water stored in the sump volume will infiltrate into the native soil on site.

Water Balance

Due to the increase in pervious areas from pre- to post-development, the water balance volume has decreased when compared to post-development conditions. In addition, the 5 mm erosion control requirement has been addressed.

This report has demonstrated that the proposed SWM strategy will address stormwater management related impacts from this project and meet the intent of the City of Pickering Stormwater Management Design Guidelines.

Respectfully submitted,

WSP Canada Group Limited

5 **BIBLIOGRAPHY**

- City of Pickering. (2019, July). Stormwater Management Design Guidelines.
 Retrieved from <u>https://www.pickering.ca/en/city-hall/resources/ENG/SWM-Design-Guidelines.pdf</u>
- Credit Valley Conservation. (2011). Low Impact Development Stormwater Management Planning and Design Guide – Appendix C: Site Evaluation and Soil Testing Protocol. Retrieved from https://cvc.ca/low-impact-development/low-impactdevelopment-support/stormwater-management-lid-guidance-documents/low-impactdevelopment-stormwater-management-planning-and-design-guide/
- Ministry of the Environment, Conservation and Parks. (2003). Stormwater Management Planning and Design Manual. Retrieved from <u>https://www.ontario.ca/document/stormwater-management-planning-and-design-manual/stormwater-management-plan-and-swmp-design</u>
- State of New Jersey. (2004, February). New Jersey Stormwater Best Management Practices Manual. Retrieved from https://www.njstormwater.org/bmp_manual/NJ_SWBMP_4%20print.pdf

Appendix C Stormwater Management Calculations

Catchment	101 Runoff Coefficient	Outlets to: Area (ha)	Highway 401 Weighted Runoff Coefficient
Commercial Area	0.90	4.85	0.90
TOTAL		4.85	0.90
Catchment	EXT-1 Runoff Coefficient	Outlets to: Area (ha)	Highway 401 Weighted Runoff Coefficient
Pavement	0.95	0.09	0.95
	0.35		
TOTAL Highway 401 Total		0.09	0.95
5 .,	Runoff		Weighted Runoff
Catchment	Coefficient	Area	Coefficient
101	0.90	4.85	0.88
EXT-1	0.95	0.09	0.02
TOTAL		4.94	0.90

2 Year storm

ſ	a = 715.076
IDF Parameters*	t = 10
J	b = 5.26
	c = 0.82

Runoff Coefficient:

C1 = 0.90

Allowable Release Rate Calculation						
Outlet	Area	time	Intensity	Flow		
ID		t	i=a/(t+b)^c	Q=CiA/360		
	ha	min	mm/hr	l/s		
Highway 401	4.944	10.00	77.57	959.7		

* a,b,c's per City of Pickering

min

PROPOSED WEIGHTED RUNOFF COEFFICIENT

Catchment 201	Outlets to:	Highway 401	
Runoff Coefficient	Area (ha)	Weighted Runoff Coefficient	Weighted Runoff Coefficient (100 Year)
High Density 0.95	0.54	0.95	1.00
TOTAL	0.54	0.95	1.00
Catchment 202	Outlets to:	Highway 401	
Runoff Coefficient	Area (ha)	Weighted Runoff Coefficient	Weighted Runoff Coefficient (100 Year)
R.O.W. 0.77	0.54	0.49	0.61
Park 0.25	0.33	0.09	0.12
TOTAL	0.87	0.58	0.72
Catchment 203	Outlets to:	Highway 401	
Runoff Coefficient	Area (ha)	Weighted Runoff Coefficient	Weighted Runoff Coefficient (100 Year)
High Density 0.95	0.53	0.95	1.00
TOTAL	0.53	0.95	1.00
Catchment 204 Runoff Coefficient	Outlets to: Area (ha)	Highway 401 Weighted Runoff Coefficient	Weighted Runoff Coefficient (100 Year)
High Density 0.95	0.63	0.95	1.00
TOTAL	0.63	0.95	1.00
Catchment 205	Outlets to:	Highway 401	
Runoff Coefficient	Area (ha)	Weighted Runoff Coefficient	Weighted Runoff Coefficient (100 Year)
High Density 0.95	0.43	0.95	1.00
TOTAL	0.43	0.95	1.00
Catchment 206 Runoff	Outlets to:	Highway 401	Weighted Dupoff
Coefficient	Area (ha)	Weighted Runoff Coefficient	Weighted Runoff Coefficient (100 Year)
	Area (ha)		, ,
High Density 0.95	0.39	0.95	1.00
TOTAL	0.39	0.95	1.00

PROPOSED WEIGHTED RUNOFF COEFFICIENT

Catchment	Catchment 207		Highway 401	
	Runoff Coefficient	Area (ha)	Weighted Runoff Coefficient	Weighted Runoff Coefficient (100 Year)
Asphalt	0.95	0.20	0.25	0.26
Grass	0.20	0.57	0.15	0.18
TOTAL		0.78	0.40	0.45

Catchment 2	Catchment 208		Highway 401	
	Runoff Coefficient	Area (ha)	Weighted Runoff Coefficient	Weighted Runoff Coefficient (100 Year)
High Density	0.95	0.69	0.95	1.00
TOTAL		0.69	0.95	1.00

Highway 401 Total

	Runoff		Weighted Runoff
Catchment	Coefficient	Area	Coefficient
201	0.95	0.54	0.11
202	0.58	0.87	0.10
203	0.95	0.53	0.10
204	0.95	0.63	0.12
205	0.95	0.43	0.08
206	0.95	0.39	0.08
207	0.40	0.78	0.06
208	0.95	0.69	0.14
TOTAL	-	4.85	0.79

SUMMARY

						100 Yea	r				
Catchment ID	Routing		Runoff Coef.	Area (ha)	Release Rate (L/s)	Storage Required (m³)	Storage Available (m ³) ³	Draw Down Time (mins) ³	Orifice Size (mm) 2	Uncontrolled Release Rate (L/s)	VERTICAL/TUBE Control
201	is routed through	202	1.00	0.54	99.3	135.5	136.0	23	172		vertical
201	is routed through	202	0.72	0.87	375.8	115.9	121.5	0	338		vertical
203	is routed through		1.00	0.53	97.8	133.4	135.0	23	171		vertical
204	is routed through	202	1.00	0.63	116.2	158.6	160.0	23	186		vertical
205	is routed through		1.00	0.43	79.3	108.2	110.0	23	154		vertical
206	is routed through		1.00	0.39	71.9	98.2	100.0	23	146		vertical
207	is routed through		0.45	0.78	207.6	0.0	0.0	0	uncontrolled	208	-
208	is routed through		1.00	0.69	127.3	173.7	175.0	23	195		vertical
Total				4.85	1175.2	923.4	937.5		-		

Highway 401 Allowable Release Rate Highway 401 Proposed Release Rate **959.7** L/s 959.7 L/s

Notes:

¹ Per Modified Rational Calculations (attached)

² See attached for orifice details

³ Draw down time calculated based on surface storage only

Area ID:	201		
Area =	0.538 ha		
"C" =	1.00		
AC=	0.5382		
Tc =	10.0 min		
Time Increment =	5.0 min		
		City of	
Release Rate =	99.28 l/s	Pickering	100 Year
Max.Storage =	135.5 m ³	a=	2096.425
0		b=	6.485
		C=	0.863

NOTE: Catchment 201 is routed through Catchment 202

Time	Rainfall Intensity	Storm Runoff	Runoff Volume	Released Volume	Storage Volume	
(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)	
10.0	186.7	279.33	167.6	59.6	108.0	
15.0	148.5	222.25	200.0	74.5	125.6	
20.0	124.0	185.53	222.6	89.4	133.3	
25.0	106.8	159.81	239.7	104.2	135.5	<<<<
30.0	94.1	140.72	253.3	119.1	134.2	
35.0	84.2	125.96	264.5	134.0	130.5	
40.0	76.3	114.18	274.0	148.9	125.1	
45.0	69.9	104.54	282.3	163.8	118.4	
50.0	64.5	96.50	289.5	178.7	110.8	
55.0	59.9	89.69	296.0	193.6	102.4	
60.0	56.0	83.84	301.8	208.5	93.3	
65.0	52.6	78.76	307.1	223.4	83.8	
70.0	49.7	74.29	312.0	238.3	73.8	
75.0	47.0	70.34	316.5	253.2	63.4	
80.0	44.7	66.82	320.7	268.1	52.7	
85.0	42.5	63.65	324.6	282.9	41.7	
90.0	40.6	60.80	328.3	297.8	30.5	
95.0	38.9	58.20	331.8	312.7	19.0	
100.0	37.3	55.84	335.0	327.6	7.4	
105.0	35.9	53.67	338.1	342.5	-4.4	
110.0	34.5	51.67	341.1	357.4	-16.4	
115.0	33.3	49.83	343.9	372.3	-28.4	
120.0	32.2	48.13	346.5	387.2	-40.7	
125.0	31.1	46.55	349.1	402.1	-53.0	

P:\2626 603-699 Kingston Road - Pickering\Design\SWM\FSP\Design Calculations\2626 - Commercial SWM Design (MRM & WB).xlsm

ON-SITE DETENTION AND ORIFICE DETAILS

vertical

1

Area ID	201				
Orifice Equation:	Q = C _d A(2gh) ^{1/2}			
Orifice Diameter: Area:	172 0.023	mm m ²			
g = C _d =	9.81 0.62	m/sec ²			
Underground Storage					

Type of Control:

Location:

onuergrounu Siviay

		1
Volume =	136	m³

Area ID:	202			
Area =	0.870	ha		
"C" =	0.72			
AC=	0.6290			
Tc =	10.0	min		
Time Increment =	5.0	min		
			City of	
Release Rate =	375.85		Pickering	100 Year
Max.Storage =	115.9	m ³	a=	2096.425
			b=	6.485
			C=	0.863

NOTE: Catchments 201, and 204 are routed through Catchment 202

Time	Rainfall Intensity	Storm Runoff	Runoff Volume ¹	Released Volume	Storage Volume	
(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)	
10.0	186.7	326.43	325.2	225.5	99.6	
15.0	148.5	259.72	395.4	281.9	113.5	
20.0	124.0	216.82	454.1	338.3	115.9	<<<<
25.0	106.8	186.76	506.4	394.6	111.8	
30.0	94.1	164.45	554.6	451.0	103.6	
35.0	84.2	147.20	600.0	507.4	92.6	
40.0	76.3	133.43	643.5	563.8	79.7	
45.0	69.9	122.17	685.4	620.2	65.3	
50.0	64.5	112.78	726.2	676.5	49.7	
55.0	59.9	104.82	766.1	732.9	33.2	
60.0	56.0	97.98	805.3	789.3	16.0	
65.0	52.6	92.04	843.8	845.7	-1.9	
70.0	49.7	86.82	881.8	902.0	-20.2	
75.0	47.0	82.20	919.4	958.4	-39.0	
80.0	44.7	78.08	956.6	1014.8	-58.2	
85.0	42.5	74.39	993.5	1071.2	-77.7	
90.0	40.6	71.05	1030.1	1127.5	-97.4	
95.0	38.9	68.02	1066.5	1183.9	-117.4	
100.0	37.3	65.25	1102.6	1240.3	-137.7	
105.0	35.9	62.72	1138.6	1296.7	-158.1	
110.0	34.5	60.39	1174.3	1353.1	-178.7	
115.0	33.3	58.24	1209.9	1409.4	-199.5	
120.0	32.2	56.24	1245.4	1465.8	-220.4	
125.0	31.1	54.39	1280.7	1522.2	-241.5	

¹ The released volume from Catchments 201 and 204 have been added to the runoff volume of Catchment 202

ON-SITE DETENTION AND ORIFICE DETAILS

Area ID	202				
Orifice Equation:	Q = C _d A(2gh) ^{1/2}	Tvi	be of Control:	vertical
Orifice Diameter:	338	mm	- 77	Location:	2
Area:	0.090	m²			
g =	9.81	m/sec ²			
C _d =					
Pipe Storage				_	
Diameter	Area	Length	Volume		
(mm)	(m ²)	(m)	(m ³)		

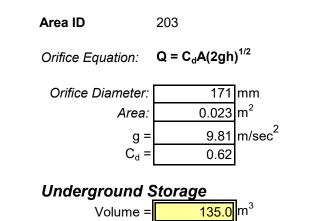
75

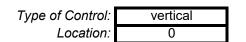
Total Volume

121.5 121.5

1.62

1.8 m x 0.9 m


Area ID:	203		
Area =	0.530 ha		
"C" =	1.00		
AC=	0.5300		
Tc =	10.0 min		
Time Increment =	5.0 min		
		City of	
Release Rate =	97.76 l/s	Pickering	100 Year
Max.Storage =	133.4 m ³	а=	2096.425
		b=	6.485
		C=	0.863


Time	Rainfall	Storm	Runoff	Released	Storage
(Intensity	Runoff	Volume (m ³)	Volume (m ³)	Volume (m ³)
(min)	(mm/hr)	(l/s)	. ,	. ,	
10.0	186.7	275.08	165.0	58.7	106.4
15.0	148.5	218.86	197.0	73.3	123.7
20.0	124.0	182.71	219.2	88.0	131.3
25.0	106.8	157.38	236.1	102.6	133.4
30.0	94.1	138.58	249.4	117.3	132.1
35.0	84.2	124.04	260.5	132.0	128.5
40.0	76.3	112.44	269.8	146.6	123.2
45.0	69.9	102.95	278.0	161.3	116.7
50.0	64.5	95.03	285.1	176.0	109.1
55.0	59.9	88.33	291.5	190.6	100.8
60.0	56.0	82.56	297.2	205.3	91.9
65.0	52.6	77.56	302.5	220.0	82.5
70.0	49.7	73.16	307.3	234.6	72.6
75.0	47.0	69.27	311.7	249.3	62.4
80.0	44.7	65.80	315.8	264.0	51.9
85.0	42.5	62.68	319.7	278.6	41.1
90.0	40.6	59.87	323.3	293.3	30.0
95.0	38.9	57.32	326.7	307.9	18.8
100.0	37.3	54.99	329.9	322.6	7.3
105.0	35.9	52.85	333.0	337.3	-4.3
110.0	34.5	50.89	335.9	351.9	-16.1
115.0	33.3	49.07	338.6	366.6	-28.0
120.0	32.2	47.40	341.3	381.3	-40.0
125.0	31.1	45.84	343.8	395.9	-52.2

<<<<

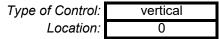
ON-SITE DETENTION AND ORIFICE DETAILS

<<<<

Area ID:	204		
Area =	0.630 ha	а	
"C" =	1.00		
AC=	0.6300		
Tc =	10.0 m	nin	
Time Increment =	5.0 m	nin	
		City of	
Release Rate =	116.21 //s	s Pickering	100 Year
Max.Storage =	158.6 m	a=	2096.425
-		b=	6.485
		C=	0.863

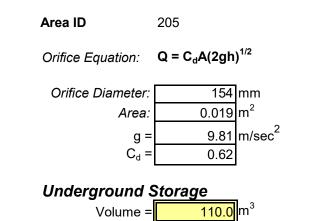
NOTE: Catchment 204 is routed through Catchment 202

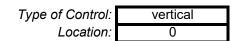
Time	Rainfall Intensity	Storm Runoff	Runoff Volume	Released Volume	Storage Volume
(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)
10.0	186.7	326.98	196.2	69.7	126.5
15.0	148.5	260.15	234.1	87.2	147.0
20.0	124.0	217.18	260.6	104.6	156.0
25.0	106.8	187.07	280.6	122.0	158.6
30.0	94.1	164.73	296.5	139.5	157.1
35.0	84.2	147.44	309.6	156.9	152.7
40.0	76.3	133.65	320.8	174.3	146.4
45.0	69.9	122.37	330.4	191.7	138.7
50.0	64.5	112.97	338.9	209.2	129.7
55.0	59.9	104.99	346.5	226.6	119.9
60.0	56.0	98.14	353.3	244.0	109.3
65.0	52.6	92.19	359.5	261.5	98.1
70.0	49.7	86.96	365.2	278.9	86.3
75.0	47.0	82.34	370.5	296.3	74.2
80.0	44.7	78.21	375.4	313.8	61.7
85.0	42.5	74.51	380.0	331.2	48.8
90.0	40.6	71.17	384.3	348.6	35.7
95.0	38.9	68.13	388.3	366.1	22.3
100.0	37.3	65.36	392.2	383.5	8.7
105.0	35.9	62.82	395.8	400.9	-5.1
110.0	34.5	60.49	399.2	418.4	-19.1
115.0	33.3	58.33	402.5	435.8	-33.3
120.0	32.2	56.34	405.6	453.2	-47.6
125.0	31.1	54.48	408.6	470.7	-62.0


P:\2626 603-699 Kingston Road - Pickering\Design\SWM\FSP\Design Calculations\2626 - Commercial SWM Design (MRM & WB).xlsm

ON-SITE DETENTION AND ORIFICE DETAILS

204	
Q = C _d A(2gh) ^{1/2}
186	mm
0.027	m ²
9.81	m/sec ²
0.62	
	$Q = C_d A(2gh)$ 186 0.027 9.81


Area ID:	205		
Area =	0.430 ha		
"C" =	1.00		
AC=	0.4300		
Tc =	10.0 min		
Time Increment =	5.0 min		
		City of	
Release Rate =	79.32 l/s	Pickering	100 Year
Max.Storage =	108.2 m ³	a=	2096.425
-		b=	6.485
		c=	0.863


Time (min)	Rainfall Intensity (mm/hr)	Storm Runoff (I/s)	Runoff Volume (m³)	Released Volume (m ³)	Storage Volume (m ³)
10.0	186.7	223.17	133.9	47.6	86.3
15.0	148.5	177.57	159.8	59.5	100.3
20.0	124.0	148.23	177.9	71.4	106.5
25.0	106.8	127.68	191.5	83.3	108.2
30.0	94.1	112.43	202.4	95.2	107.2
35.0	84.2	100.64	211.3	107.1	104.3
40.0	76.3	91.22	218.9	119.0	100.0
45.0	69.9	83.52	225.5	130.9	94.6
50.0	64.5	77.10	231.3	142.8	88.5
55.0	59.9	71.66	236.5	154.7	81.8
60.0	56.0	66.99	241.1	166.6	74.6
65.0	52.6	62.92	245.4	178.5	66.9
70.0	49.7	59.36	249.3	190.4	58.9
75.0	47.0	56.20	252.9	202.3	50.6
80.0	44.7	53.38	256.2	214.2	42.1
85.0	42.5	50.86	259.4	226.1	33.3
90.0	40.6	48.57	262.3	238.0	24.3
95.0	38.9	46.50	265.1	249.9	15.2
100.0	37.3	44.61	267.7	261.8	5.9
105.0	35.9	42.88	270.1	273.7	-3.5
110.0	34.5	41.29	272.5	285.6	-13.1
115.0	33.3	39.82	274.7	297.5	-22.7
120.0	32.2	38.45	276.9	309.4	-32.5
125.0	31.1	37.19	278.9	321.2	-42.3

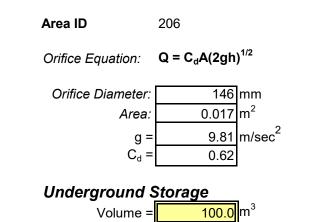
<<<<

ON-SITE DETENTION AND ORIFICE DETAILS

Area ID:	206		
Area =	0.390 ha		
"C" =	1.00		
AC=	0.3900		
Tc =	10.0 min		
Time Increment =	5.0 min		
		City of	
Release Rate =	71.94 l/s	Pickering	100 Year
Max.Storage =	98.2 m ³	a=	2096.425
		b=	6.485
		c=	0.863

Time (min)	Rainfall Intensity (mm/hr)	Storm Runoff (l/s)	Runoff Volume (m ³)	Released Volume (m ³)	Storage Volume (m ³)
10.0	186.7	202.41	121.4	43.2	78.3
15.0	148.5	161.05	144.9	54.0	91.0
20.0	124.0	134.44	161.3	64.7	96.6
25.0	106.8	115.80	173.7	75.5	98.2
30.0	94.1	101.97	183.6	86.3	97.2
35.0	84.2	91.27	191.7	97.1	94.6
40.0	76.3	82.74	198.6	107.9	90.7
45.0	69.9	75.75	204.5	118.7	85.8
50.0	64.5	69.93	209.8	129.5	80.3
55.0	59.9	65.00	214.5	140.3	74.2
60.0	56.0	60.75	218.7	151.1	67.6
65.0	52.6	57.07	222.6	161.9	60.7
70.0	49.7	53.83	226.1	172.7	53.4
75.0	47.0	50.97	229.4	183.4	45.9
80.0	44.7	48.42	232.4	194.2	38.2
85.0	42.5	46.13	235.2	205.0	30.2
90.0	40.6	44.06	237.9	215.8	22.1
95.0	38.9	42.18	240.4	226.6	13.8
100.0	37.3	40.46	242.8	237.4	5.4
105.0	35.9	38.89	245.0	248.2	-3.2
110.0	34.5	37.45	247.1	259.0	-11.8
115.0	33.3	36.11	249.2	269.8	-20.6
120.0	32.2	34.88	251.1	280.6	-29.5
125.0	31.1	33.73	253.0	291.4	-38.4

<<<<


ON-SITE DETENTION AND ORIFICE DETAILS

Type of Control:

Location:

vertical

0

Area ID:	207		
Area =	0.777 ha	a	
"C" =	0.45		
AC=	0.3465		
Tc =	10.0 m	in	
Time Increment =	5.0 m	in	
		City of	
Release Rate =	207.60 l/s	Pickering	100 Year
Max.Storage =	0.0 m	³ a=	2096.425
		b=	6.485
		c=	0.863

Time	Rainfall	Storm	Runoff	Released	Storage
	Intensity	Runoff	Volume	Volume	Volume
(min)	(mm/hr)	(l/s)	(m ³)	(m ³)	(m ³)
10.0	186.7	179.81	107.9	124.6	0.0

MODIFIED RATIONAL METHOD

Area ID:	208			
Area =	0.690	ha		
"C" =	1.00			
AC=	0.6900			
Tc =	10.0	min		
Time Increment =	5.0	min		
Release Rate =	127.26	l/s	City of Pickering	100 Yea
Max.Storage =	173.7	m ³	a=	2096.425
C C			b=	6.485
				0.000

Time	Rainfall Intensity	Storm Runoff	Runoff Volume (m ³)	Released Volume (m ³)	Storage Volume (m ³)
(min)	(mm/hr)	(l/s)		76.4	
10.0	186.7	358.12	214.9		138.5
15.0	148.5	284.93	256.4	95.4	161.0
20.0	124.0	237.86	285.4	114.5	170.9
25.0	106.8	204.88	307.3	133.6	173.7
30.0	94.1	180.41	324.7	152.7	172.0
35.0	84.2	161.49	339.1	171.8	167.3
40.0	76.3	146.38	351.3	190.9	160.4
45.0	69.9	134.03	361.9	210.0	151.9
50.0	64.5	123.72	371.2	229.1	142.1
55.0	59.9	114.99	379.5	248.2	131.3
60.0	56.0	107.49	387.0	267.2	119.7
65.0	52.6	100.97	393.8	286.3	107.4
70.0	49.7	95.25	400.0	305.4	94.6
75.0	47.0	90.18	405.8	324.5	81.3
80.0	44.7	85.66	411.2	343.6	67.6
85.0	42.5	81.61	416.2	362.7	53.5
90.0	40.6	77.94	420.9	381.8	39.1
95.0	38.9	74.62	425.3	400.9	24.5
100.0	37.3	71.59	429.5	420.0	9.6
105.0	35.9	68.81	433.5	439.0	-5.6
110.0	34.5	66.25	437.2	458.1	-20.9
115.0	33.3	63.89	440.8	477.2	-36.4
120.0	32.2	61.70	444.3	496.3	-52.0
125.0	31.1	59.67	447.6	515.4	-67.9

<<<<

c=

0.863

ON-SITE DETENTION AND ORIFICE DETAILS

Area ID	208	
Orifice Equation:	Q = C _d A(2gh) ^{1/2}
Orifice Diameter:	195	mm
Area:	0.030	m ²
g =	9.81	m/sec ²
C _d =	0.62	

Type of Control:	vertical
Location:	0

ON-SITE DETENTION AND ORIFICE DETAILS

Underground Storage Volume = 175.0 m³

	Stage (m)	Head (m)	Storage (m ³)	Discharge (m ³ /s)
Invert E.L.	100.00	0.00	0.0	0.00
Ground E.L.	102.50	2.40	0.0	0.127
100 Year WL	102.50	2.40	175.0	0.127

WATER BALANCE

603-699 Kingston Road - Pickering Project Number: 2626 Date: August 2023 Designer Initials: R.P.B.

Post Development Conditions

Catchment	Area (ha)	Rainfall Depth (mm)	Rainfall Volume (m³)	Initial Abstraction Volume (m ³)	Runoff Volume (m ³)
	(1)	(2)	(3) = (2)x(1)x10 m3/ha-mm	(5) = (4)x(1)x10 m3/ha-mm	(6) = (3) - (5)
High Density	2.52	5	125.9	0.0	125.9
ROW	0.54	5	27.2	0.0	27.2
Park/Grass	0.90	5	45.0	0.0	45.0
Asphalt	0.20	5	10.1	0.0	10.1
Total	4.16		208.2	0.0	208.2

Therefore, water balance treatment of 208.2 cu.m is required.

Appendix D Sanitary Sewer Capacity Analysis

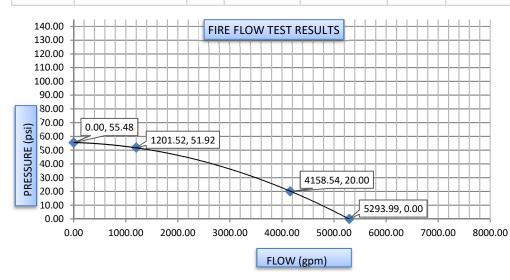
SCS consulting group Itd									1			ngston Roa cing and St		ra Group of Manageme	f Companies ent Report (F	SSR)					Project:	603-699 Kings	iton Road - S	orbara Grou	p of Compa	mies	
Minimum Sewer Diameter (mm) =	200	Avg. Dom	estic Flow (l/cap/day) =	364																Project No.	2626					
Mannings n =	0.013	In	filtration R:	ate (l/s/ha) =	2.08																Date:	24-Jul-23					
Minimum Velocity (m/s) =	0.60	Max. Ha	armon Peak	ing Factor =	3.8																Designed By:	J.Y.L. / P.C.					
Maximum Velocity (m/s) =	3.65	Min. Ha	armon Peak	ing Factor =	1.5																Reviewed By:	P.C.					
Minimum Pipe Slope (%) =	0.50	NOMI	NAL PIPE	SIZE USED																		P:26	26 603-699 Kingston R	ioad - Pickering Desig	pl@ipe DesigniSani	tary (2626P-Sanitary Sh	teet Design.xlsm]Design
LOCATION						RESIDEN	TIAL			IN	DUSTRIAL	COMMERCL	L/INSTITUT	TIONAL			1	FLOW CALCU	ULATIONS						PIPE DAT	`A	
	MAN	HOLE				DEN	SITY		ACCUM.					ACCUM.		TOTAL	AVG.	ACCUM, AVG		PEAKED							1
STREET			AREA	ACCUM. AREA	UNITS	PER UNIT	PER HA	RESIDENTIAL POPULATION	RESIDENTIAL POPULATION	AREA	ACCUM. AREA	POPULATION DENSITY	FLOW RATE	EQUIV. POPULATION	INFILTRATION		DOMESTIC FLOW	DOMESTIC FLOW	PEAKING FACTOR	DECEMPENTS OF	ICI FLOW	TOTAL FLOW	LENGTH	PIPE DIAMETER	SLOPE	FULL FLOW CAPACITY	FULL FLOW VELOCITY
	FROM	то	(ha)	(ha)	(#)	(p/unit)	(p/ha)			(ha)	(ha)	(p/ha)	(l/s/ha)		(L/s)		(L/s)	(L/s)		(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(L/s)	(m/s)
			0	0	0	4 /		0	0	0	0	0	0	0	0.0	0	0.0	0.0	3.80	0.0	0.0	0.0	0.0	0	0.00	#DIV/0!	#DIV/0!
SITE	MHIA	MH2A	0	0	0	1		0	0	0	0	0	0	0	0.0	0	0.0	0.0	3.80	0.0	0.0	0.0	17.9	200	1.00	32.8	1.04
SITE	PLUGI	MH2A	0.369	0.369	320	2.5		800	800	0	0	0	0	0	0.8	800	3.4	3.4	3.80	12.8	0.0	13.6	9.8	200	1.00	32.8	1.04
SITE	MH2A	MH3A	0	0.369	0			0	800	0	0	0	0	0	0.8	800	0.0	3.4	3.80	12.8	0.0	13.6	60.0	200	0.50	23.2	0.74
SITE	PLUG2	MH3A	0.3506	0.3506	320	2.5		800	800	0	0	0	0	0	0.7	800	3.4	3.4	3.80	12.8	0.0	13.5	9.8	200	1.00	32.8	1.04
SITE	PLUG10	MH3A	1.0819	1.0819	440	2.5		1100	1100	0	0	0	0	0	2.3	1100	4.6	4.6	3.77	17.5	0.0	19.7	13.9	200	1.00	32.8	1.04
SITE	MH3A	MH4A	0	1.8015	0			0	2700	0	0	0	0	0	3.7	2700	0.0	11.4	3.48	39.6	0.0	43.3	55.0	300	0.50	68.3	0.97
SITE	MH5A	MH4A	0	0	0			0	0	0	0	0	0	0	0.0	0	0.0	0.0	3.80	0.0	0.0	0.0	14.0	200	1.00	32.8	1.04
SITE	PLUG3	MH4A	0.3707	0.3707	320	2.5		800	800	0	0	0	0	0	0.8	800	3.4	3.4	3.80	12.8	0.0	13.6	10.4	200	1.00	32.8	1.04
SITE	MH4A	MH6A	0	2.1722	0			0	3500	0	0	0	0	0	4.5	3500	0.0	14.7	3.38	49.9	0.0	54.4	43.3	300	0.50	68.3	0.97
SITE	PLUG4	MH6A	0.378	0.378	320	2.5		800	800	0	0	0	0	0	0.8	800	3.4	3.4	3.80	12.8	0.0	13.6	14.8	200	1.00	32.8	1.04
SITE	MH6A	MH7A	0	2.5502	0			0	4300	0	0	0	0	0	5.3	4300	0.0	18.1	3.31	59.9	0.0	65.2	19.7	375	0.50	123.9	1.12
SITE	PLUG5	MH7A	0.299	0.299	320	2.5		800	800	0	0	0	0	0	0.6	800	3.4	3.4	3.80	12.8	0.0	13.4	15.5	200	1.00	32.8	1.04
SITE	MH7A	MH8A	0	2.8492	0			0	5100	0	0	0	0	0	5.9	5100	0.0	21.5	3.24	69.6	0.0	75.5	13.4	375	0.50	123.9	1.12
SITE	PLUG6	MH8A	0.597	0.597	380	2.5		950	950	0	0	0	0	0	1.2	950	4.0	4.0	3.80	15.2	0.0	16.5	14.8	200	1.00	32.8	1.04
SITE	MH8A	MH9A	0	3.4462	0			0	6050	0	0	0	0	0	7.2	6050	0.0	25.5	3.17	80.7	0.0	87.9	27.5	375	0.50	123.9	1.12
SITE	PLUG9	MH9A	0.57	0.57	420	2.5		1050	1050	0	0	0	0	0	1.2	1050	4.4	4.4	3.79	16.7	0.0	17.9	14.8	200	1.00	32.8	1.04
SITE	MH9A	MH10A	0	4.0162	0			0	7100	0	0	0	0	0	8.4	7100	0.0	29.9	3.10	92.7	0.0	101.1	34.8	375	0.50	123.9	1.12
KINGSTON ROAD	MH10A	MHIIA	0	4.0162	0			0	7100	0	0	0	0	0	8.4	7100	0.0	29.9	3.10	92.7	0.0	101.1	75.9	375	0.50	123.9	1.12
KINGSTON ROAD	MHIIA	MH12A	0	4.0162	0			0	7100	0	0	0	0	0	8.4	7100	0.0	29.9	3.10	92.7	0.0	101.1	15.7	375	0.50	123.9	1.12
KINGSTON ROAD	MH12A	MH13A	0	4.0162	0	1		0	7100	0	0	0	0	0	8.4	7100	0.0	29.9	3.10	92.7	0.0	101.1	81.6	375	0.50	123.9	1.12
SITE	PLUG8	MH13A	0.516	0.516	420			0	0	0	0	0	0	0	1.1	0	0.0	0.0	3.80	0.0	0.0	1.1	19.6	200	2.00	46.4	1.48
KINGSTON ROAD	MH13A	MH16A	0	4.5322	0			0	7100	0	0	0	0	0	9.4	7100	0.0	29.9	3.10	92.7	0.0	102.2	22.6	375	0.50	123.9	1.12
SITE	PLUG7	MH16A	0.329	0.329	200	2.5	l	500	500	0	0	0	0	0	0.7	500	2.1	2.1	3.80	8.0	0.0	8.7	18.7	200	2.00	46.4	1.48
KINGSTON ROAD	MH16A	MH17A	0	4.8612	0			0	7600	0	0	0	0	0	10.1	7600	0.0	32.0	3.07	98.4	0.0	108.5	12.8	375	0.50	123.9	1.12
KINGSTON ROAD	MH17A	MH18A	0	4.8612	0			0	7600	0	0	0	0	0	10.1	7600	0.0	32.0	3.07	98.4	0.0	108.5	120.0	375	0.50	123.9	1.12
KINGSTON ROAD	MH18A	MH19A	0	4.8612	0			0	7600	0	0	0	0	0	10.1	7600	0.0	32.0	3.07	98.4	0.0	108.5	120.0	375	0.50	123.9	1.12
KINGSTON ROAD	MH19A	MH20A	0	4.8612	0			0	7600	0	0	0	0	0	10.1	7600	0.0	32.0	3.07	98.4	0.0	108.5	120.0	375	1.10	183.8	1.66
KINGSTON ROAD	MH20A	MH21A	0	4.8612	0			0	7600	0	0	0	0	0	10.1	7600	0.0	32.0	3.07	98.4	0.0	108.5	120.0	375	0.70	146.6	1.33
KINGSTON ROAD	MH21A	MH22A	0	4.8612	0			0	7600	0	0	0	0	0	10.1	7600	0.0	32.0	3.07	98.4	0.0	108.5	120.0	375	0.50	123.9	1.12
KINGSTON ROAD	MH22A	MH23A	0	4.8612	0			0	7600	0	0	0	0	0	10.1	7600	0.0	32.0	3.07	98.4	0.0	108.5	100.0	375	0.50	123.9	1.12
KINGSTON ROAD	MH23A	MH24A	0	4.8612	0			0	7600	0	0	0	0	0	10.1	7600	0.0	32.0	3.07	98.4	0.0	108.5	64.1	375	0.50	123.9	1.12

Appendix E Water Distribution Analysis

	HYDRANT INSPECTION & FLOW REPORT								SU	IGGEST	ED NF	PA RATIN	IG				
														BLUE	CI	ASS AA	
			MATER		~		Prepared By: Th	ne Ontai	io Cle	an Wate	r Agenc	ÿ	415	9 gpm	@ 20	psi (138	kPa)
				DES EAU		I	Prepared For: M	lr. James	Bujal	(
							Residual Hyd Ai	ndrew C	ruicks	hank			Date:	19-Ma	y-23	Time: 11	:45 AM
HYDRANT [DESC	RIPT	<u>'ION</u>				Flow Hyd(s) Co	ody Flati									
Hydrant ID: Private Hyd						Side of Street: South			Make: Canada \		Canada Valv	/alve Open Dir:		ir: Left			
Add	ress:				609 Kin	Kingston Road Model: Centu					Century	Century Latitud		titude:			
Loca	tion:				Pickeri	ng (Ontario			۱	/ear:	2016		Lon	gitude:		
GENERAL IN	NSPE	СТІС	<u>DN</u>	OK - Go	od Con	ditio	on FR - Fut	ure Rep	air Red	quired	N/	A - Not Applic	able	CF	- Com	oonent Fo	ailure
Upper Section	on C	ЭК	FR	N/A	CF		Mid Section	ОК	FR	N/A	CF	Gener	<u>al</u>	ОК	FR	N/A	CF
Bonnet				\checkmark			Port Height			\checkmark		Accessit	oility			\checkmark	
Operating N	ut [\checkmark			Caps / Nozzles			\checkmark		Position /	Height			\checkmark	
Gaskets / Bo	lts 🛛			~			Chains			\checkmark		Paint Co	ond			\checkmark	
O-Ring(s)				~			Traffic Flange			\checkmark		Drain Po	orts			\checkmark	
<u>Hy</u>	drost	atic	Leak Te	esting			<u> </u>	Mainter	ance				Auxilia	ry / Se	condar	y Valve	
Hydrant	Ab	oove	Grade	Leak	No		Lubricate	Operati	ng Nu	t	N/A	L	ocated	/ Acce	ssible		N/A
Closed	S	Subsu	urface L	eak	No		Lubricate & Cl	ean Noz	zle Th	reads	N/A	C	Operate	d/Exer	cised		N/A
Hydrant	Ab	oove	Grade	Leak	No		Lubricate & 0	Clean Ca	p Thre	ads	N/A		Numb	er of Tu	urns		N/A
Open	Open Subsurface Leak No Water Removed (if non-draining) N/A Open Direction																
Comments	:											Auxiliary V	alve Lo	cation:			

FLUSHING *If hydrants are being flow tested, inspections and flushing are completed prior to testing

Hydrant Operated	Clear Flow Obtained	Cl2 Residual	Time Flushed	Flow	Total Flow	Dechlorinated
Yes - Easily Operated	Yes		5 minutes	1202 gal	6008 gal	Yes


Comments:

STATIC AFTER FLOW TEST WAS PERFORMED 53.98 PSI

FLOW TESTING *Flow testing results may be from previous year(s). Note date & time

Date: 19-May-23 Time: 11:45 AM

		Test Hydrant								
ID	Flow Device Used	Size	Coefficient	Time Flushed	Flow	Total Flow	Pitot	ID	Static	Residual
PE602	Pollard Diffuser	2.5"	0.832	5.0 minutes	601 gal	3004 gal	15 psi	Private Hyd	55.48	51.92
PE602	Pollard Diffuser	2.5"	0.832	5.0 minutes	601 gal	3004 gal	15 psi			
								1		

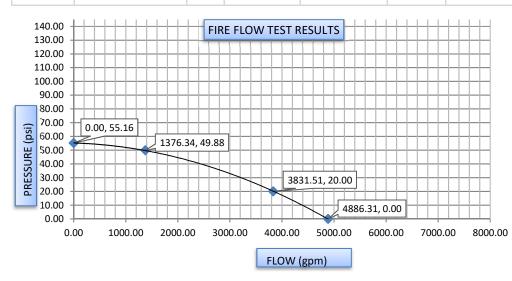
s
4159 gpm
5294 gpm
6.42%

Comments:

	HYDRANT INSPECTION & FLOW REPORT									SL	JGGEST	ED NF	PA RATIN	IG			
														BLUE	CL	ASS AA	
			MATER		~		Prepared By: Th	ne Ontai	rio Cle	an Wate	er Agen	су	383	2 gpm	@ 20	psi (138	kPa)
				DES EAU			Prepared For: M	r. Jame	s Buja	k		_					
							Residual Hyd Ar	ndrew C	ruicks	hank			Date:	19-Ma	y-23	Time: 12	:00 PM
HYDRANT DESCRIPTION Flow Hyd(s) Cody Flatt																	
Hydran	t ID:		PE6	02			Side of Street:	South		Ν	lake:	Canada Va	lve Open Dir:		: Left		
Add	ress:		Ki	ingston F	Road (Ir	In front of Sport Check) Model: Century					y	Latitude:					
Loca	tion:				Pickeri	ng (Ontario				Year:	2016		Lon	gitude:		
GENERAL INSPECTION OK - Good Condition FR - Future Repair Required N/A - Not Applicable CF - Component Failure								ailure									
Upper Section	on O	К	FR	N/A	CF	Mid Section OK FR N/A CF				Ger	neral_	ОК	FR	N/A	CF		
Bonnet]		\checkmark			Port Height			\checkmark		Acces	sibility			\checkmark	
Operating N	ut 🗌]		\checkmark			Caps / Nozzles			\checkmark		Position	n / Height			\checkmark	
Gaskets / Bo	lts 🗌]		~			Chains			\checkmark		Paint	t Cond			\checkmark	
O-Ring(s)]		~			Traffic Flange			\checkmark		Drair	n Ports			\checkmark	
<u>Hy</u>	drosta	tic	Leak Te	esting			<u> </u>	Mainter	nance				<u>Auxilia</u>	ry / Se	condar	y Valve	
Hydrant	Ab	ove	Grade	Leak	No		Lubricate	Operati	ng Nu	t	N/A		Located	/ Acce	ssible		N/A
Closed	Si	ubsu	urface L	eak	No		Lubricate & Cl	ean Noz	zle Th	reads	N/A		Operate	d/Exer	cised		N/A
Hydrant	Ab	ove	Grade	Leak	No		Lubricate & C	Clean Ca	p Thre	eads	N/A		Numb	er of Ti	urns		N/A
Open	Open Subsurface Leak No Water Removed (if non-draining) N/A Open Direction																
Comments												Auxiliar	y Valve Lo	cation:			

FLUSHING *If hydrants are being flow tested, inspections and flushing are completed prior to testing

Hydrant Operated	Clear Flow Obtained	Cl2 Residual	Time Flushed	Flow	Total Flow	Dechlorinated
Yes - Easily Operated	Yes		5 minutes	1376 gal	6882 gal	Yes


Comments:

STATIC AFTER FLOW TEST WAS PERFORMED 56.48 PSI

FLOW TESTING *Flow testing results may be from previous year(s). Note date & time

Date: 19-May-23 Time: 12:00 PM

		Test Hydrant								
ID	Flow Device Used	Size	Coefficient	Time Flushed	Flow	Total Flow	Pitot	ID	Static	Residual
Private Hyd	Pollard Diffuser	2.5"	0.832	5.0 minutes	776 gal	3878 gal	25 psi	PE602	55.16	49.88
Private Hyd	Pollard Diffuser	2.5"	0.832	5.0 minutes	601 gal	3004 gal	15 psi			

Calculated Result	s
Calculated Flow @ 20 psi	3832 gpm
Calculated Flow @ 0 psi	4886 gpm
Pressure Drop	9.57%

Comments:

July 14, 2023

Project No. 17002-174

Sent via email Mr. James Bujak Sorbara Group of Companies 3700 Steeles Avenue West, Suite 800 Vaughan, ON L4L 8M9 c/o SCS Consulting Group Ltd.

Subject: 603-699 Kingston Road Development Water Distribution Modeling (Preliminary) City of Pickering, Region of Durham

Dear Mr. Bujak,

We are pleased to submit our report entitled "603-699 Kingston Road Development Watermain Analysis" outlining the results of our preliminary water distribution analysis for the proposed residential development in the City of Pickering, Region of Durham.

A WaterCAD model of the immediate area was developed utilizing the design information provided to Municipal Engineering Solutions and a hydrant test performed by the Ontario Clean Water Agency in May 2023. The findings of our analysis are summarized in the following report.

We trust you find this report satisfactory. Should you have any questions or require further clarification, please call.

Yours truly,

Municipal Engineering Solutions

Kristin St-Jean, P.Eng. /KS

File Location: C:\Users\krist\Documents\Projects\17002-174 603-699 Kingston Rd, Pickering\5.0 Report\17002-174 603-699 Kingston Road Watermain Analysis_20230714.docx

55 Gilbank Drive, Aurora, Ontario L4G 6H9

Tel: 905.726.1016 Cell: 416.434.0186 Fax: 905.726.1225

603-699 KINGSTON ROAD DEVELOPMENT

WATERMAIN ANALYSIS

PREPARED BY:

MUNICIPAL ENGINEERING SOLUTIONS

FOR:

SORBARA GROUP OF COMPANIES July 2023

Project Number: 17002-174

TABLE OF CONTENTS

SECTION 1 – INTRODUCTION		1
1.1 Development Background		
Figure 1 - Proposed 603-699 Kingston Road Development1		
SECTION 2 – WATERMAIN DESIGN CRITERIA		1
2.1 Equivalent Population Densities & Water Design Factors	2	
Table 1 – Equivalent Population Density2		
Table 2 - Water Design Factors2		
SECTION 3 –FLOW DEMANDS		2
3.1 Equivalent Population Flow Demands	2	
Table 3 – Water Demand for the 603-699 Kingston Road Development 2		
3.2 Fire Flow Demands	3	
Table 4 - Fire Flow Requirements		
3.3 External Demands	3	
SECTION 4 – OTHER SYSTEM REQUIREMENTS		3
4.1 System Pressure Requirements	3	
4.2 Watermain Sizing	3	
4.3 Watermain C-Factor	4	
Table 5 - Hazen-Williams Coefficient of Roughness (C-Factors) 4		
SECTION 5 – ANALYSIS & MODELING RESULTS		4
5.1 Model Setup	4	
5.2 Watermain Sizing and System Pressures	4	
Table 6 - Modeled Service Pressures5		
SECTION 6 - CONCLUSIONS/RECOMMENDATIONS		5

APPENDICES

Appendix A	Demands
Appendix B	Model Information
Appendix C	Model Results

Section 1 – INTRODUCTION

Municipal Engineering Solutions ("MES") was retained by Sorbara Group of Companies to conduct a hydraulic water analysis for the proposed development located at 603-699 Kingston Road in the City of Pickering, Region of Durham. As part of this hydraulic assessment MES was requested to undertake the following:

- 1. Calculate/verify water demands for the proposed development using Region of Durham, provincial and industry design standards;
- 2. Add the subject watermains and boundary information to the development water model;
- 3. Run the model to size the subject mains to achieve service criteria during Minimum Hour, Peak Hour and fire flow during Maximum Day demand; and
- 4. Prepare a Report summarizing the modeling results for agency review and design purposes.

1.1 Development Background

The development site is located on the south side of Kingston Road, west of Whites Road in the City of Pickering. The development consists of seven buildings (10 towers) up to 42 storeys in height. The buildings will have a total of 3460 residential units, 2,817 m² of commercial space and 3,798 m² of office space. The breakdown of the units is shown in **Appendix A**. The proposed development is shown below on **Figure 1**.



Figure 1 - Proposed 603-699 Kingston Road Development

Section 2 – WATERMAIN DESIGN CRITERIA

The design criteria utilized to estimate the water demands for the hydraulic water model follows general industry standards and is calculated using the design criteria and guidelines outlined in the Durham Region Water & Wastewater Design Specifications and the Ministry of the Environment, Conservation and Parks (MECP) Watermain Design Criteria.

The following sections summarize the specific design criteria used to carry out the hydraulic watermain assessment for this development.

2.1 Equivalent Population Densities & Water Design Factors

To calculate the equivalent population and water design factors for this development MES used Region of Durham standard population densities as noted in the "Design Specifications for Sanitary Sewers, April 2023". Table 1 summarizes the residential population densities. A detailed breakdown of the unit types in each building has not yet been completed. For this assessment, all units were assumed to be two-bedroom units with an equivalent population of 2.5 people/unit. This is a conservative approach, as the final unit breakdown will include a number of one-bedroom units, resulting in lower domestic demands. The actual unit breakdown and final population estimates will be confirmed in later submissions.

Table 1 -	- Equivalent	Population	Density
	- Lyurvaient	i opulation	Density

Type of Development	Equivalent Population (Persons/Unit)
Apartments (All sizes)	2.5

Source: Design Specifications for Sanitary Sewers, April 2023

Table 2 summarizes the average daily demand and peaking factors used for this analysis. Average daily demand was based on the "*MECP Design Guidelines for Drinking Water Systems, 2008*".

Table	2 -	Water	Design	Factors
TUNIC	-	Tuto	Design	1 401013

Average Daily Demand	Minimum Hourly Demand Peaking Factor	Maximum Daily Demand Peaking Factor	Peak Hourly Demand Peaking Factor
450 L/capita/day	0.5	2.00	3.00
5000 L/1000 m ² /day	0.5	2.00	3.00
	Demand 450 L/capita/day	DemandDemand Peaking Factor450 L/capita/day0.5	Demand Demand Peaking Factor Demand Peaking Factor 450 L/capita/day 0.5 2.00

Source: MECP Design Guidelines for Drinking-Water Systems, 2008

Residential peaking factors were based on Table 3-1: Peaking Factors for populations of 3001-10000 people from the MECP Design Guidelines. While the water system serves a large population, and would experience more moderate changes in the daily demand, the demands within the development would have fluctuations similar to a small system.

Section 3 – FLOW DEMANDS

Utilizing the equivalent population data from Table 1 and the corresponding Minimum Hour, Maximum Day and Peak Hour data from Table 2 the water demands for this development were calculated.

3.1 Equivalent Population Flow Demands

The calculated demands for the development are summarized in **Table 3**. For additional details on the development water demands and assigned demand nodes used in the water model see **Appendix A**.

	Average Day	Minimum Hour	Maximum Day	Peak Hour
	Demand (L/s)	Demand (L/s)	Demand (L/s)	Demand (L/s)
Development	45.45	22.77	90.90	136.35

3.2 Fire Flow Demands

The Region of Durham generally requires a minimum fire flow of 150 L/s for high density residential areas. For reference, the fire demand for this development was calculated using the Fire Underwriters Survey ("FUS") formula outlined in the 'Water Supply For Public Fire Protection Guideline', dated 2020. The required fire flow calculated using the FUS formula is 200 L/s for the largest proposed building (calculations attached). A target minimum fire flow of 150 L/s was used for this site. The minimum required fire flow for the development is shown in **Table 4**.

Table 4 - Fire Flow Requirements

Type of Development	Fire Flow (L/s)	
High Density Residential	150	
Source: Region of Durham		

The fire flow utilized in this analysis is based on the Region's minimum guidelines. As such, the fire flow noted in Table 4 must be reviewed and confirmed by the appropriate designer (architect) with detailed design data (floor area and type of construction) for these buildings prior to implementation and construction. Regardless, the buildings will need to be designed to suit the available flow and pressure. Any design/criteria changes are to be reported to MES.

3.3 External Demands

The hydrant test results would have considered the demands external to the development.

Section 4 – OTHER SYSTEM REQUIREMENTS

4.1 System Pressure Requirements

In addition to meeting the various flow requirements, the system must also satisfy minimum and maximum pressure requirements as outlined by the Region of Durham. The Region's pressure requirements are outlined in the *"Design Specifications for Watermains, April 2023"* and stipulate the following:

- 1. The maximum sustained operating pressures shall not exceed 700 kPa (100 psi).
- 2. The minimum system pressure shall not be less than 140 kPa (20 psi) at any point in the water system under simultaneous maximum day and fire flow demands.
- 3. The normal operating pressure (Peak Hour) shall not be less than 275 kPa (40 psi).
- 4. The normal method of reduction of pressures to comply with the Ontario Building Code (reduction of pressures to 550 kPa, 80 psi) is by pressure reducing valves to be installed on individual services.

4.2 Watermain Sizing

The Region of Durham also stipulates minimum pipe sizes and requires that all watermains are adequately sized to maintain demand flows at the required pressures without causing excessive energy loss or result in water quality decay. The watermain system must therefore be designed to accommodate the greater of the following:

- Maximum day plus fire demand
- Peak hour demand

The minimum pipe size for commercial and industrial areas shall be 300 mm diameter and for residential areas the minimum pipe size shall be 150 mm diameter. For distribution systems providing fire protection the minimum pipe size shall be 150 mm diameter in accordance with Ministry of the Environment, Conservation and Parks (MECP) and NFPA requirements.

Domestic water and fire supply lines will be separated at the property boundary as required by the Region of Durham for this development.

To provide appropriate fire protection, reliable supply and pressures the water distribution system should be looped wherever possible to improve supply security and water quality.

4.3 Watermain C-Factor

In designing and modeling of the pipes the Coefficient of Roughness (C-Factor) factors from the Region's design criteria and as suggested by the MECP were utilized. The Coefficient of Roughness assigned to each pipe size is summarized in **Table 5** below.

Size of Pipe (Diameter in mm)	Coefficient of Roughness (C)
150 mm	100
200 mm to 300 mm	110
350 mm to 600 mm	120
Greater Than 600 mm	130

Table 5 - Hazen-Williams Coefficient of Roughness (C-Factors)

Source: Design Specifications for Watermains, April 2023

Section 5 – ANALYSIS & MODELING RESULTS

In order to conduct the hydraulic water analysis for the proposed development the water demands were estimated by MES using the design criteria previously discussed and incorporated into a WaterCAD model created for the immediate area using boundary conditions from a hydrant test. The following sections discuss the model setup and results.

5.1 Model Setup

Hydrant tests were performed on Kingston Road by the Ontario Clean Water Agency on May 19th, 2023. The hydrant test results are included in **Appendix B**. A model of the immediate area was created using the results of the hydrant tests. To check the adequacy of the model, a simulated hydrant curve (modeled flow) at the location of the test was graphed against the data points of the actual hydrant test. The comparison is included in **Appendix B**.

The development is located within the Durham Region water system in Pickering Ajax Zone 1. The development will be connected to the existing 400 mm watermain on Kingston Road. Each building will have separate domestic and fire connections.

The development was modeled under the existing planning scenario only. Friction factor for all new pipes added to the model were assigned according to Table 5. Service elevations within the development vary from approximately 104.6 m to 107.3 m. Minimum Fire flow requirements are based on the Region's guidelines.

5.2 Watermain Sizing and System Pressures

The analysis was conducted under existing servicing conditions for Minimum Hour, Maximum Day, Peak Hour and Maximum day plus Fire demands to size the watermains and meet the pressure requirements. The pipe sizes and layout are shown in **Appendix A**.

Modeled service pressures for the development are summarized in **Table 6**. All pressures lie within the required operating range under minimum hour, maximum day, maximum day plus fire flow and peak hour demands. Since modeling was done using a single demand scenario for boundary conditions (hydrant test), it is anticipated that

pressure will be lower during peak hour and higher during minimum hour than indicated in the modeling. The modelling indicates that pressures are not expected to exceed 550 kPa (80 psi) within the proposed development.

Detailed pipe and node tables for the various scenarios modeled are attached to this report in Appendix C.

Scenario	Average Day	Minimum Hour	Maximum Day	Peak Hour	Max. Day + Fire
Existing	359 – 385 kPa	366 – 392 kPa	336 – 362 kPa	299 – 326 kPa	147 to 262 L/s
	(52.1 to 55.9 psi)	(53.0 to 56.8 psi)	(48.7 to 52.5 psi)	(43.4 to 47.4 psi)	@ 140 kPa

 Table 6 - Modeled Service Pressures

The modelling indicates that the available fire flow is 147 L/s, slightly below the required fire flow of 150 L/s. A detailed breakdown of the unit types for each building has not yet been completed. Once the domestic demands have been calculated for the final building designs, the available fire flow will likely increase.

Section 6 – CONCLUSIONS/RECOMMENDATIONS

The proposed watermain layout for the 603-699 Kingston Road Development can achieve hydraulic requirements as prescribed by the Region of Durham watermain design criteria as summarized below.

- The service pressures from the proposed watermain layout are expected to range between 299 kPa to 392 kPa (43.4 psi to 56.8 psi).
- The modelling indicates that the available fire flow is 147 L/s, slightly below the minimum fire flow demands utilized for this assessment (150 L/s) at the minimum pressure of 140 kPa.
- A detailed breakdown of the unit types in each building has not yet been completed. Until a more detailed breakdown of the units has been completed the findings of this report must be considered preliminary.
- The fire flows utilized in this analysis are based on 150 L/s based on discussions with the Region. Should it be
 determined, based on the final site and building design and/or through further discussions with the Region, that
 a greater fire flow is required (i.e. Building Code, City's Building Department, Fire Department, Building End User,
 Insurance company, Region) or that the fire flows need to be calculated using the Fire Underwriters Survey
 formula the pipe sizes may need to be upsized to suit the higher fire flows or the building construction design
 modified to suit the flow available.
- Once the building designs are completed and the specifics are known, the fire flow demands used in this analysis
 and summarized in Table 4, including all assumptions, must be reviewed and confirmed by the designer(s),
 architect and mechanical consultant to ensure the fire flows used within this report are still valid prior to
 implementation and construction and to confirm that the water supply is adequate.
- The hydrant tests used for the boundary conditions provides a snapshot of the system performance and does not capture the system variations as accurately as boundary information from a calibrated model or system monitoring. The Region of Durham must confirm that the results presented in this report are in keeping with the pressures currently measured in the area.
- This report, including all modeling assumptions used, is to be submitted to and reviewed by the water operating authority (municipality) to confirm that the modeling parameters used are acceptable to the operating authority and/or confirm if modified domestic or fire flow requirements are required or should be implemented for this particular development.

Appendix A

D e m a n d s

The Regional Municipality of Durham

Design Specifications for Watermains, April 2023 (unless otherwise stated)

Equivalent Population by Unit

Type of Development	Equivalent Population Density	
	(Person/Unit)	
Apartment - 1 Bedroom or smaller	1.5	
Apartment - 2 Bedroom	2.5	
Apartment - 3 Bedroom	3.5	
Apartment - 4 Bedroom or larger	4.5	

Note: From Design Specifications for Sanitary Sewers

Water Design Factors

Average Daily Demand (L/person/day)	450
Commercial (L/1000 sq.m/day)	5000
Minimum Hour Demand P.F.	0.50
Maximum Daily Demand P.F.	2.00
Maximum Hourly Demand P.F.	3.00

Note: Demand Rates and Peaking Factors taken from MOECC Design Guidelines for Drinking Water Systems (2008). Peaking factors are for areas servicing 3001-10000 people.

Coefficient of Roughness

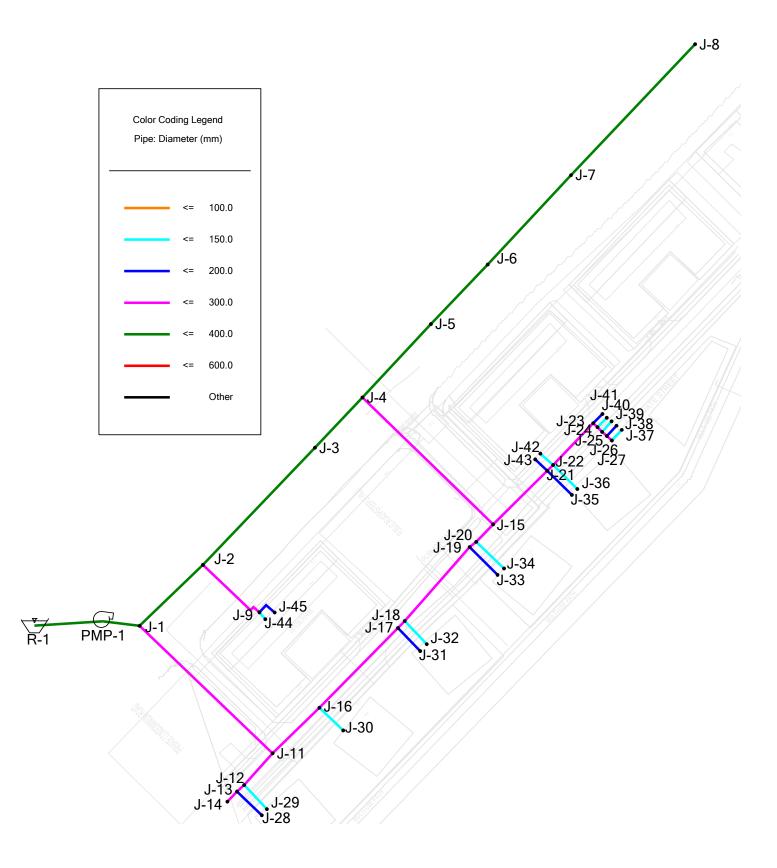
Size of Pipe (mm Dia.)	Coefficient of Roughness (C)
150	100
200-300	110
350-600	120
Over 600	130

Minimum Pipe Size

Type of Development	Size of Pipe (mm Dia.)
Residential	150
Commercial/Industrial/Institutional	300

Working Pressures

Parameter	Pressure						
Normal Cond	dition						
Minimum Max Hour Pressure	275 kPa (40 psi)						
Maximum (Building Code)	550 kPa (80 psi)						
Maximum recommended	700 kPa (100 psi)						
Fire Flow Conditions							
Minimum Pressure	140 kPa (20 psi)						



Development Demands

			Type of Deve	lopment			Equivalent Population		Dem	ands	
Node	Building	Apartment	Apartment	Apartment	Dotail	Office	Total Population	Average	Minimum	Maximum	Peak
Noue	Building	(Bach/1 BD)	(2 BD)	(3 BD)	Retail		Total Population	Day	Hour	Day	Hour
		(units)	(units)	(units)	(sq.m)	(sq.m)	sq.m) (Residential)		(L/s)	(L/s)	(L/s)
J-29	Podium 1, Tower 1	0	320	0	0	0	800	4.17	2.09	8.34	12.51
J-30	Podium 1, Tower 2	0	320	0	0	0	800	4.17	2.09	8.34	12.51
J-32	Podium 1, Tower 3	0	320	0	0	0	800	4.17	2.09	8.34	12.51
J-34	Podium 2, Tower 4	0	320	0	0	0	800	4.17	2.09	8.34	12.51
J-36	Podium 2, Tower 5	0	320	0	0	0	800	4.17	2.09	8.34	12.51
J-37	Podium 3, Tower 6	0	380	0	0	0	950	4.95	2.48	9.90	14.85
J-39	Podium 4, Tower 7	0	200	0	641	3798	500	2.86	1.43	5.72	8.58
J-40	Podium 5, Tower 8	0	420	0	703	0	1050	5.51	2.76	11.02	16.53
J-42	Podium 6, Tower 9	0	420	0	703	0	1050	5.51	2.76	11.02	16.53
J-44	Podium 7, Tower 10	0	440	0	770	0	1100	5.77	2.89	11.54	17.31
	TOTAL	0	3460	0	2817	3798	8650	45.45	22.77	90.90	136.35

Total Residential Units3460 unitsTotal Retail Space2817 sq.m.Total Office Space3798 sq.m.

Node IDs

	FUS CALCULAT	ION	
Project: Project Number: Project Location: Date: April 2023	Building Firewalls/ Number o	Podium 1, Towers 1-3 Sprinklered 36 Storeys, 960 units	
1.0 FUS Formula			
$RFF = 220C\sqrt{A}$ when	e: RFF = required fire flow in litres per min C = the Coefficient related to the type of A = the Total Effective Floor Area (m ²) NBC Occupancy Type of Construction ^b Protection (for C below 1.0) Footprint area Storeys C = A =	of construction; and excluding basements at least & Group C Fire-Resistive Construction Unprotected Openings 5610.2 sq. metres 36 0.6 24023.7 Total Effective Area	Туре І
	F =	20000 L/min (rounded)	
2.0 Occupancy Adjustment	Type of Occupancy ^c Hazard Allowance Adjusted Fire Flow	Limited Combustible -0.15 -3000 L/min 17000 L/min	
3.0 Sprinkler Adjustment			
NFPA 13 sprinkler standard Standard Water Supply Fully Supervised system 4.0 Exposure Adjustment	Credit Total YES 30% YES 10% YES 10% Sprinkler Credit	8500 L/min	
4.0 Exposure Adjustment			
Construction Type of the Ex North Side Distance to Bu Length (ft) by height i South Side Distance to Bu Length (ft) by height i East Side Distance to Bu Length (ft) by height i West Side Distance to Bu Length (ft) by height i	h storeys over 100 4% Iding (m) over 30 0% n storeys na 0% Iding (m) 10.1 to 20 8% n storeys over 100 8% Iding (m) 3.1 to 10 11%	ed)	
	*max 75% Exposures Surcharge	3910 L/min	
	Total Required Fire Flow	12000 L/min 200 L/sec	

c) Noncombustible=-25%, Limited Combustible=-15%, Combustible=0%, Free Burning=+15%, Rapid Burning=+25%

		FUS CA	LCULAT	ION				
	ect Number: ect Location:		Building Type/Block # Firewalls/Sprinkler: Number of Units/Unit #'s					
1.0	FUS Formula							
RÌ	$FF=220C\sqrt{A}$ when	NB0 Type of C Protection (for	d to the type o por Area (m ²) C Occupancy Construction ^b	f construction; and excluding basements at least Group C Fire-Resistive Construction Unprotected Openings 3400.7 sq. metres 36 0.6	Туре I			
2.0	Occupancy Adjustment							
		Haza	Occupancy ^c rd Allowance	Limited Combustible -0.15 -2400 L/min				
		Adjust	ed Fire Flow	13600 L/min				
	NFPA 13 sprinkler standard Standard Water Supply Fully Supervised system	YES 10% 50% YES 10% 50%	inkler Credit	6800 L/min				
4.0	Exposure Adjustment							
	Construction Type of the Ex North Side Distance to Bu Length (ft) by height South Side Distance to Bu Length (ft) by height West Side Distance to Bu Length (ft) by height West Side	n storeys over 100 470 ilding (m) over 30 0% n storeys na 0% ilding (m) 3.1 to 10 11% n storeys na 11% ilding (m) 10.1 to 20 8% n storeys over 100 8%	ent Total* 23% 23% *max 75%					
		Exposure	s Surcharge Fire Flow (rounded)	3130 L/min 10000 L/min 167 L/sec				
Ŀ	protected), consider the two largest adjo	ning floors plus 50% of each of any floors in consider only the area of the largest floor p 5, Ordinary=1.0, Noncombustible=0.8, Fire	mmediately above th lus 25% of each of th -Resistive=0.6	s with a construction coefficient below 1.0 (v em up to a maximum of eight. If the vertical e two immediately adjoining floors.				

		ON	
Project: Project Number: Project Location: Date: April 2023	Building T Firewalls/S Number of	Podium 3, Tower 6 Sprinklered 42 Storeys, 380 units	
1.0 FUS Formula			
$RFF = 220C\sqrt{A}$ where:	RFF = required fire flow in litres per min C = the Coefficient related to the type of A = the Total Effective Floor Area (m ²) of NBC Occupancy Type of Construction ^b	f construction; and	
	Protection (for C below 1.0) Footprint area Storeys C = A = F =	Unprotected Openings 1823.6 sq. metres 42 0.6 7869.8 Total Effective Area 12000 L/min (rounded)	a a
2.0 Occupancy Adjustment			
	Type of Occupancy ^c Hazard Allowance Adjusted Fire Flow	Limited Combustible -0.15 -1800 L/min 10200 L/min	
3.0 Sprinkler Adjustment			
NFPA 13 sprinkler standard Standard Water Supply Fully Supervised system	Credit Total YES 30% YES 10% YES 10% Sprinkler Credit	5100 L/min	
4.0 Exposure Adjustment			
North Side Distance to Build Length (ft) by height in South Side	storeys over 100 4%	ed)	
Distance to Build Length (ft) by height in East Side Distance to Build Length (ft) by height in	storeys na 0% 15% ing (m) over 30 0%		
West Side Distance to Build Length (ft) by height in	storeys over 100		
	*max 75% Exposures Surcharge	1530 L/min	
	Total Required Fire Flow	7000 L/min 117 L/sec	

c) Noncombustible=-25%, Limited Combustible=-15%, Combustible=0%, Free Burning=+15%, Rapid Burning=+25%

			FUS	CALCULAT	ON	
	ect Number: ect Location:	April 2023		Podium 4, Tower 7 Sprinklered 24 Storeys, 200 units		
1.0	FUS Formula					
RI	FF = 220Cv	\sqrt{A} where:		elated to the type of ve Floor Area (m ²) e NBC Occupancy	construction; and excluding basements at leas Group C	
			••	e of Construction ^b n (for C below 1.0) Footprint area Storeys C = A = F =	Fire-Resistive Constructio Unprotected Openings 1266.1 sq. metres 24 0.6 6195.4 Total Effective Ar 10000 L/min (rounded)	
2.0	Occupancy A	djustment				
		-		pe of Occupancy [°] Hazard Allowance djusted Fire Flow	Limited Combustible -0.15 -1500 L/min 8500 L/min	
3.0	Sprinkler Adju	ustment				
	NFPA 13 sprin Standard Wate Fully Supervise	er Supply ed system	Credit YES 30% YES 10% YES 10%	50% Sprinkler Credit	4250 L/min	
4.0	Exposure Adj	ustment				
	North Side Di Length (South Side Di Length (ype of the Expo istance to Build ft) by height in s istance to Build ft) by height in s	ing (m) over 30 storeys na ing (m) over 30	Dercent Total* 0%	ed)	
	Length (<i>West Side</i> Di	istance to Build ft) by height in s istance to Build ft) by height in s	storeys over 100 ing (m) 10.1 to 20	8% 0% 8%		
			-	*max 75% osures Surcharge	680 L/min 5000 L/min	
			-	(rounded)	83 L/sec	
	protected), consider th communications are p) Wood Frame=1.5, Mas	ne two largest adjoining roperly protected, cons ss Timber= 0.8 to 1.5, C	g floors plus 50% of each of any	floors immediately above the t floor plus 25% of each of the 0.8, Fire-Resistive=0.6	with a construction coefficient below 1.0 em up to a maximum of eight. If the vertic e two immediately adjoining floors.	

c) Noncombustible=-25%, Limited Combustible=-15%, Combustible=0%, Free Burning=+15%, Rapid Burning=+25%

55 Gilbank Drive, Aurora, Ontario L4G 6H9 Tel: 905.726.1016 Cell: 416.434.0186 Fax: 905.726.1225

	FUS CALCULAT	ION	
Project: Project Number: Project Location: Date: April 2023	Building T Firewalls/ Number o	Podium 5, Tower 8 Sprinklere 14 Storeys, 420 unit	
1.0 FUS Formula			
$RFF = 220C\sqrt{A}$ where:	RFF = required fire flow in litres per min C = the Coefficient related to the type of A = the Total Effective Floor Area (m ²) of NBC Occupancy Type of Construction ^b Protection (for C below 1.0) Footprint area Storeys C = A =	f construction; and excluding basements at least 5 Group C Fire-Resistive Construction Unprotected Openings 2570.5 sq. metres 14 0.6 14700.6 Total Effective Area	Туре I
	F =	16000 L/min (rounded)	
2.0 Occupancy Adjustment	Type of Occupancy ^c Hazard Allowance Adjusted Fire Flow	Limited Combustible -0.15 -2400 L/min 13600 L/min	
3.0 Sprinkler Adjustment			
NFPA 13 sprinkler standard Standard Water Supply Fully Supervised system 4.0 Exposure Adjustment	Credit Total YES 30% YES 10% Sprinkler Credit	6800 L/min	
4.0 Exposure Adjustment			
Construction Type of the Expo North Side Distance to Build Length (ft) by height in South Side Distance to Build Length (ft) by height in East Side Distance to Build Length (ft) by height in West Side Distance to Build Length (ft) by height in	storeys na 0% ing (m) 20.1 to 30 4% storeys over 100 4% 20% ing (m) 10.1 to 20 storeys over 100 8%	ed)	
	*max 75% Exposures Surcharge	2720 L/min	
	Total Required Fire Flow	10000 L/min 167 L/sec	

c) Noncombustible=-25%, Limited Combustible=-15%, Combustible=0%, Free Burning=+15%, Rapid Burning=+25%

	FUS CALCULAT	ON	
Project: Project Number: Project Location: Date: April 2023	Building T Firewalls/ Number o	Podium 6, Tower 9 Sprinklere 14 Storeys, 420 unit	
1.0 FUS Formula			
$RFF = 220C\sqrt{A}$ where:	RFF = required fire flow in litres per min C = the Coefficient related to the type of A = the Total Effective Floor Area (m ²) of NBC Occupancy Type of Construction ^b Protection (for C below 1.0) Footprint area Storeys C = A =	construction; and excluding basements at least 5 Group C Fire-Resistive Construction Unprotected Openings 2570.5 sq. metres 14 0.6 14700.6 Total Effective Area	Туре I
	F =	16000 L/min (rounded)	
2.0 Occupancy Adjustment	Type of Occupancy ^c Hazard Allowance Adjusted Fire Flow	Limited Combustible -0.15 -2400 L/min 13600 L/min	
3.0 Sprinkler Adjustment			
NFPA 13 sprinkler standard Standard Water Supply Fully Supervised system 4.0 Exposure Adjustment	Credit Total YES 30% YES 10% Sprinkler Credit	6800 L/min	
4.0 Exposure Adjustment			
Construction Type of the Expo North Side Distance to Build Length (ft) by height in South Side Distance to Build Length (ft) by height in East Side Distance to Build Length (ft) by height in West Side Distance to Build Length (ft) by height in	storeys na 0% ing (m) 20.1 to 30 4% storeys over 100 4% ing (m) 10.1 to 20 8% storeys over 100 8%	ed)	
	* _{max 75%} Exposures Surcharge	1630 L/min	
	Total Required Fire Flow	8000 L/min 133 L/sec	

c) Noncombustible=-25%, Limited Combustible=-15%, Combustible=0%, Free Burning=+15%, Rapid Burning=+25%

	FUS CALCULATI	ON	
Project: Project Number: Project Location: Date: April 2023	Building T Firewalls/S Number of	Podium 7, Tower 10 Sprinklered 14 Storeys, 440 units	
1.0 FUS Formula			
$RFF = 220C\sqrt{A}$ where	RFF = required fire flow in litres per mini C = the Coefficient related to the type of A = the Total Effective Floor Area (m ²) e NBC Occupancy Type of Construction ^b Protection (for C below 1.0)	construction; and	0% below grade) ^a Type I
	Footprint area Storeys C = A = F =	2634.9 sq. metres 14 0.6	a
2.0 Occupancy Adjustment	Type of Occupancy [°] Hazard Allowance Adjusted Fire Flow	Limited Combustible -0.15 -2400 L/min 13600 L/min	
3.0 Sprinkler Adjustment NFPA 13 sprinkler standard Standard Water Supply Fully Supervised system	CreditTotalYES30%YES10%YES10%Sprinkler Credit	6800 L/min	
4.0 Exposure Adjustment Construction Type of the Expo North Side Distance to Build Length (ft) by height in South Side Distance to Build Length (ft) by height in East Side Distance to Build Length (ft) by height in West Side Distance to Build Length (ft) by height in	storeys na 0% iing (m) 20.1 to 30 4% storeys over 100 4% 1ing (m) over 30 0% storeys over 100 0% ing (m) 10.1 to 20 8%	d) 1630 L/min	
	Total Required Fire Flow	8000 L/min 133 L/sec	

c) Noncombustible=-25%, Limited Combustible=-15%, Combustible=0%, Free Burning=+15%, Rapid Burning=+25%

55 Gilbank Drive, Aurora, Ontario L4G 6H9 Tel: 905.726.1016 Cell: 416.434.0186 Fax: 905.726.1225

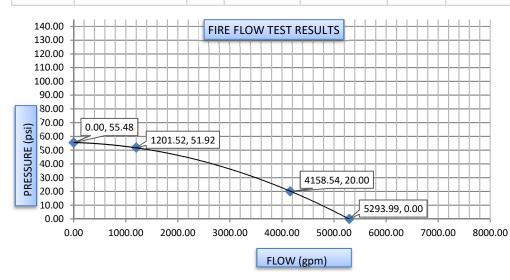
Appendix B

Boundary Information

	HYDRANT INSPECTION & FLOW REPORT												SUGGESTED NFPA RATING				
														BLUE	CI	ASS AA	
			MATER		~	Prepared By: The Ontario Clean Water Agency							4159 gpm @ 20 psi (138 kPa)				kPa)
				DES EAU		I	Prepared For: M	lr. James	: Bujal	(
							Residual Hyd Ai	ndrew C	ruicks	hank			Date:	19-Ma	y-23	Time: 11	:45 AM
HYDRANT [DESC	RIPT	<u>'ION</u>				Flow Hyd(s) Co	ody Flati									
Hydrant ID: Private Hyd							Side of Street:	South		Μ	lake:	Canada Valv	e	Ор	en Dir:	l	.eft
Add	Address: 609 K						on Road			Mo	odel:	Century		La	titude:		
Loca	Location: Picke						Ontario			۱	/ear:	2016		Lon	gitude:		
GENERAL IN	NSPE(СТІС	<u>DN</u>	OK - Go	od Con	ndition FR - Future Repair Required N/A -					/A - Not Applicable CF - Component Failure				ailure		
Upper Section	on C	ЭК	FR	N/A	CF		Mid Section	ОК	FR	N/A	CF	Gener	<u>al</u>	ОК	FR	N/A	CF
Bonnet				\checkmark			Port Height			\checkmark		Accessit	oility			\checkmark	
Operating N	ut [\checkmark			Caps / Nozzles			\checkmark		Position /	Height			\checkmark	
Gaskets / Bo	lts 🛛			~			Chains			\checkmark		Paint Co	ond			\checkmark	
O-Ring(s)				~			Traffic Flange			\checkmark		Drain Po	orts			\checkmark	
<u>Hy</u>	drost	atic	Leak Te	esting			<u> </u>	Mainter	ance			Auxiliary / Secondary Valve					
Hydrant	Ab	oove	Grade	Leak	No		Lubricate	Operati	ng Nu	t	N/A	L	ocated	/ Acce	ssible		N/A
Closed	S	Subsi	urface L	eak	No		Lubricate & Cl	ean Noz	zle Th	reads	N/A	C	Operate	d/Exer	cised		N/A
Hydrant	Ab	oove	Grade	Leak	No		Lubricate & 0	Clean Ca	p Thre	ads	N/A		Numb	er of Tu	urns		N/A
Open	S	Subsu	urface L	eak	No		Water Remov	ed (if no	n-drai	ning)	N/A		Open Direction				
Comments	:									Auxiliary Valve Location:							

FLUSHING *If hydrants are being flow tested, inspections and flushing are completed prior to testing

Hydrant Operated	Clear Flow Obtained	Cl2 Residual	Time Flushed	Flow	Total Flow	Dechlorinated
Yes - Easily Operated	Yes		5 minutes	1202 gal	6008 gal	Yes


Comments:

STATIC AFTER FLOW TEST WAS PERFORMED 53.98 PSI

FLOW TESTING *Flow testing results may be from previous year(s). Note date & time

Date: 19-May-23 Time: 11:45 AM

		Test Hydrant								
ID	Flow Device Used	Size	Coefficient	Time Flushed	Flow	Total Flow	Pitot	ID	Static	Residual
PE602	Pollard Diffuser	2.5"	0.832	5.0 minutes	601 gal	3004 gal	15 psi	Private Hyd	55.48	51.92
PE602	Pollard Diffuser	2.5"	0.832	5.0 minutes	601 gal	3004 gal	15 psi			
								1		

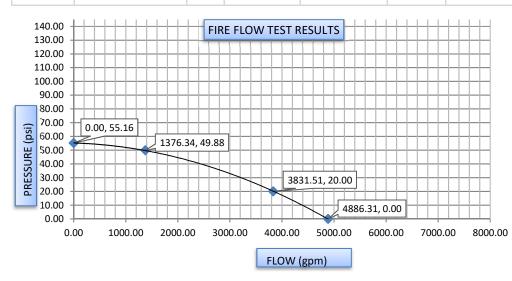
Calculated Results	
4159 gpm	
5294 gpm	
6.42%	

Comments:

	HYDRANT INSPECTION & FLOW REPORT												SUGGESTED NFPA RATING				
														BLUE	CL	ASS AA	
			MATER		~		Prepared By: Th	ne Ontai	rio Cle	an Wate	er Agen	су	3832 gpm @ 20 psi (138 kPa)				
				DES EAU			Prepared For: M	r. Jame	s Buja	k		_					
							Residual Hyd Ar	ndrew C	ruicks	hank			Date:	19-Ma	y-23	Time: 12	:00 PM
HYDRANT [DESCR	IPT	ION				Flow Hyd(s) Co	ody Flat	t			L					
Hydrant ID: PE602					Side of Street:	South		Ν	lake:	Canada Va	Canada Valve Open Dir:		l	.eft			
Add	ress:		Ki	ingston F	Road (Ir	fro	nt of Sport Check)		Μ	odel:	Centur	y	La	titude:		
Location: Pickerir				ng (Ontario				Year:	2016		Lon	gitude:				
GENERAL INSPECTION OK - Good Condition FR - Future Repair Required N/A - Not Applicable CF - Component Failure																	
Upper Section	on O	К	FR	N/A	CF		Mid Section	ОК	FR	N/A	CF	Ger	neral_	ОК	FR	N/A	CF
Bonnet]		\checkmark			Port Height			\checkmark		Acces	sibility			\checkmark	
Operating N	ut 🗌]		\checkmark			Caps / Nozzles			\checkmark		Position	n / Height			\checkmark	
Gaskets / Bo	lts 🗌]		~			Chains			\checkmark		Paint	t Cond			\checkmark	
O-Ring(s)]		~			Traffic Flange			\checkmark		Drair	n Ports			\checkmark	
<u>Hy</u>	drosta	tic	Leak Te	esting			<u> </u>	Mainter	nance			Auxiliary / Secondary Valve					
Hydrant	Ab	ove	Grade	Leak	No		Lubricate	Operati	ng Nu	t	N/A		Located	/ Acce	ssible		N/A
Closed	Si	ubsu	urface L	eak	No		Lubricate & Cl	ean Noz	zle Th	reads	N/A		Operate	d/Exer	cised		N/A
Hydrant	Ab	ove	Grade	Leak	No		Lubricate & C	Clean Ca	p Thre	eads	N/A		Numb	er of Ti	urns		N/A
Open	Open Subsurface Leak No				Water Remov	ed (if no	n-dra	ining)	N/A		Open Direction						
Comments												Auxiliar	y Valve Lo	cation:			

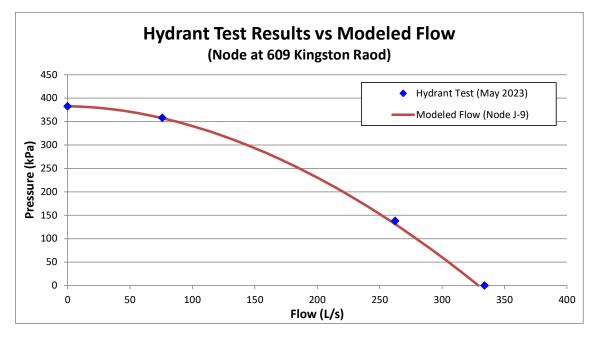
FLUSHING *If hydrants are being flow tested, inspections and flushing are completed prior to testing

Hydrant Operated	Clear Flow Obtained	Cl2 Residual	Time Flushed	Flow	Total Flow	Dechlorinated
Yes - Easily Operated	Yes		5 minutes	1376 gal	6882 gal	Yes

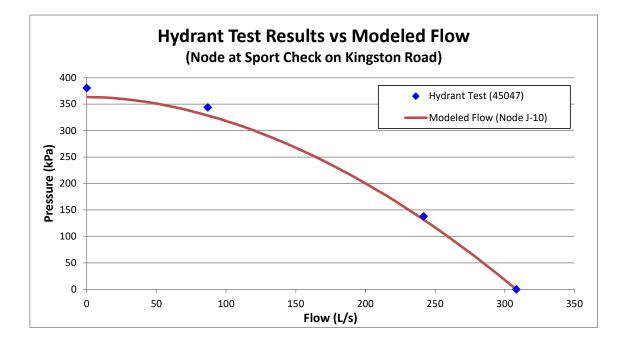

Comments:

STATIC AFTER FLOW TEST WAS PERFORMED 56.48 PSI

FLOW TESTING *Flow testing results may be from previous year(s). Note date & time

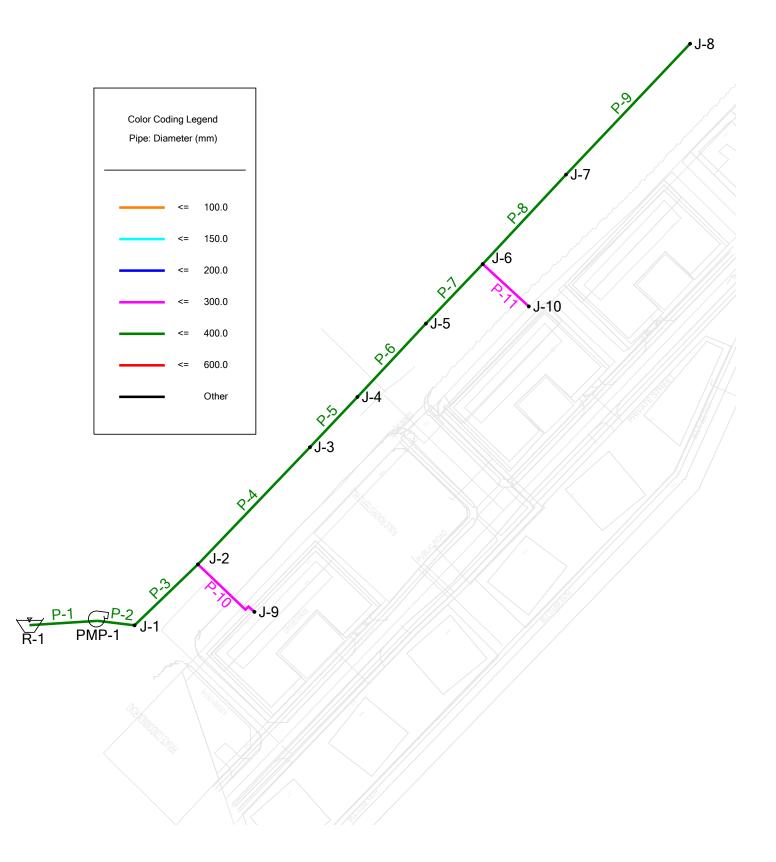

Date: 19-May-23 Time: 12:00 PM

		Test Hydrant								
ID	Flow Device Used	Size	Coefficient	Time Flushed	Flow	Total Flow	Pitot	ID	Static	Residual
Private Hyd	Pollard Diffuser	2.5"	0.832	5.0 minutes	776 gal	3878 gal	25 psi	PE602	55.16	49.88
Private Hyd	Pollard Diffuser	2.5"	0.832	5.0 minutes	601 gal	3004 gal	15 psi			



Calculated Results							
Calculated Flow @ 20 psi	3832 gpm						
Calculated Flow @ 0 psi	4886 gpm						
Pressure Drop	9.57%						

Comments:



	Static Pressure	Residual Pressure	Test Flow	Theoretical Flow at 140 kPa
	(kPa)	(kPa)	(L/s)	(L/s)
Hydrant Test	382.5	358.0	75.8	262.4
Model	382.5	357.3	75.7	257.2

	Static Pressure	Residual Pressure	Test Flow	Theoretical Flow at 140 kPa
	(kPa)	(kPa)	(L/s)	(L/s)
Hydrant Test	380.3	343.9	86.8	241.8
Model	363.5	344.2	63.1	237.1

Existing System

Appendix C

Model Results

Node Table									
	Demand	Elevation	Head	Pressure					
ID	(L/s)	(m)	(m)	(kPa)					
J-1	0.00	104.62	143.98	385.19					
J-2	0.00	105.39	143.97	377.59					
J-3	0.00	106.21	143.96	369.49					
J-4	0.00	106.20	143.96	369.55					
J-5	0.00	106.58	143.96	365.83					
J-6	0.00	106.88	143.96	362.90					
J-7	0.00	106.79	143.96	363.78					
J-8	0.00	107.26	143.96	359.18					
J-9	0.00	105.80	143.97	373.56					
J-11	0.00	104.84	143.94	382.66					
J-12	0.00	105.00	143.94	381.09					
J-13	0.00	105.00	143.94	381.09					
J-14	0.00	105.02	143.94	380.89					
J-15	0.00	105.11	143.92	379.81					
J-16	0.00	105.00	143.93	381.01					
J-17	0.00	104.96	143.92	381.32					
J-18	0.00	104.96	143.92	381.31					
J-19	0.00	105.00	143.92	380.89					
J-20	0.00	105.00	143.92	380.89					
J-21	0.00	105.68	143.90	374.02					
J-22	0.00	105.68	143.89	374.00					
J-23	0.00	105.52	143.89	375.50					
J-24	0.00	105.52	143.89	375.50					
J-25	0.00	105.52	143.89	375.50					
J-26	0.00	105.52	143.89	375.49					
J-27	0.00	105.52	143.89	375.49					
J-28	0.00	105.20	143.94	379.13					
J-29	4.17	105.20	143.92	378.99					
J-30	4.17	105.20	143.92	378.92					
J-31	0.00	105.20	143.92	378.92					
J-32	4.17	105.20	143.91	378.83					
J-32	0.00	105.20	143.91	376.00					
J-33	4.17	103.30	143.92	370.00					
J-35	0.00	104.85	143.90	375.78					
J-35	4.17	105.50	143.88	375.62					
J-30 J-37	4.17	105.95	143.88	373.02					
J-37	0.00		143.89						
J-38	2.86	106.45	143.88	366.36					
J-40	5.51	106.45	143.88	366.30					
J-40 J-41	0.00	106.45	143.89	366.40					
J-41 J-42	5.51	105.25	143.89	378.09					
J-42 J-43	0.00	105.25	143.00	378.09					
J-45 J-44		105.25							
J-44 J-45	5.77	105.55	143.96 143.97	375.94 376.00					
1-40	0.00	102.22	143.37	570.00					
MIN		104.6		359.2					
MAX		104.8		385.2					

Aver	age Day						
	_	_	Pip	e Table			-
ID	From	To Node	Length	Diameter	Roughness	Flow	Velocity
	Node		(m)	(mm)	(C)	(L/s)	(m/s)
P-1	R-1	PMP-1	34.07	400	120	45.45	0.36
P-2	PMP-1	J-1	18.46	400	120	45.45	0.36
P-3	J-1	J-2	43.74	400	120	26.10	0.21
P-4	J-2	J-3	80.63	400	120	20.33	0.16
P-5	J-3	J-4	34.40	400	120	20.33	0.16
P-6	J-4	J-5	49.96	400	120	0.00	0.00
P-7	J-5	J-6	40.94	400	120	0.00	0.00
P-8	J-6	J-7	60.79	400	120	0.00	0.00
P-9	J-7	J-8	89.77	400	120	0.00	0.00
P-10	J-2	J-9	38.79	300	110	5.77	0.08
P-12	J-1	J-11	91.67	300	110	19.35	0.27
P-13	J-11	J-12	21.17	300	110	4.17	0.06
P-14	J-12	J-13	4.84	300	110	0.00	0.00
P-15	J-13	J-14	6.95	300	110	0.00	0.00
P-16	J-4	J-15	90.66	300	110	20.33	0.29
P-17	J-11	J-16	32.48	300	110	15.18	0.21
P-18	J-16	J-17	55.74	300	110	11.01	0.16
P-19	J-17	J-18	4.87	300	110	11.01	0.16
P-20	J-18	J-19	48.92	300	110	6.84	0.10
P-21	J-19	J-20	4.20	300	110	6.84	0.10
P-22	J-20	J-15	12.06	300	110	2.67	0.04
P-23	J-15	J-21	37.91	300	110	23.00	0.33
P-24	J-21	J-22	4.09	300	110	23.00	0.33
P-25	J-22	J-23	28.80	300	110	13.32	0.19
P-26	J-23	J-24	2.89	300	110	13.32	0.19
P-27	J-24	J-25	3.26	300	110	7.81	0.11
P-28	J-25	J-26	3.16	300	110	4.95	0.07
P-29	J-26	J-27	3.33	300	110	4.95	0.07
P-30	J-13	J-28	17.04	200	110	0.00	0.00
P-31	J-12	J-29	16.50	150	100	4.17	0.24
P-32	J-16	J-30	16.40	150	100	4.17	0.24
P-33	J-17	J-31	15.90	200	110	0.00	0.00
P-34	J-18	J-32	15.88	150	100	4.17	0.24
P-35	J-19	J-33	19.63	200	110	0.00	0.00
P-36	J-20	J-34	19.17	150	100	4.17	0.24
P-37	J-21	J-35	17.16	200	110	0.00	0.00
P-38	J-22	J-36	16.98	150	100	4.17	0.24
P-39	J-27	J-37	7.24	150	100	4.95	0.28
P-40	J-26	J-38	6.96	200	110	0.00	0.00
P-41	J-25	J-39	7.10	150	100	2.86	0.16
P-42	J-24	J-40	6.62	150	100	5.51	0.31
P-43	J-23	J-41	6.52	200	110	0.00	0.00
P-44	J-22	J-42	8.51	150	100	5.51	0.31
P-45	J-21	J-43	8.21	200	110	0.00	0.00
P-46	J-9	J-44	4.50	150	100	5.77	0.33
P-47	J-9	J-45	10.56	200	110	0.00	0.00

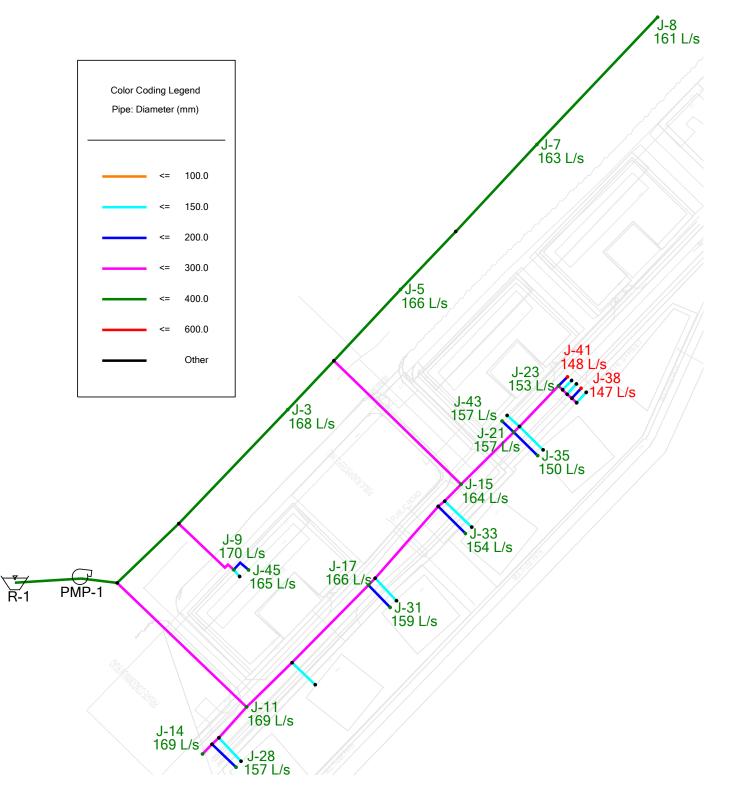
		Node Table		
	Demand	I I I	Head	Pressure
ID	(L/s)	(m)	(m)	(kPa)
J-1	0.00	104.62	144.63	391.56
J-2	0.00	105.39	144.63	384.01
J-3	0.00	106.21	144.63	375.96
J-4	0.00	106.20	144.62	376.05
J-5	0.00	106.58	144.62	372.33
J-6	0.00		144.62	369.40
J-7	0.00		144.62	370.28
J-8	0.00	107.26	144.62	365.68
J-9	0.00		144.63	379.99
J-11	0.00		144.62	
J-12	0.00		144.62	387.74
J-13	0.00	105.00	144.62	387.74
J-13	0.00	105.02	144.62	387.54
J-14 J-15	0.00	105.02	144.61	387.54
J-15 J-16	0.00		144.61	380.01
J-10 J-17	0.00		144.61	388.09
			144.61	
J-18	0.00		144.61	388.08
J-19	0.00			387.68
J-20	0.00	105.00	144.61	387.68
J-21	0.00		144.61	380.97
J-22	0.00		144.61	
J-23	0.00		144.60	382.51
J-24	0.00	105.52	144.60	382.51
J-25	0.00	105.52	144.60	382.51
J-26	0.00	105.52	144.60	382.51
J-27	0.00		144.60	382.51
J-28	0.00		144.62	385.78
J-29	2.09	105.20	144.61	385.74
J-30	2.09	105.20	144.61	385.72
J-31	0.00	105.20	144.61	385.74
J-32	2.09	105.20	144.61	385.70
J-33	0.00	105.50	144.61	382.79
J-34	2.09	104.85	144.61	389.11
J-35	0.00	105.50	144.61	382.73
J-36	2.09	105.50	144.60	382.68
J-37	2.48	105.95	144.60	378.28
J-38	0.00	106.45	144.60	373.41
J-39	1.43	106.45	144.60	373.40
J-40	2.76	106.45	144.60	373.38
J-41	0.00	106.45	144.60	373.41
J-42	2.76	105.25	144.60	385.14
J-43	0.00	105.25	144.61	385.18
J-44	2.89	105.55	144.62	382.42
J-45	0.00	105.55	144.63	382.44
. 13	0.00		2.1.05	002.14
MIN		104.6		365.7
MAX		104.0		391.6

ID P-1 R- P-2 PI P-3 J-: P-4 J-: P-5 J-: P-6 J P-7 J-: P-8 J-(P-9 J-	MP-1 1 2 3 4 5 5 6 7	To Node PMP-1 J-1 J-2 J-3 J-4 J-5 J-5 J-6 J-7	Pip Length (m) 34.07 18.46 43.74 80.63 34.40 49.96	e Table Diameter (mm) 400 400 400 400	Roughness (C) 120 120 120	Flow (L/s) 22.77 22.77 13.08	Velocity (m/s) 0.18 0.18
ID P-1 R- P-2 PI P-3 J-: P-4 J-: P-5 J-: P-6 J P-7 J-: P-8 J-(P-9 J-	Node -1 MP-1 1 2 3 4 5 6 7	PMP-1 J-1 J-2 J-3 J-4 J-5 J-6	(m) 34.07 18.46 43.74 80.63 34.40	(mm) 400 400 400 400	(C) 120 120 120	(L/s) 22.77 22.77 13.08	(<i>m/s</i>) 0.18
P-1 R- P-2 PI P-3 J-: P-4 J-: P-5 J-: P-6 J P-7 J-: P-8 J- P-9 J-	-1 MP-1 -1 -2 -3 -3 -4 -5 -6 -7	PMP-1 J-1 J-2 J-3 J-4 J-5 J-6	34.07 18.46 43.74 80.63 34.40	400 400 400 400 400	120 120 120	22.77 22.77 13.08	0.18
P-2 PI P-3 J-2 P-4 J-2 P-5 J-2 P-6 J-4 P-7 J-2 P-8 J-4 P-9 J-4	MP-1 1 2 3 4 5 5 6 7	J-1 J-2 J-3 J-4 J-5 J-6	18.46 43.74 80.63 34.40	400 400 400	120 120	22.77 13.08	
P-3 J-: P-4 J-: P-5 J-: P-6 J-: P-7 J-: P-8 J-: P-9 J-:	1 2 3 4 5 6 7	J-2 J-3 J-4 J-5 J-6	43.74 80.63 34.40	400 400	120	13.08	0.18
P-4 J-7 P-5 J-7 P-6 J-4 P-7 J-7 P-8 J-4 P-9 J-	2 3 4 5 6 7	J-3 J-4 J-5 J-6	80.63 34.40	400			
P-5 J-2 P-6 J-4 P-7 J-1 P-8 J-4 P-9 J-4	-3 -4 -5 -6 -7	J-4 J-5 J-6	34.40		120		0.10
P-6 J-4 P-7 J-1 P-8 J-0 P-9 J-1	-4 -5 -6 -7	J-5 J-6		400	120	10.19	0.08
P-7 J-1 P-8 J-1 P-9 J-1	-5 -6 -7	J-6	49.96		120	10.19	0.08
P-8 J-1 P-9 J-	·6 ·7			400	120	0.00	0.00
P-9 J-	7	1-7	40.94	400	120	0.00	0.00
		J-1	60.79	400	120	0.00	0.00
		J-8	89.77	400	120	0.00	0.00
P-10 J-2	2	J-9	38.79	300	110	2.89	0.04
P-12 J-:	-1	J-11	91.67	300	110	9.69	0.14
P-13 J-:	-11	J-12	21.17	300	110	2.09	0.03
P-14 J-:	-12	J-13	4.84	300	110	0.00	0.00
P-15 J-:	13	J-14	6.95	300	110	0.00	0.00
P-16 J-4	4	J-15	90.66	300	110	10.19	0.14
P-17 J-:	-11	J-16	32.48	300	110	7.60	0.11
P-18 J-:	16	J-17	55.74	300	110	5.51	0.08
P-19 J-:	·17	J-18	4.87	300	110	5.51	0.08
P-20 J-:	-18	J-19	48.92	300	110	3.42	0.05
P-21 J-:	-19	J-20	4.20	300	110	3.42	0.05
P-22 J-2	20	J-15	12.06	300	110	1.33	0.02
P-23 J-:	·15	J-21	37.91	300	110	11.52	0.16
P-24 J-2	-21	J-22	4.09	300	110	11.52	0.16
P-25 J-2	-22	J-23	28.80	300	110	6.67	0.09
P-26 J-2	23	J-24	2.89	300	110	6.67	0.09
P-27 J-2	24	J-25	3.26	300	110	3.91	0.06
P-28 J-2	-25	J-26	3.16	300	110	2.48	0.04
P-29 J-2	26	J-27	3.33	300	110	2.48	0.04
P-30 J-:	-13	J-28	17.04	200	110	0.00	0.00
P-31 J-:	·12	J-29	16.50	150	100	2.09	0.12
P-32 J-:	-16	J-30	16.40	150	100	2.09	0.12
P-33 J-:	·17	J-31	15.90	200	110	0.00	0.00
P-34 J-:	18	J-32	15.88	150	100	2.09	0.12
P-35 J-:	19	J-33	19.63	200	110	0.00	0.00
P-36 J-2	20	J-34	19.17	150	100	2.09	0.12
P-37 J-2	-21	J-35	17.16	200	110	0.00	0.00
P-38 J-2	-22	J-36	16.98	150	100	2.09	0.12
P-39 J-2	·27	J-37	7.24	150	100	2.48	0.14
P-40 J-2	26	J-38	6.96	200	110	0.00	0.00
P-41 J-2	-25	J-39	7.10	150	100	1.43	0.08
P-42 J-2	24	J-40	6.62	150	100	2.76	0.16
P-43 J-2	23	J-41	6.52	200	110	0.00	0.00
P-44 J-2	·22	J-42	8.51	150	100	2.76	0.16
P-45 J-2	·21	J-43	8.21	200	110	0.00	0.00
P-46 J-9	.9	J-44	4.50	150	100	2.89	0.16
P-47 J-9	.9	J-45	10.56	200	110	0.00	0.00

	1	Node Table		
ID	Demand		Head	Pressure
U	(L/s)	(m)	(m)	(kPa)
J-1	0.00	104.62	141.62	362.14
J-2	0.00	105.39	141.60	354.37
J-3	0.00	106.21	141.57	346.07
J-4	0.00	106.20	141.56	346.05
J-5	0.00	106.58	141.56	342.33
J-6	0.00	106.88	141.56	339.40
J-7	0.00	106.79	141.56	340.28
J-8	0.00	107.26	141.56	335.68
J-9	0.00	105.80	141.59	350.30
J-11	0.00	104.84	141.48	358.64
J-12	0.00	105.00	141.48	357.05
J-13	0.00	105.00	141.48	357.05
J-14	0.00	105.02	141.48	356.86
J-15	0.00	105.11	141.41	355.25
J-16	0.00	105.00	141.45	356.76
J-17	0.00	104.96	141.42	356.87
J-18	0.00	104.96	141.42	356.84
J-19	0.00	105.00	141.41	356.34
J-20	0.00	105.00	141.41	356.33
J-21	0.00	105.68	141.33	348.90
J-22	0.00	105.68	141.32	348.82
J-23	0.00	105.52	141.30	350.17
J-24	0.00	105.52	141.30	350.15
J-25	0.00	105.52	141.30	350.14
J-26	0.00	105.52	141.30	350.14
J-27	0.00	105.52	141.30	350.14
J-28	0.00	105.20	141.48	355.09
J-29	8.34	105.20	141.43	354.60
J-30	8.34	105.20	141.40	354.31
J-31	0.00	105.20	141.42	354.52
J-32	8.34	105.20	141.37	354.01
J-33	0.00	105.20	141.41	351.45
J-33	8.34	105.50	141.35	357.23
J-35	0.00	104.85	141.33	350.67
J-36	8.34	105.50	141.27	350.07
J-37	9.90	105.95	141.27	345.63
J-38	0.00		141.30	
J-38	5.72	106.45	141.29	340.93
J-39 J-40	11.02	106.45	141.26	340.93
J-40	0.00	106.45	141.20	340.72
J-41 J-42	11.02	105.25	141.30	352.60
J-42 J-43				
J-43 J-44	0.00	105.25 105.55	141.33 141.57	353.11
J-44 J-45				352.50
1-40	0.00	105.55	141.59	352.74
MIN		104.6		335.7
MAX		104.8		362.1

Maxi	mum Day						
				e Table			
ID	From	To Node	Length	Diameter	Roughness	Flow	Velocity
	Node		(m)	(mm)	(C)	(L/s)	(m/s)
P-1	R-1	PMP-1	34.07	400	120	90.90	0.72
P-2	PMP-1	J-1	18.46	400	120	90.90	0.72
P-3	J-1	J-2	43.74	400	120	52.20	0.42
P-4	J-2	J-3	80.63	400	120	40.66	0.32
P-5	J-3	J-4	34.40	400	120	40.66	0.32
P-6	J-4	J-5	49.96	400	120	0.00	0.00
P-7	J-5	J-6	40.94	400	120	0.00	0.00
P-8	J-6	J-7	60.79	400	120	0.00	0.00
P-9	J-7	J-8	89.77	400	120	0.00	0.00
P-10	J-2	J-9	38.79	300	110	11.54	0.16
P-12	J-1	J-11	91.67	300	110	38.70	0.55
P-13	J-11	J-12	21.17	300	110	8.34	0.12
P-14	J-12	J-13	4.84	300	110	0.00	0.00
P-15	J-13	J-14	6.95	300	110	0.00	0.00
P-16	J-4	J-15	90.66	300	110	40.66	0.58
P-17	J-11	J-16	32.48	300	110	30.36	0.43
P-18	J-16	J-17	55.74	300	110	22.02	0.31
P-19	J-17	J-18	4.87	300	110	22.02	0.31
P-20	J-18	J-19	48.92	300	110	13.68	0.19
P-21	J-19	J-20	4.20	300	110	13.68	0.19
P-22	J-20	J-15	12.06	300	110	5.34	0.08
P-23	J-15	J-21	37.91	300	110	46.00	0.65
P-24	J-21	J-22	4.09	300	110	46.00	0.65
P-25	J-22	J-23	28.80	300	110	26.64	0.38
P-26	J-23	J-24	2.89	300	110	26.64	0.38
P-27	J-24	J-25	3.26	300	110	15.62	0.22
P-28	J-25	J-26	3.16	300	110	9.90	0.14
P-29	J-26	J-27	3.33	300	110	9.90	0.14
P-30	J-13	J-28	17.04	200	110	0.00	0.00
P-31	J-12	J-29	16.50	150	100	8.34	0.47
P-32	J-16	J-30	16.40	150	100	8.34	0.47
P-33	J-17	J-31	15.90	200	110	0.00	0.00
P-34	J-18	J-32	15.88	150	100	8.34	0.47
P-35	J-19	J-33	19.63	200	110	0.00	0.00
P-36	J-20	J-34	19.17	150	100	8.34	0.47
P-37	J-21	J-35	17.16	200	110	0.00	0.00
P-38	J-22	J-36	16.98	150	100	8.34	0.47
P-39	J-27	J-37	7.24	150	100	9.90	0.56
P-40	J-26	J-38	6.96	200	110	0.00	0.00
P-41	J-25	J-39	7.10	150	100	5.72	0.32
P-42	J-24	J-40	6.62	150	100	11.02	0.62
P-43	J-23	J-41	6.52	200	110	0.00	0.00
P-44	J-22	J-42	8.51	150	100	11.02	0.62
P-45	J-21	J-43	8.21	200	110	0.00	0.00
P-46	J-9	J-44	4.50	150	100	11.54	0.65
P-47	J-9	J-45	10.56	200	110	0.00	0.00

	1	Node Table		
	Demand	Elevation	Head	Pressure
ID	(L/s)	(m)	(m)	(kPa)
J-1	0.00	104.62	137.98	326.48
J-2	0.00	105.39	137.93	318.44
J-3	0.00	106.21	137.87	309.84
J-4	0.00	106.20	137.84	309.69
J-5	0.00	106.58	137.84	305.97
J-6	0.00	106.88	137.84	303.03
J-7	0.00	106.79	137.84	303.92
J-8	0.00	107.26	137.84	299.32
J-9	0.00	105.80	137.91	314.30
J-11	0.00	104.84	137.69	321.46
J-12	0.00	105.00	137.68	319.85
J-13	0.00	105.00	137.68	319.85
J-14	0.00	105.02	137.68	319.66
J-15	0.00	105.11	137.53	317.25
J-16	0.00	105.00	137.62	319.24
J-17	0.00	104.96	137.56	319.02
J-18	0.00	104.96	137.55	318.97
J-19	0.00	105.00	137.53	318.35
J-20	0.00	105.00	137.53	318.33
J-21	0.00	105.68	137.36	310.04
J-22	0.00	105.68	137.34	309.86
J-23	0.00	105.52	137.29	310.97
J-24	0.00	105.52	137.29	310.93
J-25	0.00	105.52	137.29	310.91
J-26	0.00	105.52	137.29	310.90
J-27	0.00	105.52	137.29	310.89
J-28	0.00	105.20	137.68	317.90
J-29	12.51	105.20	137.57	316.85
J-30	12.51	105.20	137.51	316.24
J-31	0.00	105.20	137.56	316.67
J-32	12.51	105.20	137.45	315.61
J-33	0.00	105.50	137.53	313.46
J-34	12.51	104.85	137.40	318.58
J-35	0.00	105.50	137.36	311.80
J-36	12.51	105.50	137.23	310.54
J-37	14.85	105.95	137.22	306.05
J-38	0.00	106.45	137.29	301.80
J-39	8.58	106.45	137.26	301.58
J-40	16.53	106.45	137.22	301.12
J-41	0.00	106.45	137.29	301.87
J-42	16.53	105.25	137.25	313.16
J-43	0.00	105.25	137.36	314.24
J-44	17.31	105.55	137.86	316.23
J-45	0.00	105.55	137.91	316.75
MIN		104.6		299.3
MAX		104.0		326.5


Pe	ak Hour						
			Pip	e Table			
	From		Length	Diameter	Roughness	Flow	Velocity
ID	Node	To Node	(m)	(mm)	(C)	(L/s)	(m/s)
P-1	R-1	PMP-1	34.07	400	120	136.35	1.09
P-2	PMP-1	J-1	18.46	400	120	136.35	1.09
P-3	J-1	J-2	43.74	400	120	78.30	0.62
P-4	J-2	J-3	80.63	400	120	60.99	0.49
P-5	J-3	J-4	34.40	400	120	60.99	0.49
P-6	J-4	J-5	49.96	400	120	0.00	0.00
P-7	J-5	J-6	40.94	400	120	0.00	0.00
P-8	J-6	J-7	60.79	400	120	0.00	0.00
P-9	J-7	J-8	89.77	400	120	0.00	0.00
P-10	J-2	J-9	38.79	300	110	17.31	0.24
P-12	J-1	J-11	91.67	300	110	58.05	0.82
P-13	J-11	J-12	21.17	300	110	12.51	0.18
P-14	J-12	J-13	4.84	300	110	0.00	0.00
P-15	J-13	J-14	6.95	300	110	0.00	0.00
P-16	J-4	J-15	90.66	300	110	60.99	0.86
P-17	J-11	J-16	32.48	300	110	45.54	0.64
P-18	J-16	J-17	55.74	300	110	33.03	0.47
P-19	J-17	J-18	4.87	300	110	33.03	0.47
P-20	J-18	J-19	48.92	300	110	20.52	0.29
P-21	J-19	J-20	4.20	300	110	20.52	0.29
P-22	J-20	J-15	12.06	300	110	8.01	0.11
P-23	J-15	J-21	37.91	300	110	69.00	0.98
P-24	J-21	J-22	4.09	300	110	69.00	0.98
P-25	J-22	J-23	28.80	300	110	39.96	0.57
P-26	J-23	J-24	2.89	300	110	39.96	0.57
P-27	J-24	J-25	3.26	300	110	23.43	0.33
P-28	J-25	J-26	3.16	300	110	14.85	0.21
P-29	J-26	J-27	3.33	300	110	14.85	0.21
P-30	J-13	J-28	17.04	200	110	0.00	0.00
P-31	J-12	J-29	16.50	150	100	12.51	0.71
P-32	J-16	J-30	16.40	150	100	12.51	0.71
P-33	J-17	J-31	15.90	200	110	0.00	0.00
P-34	J-18	J-32	15.88	150	100	12.51	0.71
P-35	J-19	J-33	19.63	200	110	0.00	0.00
P-36	J-20	J-34	19.17	150	100	12.51	0.71
P-37	J-21	J-35	17.16	200	110	0.00	0.00
P-38	J-22	J-36	16.98	150	100	12.51	0.71
P-39	J-27	J-37	7.24	150	100	14.85	0.84
P-40	J-26	J-38	6.96	200	110	0.00	0.00
P-41	J-25	J-39	7.10	150	100	8.58	0.49
P-42	J-24	J-40	6.62	150	100	16.53	0.94
P-43	J-23	J-41	6.52	200	110	0.00	0.00
P-44	J-22	J-42	8.51	150	100	16.53	0.94
P-45	J-21	J-43	8.21	200	110	0.00	0.00
P-46	J-9	J-44	4.50	150	100	17.31	0.98
P-47	J-9	J-45	10.56	200	110	0.00	0.00

		Fire Flow Table (I	Maximum Day plus Fire Flow)		
ID	Total Fire Demand	Total Demand	Total Available Fire Flow	Available Fire Flow	Fire Flow Met?
	(L/s)	(L/s)	(L/s)	(L/s)	FILE FIOW MEL:
J-3	150.00	150.00	167.84	167.84	TRUE
J-5	150.00	150.00	165.62	165.62	TRUE
J-7	150.00	150.00	162.89	162.89	TRUE
J-8	150.00	150.00	160.58	160.58	TRUE
J-9	150.00	150.00	170.17	170.17	TRUE
J-11	150.00	150.00	168.81	168.81	TRUE
J-14	150.00	150.00	168.83	168.83	TRUE
J-15	150.00	150.00	164.12	164.12	TRUE
J-17	150.00	150.00	166.05	166.05	TRUE
J-21	150.00	150.00	157.45	157.45	TRUE
J-23	150.00	150.00	152.80	152.80	TRUE
J-28	150.00	150.00	157.23	157.23	TRUE
J-31	150.00	150.00	158.64	158.64	TRUE
J-33	150.00	150.00	154.31	154.31	TRUE
J-35	150.00	150.00	150.32	150.32	TRUE
J-38	150.00	150.00	147.10	147.10	FALSE
J-41	150.00	150.00	148.43	148.43	FALSE
J-43	150.00	150.00	157.46	157.46	TRUE
J-45	150.00	150.00	164.59	164.59	TRUE
J-45	250.00	250.00	261.85	261.85	TRUE

MIN	147.1
MAX	261.9

Scenario: Maximum Day Available Fire Flow

Appendix F Manufactured Treatment Device Sizing and Maintenance Information

Hydroworks Sizing Summary

Kingston Road - OGS201

Pickering, Ontario

06-29-2023

Recommended Size: HydroDome HD 4

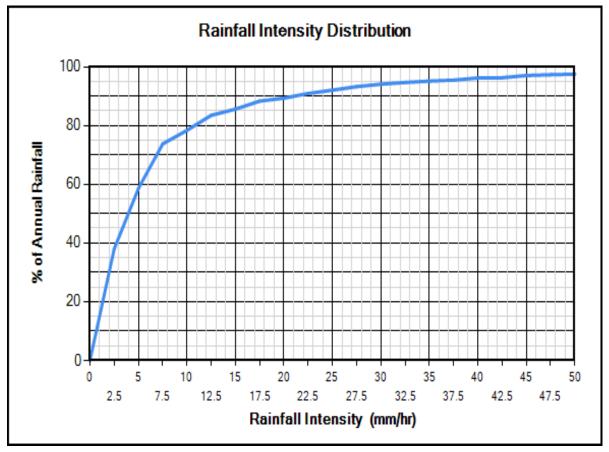
A HydroDome HD 4 is recommended to provide 80 % annual TSS removal based on a drainage area of .54 (ha) with an imperviousness of 100 % and Toronto Central, Ontario rainfall for the 20 um to 2000 um particle size distribution.

The recommended HydroDome HD 4 treats 100 % of the annual runoff and provides 87 % annual TSS removal for the Toronto Central rainfall records and 20 um to 2000 um particle size distribution.

The HydroDome has a siphon which creates a discontinuity in headloss. The given peak flow of .1 (m3/s) is greater than the full pipe flow of .01 (m3/s) indicating the pipe will be surcharged during the peak flow. Full pipe flow was assumed for the headloss calculations. The pressure head in the pipe was not evaluated since this would require a hydraulic gradeline analysis. The headloss was calculated to be 315 (mm) above the crown of the 375 (mm) outlet pipe.

This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

If you have any questions regarding this sizing summary please do not hesitate to contact Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

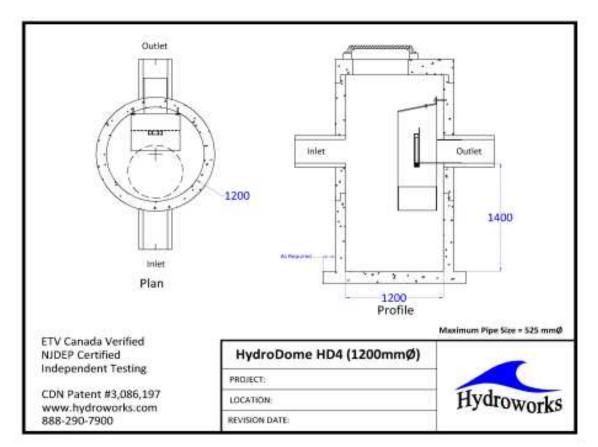

The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroDome.

TSS Removal Sizing Summary

	nsions Rainfall	Site TSS	PSD TSS Loading	Quantity Storage	By-Pass Cust	tom CAD	Video	Other	
Site Parame	eters		Units	Rainfall Statio	n				
Area (ha)	1	.54	L n n	Toronto Cent	al		0	ntario	
Imperviou	sness (%)	100	Metric	1982 To 1999	1		Rainfall	Timestep = 1	o min.
roject Title	Kingston Road - (DGS201	19. A.		Outlet Pipe				8
2 lines) Pickering, Ontario				Diam. (mm)	375 Pe	ak Design	Flow (m3/s)	.0993	
					Slope (%)	1			
EIV Lab I	esting Results	1	Post Treatment Re	charge		1			
lydroDome	Annual Sizing Re	sults			P	article Size I	Distribution	n'	1
Model #	Qlow (m3/s)	Qtot (m3/s)	Flow Capture (%)	TSS Removal (%)		Size (um)	%	SG	
Unavailabl	e .099	.099	100 %	79 %	-	20	20	2.65	
HD 4	.099	.099	100 %	87 %		60	20	2.65	
HD 5	.099	.099	100 %	92 %		150	20	2.65	5
	.099	.099	100 %	95 %		400 2000	20	2.65	2
HD 6	000	.099	100 %	97 %		2000	20	2.60	b)
HD 6 Unavailabl	e .099		100.5	98 %					
	e .099 .099	.099	100 %						
Unavailabl		.099	100 %	99 %					

TSS Particle Size Distribution

	Dimensions R		100 100	Quantity Storage By-Pass Custom	
SS	Particle Size Dist Size (um)	ribution %	SG	Notes:	TSS Distributions
•	20	20	2.65	1. To change data	C ETV Canada / NJDEP
	60	20	2.65	just click a cell and type in the new	C Standard HDS Design
	150	20	2.65	value(s)	C Alden Laboratory
	400	20	2.65	 To add a row just go to the bottom of 	C 0K110
	2000	20	2.65	the table and start typing.	C Toronto
				3. To delete a row,	Ontario Fine
				select the row by clicking on the first	C Calgary Forebay
				pointer column, then press delete	C Kitchener
				4. To sort the table click on one of the	C User Defined
				column headings	Clear


Site Physical Characteristics

) 📴) 😑 🗷	1			04					11. M
eneral I	Dimensions	Rainfall	Site T	SS PSD 1	TSS Loadin	g Quantit	y Storage	By-Pass	Custom (CAD Vid	eo Other
Catchm	ent Parame	ters						T P	Maintenan	ce	
Width (m) 73 Imperv. Mannings				nings n		.015		Frequency	(months)	12	
1	Default Widt	h	P	erv Mannin	gs n		.25				
			In	p. Depres	s. Storage i	(mm)	.51	-			
Slop	e (%)	2	-		ss. Storage		5.08	-			
Daily Ev Jan	aporation (n Feb	nm/day) Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	0	2.54	2.54	3.81	3.81	3.81	2.54	2.54	0	0
	Infiltation R nfiltration R ation Decay	ate (mm/hr)	63.5 10.16 .00055 .01		atch Basins # of Catch ontrolled R Roof Runof	basins oof Runoff		2	exclu catchr	II parameters ding input nent width. ult Values

Dimensions And Capacities

odel	Diam. (m)	Depth (m)	Float. Vol. (L)	Sediment Vol. (m3)	Total Vol. (m3)
HD 3	0.91	1.22	123	0.5	0.8
HD 4	1.22	1.37	266	0.9	1.6
HD 5	1.52	1.68	483	1.7	3.1
HD 6	1.83	1.98	803	2.9	5.2
HD 7	2.13	2.29	1226	4.6	8.2
HD 8	2.44	2.59	1863	6.8	12.1
HD 10	3.05	3.2	3617	13	23.3
HD 12	3.66	3.81	6224	22.2	40
= Depth	from outlet invert to i	nside bottom of	tank		

Generic HD 4 CAD Drawing

TSS Buildup And Washoff

) 🗁 🚽 🦪 🥑 🤤 🖄 neral Dimensions Rainfall Site	TSS PSD TSS Loading Quantity	y Storage By-Pass Custom CAD Video O	ther
TSS Buildup Power Linear Exponential Michaelis-Menton	Street Sweeping Efficiency (%) Start Month Stop Month Frequency (days)	Soil Erosion 30 May • Sep • 30	
TSS Washoff Power-Exponential Rating Curve (no upper limit) Rating Curve (limited to buildup	Available Fraction		
TSS Buildup Parameters Limit (kg/ha) 28.02 Coeff (kg/ha) 67.25 Exponent .5	TSS Washoff Parameters Coefficient 0.855 Exponent 1.1	 TSS Buildup 	

Upstream Quantity Storage

Hydroworks Siphon Separator Siz ile Product Units CAD	Video Help	ntity Storage By-Pass Custom CAD Video Other
eneral Dimensions Rainfall Site	Discharge (m3/s) 0	Notes: 1. To change data just click a cell and type in the new value (s) 2. To add a row just go to the bottom of the table and start typing. 3. To delete a row, select the row by clicking on the first pointer column, then press delete 4. To sort the table click on one of the column headings Clear

Other Parameters

	le l				
neral Dimensions Rainfall Site TSS PSD TSS Loading Quantity Storage Scaling Law Peclet Scaling based on diameter x depth Peclet Scaling based on surface area (diameter x diameter)	Py-Pass Custom CAD Video Other HydroDome Design ✓ High Flow Weir Flow Control (parking lot storage) Must add Quantity Storage Table				
TSS Removal Extrapolation Extrapolate TSS Removal for flows lower than tested No TSS Removal extrapolation for flows lower than tested No TSS Removal extrapoloation for lower flows or inter-event periods	HD Hydraulics HD Model HD 4 C Custom Insert Size				
Lab Testing └── Use NJDEP Lab Testing Results └── Use ETV Canada Lab Testing Results					
TSS Removal Results TSS Removal Required TSS Removal Required TSS Removal (%) 80.0 Enter required TSS	S Removal (%)				

Flagged Issues

If there is underground detention storage upstream of the HydroDome please contact Hydroworks to ensure it has been modeled correctly.

Hydroworks Sizing Program - Version 5.7 Copyright Hydroworks, LLC, 2022 1-800-290-7900 www.hydroworks.com

Hydroworks Sizing Summary

Kingston Road - OGS204

Pickering, Ontario

06-29-2023

Recommended Size: HydroDome HD 4

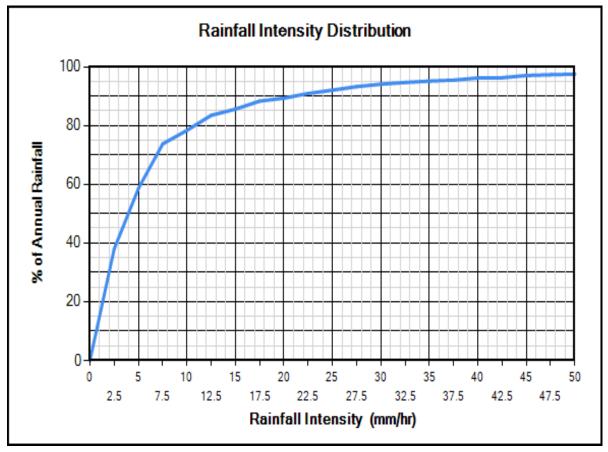
A HydroDome HD 4 is recommended to provide 80 % annual TSS removal based on a drainage area of .63 (ha) with an imperviousness of 100 % and Toronto Central, Ontario rainfall for the 20 um to 2000 um particle size distribution.

The recommended HydroDome HD 4 treats 100 % of the annual runoff and provides 85 % annual TSS removal for the Toronto Central rainfall records and 20 um to 2000 um particle size distribution.

The HydroDome has a siphon which creates a discontinuity in headloss. The given peak flow of .116 (m3/s) Is less than the full pipe flow of .29 (m3/s) indicating free flow in the pipe during the peak flow assuming no tailwater condition. Partial pipe flow was assumed for the headloss calculations. The headloss was calculated to be 332 (mm) above the crown of the 450 (mm) outlet pipe.

This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

If you have any questions regarding this sizing summary please do not hesitate to contact Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

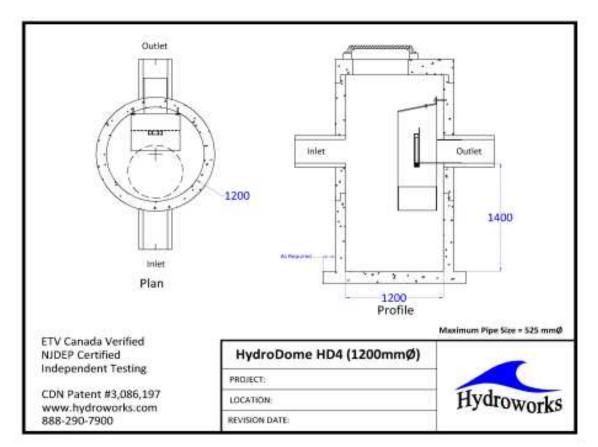

The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroDome.

TSS Removal Sizing Summary

	nsions Rainfall	Site TSS	PSD TSS Loading	Quantity Storage	By-Pass Cu	istom CAD	Video	Other	
Site Parame	ters		Units	- Rainfall Static					
No. Statut	ſ	.63	L US	Toronto Cent	14		0	Intario	
Area (ha) .63									2 2
Impervious	sness (%)	100	Metric	1982 To 1995	}		Rainfall	Timestep = 1	5 min.
oject Title	Kingston Road - (DGS204			Outlet Pipe				52
(2 lines) Pickering, Ontario				Diam. (mm) 450 Pe	ak Design	Flow (m3/s)	.116	
					Slope (%)				
EIV Lab le	sting Results	1	Post Treatment Re	scharge					
ydroDome.	Annual Sizing Rea	sults				Particle Size I	Distributio	n	
Model #	Qlow (m3/s)	Qtot (m3/s)	Flow Capture (%)	TSS Removal (%)		Size (um)	%	SG	[]
Unavailable	.116	.116	100 %	76 %	-	20	20	2.65	
HD 4	.116	.116	100 %	85 %		60	20	2.65	
HD 5	.116	.116	100 %	91 %		150 400	20	2.65	3
HD 6	.116	.116	100 %	94 %		2000	20	2.65	2
Unavailable	.116	.116	100 %	96 %		2000	20	2.60	ba i
HD 8	.116	.116	100 %	97 %					
	.116	.116	100 %	99 %					
HD 10									

TSS Particle Size Distribution

	I Dimensions R		100 100	g Quantity Storage By-Pass Custom 1	
55	Particle Size Dist Size (um) 20	1bution % 20	SG 2.65	Notes: 1. To change data	C ETV Canada / NJDEP
	60 150 400	20 20 20	2.65 2.65 2.65	just click a cell and type in the new value(s) 2. To add a row just go to the bottom of	C Standard HDS Design C Alden Laboratory C OK110
•	2000	20	2.65	the table and start typing. 3. To delete a row, select the row by clicking on the first pointer column, then press delete	Toronto Ontario Fine Calgary Forebay Kitchener User Defined
				 To sort the table click on one of the column headings 	Clear


Site Physical Characteristics

	380) 🤤 🗷]			-							
eneral I	Dimensions	Rainfall	Site T	SS PSD	TSS Loadin	g Quantit	ty Storage	By-Pass	Custom (CAD Vid	eo Other		
Catchm	ent Parame	ters						n e	Maintenan	ce	a		
Widt	n (m)	79	In	perv. Man	nings n		.015	.015 Frequency			(months) 12		
ſ)efault Widt	ь I	P	erv Mannir	ıgs n		.25						
			In	np. Depres	s. Storage i	mm)	.51	-					
Slope	e (%)	2			ss. Storage		5.08						
Daily Eva Jan	poration (n	nm/day) Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
0	0	0	2.54	2.54	3.81	3.81	3.81	2.54	2.54	0	0		
Min. I	on Infiltation Ra Infiltration R Ition Decay	ate (mm/hr)	63.5 10.16 .00055	C	tch Basins f of Catch	basins oof Runoff		2	exclu catchr	II parameters ding input nent width.		
	ation Regen	Rate (1/s))	.01		Roof Runof	t (m3/s)						

Dimensions And Capacities

odel	Diam. (m)	Depth (m)	Float. Vol. (L)	Sediment Vol. (m3)	Total Vol. (m3)
HD 3	0.91	1.22	123	0.5	0.8
HD 4	1.22	1.37	266	0.9	1.6
HD 5	1.52	1.68	483	1.7	3.1
HD 6	1.83	1.98	803	2.9	5.2
HD 7	2.13	2.29	1226	4.6	8.2
HD 8	2.44	2.59	1863	6.8	12.1
HD 10	3.05	3.2	3617	13	23.3
HD 12	3.66	3.81	6224	22.2	40
i = Depth	from outlet invert to i	nside bottom of	tank]

Generic HD 4 CAD Drawing

TSS Buildup And Washoff

) 🗁 🛃 🆪 🥝 🤤 遂 neral Dimensions Rainfall Site	TSS PSD TSS Loading Quantity	y Storage By-Pass Custom CAD Video Other	•]
TSS Buildup Power Linear Exponential Michaelis-Menton	Street Sweeping Efficiency (%) Start Month Stop Month Frequency (days)	Soil Erosion 30 May • Sep • 30	
TSS Washoff Power-Exponential Rating Curve (no upper limit) Rating Curve (limited to buildup	Available Fraction	.3	
TSS Buildup Parameters Limit (kg/ha) 28.02 Coeff (kg/ha) 67.25 Exponent .5	TSS Washoff Parameters Coefficient .0855 Exponent 1.1	 TSS Buildup 	

Upstream Quantity Storage

Hydroworks Siphon Separator S File Product Units CAD Careford Content Content Content Content Content Content Content Content Content Content Content Content Content Content Content Content Content Content	Video Help	torage By-Pass Custom CAD Video Other
Quantity Control Storage	Discharge (m3/s) 0	Notes: 1. To change data just click a cell and type in the new value (s) 2. To add a row just go to the bottom of the table and start typing. 3. To delete a row, select the row by clicking on the first pointer column, then press delete 4. To sort the table click on one of the column headings Clear

Other Parameters

) 🗁 🚽 🎒 🥑 🤤 🖄 neral Dimensions Rainfall Site TSS PSD TSS Loading Quantity Storage	By-Pass Custom CAD Video Other		
 Scaling Law ✓ Peclet Scaling based on diameter x depth ✓ Peclet Scaling based on surface area (diameter x diameter) 	HydroDome Design ✓ High Flow Weir Flow Control (parking lot storage) Must add Quantity Storage Table		
TSS Removal Extrapolation Extrapolate TSS Removal for flows lower than tested No TSS Removal extrapolation for flows lower than tested No TSS Removal extrapoloation for lower flows or inter-event periods	HD Hydraulics HD Model HD 4 Custom Insert Size		
Lab Testing Use NJDEP Lab Testing Results Use ETV Canada Lab Testing Results			
TSS Removal Results	SS Removal (%)		

Flagged Issues

If there is underground detention storage upstream of the HydroDome please contact Hydroworks to ensure it has been modeled correctly.

Hydroworks Sizing Program - Version 5.7 Copyright Hydroworks, LLC, 2022 1-800-290-7900 www.hydroworks.com

Hydroworks Sizing Summary

Kingston Road - OGS205

Pickering, Ontario

06-29-2023

Recommended Size: HydroDome HD 4

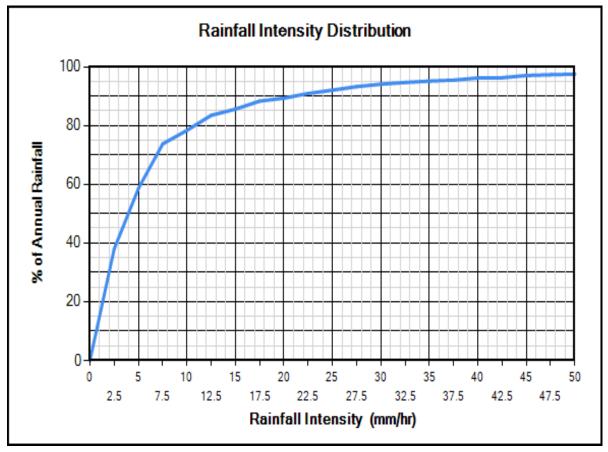
A HydroDome HD 4 is recommended to provide 80 % annual TSS removal based on a drainage area of .43 (ha) with an imperviousness of 100 % and Toronto Central, Ontario rainfall for the 20 um to 2000 um particle size distribution.

The recommended HydroDome HD 4 treats 100 % of the annual runoff and provides 90 % annual TSS removal for the Toronto Central rainfall records and 20 um to 2000 um particle size distribution.

The HydroDome has a siphon which creates a discontinuity in headloss. The given peak flow of .079 (m3/s) Is less than the full pipe flow of .29 (m3/s) indicating free flow in the pipe during the peak flow assuming no tailwater condition. Partial pipe flow was assumed for the headloss calculations. The headloss was calculated to be 292 (mm) above the crown of the 450 (mm) outlet pipe.

This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

If you have any questions regarding this sizing summary please do not hesitate to contact Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

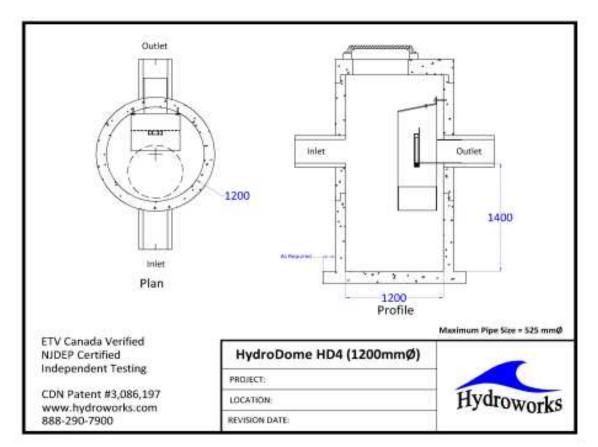

The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroDome.

TSS Removal Sizing Summary

	Contraction of the second of the	Site TSS	PSD TSS Loading	Quantity Storage	By-Pass Cus	tom CAD	Video	Other	
Site Paramet	ters		Units	Rainfall Statio	n			-	
Area (ha)	ſ	.43	L US	Toronto Cent	ral		0	ntario	
	1								2 22
Impervious	ness (%)	100	Metric	1982 To 1999	1		Rainfall	Timestep = 15	min.
roject Title	Kingston Road - (DGS205	17. A.		Outlet Pipe				2
lines)	Pickering, Ontario	in here and			Diam. (mm)	450 Pe	ak Design	Flow (m3/s)	.079
					Slope (%)				
ETV Lab Te	sting Results	F	Post Treatment Re	charge	1000000				
vdroDome 4	Annual Sizing Res	sults			P	article Size [Distribution	1 ⁱ	1
		1				Size (um)	%	SG	
Model #	Qlow (m3/s)	Qtot (m3/s)	Flow Capture (%)	TSS Removal (%)		20	20	2.65	
Unavailable	.079	.079	100 %	83 %		60	20	2.65	
HD 4	.079	.079	100 %	90 %		150	20	2.65	
HD 5	.079	.079	100 %	94 %		400	20	2.65	
HD 6	.079	.079	100 %	96 %		2000	20	2.65	
Unavailable	.079	.079	100 %	97 %		2000	20	2.00	
HD 8	.079	.079	100 %	98 %					
	070	.079	100 %	99 %					
HD 10	.079								

TSS Particle Size Distribution

	I Dimensions R		100 100	g Quantity Storage By-Pass Custom 1	
55	Particle Size Dist Size (um) 20	1bution % 20	SG 2.65	Notes: 1. To change data	C ETV Canada / NJDEP
	60 150 400	20 20 20	2.65 2.65 2.65	just click a cell and type in the new value(s) 2. To add a row just go to the bottom of	C Standard HDS Design C Alden Laboratory C OK110
•	2000	20	2.65	the table and start typing. 3. To delete a row, select the row by clicking on the first pointer column, then press delete	Toronto Ontario Fine Calgary Forebay Kitchener User Defined
				 To sort the table click on one of the column headings 	Clear


Site Physical Characteristics

	380) 😑 🗷	1								94 - Mg	
eneral I	Dimensions	Rainfall	Site T	SS PSD 1	TSS Loadin	g Quantit	ty Storage	By-Pass	Custom (CAD Vid	eo Other	
Catchm	ent Parame	ters						The P	Maintenan	ce		
Widt	n (m)	66	In	perv. Man	nings n		.015		Frequency	(months) 12		
ſ)efault Widt	ь I	Pe	erv Mannir	ıgs n		.25					
			In	p. Depres	s. Storage ((mm)	.51	-				
Slope	e (%)	2			ss. Storage		5.08					
Daily Eva	aporation (n	nm/day)										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
0	0	0	2.54	2.54	3.81	3.81	3.81	2.54	2.54	0	0	
Min. I	nfiltation R	ate (mm/hr)	63.5 10.16		tch Basins f of Catch	basins		2	exclu	II parameters ding input nent width.	
Infiltra	ition Decay ation Regen			.00055 .01	- F	Roof Runof	f(m3/s)				ult Values	

Dimensions And Capacities

odel	Diam. (m)	Depth (m)	Float. Vol. (L)	Sediment Vol. (m3)	Total Vol. (m3)
HD 3	0.91	1.22	123	0.5	0.8
HD 4	1.22	1.37	266	0.9	1.6
HD 5	1.52	1.68	483	1.7	3.1
HD 6	1.83	1.98	803	2.9	5.2
HD 7	2.13	2.29	1226	4.6	8.2
HD 8	2.44	2.59	1863	6.8	12.1
HD 10	3.05	3.2	3617	13	23.3
HD 12	3.66	3.81	6224	22.2	40
i = Depth	from outlet invert to i	nside bottom of	tank]

Generic HD 4 CAD Drawing

TSS Buildup And Washoff

) 🗁 🛃 🆪 🥝 🤤 遂 neral Dimensions Rainfall Site	TSS PSD TSS Loading Quantity	y Storage By-Pass Custom CAD Video Other	•]
TSS Buildup Power Linear Exponential Michaelis-Menton	Street Sweeping Efficiency (%) Start Month Stop Month Frequency (days)	Soil Erosion 30 May • Sep • 30	
TSS Washoff Power-Exponential Rating Curve (no upper limit) Rating Curve (limited to buildup	Available Fraction	.3	
TSS Buildup Parameters Limit (kg/ha) 28.02 Coeff (kg/ha) 67.25 Exponent .5	TSS Washoff Parameters Coefficient .0855 Exponent 1.1	 TSS Buildup 	

Upstream Quantity Storage

Hydroworks Siphon Separator S File Product Units CAD Careford Content Content Content Content Content Content Content Content Content Content Content Content Content Content Content Content Content Content	Video Help	torage By-Pass Custom CAD Video Other
Quantity Control Storage	Discharge (m3/s) 0	Notes: 1. To change data just click a cell and type in the new value (s) 2. To add a row just go to the bottom of the table and start typing. 3. To delete a row, select the row by clicking on the first pointer column, then press delete 4. To sort the table click on one of the column headings Clear

Other Parameters

]) 🗁 🚽 🎒 🥑 🤤 🖄 neral Dimensions Raimfall Site TSS PSD TSS Loading Quantity Storage	By-Pass Custom CAD Video Other		
 Scaling Law ✓ Peclet Scaling based on diameter x depth ✓ Peclet Scaling based on surface area (diameter x diameter) 	HydroDome Design ✓ High Flow Weir Flow Control (parking lot storage) Must add Quantity Storage Table		
TSS Removal Extrapolation Extrapolate TSS Removal for flows lower than tested No TSS Removal extrapolation for flows lower than tested No TSS Removal extrapoloation for lower flows or inter-event periods	HD Hydraulics HD Model HD 4		
Lab Testing Use NJDEP Lab Testing Results Use ETV Canada Lab Testing Results			
TSS Removal Results C Choose Model # TSS Removal (%) 80.0 Enter required TSS	SS Removal (%)		

Flagged Issues

If there is underground detention storage upstream of the HydroDome please contact Hydroworks to ensure it has been modeled correctly.

Hydroworks Sizing Program - Version 5.7 Copyright Hydroworks, LLC, 2022 1-800-290-7900 www.hydroworks.com

Hydroworks Sizing Summary

Kingston Road - OGS206

Pickering, Ontario

06-29-2023

Recommended Size: HydroDome HD 4

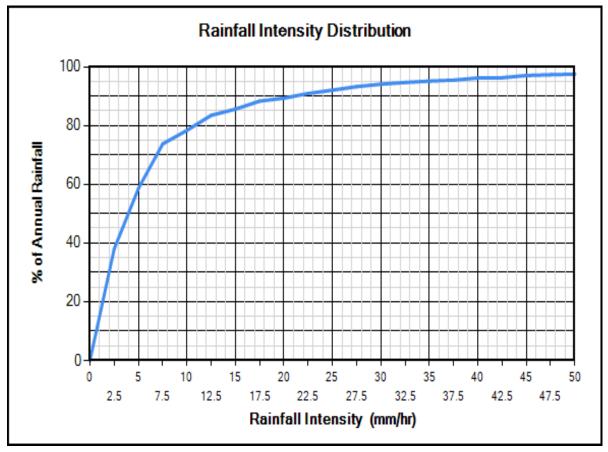
A HydroDome HD 4 is recommended to provide 80 % annual TSS removal based on a drainage area of .39 (ha) with an imperviousness of 100 % and Toronto Central, Ontario rainfall for the 20 um to 2000 um particle size distribution.

The recommended HydroDome HD 4 treats 100 % of the annual runoff and provides 91 % annual TSS removal for the Toronto Central rainfall records and 20 um to 2000 um particle size distribution.

The HydroDome has a siphon which creates a discontinuity in headloss. The given peak flow of .072 (m3/s) Is less than the full pipe flow of .29 (m3/s) indicating free flow in the pipe during the peak flow assuming no tailwater condition. Partial pipe flow was assumed for the headloss calculations. The headloss was calculated to be 283 (mm) above the crown of the 450 (mm) outlet pipe.

This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

If you have any questions regarding this sizing summary please do not hesitate to contact Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

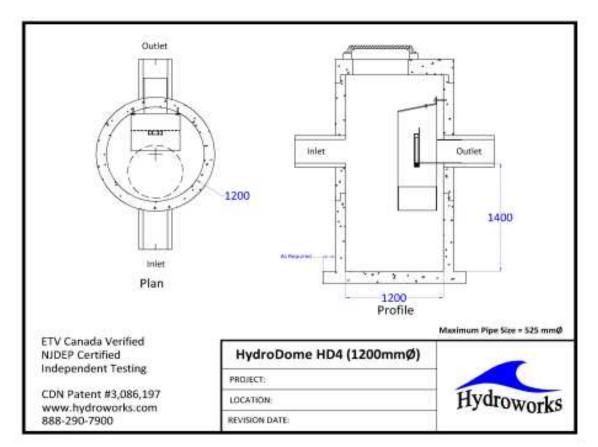

The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroDome.

TSS Removal Sizing Summary

	nsions Rainfall	Site TSS	PSD TSS Loading	Quantity Storage	By-Pass Cus	stom CAD	Video	Other	
Site Parame	ters		Units	Rainfall Statio	n			-	
Area (ha)	Ĩ	.39	L US	Toronto Cent					
									2 32
Imperviou	sness (%)	100	Metric	1982 To 1995	1		Rainfall	Timestep = 15) min.
roject Title	Kingston Road - (DGS206	19. A.		Outlet Pipe				80
lines)	Pickering, Ontario	and here a start			Diam. (mm)	450 Pe	ak Design	Flow (m3/s)	.072
					Slope (%)				
ETV Lab Te	sting Results	1	Post Treatment Re	charge					
lydroDome.	Annual Sizing Re	sults				Particle Size I	Distribution	i .	1
Model #	Qlow (m3/s)	Qtot (m3/s)	Flow Capture (%)	TSS Removal (%)	T	Size (um)	%	SG	1
Unavailable		.072	100 %	85 %	- 1	20	20	2.65	
HD 4	.072	.072	100 %	85 % 91 %		60	20	2.65	
HD 4 HD 5	.072	.072	100 %	95 %	-	150	20	2.65	
HD 5	.072	.072	100 %	97%	-	400	20	2.65	
		.072	100 %	98 %		2000	20	2.65	
	.072	.072	100 %	98 %	-				
Unavailable		.072	100 %	99 %					
Unavailable HD 8	072		100 %	33 10					
Unavailable	.072	.072	100 %	99 %					

TSS Particle Size Distribution

	I Dimensions R		100 100	g Quantity Storage By-Pass Custom (
55	Particle Size Dist Size (um) 20	1bution % 20	SG 2.65	Notes: 1. To change data	C ETV Canada / NJDEP			
	60 150 400	20 20 20	2.65 2.65 2.65	just click a cell and type in the new C Standard HDS Desig value(s) C Alden Laboratory 2. To add a row just go to the bottom of C OK110				
*	20	2.65	the table and start typing. 3. To delete a row, select the row by clicking on the first pointer column, then press delete 4. To sort the table	 Toronto Ontario Fine Calgary Forebay Kitchener User Defined 				
				click on one of the column headings	Clear			


Site Physical Characteristics

) 😑 🗷	1			52					10. NO
eneral I	Dimensions	Rainfall	Site T	SS PSD	TSS Loadin	g 🛛 Quantit	y Storage	By-Pass	Custom C	CAD Vid	eo Other
Catchm	ent Parame	ters						The P	Maintenand	e	
Width (m) 62 Imperv. Mannin		nings n		.015 Frequenc		Frequency	y (months) 12				
Default Width Perv Mannings n Imp. Depress. Sto			gs n			.25					
			s. Storage			-					
Slop	e (%)	2			ss. Storage		5.08	-			
Daily Ev Jan	aporation (n Feb	nm/day) Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	0	2.54	2.54	3.81	3.81	3.81	2.54	2.54	0	0
	on				Ca	atch Basins # of Catch		-	2	Resets a	II parameters

Dimensions And Capacities

odel	Diam. (m)	Depth (m)	Float. Vol. (L)	Sediment Vol. (m3)	Total Vol. (m3)
HD 3	0.91	1.22	123	0.5	0.8
HD 4	1.22	1.37	266	0.9	1.6
HD 5	1.52	1.68	483	1.7	3.1
HD 6	1.83	1.98	803	2.9	5.2
HD 7	2.13	2.29	1226	4.6	8.2
HD 8	2.44	2.59	1863	6.8	12.1
HD 10	3.05	3.2	3617	13	23.3
HD 12	3.66	3.81	6224	22.2	40
= Depth	from outlet invert to i	inside bottom of	tank		J

Generic HD 4 CAD Drawing

TSS Buildup And Washoff

) 🗁 🛃 🆪 🥝 🤤 遂 neral Dimensions Rainfall Site	TSS PSD TSS Loading Quantity	y Storage By-Pass Custom CAD Video Other	•]
TSS Buildup Power Linear Exponential Michaelis-Menton	Street Sweeping Efficiency (%) Start Month Stop Month Frequency (days)	Soil Erosion 30 May • Sep • 30	
TSS Washoff Power-Exponential Rating Curve (no upper limit) Rating Curve (limited to buildup	Available Fraction	.3	
TSS Buildup Parameters Limit (kg/ha) 28.02 Coeff (kg/ha) 67.25 Exponent .5	TSS Washoff Parameters Coefficient .0855 Exponent 1.1	 TSS Buildup 	

Upstream Quantity Storage

Hydroworks Siphon Separator S File Product Units CAD Dimensions Rainfall Stee	Video Help	uantity Storage By-Pass Custom CAD Video Other	8 23
Quantity Control Storage	Discharge (m3/s) 0	Notes: 1. To change data just click a cell and type in the new value (s) 2. To add a row just go to the bottom of the table and start typing. 3. To delete a row, select the row by clicking on the first pointer column, then press delete 4. To sort the table click on one of the column headings Clear	

Other Parameters

]) 🗁 🚽 🎒 🥑 🤤 🖄 neral Dimensions Raimfall Site TSS PSD TSS Loading Quantity Storage	By-Pass Custom CAD Video Other		
 Scaling Law ✓ Peclet Scaling based on diameter x depth ✓ Peclet Scaling based on surface area (diameter x diameter) 	HydroDome Design ✓ High Flow Weir Flow Control (parking lot storage) Must add Quantity Storage Table		
TSS Removal Extrapolation Extrapolate TSS Removal for flows lower than tested No TSS Removal extrapolation for flows lower than tested No TSS Removal extrapoloation for lower flows or inter-event periods	HD Hydraulics HD Model HD 4		
Lab Testing Use NJDEP Lab Testing Results Use ETV Canada Lab Testing Results			
TSS Removal Results C Choose Model # TSS Removal (%) 80.0 Enter required TSS	SS Removal (%)		

Flagged Issues

If there is underground detention storage upstream of the HydroDome please contact Hydroworks to ensure it has been modeled correctly.

Hydroworks Sizing Program - Version 5.7 Copyright Hydroworks, LLC, 2022 1-800-290-7900 www.hydroworks.com

Hydroworks Sizing Summary

Kingston Road - OGS203

Pickering, Ontario

06-29-2023

Recommended Size: HydroDome HD 5

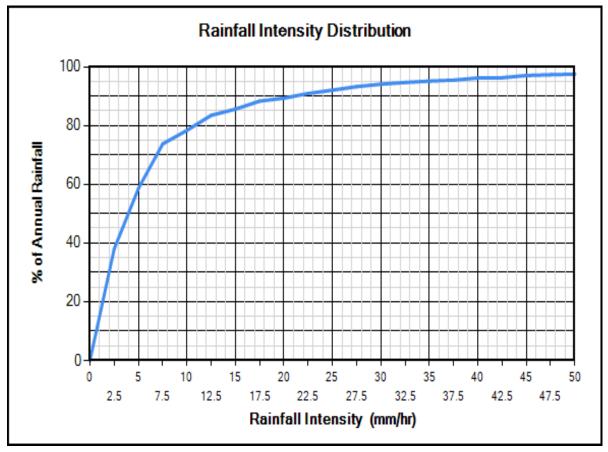
A HydroDome HD 5 is recommended to provide 80 % annual TSS removal based on a drainage area of 1.22 (ha) with an imperviousness of 100 % and Toronto Central, Ontario rainfall for the 20 um to 2000 um particle size distribution.

The recommended HydroDome HD 5 treats 100 % of the annual runoff and provides 83 % annual TSS removal for the Toronto Central rainfall records and 20 um to 2000 um particle size distribution.

The HydroDome has a siphon which creates a discontinuity in headloss. The given peak flow of .225 (m3/s) Is less than the full pipe flow of .29 (m3/s) indicating free flow in the pipe during the peak flow assuming no tailwater condition. Partial pipe flow was assumed for the headloss calculations. The headloss was calculated to be 393 (mm) above the crown of the 450 (mm) outlet pipe.

This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

If you have any questions regarding this sizing summary please do not hesitate to contact Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

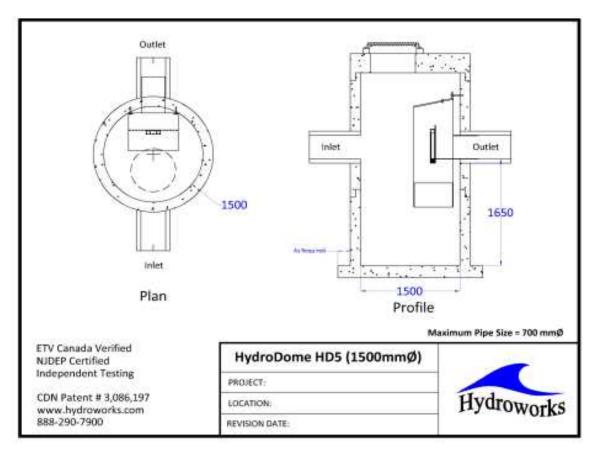

The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroDome.

TSS Removal Sizing Summary

~		Site TSS	PSD TSS Loading	Quantity Storage	By-Pass Cus	tom CAD	Video	Other	
Site Parame	ters		Units	Rainfall Statio	on				
Area (ha)	ſ	1.22	L n n	Toronto Cent	ral		0	ntario	
- Server Server	1			1000 T 1000	1982 To 1999 Rainfall Timestep = 15				
Imperviou	sness (%)	100	Metric	1982 10 1995	,		Raintali	Timestep = 10	min,
roject Title	Kingston Road - (065203			Outlet Pipe	s - 17			8
lines)	and a second of a first second second				Diam. (mm)	450 Pe	ak Design	Flow (m3/s)	.225
	Pickering, Ontario)			Slope (%)				
ETV Lab Te	sting Results	Г	Post Treatment Re	charge		1			
VdroDome	Annual Sizing Res	sults				article Size I	Distributio	πi	1
		1			7 6	Size (um)	%	SG	
Model #	Qlow (m3/s)	Qtot (m3/s)	Flow Capture (%)	TSS Removal (%)		20	20	2.65	
Unavailable	e .225	.225	100 %	64 %		60	20	2.65	
HD 4	.225	.225	100 %	74 %	-	150	20	2.65	
HD 5	.225	.225	100 %	83 %		400	20	2.65	
HD 6	.225	.225	100 %	89 %		2000	20	2.65	
	e .225	.225	100 %	92 %		2000		2.00	
Unavailable		.225	100 %	94 %					
Unavailabl HD 8	.225			CCW/h					
0100.007.0000	.225	.225	100 %	97 %					

TSS Particle Size Distribution

	I Dimensions R		100 100	g Quantity Storage By-Pass Custom 1	
55	Particle Size Dist Size (um) 20	1bution % 20	SG 2.65	Notes: 1. To change data	C ETV Canada / NJDEP
	60 150 400	20 20 20	2.65 2.65 2.65	just click a cell and type in the new value(s) 2. To add a row just go to the bottom of	C Standard HDS Design C Alden Laboratory C OK110
•	2000	20	2.65	the table and start typing. 3. To delete a row, select the row by clicking on the first pointer column, then press delete	Toronto Ontario Fine Calgary Forebay Kitchener User Defined
				 To sort the table click on one of the column headings 	Clear


Site Physical Characteristics

	380) 😑 🗷	1			- 11						
eneral I	Dimensions	Rainfall	Site T	SS PSD	TSS Loadin	g Quantit	y Storage	By-Pass	Custom (CAD Vid	eo Other	
Catchm	ent Parame	ters						n e	Maintenan	ce	n (3	
Widt	n (m)	110	In	perv. Man	nings n	n .015			Frequency (months) 12			
ſ	Default Widt	ь (P	erv Mannin	gs n		.25					
	Sendent Triffet		In	no. Depres	s. Storage	(mm)	.51	-				
Slope (%) 2 Perv. Depress. S						5.08						
		•										
	aporation (n											
Jan 0	Feb 0	Mar 0	Apr 2.54	May 2.54	Jun 3.81	Jul 3.81	Aug 3.81	Sep 2.54	Oct 2.54	Nov 0	Dec 0	
U	U	U	2.94	2.04	3.61	3.01	3.61	2.94	2.94	U	U	
Infiltrati	on					atch Basins	s 			13		
Max.	Infiltation R	ate (mm/hr))	63.5		# of Catch basins				Resets all parameters excluding input		
Min I	nfiltration R	ate (mm/hr)	10.16							nent width.	
				.00055	Co	ontrolled R	oof Runoff			[<u></u>		
innitia	ation Decay			.01	- 6	Roof Runof	f (m3/s)		_	Defa	ult Values	
	ation Regen	. Rate (1/s))	.01						L		

Dimensions And Capacities

lodel	Diam. (m)	Depth (m)	Float. Vol. (L)	Sediment Vol. (m3)	Total Vol. (m3)
HD 3	0.91	1.22	123	0.5	0.8
HD 4	1.22	1.37	266	0.9	1.6
HD 5	1.52	1.68	483	1.7	3.1
HD 6	1.83	1.98	803	2.9	5.2
HD 7	2.13	2.29	1226	4.6	8.2
HD 8	2.44	2.59	1863	6.8	12.1
HD 10	3.05	3.2	3617	13	23.3
HD 12	3.66	3.81	6224	22.2	40
h = Depth	from outlet invert to i	nside bottom of	tank		J

Generic HD 5 CAD Drawing

TSS Buildup And Washoff

) 🗁 🛃 🆪 🥝 🤤 遂 neral Dimensions Rainfall Site	TSS PSD TSS Loading Quantity	y Storage By-Pass Custom CAD Video Other	•]
TSS Buildup Power Linear Exponential Michaelis-Menton	Street Sweeping Efficiency (%) Start Month Stop Month Frequency (days)	Soil Erosion 30 May • Sep • 30	
TSS Washoff Power-Exponential Rating Curve (no upper limit) Rating Curve (limited to buildup	Available Fraction	.3	
TSS Buildup Parameters Limit (kg/ha) 28.02 Coeff (kg/ha) 67.25 Exponent .5	TSS Washoff Parameters Coefficient .0855 Exponent 1.1	 TSS Buildup 	

Upstream Quantity Storage

Hydroworks Siphon Separator S File Product Units CAD Care and Care and Care and Care and Care General Dimensions Rainfall Site	Video Help	torage By-Pass Custom CAD Video Other
Quantity Control Storage	Discharge (m3/s) 0	Notes: 1. To change data just click a cell and type in the new value (s) 2. To add a row just go to the bottom of the table and start typing. 3. To delete a row, select the row by clicking on the first pointer column, then press delete 4. To sort the table click on one of the column headings Clear

Other Parameters

]) 🗁 🚽 🎒 🥑 🤤 🖄 neral Dimensions Raimfall Site TSS PSD TSS Loading Quantity Storage	By-Pass Custom CAD Video Other
Scaling Law Image: Solid Scaling State Image: Scaling Law Image: Scaling Dased on diameter x depth Image: Scaling Dased on surface area (diameter x diameter)	HydroDome Design HydroDome Design High Flow Weir Flow Control (parking lot storage) Must add Quantity Storage Table
TSS Removal Extrapolation F Extrapolate TSS Removal for flows lower than tested No TSS Removal extrapolation for flows lower than tested No TSS Removal extrapoloation for lower flows or inter-event periods	HD Hydraulics HD Model HD 5 Custom Insert Size
Lab Testing Use NJDEP Lab Testing Results Use ETV Canada Lab Testing Results	
TSS Removal Results C Choose Model # TSS Removal (%) 80.0 Enter required TSS	SS Removal (%)

Flagged Issues

If there is underground detention storage upstream of the HydroDome please contact Hydroworks to ensure it has been modeled correctly.

Hydroworks Sizing Program - Version 5.7 Copyright Hydroworks, LLC, 2022 1-800-290-7900 www.hydroworks.com

Hydroworks Sizing Summary

Kingston Road (Catchment 202) Pickering, ON

07-04-2023

Recommended Size: HydroDome HD 8

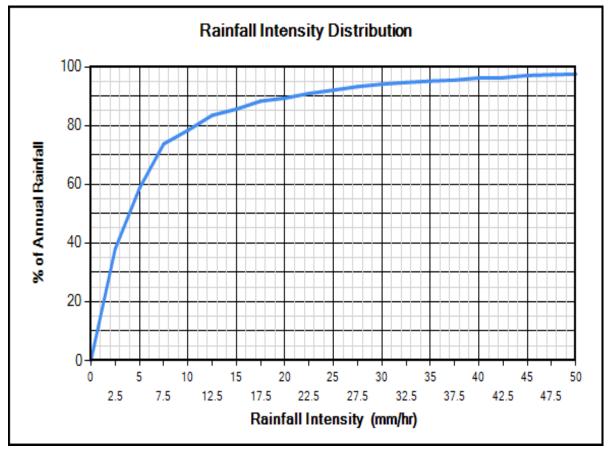
A HydroDome HD 8 is recommended to provide 80 % annual TSS removal based on a drainage area of 0.87 (ha) with an imperviousness of 54 % and Toronto Central, Ontario rainfall for the ETV/NJDEP particle size distribution (Alden).

The recommended HydroDome HD 8 treats 100 % of the annual runoff and provides 80 % annual TSS removal for the Toronto Central rainfall records and ETV/NJDEP particle size distribution (Alden).

The HydroDome has a siphon which creates a discontinuity in headloss. The given peak flow of .38 (m3/s) is greater than the full pipe flow of .29 (m3/s) indicating the pipe will be surcharged during the peak flow. Full pipe flow was assumed for the headloss calculations. The pressure head in the pipe was not evaluated since this would require a hydraulic gradeline analysis. The headloss was calculated to be 401 (mm) above the crown of the 450 (mm) outlet pipe.

This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

If you have any questions regarding this sizing summary please do not hesitate to contact Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

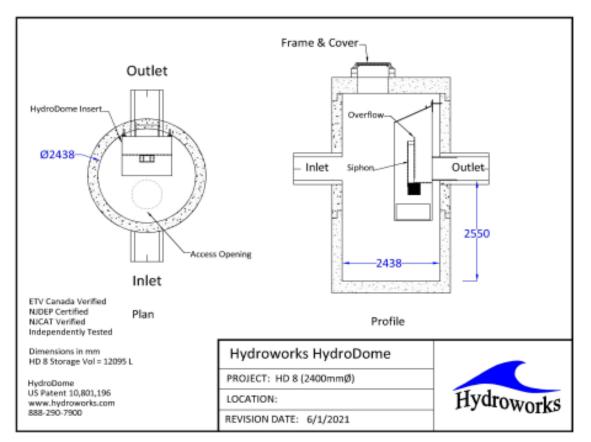

The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroDome.

TSS Removal Sizing Summary

) 🗁 🚽 é	t Units C	AD Video	Help						
neral Dimen	sions Rainfall	Site TSS	PSD TSS Loading	Quantity Storage E	By-Pass Ci	ustom CAD	Video	Other	
Site Paramet	ers			Rainfall Station	n				
Area (ha)	I	0.87	T U.S.	Toronto Centra	al		Or	ntario	
Impervious	ر ness(%) أ	54	Metric	1982 To 1999			Rainfall 1	Fimestep :	= 15 min.
Impervious	(%)	34	I Meure						
roject Title	Kingston Road (C	atchment 202))		Outlet Pip				
2 lines)	Pickering, ON				Diam. (mn	n) 450 Pei	ak Design I	Flow (m3/	s) 0.37
, ETV Lab Tes	ting Results	Г	Post Treatment Re	echarge	Slope (%)	1			
	-		1 oot Hoatmont H		_				_
HydroDome A	nnual Sizing Re	sults				Particle Size [Distribution		_
Model #	Qlow (m3/s)	Qtot (m3/s)	Flow Capture (%)	TSS Removal (%)		Size (um)	%	SG	4
	.376	.376	100 %	63 %		1	5	2.65	-
Unavailable			100 %	69 %		3	5	2.65	-
Unavailable HD 4	.376	.376	100 %				5	2.65	
	.376	.376	100 %	73 %		5	-	2.05	
HD 4 HD 5	.376	.376	100 %	73 %	-	8	5	2.65	-
HD 4 HD 5 HD 6	.376 .376	.376 .376	100 % 100 %	73 % 76 %	-	8 12	5	2.65	-
HD 4 HD 5 HD 6 Unavailable	.376 .376 .376	.376 .376 .376	100 % 100 % 100 %	73 % 76 % 79 %	-	8 12 20	5 5 10	2.65 2.65	-
HD 4 HD 5 HD 6 Unavailable HD 8	.376 .376 .376 .376 .376	.376 .376 .376 .376 .376	100 % 100 % 100 % 100 %	73 % 76 % 79 % 80 %	-	8 12 20 35	5 5 10 5	2.65 2.65 2.65	
HD 4 HD 5 HD 6 Unavailable HD 8 HD 10	.376 .376 .376 .376 .376 .376	.376 .376 .376 .376 .376 .376	100 % 100 % 100 % 100 % 100 %	73 % 76 % 79 % 80 % 82 %		8 12 20 35 65	5 5 10 5 10	2.65 2.65 2.65 2.65	
HD 4 HD 5 HD 6 Unavailable HD 8	.376 .376 .376 .376 .376	.376 .376 .376 .376 .376	100 % 100 % 100 % 100 %	73 % 76 % 79 % 80 %		8 12 20 35 65 75	5 5 10 5 10 5 10 5	2.65 2.65 2.65 2.65 2.65 2.65	
HD 4 HD 5 HD 6 Unavailable HD 8 HD 10	.376 .376 .376 .376 .376 .376	.376 .376 .376 .376 .376 .376	100 % 100 % 100 % 100 % 100 %	73 % 76 % 79 % 80 % 82 %		8 12 20 35 65	5 5 10 5 10	2.65 2.65 2.65 2.65	- - - - - - -

TSS Particle Size Distribution

	1	oworks Siph					Dome			§ X
Fi	-	_	Units	-	Video	Help				
	_		0) 🖄						
Ger	neral	Dimensions	s Ra	infall Site	TSSI	PSD TSS L	oading G)ua	ntity Storage By-Pass Custom	n CAD Video Other
	ISS F	Particle Size	Distri	bution						T00.01 - 1 - C
		Size (um)		%		SG		-	Notes:	TSS Distributions
	•	1		5		2.65			 To change data iust click a cell and 	C ETV Canada / NJDEP
		3		5		2.65			type in the new	C Standard HDS Design
		5		5		2.65			value(s) 2. To add a row just	 Alden Laboratory
		8		5		2.65			go to the bottom of	C OK110
		12		5		2.65			the table and start typing.	C Toronto
		20		10		2.65			3. To delete a row,	C Ontario Fine
		35		5		2.65			select the row by clicking on the first	C Calgary Forebay
		65		10		2.65			pointer column, then press delete	C Kitchener
		75		5		2.65			4. To sort the table	O User Defined
		125		10		2.65			click on one of the	
		200		20		2.65			column headings	Clear
		275		5		2.65				
		500		5		2.65				
		1000		5		2.65		•		
Yo	u mu	ıst select a	parti	clesizedi	stribution	for TSS to si	imulate TS	ŝSi	removal W	Vater Temp (C) 20


Site Physical Characteristics

 Hydrow 	orks Sipho	n Separato	or Sizing Pr	ogram - H	HydroDom	e						8 23
File Pr	oduct U	Jnits CA	D Vide	o Help								
1 🗁 🖥	; 4 🤇) 😑 🗵										
General D	imensions	Rainfall	Site TS	S PSD T	SS Loading	g Quantity	/ Storage	By-Pass (Custom C	CAD Vide	eo Other	
Catchme	ent Parame	ters						M	laintenanc	e		
Width	(m)	93	Imp	perv. Mann	iings n		.015	F	requency	(months)	12	
D	Default Width Perv Mannings n .25											
	Imp. Depress. Storage (mm) .51											
Slope (%) 2 Perv. Depress. Storage (mm) 5.08												
Jan	poration (m	m/day) Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
0	0	0	2.54	2.54	3.81	3.81	3.81	2.54	2.54	0	0	
	-						-					
Infiltratio					_	tch Basins			2	Resets al	I parameters	
Max. II	nfiltation Ra	ate (mm/hr)		63.5	_ #	of Catch b	basins		2	exclu	ding input nent width	
Min. In	filtration Ra	ate (mm/hr)		10.16		ntrolled Ro	of Dunoff -			outonin	ion moun	
Infiltra	tion Decay	Rate (1/s)		.00055				_		Defau	ult Values	
Infiltra	tion Regen	. Rate (1/s)		.01	R	oof Runoff	(m3/s)					

Dimensions And Capacities

imensions an Model	d Capacities Diam. (m)	Depth (m)	Float. Vol. (L)	Sediment Vol. (m3)	Total Vol. (m3)
HD 3	0.91	1.22	123	0.5	0.8
HD 4	1.22	1.37	266	0.9	1.6
HD 5	1.52	1.68	483	1.7	3.1
HD 6	1.83	1.98	803	2.9	5.2
HD 7	2.13	2.29	1226	4.6	8.2
HD 8	2.44	2.59	1863	6.8	12.1
HD 10	3.05	3.2	3617	13	23.3
HD 12	3.66	3.81	6224	22.2	40
pth = Depth	from outlet invert to	inside bottom of t	ank		

Generic HD 8 CAD Drawing

TSS Buildup And Washoff

Kan Hydroworks Siphon Separator Sizing Program - HydroDome	8 23
File Product Units CAD Video Help	
1 🗁 🚽 🥝 🤤 🗵	
General Dimensions Rainfall Site TSS PSD TSS Loading Quantity Storage By-Pass Custom CAD Video Other	
TSS Buildup Street Sweeping Soil Erosion Power Linear Efficiency (%) 30 Exponential Start Month May Stop Month Sep Frequency (days) 30 Available Fraction .3	
Power-Exponential Rating Curve (no upper limit) Reset to Default Values	
TSS Buildup Parameters TSS Washoff Parameters Limit (kg/ha) 28.02 Coeff (kg/ha) 67.25 Exponent 1.1 Exponent 5	

Upstream Quantity Storage

- Hydroworks Siphon Separator Sizing Program - HydroDome 👔 🔯											
File	Pro	oduct	Units	CAD	Video	Help					
Gene	ral D	imensior	is Rainf	fall Site	TSS F	PSD TSS	Loading	Quantity	Storage	By-Pass Custom CAD Video Other	
	Quan	tity Cont	rol Stora	qe						Notes:	
	Storage (m3)		Discharge (m3/s) 0				1. To change data just click a				
	• 0							cell and type in the new value (s)			
	*									 To add a row just go to the 	
										bottom of the table and start typing.	
										3. To delete a row, select the row	
										 To delete a row, select the row by clicking on the first pointer column, then press delete 	
										To sort the table click on one of the column headings	
										Clear	

Other Parameters

 Hydroworks Siphon Separator Sizing Program - HydroDome [®] ⁸ ⁸									
File Product Units CAD Video Help									
General Dimensions Rainfall Site TSS PSD TSS Loading Quantity Storage By-Pass Custom CAD Video Other									
Scaling Law	HydroDome Design								
Peclet Scaling based on diameter x depth	✓ High Flow Weir								
✓ Peclet Scaling based on surface area (diameter x diameter)	Flow Control (parking lot storage)								
TSS Removal Extrapolation	Must add Quantity Storage Table								
Extrapolate TSS Removal for flows lower than tested	HD Hydraulics								
No TSS Removal extrapolation for flows lower than tested	HD Model HD 8								
✓ No TSS Removal extrapolation for lower flows or inter-event periods									
Lab Testing └── Use NJDEP Lab Testing Results └── Use ETV Canada Lab Testing Results									
TSS Removal Results	SS Removal (%)								

Flagged Issues

If there is underground detention storage upstream of the HydroDome please contact Hydroworks to ensure it has been modeled correctly.

Hydroworks Sizing Program - Version 5.8 Copyright Hydroworks, LLC, 2023 1-800-290-7900 www.hydroworks.com

SCS Consulting Group Ltd 30 Centurian Drive, Suite 100 Markham, ON, L3R 8B8 Phone 905 475 1900 Fax 905 475 8335